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[1] Surface bidirectional reflectance distribution function (BRDF) and albedo maps are
derived from Moderate Resolution Imaging Spectroradiometer (MODIS) multiday
surface reflectance composites with a 500-m spatial resolution (MODIS product
MOD09A1/MYD09A1). The proposed method dubbed land cover–based fitting employs
the processing of clear-sky reflectance data for similar land cover types and takes into
account the magnitude of normalized difference vegetation index (NDVI). The BRDF is
derived through the fitting of pixel data sorted into small bins according to the values
of angular variables and NDVI. Robust statistical processing is applied to reduce the
influence of noise and outliers. This method increases the success rate of the fitting
process and enables more accurate monitoring of surface temporal changes during periods
of rapid spring vegetation green up and autumn leaf fall, as well as changes due to
agricultural practices and snow cover variations. The approach is specifically applied over
the Atmospheric Radiation Measurement Program Southern Great Plains area. Results
are compared to alternative BRDF/albedo products, such as the MOD43 albedo and
Multiangle Imaging Spectroradiometer surface products that are derived through a
pixel-based fitting process. A good agreement was generally found between different data
sets. For example, the average biases in the visible and near-infrared bands are usually less
than 0.01 and 0.02, respectively, and correlation coefficients are typically larger than
0.80. An analysis of these differences identifies some unique advantages of the proposed
method, such as the ability to capture rapidly changing surface properties and an increased
performance in the case of reduced number of clear-sky observations because of
frequent cloudy conditions. Results suggest that the developed land cover–based
methodology is valuable for the purpose of surface BRDF and albedo mapping using
MODIS observations.
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1. Introduction

[2] Surface albedo is defined as the ratio of the total
(hemispheric) reflected solar radiation flux to the incident
flux upon the surface. It is one of the most important
parameters in atmospheric radiation studies. Albedo is
important because even small changes in its magnitude
can lead to variations in radiative forcing, to which climate
is extremely sensitive [Ingram et al., 1989; Houghton et al.,

2001; Dirmeyer and Shukla, 1994]. The spatial complexity
and temporal variations of surface properties mean that
practical albedo estimates over large area are usually
derived from satellite observations [Strugnell et al., 2001;
Cihlar et al., 2002; Gutman et al., 1989]. Most land surfaces
reflect incident radiation anisotropically. Anisotropic prop-
erties are described by the surface bidirectional reflectance
distribution function (BRDF) [Nicodemus et al., 1977]. An
accurate determination of surface BRDF properties is
essential because they are directly related to the accuracy
of derived surface albedo and radiation fluxes, which are
obtained as hemispheric integrals of BRDF and radiance
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fields. The retrieval of surface BRDF is not a simple task
since most space-borne sensors only view the ground
target at limited observational geometries that are defined
by the solar zenith angle (SZA), viewing zenith angle
(VZA), and Sun-satellite relative azimuth angle (RAA)
[Csiszar et al., 2001; Trishchenko, 2004].
[3] There are many parametric BRDF models that are

based on the physical characteristics and experimental
results observed for natural surfaces [Lucht and Roujean,
2000]. Semiempirical linear kernel-driven models are
among the most widely used of these. Kernel-driven models
are attractive because of their fast operational implementa-
tion and good accuracy [Wu et al., 1995; Wanner et al.,
1997; Privette et al., 1997; Lucht et al., 2000]. The
derivation of BRDF parameters, i.e., the process of model
inversion, is achieved through a fitting procedure that tunes
the model to observed data points by minimizing mean
square residuals. For a successful inversion, the observa-
tions must cover a range of Sun-target-viewer geometries
(and ideally, the entire range). In practice, however, this
requirement is rarely achieved. For a fixed location on the
Earth’s surface, some satellite systems, such as the Multi-
angle Imaging Spectroradiometer (MISR), can obtain
multiple angular views virtually instantaneously, while
others, such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS), build up sequential angular
views over a period of time. The latter approach,
hereinafter referred to as a pixel-based fitting (PBF)
method, is currently implemented in the MODIS opera-
tional albedo retrieval algorithm (MOD43). It provides
surface albedo for each 1-km pixel at 16-day intervals
[Schaaf et al., 2002]. This 16-day sampling period is
deemed to be long enough to acquire a number of clear-
sky observations over a range of Sun-target-viewer geom-
etries. However, a shorter sampling period may be required
by applications where surface properties vary rapidly over
short timescales (e.g., during periods of snow fall, snow-
melt, and soil moisture and vegetation change). In such
cases, the shortening of the time interval in the PBF
approach reduces the number of clear-sky data points used
in the fitting procedure. This makes the retrieval of albedo
less reliable or may result in a failure of the inversion
procedure. Even for a 16-day sampling interval and for a
maximal potential number of clear-sky data points included
in the inversion procedure, the retrievals may still fail or
produce biased results because of intrinsic noise in the
data [Jin et al., 2003a]. Moody et al. [2004] demonstrated
that there is a pressing need to improve the spatial
completeness of the MODIS operational albedo product
because of significant gaps in the data. About 50% of
useful data are of lower quality or missing on a global
scale because of insufficient sampling of clear-sky pixels
for BRDF/albedo retrievals.
[4] A land cover–based fitting (LBF) approach is pre-

sented in this paper. This method reduces the difficulties
associated with a small number of data points in the fitting
procedure, and produces BRDF/albedo products for shorter
time intervals. Our approach employs the similarity in the
BRDF properties of various pixels, if these pixels belong to
the same land cover type, are in a similar biophysical
condition, and occur within the same climatic region
[Trishchenko et al., 2004; Latifovic et al., 2003]. For any

given region of interest, clear-sky pixels and land cover
information are used to derive BRDF model parameters for
each land cover type in the region. The LBF approach
overcomes the limitations of PBF approaches that are
associated with a small or insufficient amount of data used
in the fitting process. It does this by (1) providing improved
sampling in terms of the number of observations and range
of geometries used and (2) requiring less computational
resources than other approaches. The LBF method can be
implemented for shorter time intervals, enabling the capture
of a rapid change in BRDF characteristics. The potential
limitation of this approach is a reduced sensitivity to subtle
spatial differences in BRDF shape within the same land
cover class.
[5] This paper describes and applies the LBFmethodology

