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ABSTRACT 

Remote sensing techniques often provide a representation of the earth's 

surface _as a set of images . The brightness o f each point in an image 

represents the intensity of reflected or emitted electromaqnetic energy 

from a corresponding point on the earth as measured by some sensing device 

carried aboard a platform such as an aircraft, a balloon, or a satellite. In 

some instances, simple visual inspection of the images permits positive 

identification of features of interest. For many applications, however, 

sophisticated digital analysis techniques are required to extract the desired 

information concerning earth resources and the environment. 

t' 
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INTRODUCT ION 

In order to effectively monitor and manage earth r esources and the en-

vironment , it is necessa r y to know what is present in an area of interest 

on or n ear the earth ' s s urface . Traditional methods of determining the 

statu s of forests , agricul t ural a r eas, urban features, snow cover, drainage 

patterns , l ocation of man-made struc tures , water quality, i ce , etc., involve 

g r o und surveys and sampling schemes. Ground observations have the adv ant -

age of making it u sually possible to determin e the features p r esent at any 

given time and location with a specific degree of precision. However, 

ground sampling is slow , tedious and expensive in both monetary and human 

re sources. Thus, in any practica l ground sampling program , only a r e l ative-

ly few sample points can be obtained in any reasonably short period of time. 

I, 

The most important features of interes t as well as their characteristics , 

can often be determined or inferred by observations mad e at some distance, 

s uch as from an aircraft or satellite . These observations depend upon the 

measurement of reflected or radiated electr omagnetic energy in some specific 

region or regions of the spectrum . The simplest such form of observation is 

visual - an observer is carried by an aircraft o r helicopter over the region 

of interest . He may note the charac t erist i cs h e i s looking f or by ske t ching 

their l ocations on a map . This t echnique is conunonly applied while searching 

for open water , or leads , in the Arctic ice pack and is used also in spotting 

forest fire s . To obtain a more accurate localization of features o f inter-

est , aerial photographs may be t aken , u s ing black-and-white , colour or fa l se ­

colour infrared film . These photographs may be analyzed l ater by a trained 

photointe r p rete r to dete rmin e the location and condition of features. 
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In many instances , neither visuu l observation nor photography are 

effective in reliably detecting subtle differences among the objects of inter­

est, or even where differences can be seen , or unambiguously identifying 

these features. These techniques provide only relative measurements of re­

flected radiation from objects on the ground. Where more absolute measure­

ments are needed, where differences occur only in narrow regions of the 

spectrwn, the investigator must resort to the use of electronic sensors 

in order to acquire the data. 

Generally, there are tv-JO classes of electronic remote sensing instru­

me nts commonly employed: profiling and imaging. A profiling device 

measures reflected or emitted rpdiation from a point directly below the air­

craft or satellite. As the platform moves, successive measurem e nts build up 

a profile of the parameters measured along the flight path. A typical imaging 

sensor makes a large nwnber of measurements a long a line perpendicular to the 

flight p ath. Each such set of measurements is called a scan, and successive 

scans produce d by the moving platform can be used to build up a two-dimen­

siona l array of data for eachBarametermeasured. The data array can then be 

displayed as an imag e by recording the measured value at each point as an 

intensity on a television screen or on photographic f ilm. 

Since the dwel l time, or time pexiod during which a parameter is measured, 

is muc h longer with a profiling sensor, bette r signal-to~noise ratio s can be 

obtained than with imaging s ensors, In add ition, the overall data ra te for 

eac h measured parameter is much lowe r, since data are collected only along a 

line and not over a wtde area. For these reasons, it is practical to con -

s truct a profiling sensor with much greater sensitivity and/or much finer 

spectral resolution. However, by th e very nature of a p ro f iling device , the data 
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acquired form only a sample, and value s must be interpolated between success-

ive flight lines . A practical imaging sensor tends to be limited to fairly 

wide spectra l band passes , limited sensitivi ty and relative ly few parameters . 

Nevertheless, compl ete aerial coverage of a r eg ion can be obtained using 

imaging or scanning techniques. 

