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probability density distributions for displaying absolute age data; Geological Survey of Canada,
Current Research 2000-F2; Radiogenic Age and Isotopic Studies: Report 13, 11 p. (online;
http://www.nrcan.gc.ca/bookstore)

Abstract: Initial assessment and visual communication of the salient features of large sets of geochron-
ological age data are commonly achieved with binned frequency histograms or probability density distribu-
tions. Both are estimates of the sample distribution and each has inherent limitations. Although simple and
effective at conveying frequency information, histograms have two important limitations, i.e. analytical
errors are discarded and diagram appearance is potentially vulnerable to bias because of arbitrary decisions
about interval widths. A method for assessing the efficiency of bin widths is presented. Age probability
density distribution diagrams use a variable gaussian kernel method that accounts for the analytical error of
individual datum. This also provides for the standardization of display by avoiding arbitrary bin width
selection. However, these diagrams are limited by the lack of visual frequency data. Thus to maximize dis-
played information in some cases it may be beneficial to combine both methods.

Résumé : Les histogrammes de la fréquence par casiers ou les distributions de densité de probabilité
permettent communément d’effectuer une évaluation initiale et une communication visuelle des
caractéristiques principales de grands ensembles de données géochronologiques. Dans les deux cas, ce sont
des estimations limitées de la répartition des échantillons. Bien que simples et efficaces pour fournir des
informations sur la fréquence, les histogrammes comportent des limitations importantes : les erreurs
analytiques sont éliminées et l’apparence des diagrammes est susceptible d’être biaisée par des décisions
arbitraires sur la largeur des casiers. On présente ici une méthode pour évaluer l’efficacité de la la largeur
des casiers. Les diagrammes de distribution de la densité de probabilité des âges utilisent une méthode à
noyau gaussien variable qui tient compte de l’erreur analytique de chaque donnée. On peut ainsi
uniformiser l’affichage en évitant un choix arbitraire de la largeur des casiers. Cependant, l’absence de
données visuelles sur la fréquence limitent l’utilisation de ces diagrammes. Pour maximiser les données
montrées, il pourrait être préférable, dans certains cas, de combiner les deux méthodes.
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INTRODUCTION

The acquisition of relatively large sets of U-Pb isotopic age
data has become routine in secondary ionization mass spec-
trometry (e.g. Dodson et al., 1988; Whitehouse et al., 1997;
Rainbird et al., 1998; Geslin et al., 1999), and in isotope dilu-
tion thermal ionization mass spectrometry (e.g. Davis et al.,
1994; Gehrels and Dickinson, 1995). Uranium-lead isotopic
data (i.e. 206Pb-238U and 207Pb-235U) are typically displayed
using either a Wetherill- or Tera-Wasserburg-style bivariate
concordia plot (e.g. Fig. 1; Wetherill, 1963; Tera and
Wasserburg, 1972, 1974). The primary purpose of these dia-
grams is to convey information about a set of data that is
salient to the analytical process: accuracy (relationship with
concordia and repeat analyses), precision (analytical error
displayed as error ellipses or equivalent), and sample size.
However, as sample size increases, concordia diagrams can
quickly become visually cluttered, making data assessment
for modes, ranges and proportions difficult. Also, concordia
diagrams are potentially meaningless for nonspecialist and/or
nontechnical audiences. Therefore it is often advantageous to
display the data in terms of the univariate absolute age calcu-
lated from one of the isotopic ratios.

The most common alternative forms of display are the
binned frequency histogram and probability density distribu-
tion. (Fission-track derived age data is often displayed using
radial age plots (Galbraith, 1989). These plots provide a lot of
information about the age data including analytical error, but
can be difficult for a non-specialist to interpret and will not be
discussed here). The use of such diagrams is most common in
sedimentary provenance studies involving relatively large

sets of age data (e.g. Morton et al., 1996; Pell et al., 1997;
Sircombe, 1999; Sircombe and Freeman, 1999), but is also
appropriate for the analysis of metamorphic and/or igneous
rocks where the display of complex age patterns is required
(e.g. Harley and Black, 1997). This paper describes the math-
ematical basis of traditional binned frequency histograms and
probability density distributions and then compares and con-
trasts the advantages and limitations of both methods for dis-
playing absolute age data.

BRIEF NOTE ON SCREENING ANALYSES
PRIOR TO DISPLAY

Displaying univariate age data means that the visual informa-
tion regarding accuracy seen in a concordia diagram is lost.
Therefore, prior to generating diagrams of age data, the data
are usually systematically filtered for accuracy, particularly
in sensitive high-resolution ion microprobe (SHRIMP) stud-
ies. This is usually judged by an arbitrary constraint on con-
cordance as defined by the 206Pb/238U age ratioed to the
207Pb/206Pb age and multiplied by 100 to produce a percent-
age value. A typical concordance constraint for detrital zir-
con analyses may be between 95% and 105% and is
particularly applied in material older than ~1500 Ma in
SHRIMP studies. For younger material examined by
SHRIMP analysis, the 207Pb-235U ratio and thus the
207Pb-206Pb ratio and calculated ages become increasingly
imprecise due to poorer counting statistics. In those cases, the
value of a concordance constraint and the accuracy filtering
methodology has to be judged on a case-by-case basis.
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Figure 1.