to the MODIS surface reflectance product (MOD09A1
for Terra and MYD09A1 for Aqua) (E. F. Vermote and
A. Vermeulen, Atmospheric correction algorithm: Spectral
reflectances (MOD09), in MODIS Algorithm Technical
Background Document, NASA report, contract NAS5-
96062, 1999, available at http://modis.gsfc.nasa.gov/data/
atbd/atbd_mod08.pdf, hereinafter referred to as Vermote and
Vermeulen, 1999). The MOD09A1/MYD09A1 product
contains the MODIS surface reflectance composite data
generated at a 500-m spatial resolution and at 8-day
intervals. This product also includes angular variables,
such as SZA, VZA, and RAA, as well as the date of
observation, quality flags and a variety of auxiliary infor-
mation (http://edcdaac.usgs.gov/modis/mod09a1v4.html).
The LBF methodology is tested over the Southern Great
Plains (SGP) region. This region is in the focus of the
Atmospheric Radiation Measurement (ARM) program
(http://www.arm.gov). The ARM SGP site serves as an
important test bed for the physics of climate and climate
change research, atmospheric radiation budget and weather/
climate models [Ackerman and Stokes, 2003]. Spatially and
temporally complete high-quality surface BRDF/albedo
maps of this area will greatly assist the ARM program to
achieve its major objective ‘‘to improve understanding of
the processes and properties that affect atmospheric radia-
tion’’ [Stokes and Schwartz, 1994]. The understanding and
modeling of atmospheric radiation and cloud processes may
be improved in climate and weather prediction studies by
taking into account realistic albedo variations with solar
zenith angle, land cover type, and seasonal vegetation
phenology [Lucht and Roujean, 2000].
[6] The structure of this paper is as follows: The general

methodology and its realization are described in section 2.
This includes the basic concept of the BRDF LBF method-
ology, data description, BRDF model specification, and
implementation procedure. Section 3 analyses some typical
BRDF results for the ARM SGP area. Comparisons of LBF
BRDF/albedo data with other products, such as MODIS
MOD43B1and MISR albedo, are presented in section 4.
Section 5 contains conclusions and final discussion.

2. BRDF Land Cover––Based Fitting (LBF)
Methodology

2.1. Basic Concept

[7] Surface BRDF is physically determined by the geo-
metric structure of the land surface as well as the optical
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properties of canopy elements, understory, and soil con-
ditions. Several parametric BRDF models have been devel-
oped based on various assumptions about these properties
[e.g., Roujean et al., 1992; Li and Strahler, 1992; Rahman
et al., 1993]. Surface structure influences the BRDF through
the reflectors’ geometric features, their shadow casting and
their spatial distribution. Optical characteristics account for
the absorbing and scattering effects that the surface ele-
ments exert on the radiation field. The BRDF model
parameters are closely related to land cover type [e.g., Wu
et al., 1995; Lucht et al., 2000]. As shown by Trishchenko
et al. [2004] and Latifovic et al. [2003], it is reasonable to
assume that the BRDF shape is generally similar for the
same land cover type under similar biophysical conditions
characterized by the normalized difference vegetation index
(NDVI).
[8] The LBF approach uses a multiday clear-sky com-

posite of surface reflectance and groups pixels by land cover
type and NDVI value. Landcover and NDVI data are both
required for the successful implementation of the LBF
approach. Grouped data are then used to optimally fit the
BRDF model parameters for each land cover type. After
these generic BRDFs are obtained, pixel-level BRDFs are
determined by adjusting the general land cover BRDF to the
observed reflectances of a given pixel. A similar strategy
was successfully employed for BRDF/albedo retrievals
from advanced very high resolution radiometer (AVHRR)
and SPOT-VEGETATION data [Cihlar et al., 2002, 2004;
Latifovic et al., 2003, 2004; Li et al., 1996].

2.2. Land Cover Map Over the ARM SGP Area

[9] The National Land Cover Data Set (NLCD) is used
in this study. The NLCD was compiled from Landsat
Thematic Mapper (TM) satellite imagery at 30-m spatial
resolution and supplemented by various ancillary data. It
was produced as part of a cooperative project between the
U.S. Geological Survey (USGS) and the U.S. Environ-
mental Protection Agency (USEPA) (http://landcover.usgs.
gov/natllandcover.asp). The original NLCD land cover
data set was resampled to create a land cover map that
matched the spatial resolution of the MODIS data used in
this study (500 m). Each land cover class in the resampled
data set was then converted to its International Geosphere-
Biosphere Programme (IGBP) equivalent following the
approach described by Latifovic et al. [2004]. The IGBP
classification was selected because of its frequent use in
climate modeling and ecological studies. The preference
was given to the NLCD land cover map rather than the
MODIS land cover product (MOD12) (A. Strahler et al.,
MODIS land cover product: Algorithm theoretical basis
document (ATBD) version 5.0, 1999, available at http://
modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf) because
the latter is only available at a spatial resolution of 1 km,
and because the use of the former avoids potential biases
and correlation impacts between products from the same
sensor.
[10] The study region covers an 8� latitude � 10� longi-

tude area centered at the ARM SGP Central Facility (CF)
located in northern Oklahoma, United States. Figure 1 shows
the spatial distribution of the 10 IGBP land cover classes
that occur in the region. The area is dominated by grass-
lands (53%), croplands (19%) and deciduous forest (13%).

Less frequent land cover types include evergreen forest
(3.9%) and open shrublands (3.5%). While cropland is the
main land cover type around the CF, it is mixed with
grasslands in the western and northern parts of the study
area. In addition, shrublands are present in the southwest
part of the study area, while the southeasternmost portion of
the study area is dominated by forest. Usually, the dominant
land cover types are geographically concentrated over
relatively uniform area.