Four imaging type sensors are commonly u sed for remote sensing of the 

near surface environment from aircraft and satellites . These are: multi-

spectral scanners operating in the ultrav iolet , visible and n ear-infrared 

regions; 

region; 

thermal infrared scanners operating in the 2-4 and/or 10-12 µm 

both r eal and synthetic aperture side-looking r adars operating at X, 

Lor C band (9. 5 GHz , 1. 3 GHz and 5 .3 GHz); and passive microwave scanners 

r 
opera ting at similar frequ encies . It is possibl e that scanning laser flouro-

sensors may be developed in the future. In all of these devices, e lectro -

5 

mag net ic rad iation from a series of points to one or bo th s i des of the plat­

form is spectrally filtered and converted to e l ectrica l signals , which are then 

recorded on magneti c tape o r photographic film , either on-board the platform 

or after transmission to the ground. The signals on magnetic tape may be 

either recorded directl y in analogue form, or may b e converted t o dig ita l 

form before recording. 

Often , the two-dimens ional data acquired by imaging sensors are simply 

recorded on photographic film and inte rpre t ed v i sually. However , for many 

applications it is necessary to apply sophisticated digital image analysis 

techniques to extrac t the desired information from the data . The image a na lys is 

techniques described here have all been implemented on the Canada Centre for 

Remote Sensing (CCRS) Image Analysis System (CIAS ) which has been described by 

Goodenough (1 977). 



DATA CORRECTION 

Before remotely sensed data may be properly analyzed , they must be 

corrected for various errors or artifacts . In the case of a multispectral 

scanner, calibration data must be used to correct for v ariat ions in sensor 

sensitivity (Strome et al , 1975; Ahern and Murphy, 1978). In some cases, 

it is necessary to correct for variations in sun-angle, viewing angle and 

slope and aspect of the target. Corrections to radar are much more compl ex , 

including the effects of the antenna radiation pattern and loss in received 

power with range. The atmosphere can significantly alter the intensity of 

the radiation received from the target through scattering and absorption. 

Some atmospheric effects are simple, depending only on the path length, hence 

viewing angle, while others are dependent upon the aerosol and water vapour 

content of the atmosphere between the sun and target and between the target 

and sensor. In the near visible region, algorithms have been developed (Strome 

et al , 1978) to correc t for some of these effects. A fundamental difference 

between Synthetic Aperture Radar and most other imaging sensors is coherent 

speckle or fading which arises due to the coherent nature qf the illuminating 

radiation and the method of coherent detection, causing rapid variabili ty in 

th e image intensity from one picture element (pixel) to the next . Even with a 

perfectly noiseless radar and a field of uniform reflectance, the image from a 

coherent system will show statistical variations where the variance is of 

nearly the same value as the mean. Thus, before the reflectance of an area 

under study can be determined to any accuracy, a number of returns must be 

averaged. There is a complex uffiliation between ra.dar intensity resolution 

that is related to the statistics of the scatterers in the scene and to the 

detection and processing schemes used in the radar and processor to gene rate 

the image. 
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In addition to radiometric corrections, there are many geometric distort-

ions to be corrected. Typical aircraft scanners use a rotating mirror to image 

s uccessive points on the ground onto the sensor. Since the data sampling rate 

is usually linear in time, each sample corresponds to an area of different size 

on the ground. In the case of a satellite, significant geometric distortions 

are caused by effects of earth curvature, panoramic distortion and non-uniform 

mirror velocity. In both instances, the geometry of the image data is affected 

by the attitude, altitude and velocity of the platform. The image analysis 

process usually involves extracting information concerning the ground cover 

and assigning the information to specific locations on a map. To do so 

accurately , the data must be geometrically corrected. Furthermore, data sets 
~ 

from different dates, or even different sensors , must be registered to each 

other prior to analysis. The most factual method of regist~ation and/or 

geometric correction involves locating Ground Control Points (GCP's) who se 

actual positions are accurately known on the image data. The positions of a 

number of these points are then used to define a geometric "rubber sheet 

stretching " transformation of the image data. A new set of data samples is 

created u sing v arious interpolation techniques in which the values at the 

new grid points are determined .(Shlien , 1978) as illustrated in Figure 1. 

These new grid points might correspond to the sample points in a refere nce 

imag e , or to a r egularly spaced grid on a standard topographic map . 