Example of a set of detrital zircon age data dis-
played using a Wetherill style concordia plot
(Dwyer Lake quartzite, Slave Province, North-
west Territories; diagram after Bleeker et al.,
2000).



Filtering of data raises an important issue for both binned
frequency histograms and age probability density distribu-
tions. If the purpose of the display is to avoid the visual clutter
of a concordia diagram, then a filtering process will remove
those discordant results that could contain significant geolog-
ical information. Care should be taken to be clear about what
sort of age data is being displayed and why. In some cases it
may be beneficial to include both concordant and discordant
results within the age display diagram (e.g. Roback and
Walker, 1995, Fig. 8; Morton et al., 1996, Fig. 3) to illustrate
that data considered discordant exist and have been consid-
ered. These decisions should be on a individual basis depend-
ing on the purpose of data display, but at the very minimum
the filtering method, if any, and the type of data displayed
should be clearly stated.

MATHEMATICAL BACKGROUND AND
LIMITATIONS OF BINNED FREQUENCY
HISTOGRAMS

Traditionally, relative large numbers of absolute age data
have been displayed using a binned frequency histogram. In
many cases such a histogram is an important means for ana-
lyzing and communicating salient features of a set of age data
and thus the geological interpretation of that data. In particu-
lar, modes, ranges, and proportions displayed in a binned fre-
quency histogram may relate to the timing, duration, and
relative significance of geological events. Because the binned
frequency histograms provide an important step in the graphi-
cal analysis and communication of age data, it is equally
important that the analyst be aware of the definitions and
inherent limitations of the method.

With a set of age data, typically measured in Ma, {x1, ...,
xN}, the histogram is generated by dividing the age range of
interest, anchored at an origin x0, into a set of K equal-sized
bins, each with a bin width h, defined by the bin limits {x0 +
jh, x0 + (j + 1)h} for positive integer values of j up to K
(Silverman, 1986; Scott, 1992; Simonoff and Udina, 1997).
(Alternatively, bins may also be termed class intervals as
defined between class limits.) An important mathematical
definition regarding histograms that is often overlooked must
be made at this point. A histogram is an estimate of the distri-
bution of a sample of univariate data or ƒ(x). In the simplest
case, the frequency histogram, the estimate is as follows:

$( , ( ( ) )f n x jh x x j C h
j A i Aχ)= + ≤ < + + (1)

where nj is the number of age data, xi, within the jth bin (x0 +
jh, x0 + (j + 1)h). A relative frequency histogram is given by
the ratio of the count in each bin against the total N as follows:

$( ) , ( ( ) )f x
n

N
x jh x x j C h

j
A i A= + ≤ < + + (2)

Both are plotted using the frequency or relative frequency
values to define the height of columns. At this stage, a dis-
tinction between histograms used for data presentation and
for density estimation can be made. In the frequency or rela-
tive frequency histogram, the bin counts and thus column size

can be used to convey area as a density estimate of the sample
distribution. Alternatively, the bin counts could be displayed
directly or as a stem-and-leaf plot (Tukey, 1977), effectively
rendering the histogram in symbols rather than graphically.
The formal definition of a histogram used for density estima-
tion is as follows:

$( ) , ( ( ) )f x
n

Nh
x jh x x j C h

j
A i A= + ≤ < + + (3)

(Silverman, 1986; Scott, 1992; Simonoff and Udina, 1997),
where the count is also ratioed to the bin width h; thus the bin
width on the plot is an integral aspect of the display and in
effect it is the area of the column that conveys information,
not just the height of the column representing the bin.
Although such a density estimation histogram described in
equation (3) is not typically used for the display of age data, a
knowledge of the distinction between the display of fre-
quency (column height) and density estimation (column area)
is important.

The methodology of binned frequency histograms
involves two critical limitations that may diminish its useful-
ness as a means of displaying age data if more detailed com-
munication is required. Firstly, the analytical error {e1, ...,
eN}, which is an intrinsic part of any good geochronological
analysis, is not considered in constructing a binned frequency
histogram as described above. The sample distribution is
therefore estimated on the basis of the age data alone, and pre-
cision, a salient feature of the analytical process, is discarded.
If the age data with analytical errors are accessible, this esti-
mation in the form of a frequency histogram may not cause a
problem. In cases where a diagram displaying age data is the
principal method for communicating results, discarding the
errors may lead to misinterpretation. In a binned frequency
histogram, an analysis with a relatively large analytical error
will be treated in the same way as an analysis with a relatively
smaller error, even though the two may not be strictly compa-
rable. For instance, as shown in Figure 2, two analyses have
the same age value of 2015 Ma, but one has an analytical error
of 20 Ma and the other, 2 Ma (both at 1 s.e.). If the bin limits
are 2000 Ma and 2020 Ma and assuming a Gaussian
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Figure 2. Example of two age estimates of the same mean, but
different variance, representing age data cut by a histogram
bin. This figure illustrates that depending on analytical error
inherent in the age data and histogram bin width, the bin may
only represent a proportion of the age estimate.