2.3. BRDF Shape and NDVI

[11] The BRDF of the land surface is dependent on both
land cover (vegetation) type and vegetation condition [e.g.,
Wu et al., 1995; Li et al., 1996]. The vegetation condition
can be described by the magnitude of the NDVI [Gutman,
1987]. Data collected from fine-resolution Landsat imagery
and the MISR 1-km surface product illustrate the impact of
NDVI on BRDF. Figure 2a shows a Landsat-7 Enhanced
Thematic Mapper (ETM) image acquired over the ARM
SGP CF area on March 9 (day 68) 2002. The image
contains a mixture of cropland and grassland (pasture)
according to field surveys for that area [Li et al., 2002].
Analysis uses MISR observations over a 2 � 2 km2 area
of cropland close to the CF (marked as square in Figure 2a)
to illustrate the variability in surface BRDF properties with
NDVI. The MISR sensor is well suited for such an
analysis because it views the target at nine angles almost
instantaneously with a footprint size of 1.1 km [Diner et
al., 1998]. The MISR spatial resolution is, however,
somewhat too coarse to resolve the spatial variation of
the BRDF inherent to various crop types. This may reduce

Figure 1. Land cover map in the International Geosphere-
Biosphere Programme legend for the Atmospheric Radia-
tion Measurement (ARM) Southern Great Plains (SGP) area
(north Oklahoma, United States). There are total 10 land
cover types identified in this area. The cross at the center
indicates the location of the ARM central facility (CF), and
the squares mark the extended facilities locations.
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Figure 2. (a) View of the ARM SGP CF area from the Landsat-7 Enhanced Thematic Mapper (ETM)
on day 68 (9 March) 2002. The cropland sampling square corresponds roughly to a 2.2 � 2.2 km area
(2 � 2 Multiangle Imaging Spectroradiometer (MISR) pixels). (b) Relationship between relative azimuth
angle (RAA) and viewing zenith angle (VZA) and normalized difference vegetation index (NDVI) from
MISR observations on day 68 of 2002 for the cropland sampling square. (c) Relationship between
surface reflectances and VZA in the red band on day 68 of 2002. (d) Relationship between surface
reflectances and VZA in the NIR band on day 68 of 2002. (e) Relationship between RAA and VZA and
NDVI from MISR observations on day 91 of 2002 for the cropland sampling square. (f ) Relationship
between surface reflectances and VZA in the red band on day 91 of 2002. (g) Relationship between
surface reflectances and VZA in the NIR band on day 91 of 2002. Diamonds, crosses, triangles, and
squares denote the data for the 2 � 2 pixels in the MISR scan shown in Figure 2a.
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the actual contrast between various BRDFs. The selected
sampling area corresponds to a group of 2 � 2 pixels in
the MISR data. The observations for each pixel are also
shown in Figure 2 as a function of the RAA versus VZA
(Figure 2b), surface reflectance versus VZA for the red
band (661–683 nm) (Figure 2c) and surface reflectance
versus VZA for the near-infrared (NIR) band (846–
886 nm) (Figure 2d). The averaged NDVI values (within
±50� VZA) are also given in Figure 2b. Figures 2b–2d
show the MISR reflectances for the same day as that of
the Landsat image. Figures 2e–2g show the MISR reflec-
tances 3 weeks later (1 April (day 91) 2002). The SZAs
for day 68 and 91 are approximately 44� and 34�,
respectively. Figure 2 shows that the magnitude of NDVI
defines the BRDF shape in a unique way. For day 68,
pixels 1 and 3 have similar NDVI and reflectances values.
Pixels 2 and 4, however, have an NDVI difference of
nearly 0.2, which corresponds to the large difference in
vegetation density seen in Figure 2a. The reflectances and
BRDF profiles of these pixels are thus substantiality
different, especially in the red band. Specifically, the red
band reflectance for pixel 4 is strongest for the back-
scattered viewing geometry when the VZA is close to the
SZA. It should also be noted that the temporal trend in
the surface properties, even after only 3 weeks, is
considerable. This reflects a rapid change in vegetation
properties during the peak of the growing season as
confirmed by the magnitudes of NDVI between these dates.
This emphasizes the advantage of having shorter sampling
intervals than the 16-day period currently adopted in the
operational MODIS BRDF/albedo processing. A shorter
sampling interval is especially important during periods
when surface properties change rapidly or when detailed
knowledge of phenological change is required.

2.4. RossThick––LiSparse Reciprocal BRDF Model

[12] The RossThick–LiSparse model (hereinafter referred
to as Ross-Li) is employed in this study. The Ross-Li
model has been identified as one of the most appropriate
models for the operational processing of MODIS data
[Wanner et al., 1997; Privette et al., 1997; Li et al.,
1997; Lucht and Lewis, 2000]. It has also been demon-
strated that the Ross-Li and the nonlinear Rahman’s
models [Rahman et al., 1993; Martonchik, 1997] perform
similarly. However, the linear Ross-Li model is more
computationally efficient.
[13] The linear BRDF model is expressed as a sum of

several theoretically constructed kernel functions fi (qs, qv,
f), where qs, qv and f are the SZA, VZA and RAA,
respectively. The reciprocal model of Ross-Li [Wanner et
al., 1995] is a model that uses three kernels

rl qs; qv;fð Þ ¼ a0 þ a1f1 qs; qv;fð Þ þ a2f2 qs; qv;fð Þ; ð1Þ

where f1 is the RossThick kernel and represents volumetric
scattering from a dense leaf canopy based on a single-
scattering approximation of radiative transfer theory [Ross,
1981; Roujean et al., 1992] and f2 is the LiSparse kernel
which is derived from the geometric-optical mutual
shadowing model and assumes a sparse ensemble of surface
objects [Li and Strahler, 1992]. Parameters a0, a1 and a2 are
coefficients of the kernels and are related to the isotropic,

volumetric and geometric components, respectively.
Kernels are given by the following expressions:

f1 ¼ p=2� xð Þ cos xþ sin x½ �= cos qs þ cos qv½ � � p=4; ð2Þ

where cos x = cos qs cos qv + sin qs sin qv cos f

f2 ¼ O qs; qv;fð Þ � sec q0s � sec q0v þ
1

2
1þ cos x0ð Þ sec q0s sec q

0
v:

ð3Þ

O ¼ 1

p
t � sin t cos tð Þ sec q0s þ sec q0v

� �

cos t ¼ h

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ tan q0s tan q

0
v sinf

� �2q
sec q0s þ sec q0v

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 q0s þ tan2 q0v � 2 tan q0s tan q

0
v cosf

q

cos x0 ¼ cos q0s cos q
0
v þ sin q0s sin q

0
v cosf

q0v ¼ tan�1 b

r
tan qv

� �
; q0s ¼ tan�1 b

r
tan qs

� �
;

the two ratios, h/b and b/r, describe the relative height and
shape of crown. In this paper, we used values of h/b = 2 and
b/r = 1, as recommended by Lucht et al. [2000].