Most SAR data analyzed by CCRS are obtained using the dual frequency, 

dual polarization system of the Environmental Research Institute of Michigan 

(Rawson, R., Smith, F. and Larson, R., 1975). The four radar channels, al-

though recorded simultaneously, ·are optically processed separately and thus 
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must be digitally registered after image generation. The high variance to 

mean ratio for these data makes digital registration more difficult for radar 

data than for multispectral or multitempora l scanner data. CCRS scanner 

imagery, for example, is of sufficient quality that common points (GCP ' s) 

between a reference image and a corresponding source image of the same area 

may be identified automatically by correlation . SAR imagery, on the other 

hand, has too much "speckle" for automatic selection of GCP's and must 

therefore be selected manually. Once the necessary number of GCP's are 

selected,a rubber-sheet polynomial transformat ion of the source image is 

performed together with an approximation to (sin x/x) interpolation. The 

resulting corrected image is thus matched to the refere nce channel or image. 

I', 

This process is repeated for each remaining channel of the radar data set. 

The n e w four-channel set may now be treated as a four-feature image for sub-

sequent analysis, after the data are spatially smoothed. 

IMAGE ENHANCEMENT 

For some applications, the best approach to image analysis is to simply 

provide an e nhancement for later visua l analysis by a trained photo-inter-

preter. A number of such enhancements are commonly employed. Perhaps the 

most basic is a simple contrast stretch. Figure 2a shows a histog ram of the 

data for a single channel of a typical imaging sensor. If this were da ta 

from a visibl e sensor aboard a satellite , the first narrow peak might 

correspond to water, the central one to land and the third to clouds. Notice 

that the maximum observ ed value is just s ligh tly over one-half full scale . 

Better u se of the dynamic range at the display mediwn, ei ther photographic 

film or CRT, can be obtained if ·the observed values are simply multiplied by 

some factor, str e tching the histogram as shown in Figure 2b, If cloud and 

u 



woter detail are of no interest, scaling can be applied to stretch the ob­

served values o ver land areas to fill the dynamic range, forcing the water and 

cloud data into saturation at the top and bottom end of the scale as shown in 

Figure 2c. Such contrast stretching can be performed on several channels of 

data, and three of these can be combined to form a colour composite. 

A more complex radiometric enhancement has been developed by Taylor, M.M., 

(1973). Only three channels of image information may be displayed in regis-
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tered form simultaneously by means of a colour composite image using the three 

primary colours, red, green and blue. If the image data consists of more than 

three channels, one may normally display any three of these channels at a time. 

Typically, the data contained in the various channels exhibit some degree of 

correlation. The eigenvectors cttn be determined by computing the covariance 

matrix for the data in all channels. A coordinate rotation can then be per­

formed on the data to produce the same number of channels with features 

represented by intensities along the eigenvectors. By selecting those three 

channels with maximum variation in the rotated space, a new colour image may 

be produced containing the maximum amount of information available. Normally, 

cuc h of the new data channels would be contrast stretched. The result is an 

image which produces even greater discrimination between objects with differ-

e nt spectral characteristics than that obtainable through s imple contrast 

stretching alone. This is illustrated by Figure 3. Two parameters x1 and x 2 have 

been measured for a number of objects of class x and class o. If a black and 

white image was produced usin9 either XJ or x2 data alone, it would not. be po.ssible 

to separate the c lasses x and o. Howeve r, in a rotated coordinate system, the 

data points may be projected onto an axis where there is complete sepurution 

of the two classes as shown. 



Many features 1.n an image which define the boundaries between objects of 

interest , or the objects thernselves,are spatial in nature . Often , these 

features can be made more visible through edge enhancement techniqu es . These 

are merely high frequency filters . Th e simplest of these is a variation of 

the box-car filter . The ave r age of a number of picture elements (pixel s ) 

surrounding the one of inte res t are averaged. A fract ion of this average is 

then subtracted from the value of pixel of intere st to form a new va lue . The 

result is an image in which changes between adjacent pixels are accentuated . 

This t ec hnique is particularly interesting to geologists who are able to 

glean information about the geological structure from the accentuated linear 

features . 

MACI+INE CLASSIFICATI ON 

10 

The Multispectral Scanner System (MSS) carried aboard the U.S. National 

Aer onauti cs and Space Administration Landsats 1 , 2 and 3 (NASA, 1976). ha s 

provided Canada with more digital image data than all other sensors combined. 

A s ingle four-channel scene , acquired in only 25 seconds, conta ins 180 million 

bits of data. The analysis techniques described here may be adapted to any 

multichannel image data, but have been most widely used for extrac ting inform­

a t ion from Landsat data . 