2.5. Procedure Implementation

[14] The implementation of proposed LBF method for
derivation of surface BRDF parameters involves several
steps:
[15] 1. Input data are taken from the MOD09A1 product

(version 4) for MODIS on Terra satellite and MYD09A1 for
MODIS on Aqua satellite. These are MODIS atmospheri-
cally corrected surface clear-sky reflectances composited
over 8-day intervals with a spatial resolution of 500 m
(see http://edcdaac.usgs.gov/modis/mod09a1v4.html). The
MOD09A1/MYD09A1 archive contains seven spectral
bands from 0.46 to 2.15 mm. Bands are located in the
shortwave domain and designed for land monitoring
applications. Data are calibrated to an absolute scale
using the MODIS on-board calibration technique and
are accurately geolocated. The data set also includes
snow and ephemeral water flags. Cloud screening and
atmospheric corrections are carried out using the synchro-
nous onboard observations available from the ensemble of
MODIS channels and MODIS data processing technology
(Vermote and Vermeulen, 1999).
[16] 2. The MOD09A1/MYD09A1 data are remapped

using MODIS reprojection tool (see http://edcdaac.usgs.
gov/landdaac/tools/modis/index.asp) from the native Sinu-
soidal (SIN) grid onto a latitude-longitude projection over
the ARM-SGP 8� � 10� area. A pixel size of 500 m was
maintained during the reprojection procedure. To maintain
compatibility with other widely used data sets, the data
are then rearranged from an 8-day composite interval to a
10-day composite interval. This procedure is possible
because the MOD09A1/MYD09A1 data contain informa-
tion on the data acquisition date of each pixel.
[17] 3. All pixels in the study area are grouped according

to land cover type. To reduce noise, pixels marked as bad
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quality or contaminated by clouds are excluded from the
analysis. Pixels that contain some portion of snow cover are
selected for separate processing. Snow pixels can be iden-
tified by their high reflectance in the visible band and
relatively low reflectance in the shortwave infrared band.
The normalized difference snow index (NDSI) or opera-
tional snow cover products can be used to identify and
remove snow effects in surface reflectance [Hall et al.,
2002].
[18] 4. The land cover–grouped data are further grouped

into smaller bins according to their NDVI levels and values
of angular variables. Data binning according to angular
values is required to lessen the impact of the irregular
distribution of the observational geometry. The histograms
of VZA presented in Figure 3 show the distribution of
sampling geometries for several land cover types and
seasons. The distribution of angles depends on several
factors, such as the orbit configuration, the sensor scanning
mode, the distribution of the clear-sky area, and the spatial
patterns of land cover. The distribution of VZA and RAA is
generally nonuniform. If the data are directly used in the
fitting process, unequal weights at different angles may bias
the fitting results toward data with the most frequently
observed geometries. This causes the equally important but
less frequent data points to have little influence on the
retrieved BRDF model. To address this problem, all data
points for each land cover class are sorted into data bins

defined by certain NDVI and angular intervals, and only one
value from each data bin contributes to the fitting process. In
this paper intervals for the NDVI, and the SZA, VZA and
RAA, are 0.1, and 5�, 5� and 10�, respectively.
[19] 5. Before the fitting procedure is initiated, the data

collected in each data bin are statistically preprocessed. A
robust statistical procedure resistant to outliers similar to
that proposed by Trishchenko [2002] is employed. The
procedure sorts all data according to their values, removes
the lowest and highest 5% points of the sample and then
computes the average. Only one value is derived for each
bin after applying the statistical procedure. This value
represents the observed reflectance and geometry for that
data bin. Examples of bin-processed data for grasslands are
given in Figure 4 (SZA is not grouped here). Figure 4 also
shows the polar plots of MODIS surface reflectance in two
spectral bands (red and NIR) for 4 months over the ARM
SGP study area. The average SZA value and its range are
given at the top of each panel. The radius of the polar plot
represents the VZA, and the polar angle corresponds to the
RAA. The polar plots clearly show how the azimuth angle
varies with season. This angle is close to the perpendicular
plane (90�/270�) in winter and autumn (Figures 4a and 4d),
and closer to the principal plane (0�/180�) in summer
(Figure 4c). The BRDF shape generally shows larger
reflectances in the backscattering direction, when the
RAA is close to the principal plane. This is consistent with

Figure 3. Histograms of the VZA from Moderate Resolution Imaging Spectroradiometer (MODIS)
observations for (top to bottom) grasslands, croplands, and mixed forest in (left to right) January, April,
July, and October of 2001 in the ARM SGP area.
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the commonly observed hot spot effect [Kuusk, 1991]. It is
important to note the narrow range of RAA, which is a
major source of uncertainty in determining the BRDF
function for the entire range of three variables (SZA,
VZA, and RAA).
[20] 6. The land cover–grouped and preprocessed data

are used to determine a set of optimal parameters for the
Ross-Li BRDF model (equation (1)). In this paper, the
nonlinear least squares method of Levenberg-Marquardt
[Press et al., 1992] is employed for the fitting process.
[21] 7. Pixel-level BRDF parameters are retrieved by

scaling the land cover- and NDVI-dependent BRDF param-
eters obtained in step 6 to the observations at each pixel
according to equation (4):

rl qs; qv;fð Þ ¼ 1þ a1

a0
f1 qs; qv;fð Þ þ a2

a0
f2 qs; qv;fð Þ

� �



robsl qs; qv;f

� �
1þ a1

a0
f1 qs; qv;f
� �

þ a2

a0
f2 qs; qv;f
� �� � ; ð4Þ

where qs, qv, f are angles corresponding to the geometry of
observed clear-sky pixel.

[22] When the observed data for some pixels are cloud-
contaminated or are of bad quality, an interpolation is
performed based on the model results (derived from clear-
sky data elsewhere in the region) and multiyear statistics for
a particular pixel and time interval. The pixel-level BRDF
parameters are temporally interpolated and smoothed if
further data gaps or outliers are identified. This process
uses a complete phenological cycle (12 months) of time
series data for each pixel, and employs a Fourier transform
filter technique.
[23] 8. The hemispheric reflectance, i.e., albedo, is com-

puted using the BRDF parameters. Two types of albedo are
distinguished: direct and diffuse [Iqball, 1983]. Direct
albedo is defined as the albedo of the surface illuminated
by a direct beam of radiation. Diffuse albedo is defined as
the albedo of the surface under a fully isotropic downward
radiance field. With a linear model like the Ross-Li, both
types of albedo can be computed using a lookup table of
precomputed kernel integrals or by using analytical
approximations that express albedo as a function of
BRDF parameters and SZA [Lucht et al., 2000; Schaaf
et al., 2002]. The albedo of the surface under natural
illumination, i.e., the superposition of direct and diffuse
radiance fields, can be estimated as a linear combination

Figure 4. Polar plots of the surface reflectance from MODIS observations for two spectral bands ((top)
red and (bottom) near-infrared (NIR)) for grasslands in the ARM SGP area: (a) January 2001, (b) April
2001, (c) July 2001, (d) October 2001. The SZA range, its average for each month, and NDVI intervals
are indicated at the top of each panel. The radius of the polar plot represents the VZA, while the polar
angle represents the RAA.
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of direct and diffuse albedo components, with the weights
depending on the atmospheric conditions.

3. BRDF and Albedo Results

[24] The results of fitting MODIS reflectances by the
Ross-Li model using the LBF methodology are shown in
Figure 5. The reflectances in the red and NIR bands are
plotted against the VZA for grasslands (Figure 5a), crop-
lands (Figure 5b), and deciduous forest (Figure 5c) at
various NDVI levels for April 2001. As expected, these
plots show that observations are sampled almost continu-
ously against the VZA axis and with approximately equal
weights. The observations cover a wide range of viewing
geometries and clearly produce an anisotropic BRDF shape.
The observations and model fitting results are distributed as
tight clusters. This indicates that successful fittings have
been mostly achieved. The BRDF dependence upon NDVI
is smooth within each land cover type. The magnitude of a
BRDF varies much more than its shape, which provides an
additional support to the LBF methodology. On the other
hand, the differences in the BRDF shape among the land
cover types are obvious. For example, grasslands (Figure 5a)
always show relatively smaller forward scattering (i.e.,

when VZA > 0) and much smoother backward scattering
reflectances (i.e., when VZA < 0) compared to cropland
(Figure 5b). This is probably due to the smaller size of
grass leaves and larger and more uniform volume density
of grasslands [Wu et al., 1995]. In the case of forests
(Figure 5c), a distinct reflectance peak in the backscattering
direction is observed. This is caused by their large protruding
canopy shape. The same argument may be made from
Figure 6, which conveys similar information to that shown
in Figure 5 but for July 2001. Here the fitting results for
grasslands (Figure 6a) and croplands (Figure 6b) are close,
indicating similarity of their properties in summertime.
The BRDF shapes for croplands (Figure 6b) and forest
(Figure 6c) in July are considerably different from those in
April (Figures 5b and 5c). This partially reflects the fact
that the canopy for the croplands and forest changes
differently between the summer and spring.
[25] The retrieved parameters of the Ross-Li BRDF

model for four major land cover types in April 2001 at
different NDVI levels are presented in Tables 1 and 2 for
the red and NIR bands, respectively. The relative errors
(standard deviations normalized by the mean), which
indicate the agreement between the model fit and obser-
vations, are also listed. Most errors are less than 10%,

Figure 5. MODIS reflectances at the red and NIR bands plotted against the VZA for different NDVI
intervals in April 2001 for (a) grassland, (b) cropland, and (c) deciduous forest. The squares correspond to
the observed values from each preprocessed data bin (obtained in step 5, see text for details). The
triangles correspond to the results of fitting the RossThick–LiSparse bidirectional reflectance distribution
function (BRDF) model as described in the text.
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which indicates successful fitting. On the other hand, one
may notice a deficiency in fitting the BRDF for the NIR
reflectance over cropland (Figure 5b) whose data points
show apparent hot spots, but the fitting curves tend to miss
them. This may originate from the limitation of the kernel
functions [Chen and Cihlar, 1997].
[26] For theoretical modeling kernels, the parameters a0,

a1 and a2 are considered as functions of the surface
structural properties, the optical properties of canopy
elements and the leaf area index (LAI) [Wanner et al.,
1995]. If it is assumed that the canopy structure and
optical properties are defined by land cover type, then for
a given land cover type the parameters a0, a1 and a2 should
only be a function of LAI, which is highly correlated to
NDVI [Wu et al., 1995; Li et al., 1996; Knyazikhin et al.,
1998]. Because two kernels in the Ross-Li model diminish to
zero when qv = 0 and qs = 0, parameter a0 = rl (0, 0, f),
which is the bidirectional reflectance at nadir view and
overhead Sun.
[27] Tables 1 and 2 show that when NDVI increases, the

value of a0 for all land cover types monotonically decreases
in the red band but increases in the NIR band. This is a
typical feature of reflectance for vegetated surfaces. How-
ever, other parameters do not always display such a simple
relationship with NDVI. For example, while the volumetric
scattering parameter a1 decreases for the red band and

increases for the NIR band for shrublands, the geometric
parameter a2 decreases for both bands. This may imply that
shrublands become denser and more uniform as NDVI
increases. As a result, volumetric scattering is weakened
in the red band because of a higher absorption by denser
leaves. It is more intensive in the NIR band because of the
greater reflection by denser leaves. The geometric scatter-
ing, caused by shadowing effects, becomes less significant
with increasing NDVI. However, in the case of the forested
land cover types, geometric scattering becomes more
significant, and a2 increases with NDVI, especially in
the NIR band. The isotropic scatterings (a0) of grassland
and cropland are similar at different NDVI levels
(although the values for croplands are slightly larger),
the volumetric scattering of grasslands is larger than that
of croplands, and the geometric scattering of grasslands is
generally smaller than croplands. The latter finding prob-
ably occurs because grass leaves are smaller in size and
denser in volume than croplands.
[28] Negative values of a1 or a2 may appear occasion-

ally during unconstrained inversion processes and usually
when these parameters are very small. Such values
correspond to unphysical behavior of the model kernels
[Lucht and Roujean, 2000]. This may occur because of
noise in the data and/or insufficient angular samplings.
Another possible reason is the lack of orthogonality