The data from Landsat consist of a two dimensional array of measured 

incident radiation values in four spectral bands : 

0.5 - 0.6 µm (green ) 

0.6 - 0 .7 µm (red ) 

0 .7 - 0.8 µm (near IR) 

0 . 8 - 1.1 µm (near IR) 

Figure 4 shows spectral reflectance curves in the region covered by the MSS 

for v ar i o u s materials commo nly o bserved by remote sensing techniques. It is 



important to note that rather large variations in absolute reflectance are 

common , especially in the case of plants. However, the general shape of the 

spectral response tends to be similar from sampl e to sample . The sensors 

usually do not measur e reflectance, but incident radiation which is affected 

by many factors other than the reflectanc e as illustrated in Figure 61 

the most important of these being the sun angle, viewing angle, slope and 

aspec t, and atmospheric absorption and scattering. Ideally, corrections 

- . 

should be made for all of these effects before further analysis is attempted. 
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However, in the case of a single Landsat MSS scene, t he sun angle is constant, 

many areas are relatively flat, the viewing angle varies by only a few degrees 

and the atmospheric scattering and absorption can be treated as a constant. 

Therefore, if there is no attem~t to carry analysis from one scene to the 

next, most of the corrections can be ignored for many applications. 

The objective of the classification of image data is to identify the 

various objects contained within a scene and relate these to objects on the 

ground. Where differences among the objects are too subtle for resolution by 

manual photointerpretive methods, the computer techniques developed for general 

pattern recognition studies can often be optimized for use in the analysis of 

the large volumes of data encountered with images. Two approaches arc 

normally used: supervised and unsupervised classification. 

The supervised methods rely upon a user to pick typical training sites 

in which he knows the nature of the object. For example, if he wishes to 

locate all the water in an image, he may select an area where he knows water 

occurs. The computer calculates the statistics of this training site and 

identifies all other areas with similar statistics as being of the same class. 

Normally, the user will select many training sites for each of a number of 

classes, Decision boundaries are determined in the feature space so that each 
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point in the image is then assigned to one of the classes. Various algorithms 

are available for defining these decision rules. A non-parametric method per-

mits the user to interactively fonn the decision boundaries by the construction 

of multidimensional hypercubes in the feature space which surround all the 

data points corresponding to the various training samples. Alternatively, 

assumptions may be made about the probability density functions of the classes 

and then use maximum likelihood decision rules to distinguish among these. 

Consider one common statistical decision rule for assigning measured 

parameters to a given class. Assume that a set of measured parameters~= 

(x1, x2 · ·· xn) is obtained for every observed position, and that there is a 

set of classes w = (w1, w2 ··· Wm) of interest. Assuming that the probability 

density function for the param~ters set xis known for each class member wi, 

and is denoted by P(~ !wk)~ i = 1, 2 ··· m, and the r egion of~ 

for which all objects are assigned to c l ass wk is denoted Rk. This is illus­

trated for a one dimensional case in Figure 7. 

Unfortunately, the probability density functions, p (~ I Wj) are rarely 

known. In many classification systems, a parametric approach is adopted. 

Essentially, it is assumed that P (~ I wj) has a known parametr ic fonn, 

usually 

( 1) 

where !:.j is the mean and~ is the covariance matrix for a 

multivariate nonnal distribution. The maximum likelihood estimates for !:._j and 

;,. from a training set, that is from data samples from areas known to be 
-J 

representative of object Wj, are give n by: 

~ 1 q 
g_=qr ~ 

R=l 

~ = 1 g_ 
~ t 

q R=l 

( 2 ) 

(3) 
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These estimates , given by equations ( 2) a nd (3), when s ubstituted made into 

equa t i on (1) provide probability density functions from which d e cision 

boundaries can be detennined . 

The problem with pa r ametric cla ss ification i s that there is little 

evidence radiometric measurement of objects commonly observed using 

remote sensing techniques actually exhibit a normal distribution. Figure 8 

illustrate s a number of two-dimensional distribu tions , all of which have the 

same mean a nd covariance . 

1J 

Th ere are several non-parametric classification procedures . Perhaps the 

s implest is the application of the neares t n e i ghbour rule as illustrated in 

Figure 9 in two dimensions . Assume that two training sites are selected for 

classes A and B for which sample values of x 1 and x 2 a re plotted at the a's 

and b's respective ly. The parameters labe lled x are fo r unkno wn objects. 