Figure 6. MODIS reflectances for the red and NIR bands plotted against the VZA for different NDVI
intervals in July 2001 for (a) grassland, (b) cropland, and (c) deciduous forest. The squares correspond to
the observed values from each preprocessed data bin. The triangles correspond to the results of fitting the
RossThick–LiSparse BRDF model.
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between the model kernels. Negative values for one
parameter can be compensated by other parameters to
make the overall results well fitted to the observations. In
our case, when a negative solution occurs for a parameter,
it is set to zero and the fitting process for other parameters
is repeated.
[29] Figure 7 shows the BRDF effects over the entire

viewing domain, as provided by a model fit for the
observations previously illustrated in Figure 4. The magni-
tude and pattern of BRDF vary with season, which reflects
the change of surface properties and Sun-sensor geometrical
conditions. This is shown in Figure 7a for January,
Figure 7b for April, Figure 7c for July and Figure 7d for
October. Although the highest reflectances are observed in
the backward direction along the principal plane (0�/180�),

the hot spot effect is not always well pronounced. This is
partially due to the fact that the BRDF shape is retrieved
from observations off the principal plane (compare
Figure 4). A model specifically designed to produce a sharp
hot spot effect has been proposed by Chen and Cihlar
[1997], but we do not use it here because it introduces two
additional nonlinear parameters that can only be reliably
retrieved by employing observations in the vicinity of the
principal plane.

4. Comparison With MODIS and MISR Albedo
Products

[30] To assess the quality of the BRDF and albedo
product derived by different algorithms, i.e., the PBF

Table 1. RossThick–LiSparse BRDF Parameters for the Red Band (April 2001)a

NDVI 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–1.0

Open Shrublands
a0 - 0.171 0.142 0.118 0.097 0.076 0.056 0.042
a1 - 0.128 0.120 0.122 0.086 0.042 0.025 0.020
a2 - 0.028 0.026 0.019 0.017 0.009 0.004 0.003
Error, % - 11.65 11.38 11.52 8.41 7.25 7.03 5.62

Grasslands
a0 - 0.150 0.131 0.107 0.091 0.075 0.057 0.043
a1 - 0.121 0.114 0.112 0.079 0.024 0.027 0.032
a2 - 0.017 0.015 0.005 0.006 0.006 0.003 0.003
Error, % - 9.43 9.59 8.13 6.93 9.20 7.60 7.17

Croplands
a0 - 0.162 0.140 0.122 0.104 0.083 0.061 0.041
a1 - 0.070 0.054 0.056 0.044 0.034 0.040 0.023
a2 - 0.021 0.015 0.012 0.012 0.009 0.003 0.001
Error, % - 8.07 8.09 7.74 9.86 10.03 11.40 11.58

Deciduous Forest
a0 - - 0.111 0.101 0.085 0.070 0.055 0.042
a1 - - 0.063 0.032 0.035 0.016 0.021 0.018
a2 - - 0.011 0.018 0.017 0.014 0.013 0.012
Error, % - - 11.92 5.80 6.84 7.55 8.92 3.94

aVariables a0, a1, and a2 represent isotropic, volumetric, and geometric parameters, respectively.

Table 2. RossThick–LiSparse BRDF Parameters for the Near-Infrared Band (April 2001)

NDVI 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–1.0

Open Shrublands
a0 - 0.300 0.304 0.294 0.314 0.345 0.349 0.418
a1 - 0.219 0.263 0.365 0.368 0.259 0.381 0.247
a2 - 0.051 0.057 0.036 0.041 0.040 0.027 0.032
Error, % - 11.03 10.52 11.01 9.87 5.25 9.16 4.67

Grasslands
a0 - 0.262 0.267 0.282 0.316 0.342 0.383 0.437
a1 - 0.184 0.264 0.294 0.265 0.173 0.209 0.350
a2 - 0.035 0.025 0.015 0.022 0.015 0.024 0.030
Error, % - 9.51 9.83 8.30 7.37 6.89 6.55 5.88

Croplands
a0 - 0.275 0.297 0.321 0.353 0.379 0.409 0.445
a1 - 0.165 0.123 0.166 0.167 0.183 0.241 0.238
a2 - 0.035 0.037 0.032 0.038 0.032 0.020 0.010
Error, % - 7.36 9.35 8.75 10.52 10.03 8.96 8.96

Deciduous Forest
a0 - - 0.252 0.260 0.283 0.315 0.357 0.395
a1 - - 0.127 0.081 0.066 0.074 0.115 0.099
a2 - - 0.049 0.042 0.053 0.054 0.076 0.114
Error, % - - 15.28 10.77 7.98 6.55 9.68 7.86
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and LBF methods and approaches based on different
BRDF models, we compare the LBF results described
earlier to the standard MODIS albedo products (MOD43
[Schaaf et al., 2002]) and the MISR surface products (D. J.
Diner et al., MISR level 2 surface retrieval, Report JPL D-
11401, Jet Propulsion Laboratory (JPL), 1999, available at
http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/
atbd/docs/MISR/atbd-misr-10.pdf, hereinafter referred to
as Diner et al., 1999). The MODIS albedo products have
recently been validated against ground measurements
through the upscaling of fine-resolution satellite imagery
such as Landsat ETM+ [Liang et al., 2002] and observa-
tions from other satellite systems [Jin et al., 2002, 2003b].

4.1. Comparison of BRDF Kernel Parameters

[31] Figures 8a and 8c show the distribution of the three
kernel parameters a0, a1 and a2 in the red and NIR bands
from the PBF-derived MODIS 16-day albedo product
(MOD43B1). Figures 8b and 8d show the same parameters
but from the LBF method. All histograms in Figure 8 are
normalized with peak values equal to 1. Most distributions
have a single peak value. However, a number of the
distributions are bimodal. This indicates that the data points
for most individual land cover types are closely related,
while some others, such as the grasslands, may reveal the
intraclass heterogeneity. That is, they can be separated into

subclasses, for example, pasture-like grasslands and grass-
lands containing some portion of forest or crops fields. The
large fraction of zero values for the volumetric (a1) and
geometric (a2) parameters from the PBF retrieval indicates
frequent failures of the inversion procedure [Schaaf et al.,
2002; Jin et al., 2003a]. The LBF approach has a much
higher rate of successful fitting. In general, the LBF and
PBF fitting procedures show good agreement for grassland.
The LBF volumetric parameter distribution is much sharper
than the distribution from the MOD43 product. This is
because the LBF method uses a larger number of data
points for each fitting process, a shorter sampling interval
of 10 days, and a higher spatial pixel resolution of 500 m.
The MOD43 product has a sampling interval of 16 days
and a spatial resolution of 1 km. The LBF approach is thus
able to reduce intrinsic noise in its data and capture finer-
resolution spatial heterogeneity.
[32] A noticeable difference between the PBF and LBF

approaches occurs between the forest volumetric and geo-
metric parameters. The PBF fails to fit the red band volu-
metric parameter for a significant portion of forest pixels,
while the LBF successfully retrieves this parameter. Owing
to its frequent inability to fit the red band volumetric
parameter, the PBF approach’s geometric parameter is also
questionable. In the NIR band, the PBF obtains significantly
larger and broader volumetric scattering and smaller geo-

Figure 7. Polar plots of grassland surface reflectance for two spectral bands ((top) red and (bottom)
NIR) from the RossThick–LiSparse BRDF model results based on the MODIS observations shown in
Figure 4 for year 2001: (a) January, (b) April, (c) July, and (d) October. The SZA and the NDVI intervals
are indicated at the top of each panel.
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metric scattering parameters compared to the LBF approach.
Considering the forest properties in the spring season, lower
volumetric but higher geometric scatterings may be
expected. Thus it appears that the LBF method provides

more realistic results. In addition to the differences in spatial
resolution, the above results may also be caused by
significant temporal variations in surface properties during
the 16-day sampling period. Numerous cases of fitting

Figure 8. Histograms of the three RossThick-LiSparse BRDF model parameters: (top to bottom) isotropic, volumetric, and
geometric in the (left) red and (right) NIR bands in April 2001: (a) grassland, MOD43B1 (pixel-based fitting); (b) grassland,
land cover–based fitting; (c) deciduous forest, MOD43B1; and (d) deciduous forest, land cover–based fitting.

Figure 9. Albedo images in the red and NIR bands over the ARM-SGP area. MODIS LBF albedo in
bands (a) 1 (red) and (b) 2 (NIR). MISR albedo in bands (c) 3 (red) and (d) 4 (NIR). (left) Two images
produced using the land cover–based fitting (LBF) algorithm. (right) Two images corresponding to the
MISR L2 pixel-based albedo products. The MODIS image is an average of three 10-day interval albedo
images for April 2001. The MISR image is a 1-month composite generated from days 91 to 120 (April) of
2001.
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failure for the geometric parameter may lead to biases for
other BRDF parameters.

4.2. Comparison of Albedo Maps

[33] Another way of assessing the agreement between the
different methodologies is a direct comparison of the albedo
values produced by different approaches. Figure 9 displays
clear-sky albedo computed at local solar noon for the red and
NIR bands over the ARM-SGP area. These images corre-
spond to MODIS LBF albedo in bands 1 (red, Figure 9a) and
2 (NIR, Figure 9b), and to MISR albedo in bands 3 (red,
Figure 9c) and 4 (NIR, Figure 9d). The LBF-derived albedo
maps correspond to an average of three MODIS 10-day
clear-sky albedo composites (1–10, 11–20, and 21–
30 April) from 2001. The MISR-derived albedo maps
correspond to a 1-month composite created by mosaicking
individual MISR orbits from day 91 to 120 during 2001.
These data are extracted from the MISR Level 2 Land
Surface Data product, and albedo is derived using the
modified Rahman’s BRDF model employed in MISR data
processing (Diner et al., 1999). Albedo over the white areas
in Figures 9c and 9d could not be determined because of
persistent cloudiness observed in MISR data within entire
time interval.
[34] Figure 9 shows that the MODIS LBF and MISR

produce surface albedo maps with similar spatial patterns
and magnitude even though results are based on different
methodologies and different sensors. However, the LBF
albedo maps are much less influenced by cloud contam-
ination and retrieval failures. This is most apparent if
comparing the northwest corners of the MISR albedo
images (Figures 9c and 9d). In addition, the MISR product
generally produces larger albedo values than the LBF
approach for the NIR band in the southern part of the
study area. This phenomenon likely relates to the tem-
poral mismatch between the MODIS LBF and MISR data
points (an average of three 10-day composites versus a

1-month composite, respectively). Detailed analysis shows
that the MISR albedo data in the southern part of the image
are filled mostly from observations made on April 25 (a
MISR compositing uses one point during a month). As a
result, the noted discrepancy between data sets is caused by
the rapid changes of surface vegetation properties in the
spring season. This is also illustrated in Figures 10a–10c,
which show three MODIS LBF 10-day NIR images for the
southeastern portion of the study area (32�–38�N, 92�–
98�W). These images clearly show significant changes in
surface albedo in springtime. Figure 10 also reemphasizes
the advantage of the LBF approach for mapping rapid
changes in surface properties over short time intervals.
[35] Pixel-by-pixel comparisons between MISR and