They are a ssigned to the class of their nearest neighbour in the training 

set. The type of e rrors in assignment that a r e possibl e with this decision 

rule are clearly illustrated in Figure 9. 

A non-parametric c lassification method us ed ex t ens ive l y at CC RS is 

illustrated in Figure 10 . Essenti~lly , it involves the construction of a set 

of arbitrarily shaped decision boundaries in feature space which are composed 

of sets of parallelpi peds added t o or subtracted from the space through a 

sequence of interactive tr a ining sets . For eac h training s ite , a parallele­

piped i s comp uted which contains all v a lu es for that training site . In the 

case o f the CIAS, a ll areas whose values are contained i n that parall elepi ped 

are then displ~y ed so t hat the operator can immedi ately spot oth er areas whic h 

have been f a lse ly classified , or which have been mi ssed . Through careful 

sel ec tio n of othe r tra ining site & the ope rator can build up an arbitrarily 
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c~mplex decision boundary as illustra led in Pigure 1q where three different 

training sites for each class o and w have b een used to build the decision 

ooundaries throu~h a succession of six steps. 

The unsupervised classification approach may be used in cases where the 

user is not certain 

inte rest, or · if he does not know which classes are truly distinc t. -By, these 

methods, the computer examines the statistics of the data for the whole scene. 

Using one of a variety of algorithms, the data points arc formed into dis-

tinguishable "clusters". That is, data points tend to be grouped together, 

with gaps between these groupings, each of which is defined arbitrarily as a 

class. This is i l lustrated in Figure 11. Of course, user interac tion is 

r equired with these unsupervis edrmethods in orde r to define what each of the 

cla sse s represent . The most efficient clustering algorithm in u s e by CCRS 

f o r four channel d ata is one which searches for the isolated peaks in the 

f o ur-dime nsional histogra m. Each of these peaks is i dentif i ed as a c e ntre 

for a clas s or cluster. The method of determining these peaks is analagous 

to f l ooding a mountainous area with water. Whe n the water level rises , the 

peaks are identifi ed as islands surrounded by wate r, illustrated in Figure 

12, (Shlien and Smith, 1975). 

A second commo nly used clustering algorithm is the basic isodata or 

migr a ting means procedure (Duda and Hart, 1973), Starting l o cations are 

assigned for n cluster centres in feature space , !!J_, .!:_2 •.. µn. Each sample 

v a lu e ~j is as s igned to the class Wi whos e mea n .!:_i is c l osest , u s ually in 

Euclidean distance. When all the X' have been ass igned to classes , n ew means, -J 

l:_i, are computed as an average of the samples now contained in each class Wi. 

If any of the~~ change position, the procedure is repe ated. Figure 12 shows 

µ.4 



tile trajectory of _l_l_l and l.:.2 for diff0 r cnt starting values of. a data set 

containing samples from two, two-dimensional nonnal distributions. Th e rate 

of convergence depends upon proper selection of the number of nuturul clusters 

occurring in the data, their separation and the initial values of the P · . In 
- l 

fact, convergence is not guaranteed at all with this procedure. 

Another non-parametric clustering algorithm employed in image analysis 

is the vall ey seeking (Koontz and Fukunaga, 1972) which defines the clusters 

by connecting local minimum in the histogram as illustrated in Pigure 13. 

Still another approach is graph theoretic clustering (Koontz, Nuren:lr.:i .:ind 

Fukunaga, 1976). In this technique, sample points in the feature space a re 

connected to thei r nearest neighbours to form a set of tree structures to 

define the clusters, as shown i~ Figure 14. Decision rules to detennine to 

which tree a point belongs near a boundary ensure that these boundari es 

actually follow the valleys between peaks in the histogram. 

A major difficulty with all machine classification systems is that they 

become unwieldy and v ery time-consuming as the dimensionality in feature 

space increases, i.e. as more channels of data become available. Thus, for 

multichannel or multitemporal data, it often becomes necessary to reduce 

the number of effectiv e channels. 'rwo methods are commonly employed . In 

the first, the correlations between data in each channel are computed on a 

pair-wise basis. Those channels with the least correlation between any 

other channels are then selected. This method is relatively fast and re~ 

quires no further preprocessing of the original data, it is simply a method 

for choosing the original channels containing the data least correlated with 

the others. The second method 9f dimensionality reduction is that oE 

principa l components analysis (or Ka.rhunen-Loere transforms), which was 

15 
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discussed as an image enhancement t echnique. For general dimensionality 

reduction, the n channels in rotated space containing the most information 

are retained. 