MODIS LBF albedo in the red and NIR bands are presented
in Figure 11 for April 2001. Results are grouped into the
five major land cover types identified in the ARM SGP
area. In most cases the data points are distributed around the
1:1 line. Correlation coefficients (R) between the two data
sets vary from 0.55 to 0.92 (mostly greater than 0.8). The
differences in spatial resolution between MISR and MODIS
images and resampling during reprojection step may con-
tribute to scattering of the points and toward reducing the
correlation coefficient. The mean bias (�D) is also shown in
Figure 11. It is an average of differences between the MISR
and MODIS albedos. Positive �D means MISR albedo is
greater than MODIS on average. Both R and �D are indica-
tors of any systematic discrepancies that may exist between
the two data sets. Mean biases are small. The absolute
values of mean biases on Figure 11 are less than 0.01 for the
red band and less than 0.037 for the NIR band. Another
important parameter also shown in Figure 11 is the standard
deviation (d) of the bias. The values of d are of magnitude
around 0.01 for the red band and 0.02 for the NIR band. In
general, MISR albedo is slightly larger than MODIS albedo.
Such bias may be caused by many factors, such as differ-
ences in calibration, atmospheric corrections, and spectral

Figure 10. Albedo images in the NIR band for the southeast corner of Figure 9, derived by the MODIS
LBF algorithm for 10-day intervals: (a) 1–10 April 2001, (b) 11–20 April 2001, and (c) 21–30 April
2001.
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Figure 11. Scatterplots of MISR albedo plotted against MODIS albedo derived by the land cover-based
fitting algorithm for two spectral bands ((top) red and (bottom) NIR) for April 2001: (a) evergreen
needleleaf forest, (b) deciduous broadleaf forest, (c) open shrublands, (d) grasslands, and (e) croplands.

Figure 12. Scatterplots of MISR albedo plotted against MODIS albedo derived by the land cover–
based fitting algorithm for two spectral bands ((top) red and (bottom) NIR) for July 2001: (a) evergreen
needleleaf forest, (b) deciduous broadleaf forest, (c) open shrublands, (d) grasslands, and (e) croplands.
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response functions of the MODIS and MISR instruments
[Trishchenko et al., 2002]. This bias is also consistent with
the findings of Kahn et al. [2004].
[36] Among all land cover types, grasslands (Figure 11d)

show the best correlation between sensors, while the ever-
green needleleaf forest (Figure 11a) shows less correlation.
These differences can be explained, at least partially, by the
difference in BRDF models used. The RossThick–LiSparse
model used for MODIS data processing is more suitable to a
surface covered by shorter vegetation, while the Rahman’s
model used in the MISR products is more accurate for taller
vegetation such as forest canopies [Privette et al., 1997].
[37] Pixel-by-pixel scatterplots for July 2001 are shown in

Figure 12. Again, good agreement is found between MODIS
LBF and MISR data sets. The best correlations are found
between grasslands and croplands (Figures 12d and 12e),
while the weakest correlations are found for evergreen
needleleaf forest (Figure 12a). It is worth noting that a
considerable number of missing and cloud contaminated
pixels are present in the MISR composite albedo map for
July (not shown). Cloud contamination may also partially
contribute to the observed scattering of data points. When
albedo comparisons include results derived for other
months, a good agreement is generally found. The average
biases in Figure 12 for the red and near-infrared bands are
usually less than 0.01 and 0.015, the standard deviation of
biases usually being less than 0.02 and the correlation
coefficients typically being larger than 0.80.

5. Concluding Remarks

[38] The objectives of this work were to (1) develop a
methodology suitable for retrieving surface BRDF/albedo
properties from MODIS data available at 500-m spatial
resolution and at 10-day time intervals; (2) overcome the
difficulties in the pixel-based fitting method that are
caused by using a small or insufficient number of clear-
sky data points in the derivation of BRDF parameters;
and (3) generate a spatially and temporally complete
BRDF/albedo product over the ARM SGP area. To
achieve these objectives, a land cover–based fitting
(LBF) method was proposed, and applied to MODIS
500-m clear-sky directional reflectance data. Clear-sky
albedo composites for 10-day intervals were derived from
the MOD09A1/MYD09A1 surface reflectance product.
The RossThick–LiSparse model was used to describe the
shape of BRDF. A robust statistical preprocessing was
implemented to provide input for the model inversion. All
observations were divided into data bins according to solar
zenith angle (SZA), view zenith angle (VZA) and Sun-
satellite relative azimuth angle (RAA) for a given land cover
type and NDVI range. A single statistical value for each data
bin was produced using robust estimation. The BRDF model
parameters were derived through the fitting procedure.
[39] The proposed LBF approach has several advantages.

First, it increases the size of samples used in the BRDF
fitting procedure, thus making the retrieval of BRDF shapes
more reliable. Second, it allows the implementation of a
preprocessing procedure that performs data binning, which
serves to reduce noise and prevent bias caused by an uneven
distribution of observational geometries. Third, it is often the
only available method for producing surface BRDF/albedo

products from historical data sets, which are commonly
only available as a multiday clear-sky composite. Fourth,
LBF-derived BRDF and albedo products may be suitable
for direct applications in the studies of the regional
phenological cycle and land surface modeling. Land cover–
based schemes are often used to parameterize surface albedo
properties in climate and GCM modeling.
[40] While the LBF approach complements the pixel-

based fitting (PBF) strategy currently employed in the
derivation of the MODIS standard BRDF/albedo product
(MOD43), it has some advantages over the standard
(PBF-derived) product. These include higher spatial resolu-
tion, shorter sampling interval, higher successful fitting rate,
and capability to produce spatially complete product. It
performs better and generates more realistic results when
the surface vegetation state changes quickly and number of
clear-sky pixels are limited because of frequent cloudiness.
[41] The methodology presented in this paper is rather

general. It can be applied to other regions and data from
other sensors. Because our approach is based on land cover–
type sampling instead of pixel-based sampling, it can easily
be applied to the data processing of multiday clear-sky
composite data assembled from multiple platforms, such as
Terra/MODIS, Aqua/MODIS, SPOT/VEGETATION and
NOAA/AVHRR. A spectral correction procedure must be
implemented to merge data from similar but not identical
sensors to account for the differences in their spectral
responses [Trishchenko et al., 2002]. With such an approach,
a more comprehensive multisatellite surface product can be
generated.
[42] A good agreement between MISR-derived and

LBF-derived albedo was found. Correlations between these
data sets are usually larger than 0.80, and mean biases and
their standard deviations are typically below 0.01 and 0.02.
The distribution of model parameters derived using LBF
approach also compares reasonably well with standard
MOD43 product. It demonstrates more realistic features
and higher success rates of model inversion.
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