SPATIAL ANALYSIS 

Much of the information in a remote sensing image is sp;:itic1l , con-

textual and/or textural. Visual photointerpreters tend to make greater 

use of these spatial cues rather than the specific radiometric values 

of each point , whereas in the computer techniques just described, each 

point is considered in isolation, and only the valu es assigned to it are 

considered. 

Perhaps the simpl est step toward spatial analysis is the post-classi-

.I(\ 

fic a tion filter (Goldberg and ~oodenough, 1976). After classification has been 

performed using any of the methods described, the neighbours of each point 

can be examined and a decision made as to the probability that the point 

was misclassified. For example, a single point classified as corn completely 

surrounded by wheat is probably an error. A matrix of probabilities of mis­

classification is used to drive the algorithm . 

Another at t empt to use spatial information in the classification is 

that of image segmentation (Narendra and Goldberg , 1976), followed by c lassi-

fication. With this method, an attempt is made to define homogeneous 

regions which probably contain the same material. The advantage with this 

approach is that the resulting regions can be classified utilizing so called 

"field classifiers" which use their overall statistics of a region instead 

of examining each data element as an isolated point . The probl em is 

finding the boundaries between homogeneous regions, especially in the 

presence of noise. Figure 15 illustrates a gradient tec hnique for detection 



of ~dges using a one-dimensional exa~1le. In the two-dimensional case, a 

two-dimensional differentiation operation is performed, the result recti-

fied and inve rted and various valley detection schemes applied to define 

the boundnries. Simple thresholding can be used, although this is often 

rather ineffective because edges might be thick, and the height of the 

edges is not constant around a segment. Any valley seeking algorithms, 

including the graph theoretic clustering method outlined previously, may 

be used. 

The n ex t stage in sophistication of spatial an a lysis involves the 

definition of spatial or textural features which may be assigned to each 

point (Haralick and Johnson , 1974; Haralick et al , 1976). A typical, yet 

simple textural feature is the deviation of one pixel from its neighbours. 
t' 

For example, if i denotes the x coordinate and j they coordinate of a par-

ameter set~, j , a measure of the deviation of the overall radiance at one 

po int from its neighbours is 

6i j = 1 1 1 
I 1· + + ~i, j X• + k, j + 1 

9 I: I: :..:.i 
( 4) 

1 = -1 K= - 1 

More complex textural features can be defined. 

Some spatial analysis of r emotely sensed data h as been performed using 

two-dimens ional Fourier Transform. (Gramenopoulos, 1973), to detect changes 

over time and to classify features such as farms , mountains, desert and 

urban. Until recently, it has been impractical to perform Fourier Trans-

forms over signif i cant portions of a Landsat image, and as a result, the 

technique has not been fully explored . As more powerful array processors 

become embedded into image analysis syst6ns, more work in spatial a nalysis 

is likely. 
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SUMMl\RY 

Many rather sophisticated techniques have been adapted from the 

general field of pattern recognition to problems of image analysis of 

remotely sensed data. In some instances, new techniques have been 

developed to increase the efficiency of classification or enhancement 

of the large volumes of data which are routinely acquired by remote 

sensing instruments. New methods must be developed to extract spatial 

information barely used in machine analysis today. New sensors being 

d e velope d for the early 1980 ' s will acquire data at a rate whic h is an 

order of magnitude greater than those in use today. The challenge for 

the future lies in developing systems and algorithms to deal with these 

data , to conve rt them into useable information and to integrate inform-

a tion from remote sensing with that from othe r sensors in a form which 

ca n be r e adily us ed op erationally to more e ffectively manage our re-

s ources and e nvironment. 

lH 



REFEm:NCES 

:i:lliern ,' .. F.J. and Murphy, J., "Radiometric Ca libration ancJ Correction of Landsat 1, 
2 and 3 MSS Data", EMR/CCRS Research Report 78-4, November, 1978. 

Duda, R.O. and Hart, P.E., "Pattern Classification and Scene Analysis", John Wiley 
and Sons, New York, 1973, pp . 405-424. 

Goldberg, M. and Goodenough, D.G., "Analysis of a Spatial Filter for Lc1 ndsat 
Imagery", SPSE Conference Proceedings , July 19-23, 1976, Toronto, Canada, pp. 
276-282. 

Goodenough , D.G.· , " The Canada Centre for Remote Sensing's Image Analysis System 
(CIAS) ", presented to the 4th Canadian Symposium on Remote Sens..ilig, Quebec 
City, May, 1977, pp. 227-244. 

Gramenopoulos, N., "Automated Thematic Mapping and Change Detection of ERTS-1 
Images", Proceed ings: Fourth Annual Conference on Remote Sensing in Arid 
Lands, Tucson, Arizona, 1973, pp. 82-96. 

19 

Haralick, R.M. et al , "Automatic Remote Sensor Image Processing", Topics in Applied 
Physics, Digital Picture Analysis, Springer-Verlag, Berlin, Heidelberg, New 
York, pp. 5-66. 

Haralick, R.M. and Johnson, D., 
June, 1974. 

"Kansas Digital Image Data System (Kandidats)", 
r 

Koontz, W.L.G. and Fu kunaga, K., "A Nonparametric Valley-Seeking Technique for 
Cluster Analysis" , IEEE Transactions on Computers, No. 2, Volume C-21, February, 
1972. 

Koontz, W.L.G. and Fukunaga, K., "Asymptotic Analysis of a Nonparametric Clustering 
Technique", IEEE Trans. on Computers, Vol. C-21, No. 9, pp . 967-974, September , 
1972. 

Koontz, W.L.G., Narendra, P.M. and Fukunaga, K., "A Graph Theoretic Approach to 
Nonparametric Cluster Analysis", IEEE Trans. on Computers, September, 1976. 

Narendra, P.M. and Goldberg, M., "A Graph-Theoretic Approach to Image Segmentation", 
1976. 

NASA/GSFC, "LANDSAT Data Users Handbook", Document No . 76SDS4258, September 2, 
1976, Greenbelt, Maryland, 20771, U.S.A. 

Rawson , R., Smith, F. and Larson, R., "The ERIM Simultaneous X- and L-Band Dual 
Polarization Radar", IEEE International Radar Conference, April 21-23, 1 975, 
Arlington, Virginia, IEEE Publication 75 CHO 938-1 AES, pp. 505-510. 

Shlien, S. and Smith, A., "A Rapid Method to Generate Spectral Theme Classification 
of LANDSAT Imagery", Remote Sensing of Environment 4, 67-77. (197 5). 

Shlien , s., "Geometric Correction, Registration, and Resampling of LANDSAT Imagery", 
1978. 

Strome, W.M., Vishnubhatla, S.S., and Guertin, F.E., "Format Specifications for 
Canadian LANDSAT MSS System Correction Computer Compatible Tape", EMR/CCRS 
Resea r ch Report 75-3, July, 1975. 



20 

• l t,, 

Strome , W.M., Goodenough, D.G., Ahern, F.J., Gray , L., Shlien, S. and Lowry, R., 
"Digital Analysis of Remotely Sensed Da ta at CCRS", Proceedings of CIPS 
Session '78, Canadian Computer Conference, Edmonton, Alberta, 23-25 May, 1978, 
pp . 413-420. 

Taylor , M.M., "Principal Components Colour Display of ERTS Imagery", 3rd ERTS 
Symposium, Vol. 1, Sec . B., December 10-14, 1973, Washin<Jton, D.C., pp. 1877-
1897. 



0 0 

0 0 

0 0 

0 c"' ... 0 

0 0 

C 0 
... ~ n 

"-.I -
0 0 

0 0 
0 0 

0 0 0 

0 0 
( ) 0 

- .. 0 
V 

() 0 

0 0 
.. 0 • 0 .. 

0 0 0 

0 0 0 
0 0 

o Original data points • Resampled data points 



Q) Q) Q) 
(.) (.) (.) 
C C C: 
Q) Q) (]) 
~ ~ 

~ 
~ ~ 

~ 
::, ::, ::, 
(.) (.) (.) 
(.) (.) (.) 
0 0 0 - - -0 0 0 
>, >, >, 
u u (.) 

C C C 
Q) Q) Q) 
::, ::, ::, 
0- 0- 0-
Q) (1) (1) 

Lt ~ ~ 

LL LL 

Intensity Intensity Intensity 

a. Original b. Linear stretch C. Saturation 

- ' . r I : :., • ' t' ;' •, ' . < : V" • 'i .,( t : 

:, •• • ••• [ ~ - t \ •--< , ... · ·..r t: ~ , :....::_ :, X ] 



x, 
6. 

6. 
I::,. 6. 

6. 
6. 6. 

6. 
6. 

0 

0 

RA 

I::,. 

I::,. 
6. 

0 
0 0 

0 0 
0 

0 0 

0 0 

6 Samples of class A 

o Samples of class B 



>. 
+-
en 
C 
Q) 

"O 

+-

.0 
C 
.0 
0 
~ 

a. 

_., . '. / 

p(xlw
2

) ~ - -

p(xlw
3

) ·········· 



__p ....... •• -

7 
/ 



xi 
6 6 

f:::. f:::. 

1 l 6. 
@f:::. 

f:::. 
L's- 6 0 

6 f:::. 
f:::. 

D 
f:::. 6 0 

D 

D D □(Do 
□ D ~ D 

D D 
D D 

D D 

.. r . 

0 

0 
0 

0 0 
0 0 ~ 0 

0 ? O 0 

0 6 ? 
°'- 0 

0 

D 

0 o Sample values of X for class w1 

D Sample values of X for class w2 

6 Sample values of X for class w3 

• Values of X to be classified 

Circled samples are 
probably misclassified 



II -D -
■ 0 I D 

□ o □ •tJ'o □□ o 
0 '1 B □o• □1 0 □ □ 

11 □ oQ D □ D -------J 
o □0 BB o O 

L 
6 6 

I □~ .-- 0 6.. 6 6.. 6.. 6.. 

______ _ 1_Q~J:J.II!~-~---·•·-"'"---- 6..~ z6.. 6.. ~ 
□ D Ofil~ □~ D D I 6. 6 6 6 6 

0 D 0 □ D O □ ' i~ 6.. 6.. 6. 6.. 6.. 
D .B. D • D • I 6. A 6..6.. 6.. 6.. 
0 ~ 0 I u. 6.. 6.. 

:□ ti, D D D - · -□=-_.,__1 __ ---1~----"- · --~--~-6._6. __ 6._n··-

O□□cf31 8 6.. I 6. I 6.. 6.. A 6. 6. 6.. A ' ~ 
• D I D D A I 6. A 6. A 6. 6. --··· 

0 u.. A I 6.. .t.. 6 A 6. 6. 
8 OL--11--- ___ _j 6.. A 6.. A 6. 
• D I 6. A 

• u._. 6..6.. 6.. 

D Do D ... 6.. 
6 ! 6.. 

6 6 • 
D □ Do □ D _. ..t:. 6.6.. 6.._. 

D D • • D DD .__ ____ --,j .. .,__,.__ _ __ _ --. . . -6..-··- --~---... ··-

□ • e □ D D 6.. 
o• □ o• □□• 

D o□ rP D D 
~ DD 

D 

.---

A -
[] 6.. 6.. • 6.. 

6.. 6.. 6. L~ 
6. 

6.. 

D 

D 
□ 

6. 

6.. 
6. 6. 

6.. 

6. 

D 

6. 

D D 

., . ... :. - . ~ -
' .; 

' . ' ✓ ••• -

Samples of class w
1 

in first training site. 

Samples of class w1 

in second training site. 

Samples of class w2 
in third training site. 

All other members of class w
1 

All other members of class w
2 

Rectangular boundary of 

first estimate of R1. 

Rectangular boundary of first 
estimate of R2 subtracted from 

third estimate of R1 yields 

fourth estimate of R
1
. 

Rectangular boundary of 
second estimate of R1. Added 

to first estimate, this yields 

third estimate of R1. 

Final boundaries of R1 
and R

2 



_ _f. 
/ 



••, 

./ _. ..,. 

• '• I 





I 
If 

' ( 

f 

' 

I 

---- -------

.. 

V 



I ' 

, 

, I I 
I - ,. -.. .. '/' ' (' .'' C' • ,!' • "· 

/' 



I 

• 
' 

' +..,.__ 
- • I I ' 

t- _, .. I . 

, ( 

X 

vx 

• . J \.. 



DATE 
RECEIVED 

OB6t t o 9nv 

------

I 
DATE 
CHECKED _____ _ 

I DATE 

L INDf'XED ____ ------

l J 