Filtering of data raises an important issue for both binned
frequency histograms and age probability density distribu-
tions. If the purpose of the display is to avoid the visual clutter
of a concordia diagram, then a filtering process will remove
those discordant results that could contain significant geolog-
ical information. Care should be taken to be clear about what
sort of age data is being displayed and why. In some cases it
may be beneficial to include both concordant and discordant
results within the age display diagram (e.g. Roback and
Walker, 1995, Fig. 8; Morton et al., 1996, Fig. 3) to illustrate
that data considered discordant exist and have been consid-
ered. These decisions should be on a individual basis depend-
ing on the purpose of data display, but at the very minimum
the filtering method, if any, and the type of data displayed
should be clearly stated.

MATHEMATICAL BACKGROUND AND
LIMITATIONS OF BINNED FREQUENCY
HISTOGRAMS

Traditionally, relative large numbers of absolute age data
have been displayed using a binned frequency histogram. In
many cases such a histogram is an important means for ana-
lyzing and communicating salient features of a set of age data
and thus the geological interpretation of that data. In particu-
lar, modes, ranges, and proportions displayed in a binned fre-
quency histogram may relate to the timing, duration, and
relative significance of geological events. Because the binned
frequency histograms provide an important step in the graphi-
cal analysis and communication of age data, it is equally
important that the analyst be aware of the definitions and
inherent limitations of the method.

With a set of age data, typically measured in Ma, {x1, ...,
xN}, the histogram is generated by dividing the age range of
interest, anchored at an origin x0, into a set of K equal-sized
bins, each with a bin width h, defined by the bin limits {x0 +
jh, x0 + (j + 1)h} for positive integer values of j up to K
(Silverman, 1986; Scott, 1992; Simonoff and Udina, 1997).
(Alternatively, bins may also be termed class intervals as
defined between class limits.) An important mathematical
definition regarding histograms that is often overlooked must
be made at this point. A histogram is an estimate of the distri-
bution of a sample of univariate data or ƒ(x). In the simplest
case, the frequency histogram, the estimate is as follows:

$( , ( ( ) )f n x jh x x j C h
j A i Aχ)= + ≤ < + + (1)

where nj is the number of age data, xi, within the jth bin (x0 +
jh, x0 + (j + 1)h). A relative frequency histogram is given by
the ratio of the count in each bin against the total N as follows:

$( ) , ( ( ) )f x
n

N
x jh x x j C h

j
A i A= + ≤ < + + (2)

Both are plotted using the frequency or relative frequency
values to define the height of columns. At this stage, a dis-
tinction between histograms used for data presentation and
for density estimation can be made. In the frequency or rela-
tive frequency histogram, the bin counts and thus column size

can be used to convey area as a density estimate of the sample
distribution. Alternatively, the bin counts could be displayed
directly or as a stem-and-leaf plot (Tukey, 1977), effectively
rendering the histogram in symbols rather than graphically.
The formal definition of a histogram used for density estima-
tion is as follows:

$( ) , ( ( ) )f x
n

Nh
x jh x x j C h

j
A i A= + ≤ < + + (3)

(Silverman, 1986; Scott, 1992; Simonoff and Udina, 1997),
where the count is also ratioed to the bin width h; thus the bin
width on the plot is an integral aspect of the display and in
effect it is the area of the column that conveys information,
not just the height of the column representing the bin.
Although such a density estimation histogram described in
equation (3) is not typically used for the display of age data, a
knowledge of the distinction between the display of fre-
quency (column height) and density estimation (column area)
is important.

The methodology of binned frequency histograms
involves two critical limitations that may diminish its useful-
ness as a means of displaying age data if more detailed com-
munication is required. Firstly, the analytical error {e1, ...,
eN}, which is an intrinsic part of any good geochronological
analysis, is not considered in constructing a binned frequency
histogram as described above. The sample distribution is
therefore estimated on the basis of the age data alone, and pre-
cision, a salient feature of the analytical process, is discarded.
If the age data with analytical errors are accessible, this esti-
mation in the form of a frequency histogram may not cause a
problem. In cases where a diagram displaying age data is the
principal method for communicating results, discarding the
errors may lead to misinterpretation. In a binned frequency
histogram, an analysis with a relatively large analytical error
will be treated in the same way as an analysis with a relatively
smaller error, even though the two may not be strictly compa-
rable. For instance, as shown in Figure 2, two analyses have
the same age value of 2015 Ma, but one has an analytical error
of 20 Ma and the other, 2 Ma (both at 1 s.e.). If the bin limits
are 2000 Ma and 2020 Ma and assuming a Gaussian

3

K. Sircombe

20001980196019401920 2020 2040 2060 2080 2100

2015 ± 20 Ma

2015 ± 2 Ma

29
.0

2%

Age (Ma)

Figure 2. Example of two age estimates of the same mean, but
different variance, representing age data cut by a histogram
bin. This figure illustrates that depending on analytical error
inherent in the age data and histogram bin width, the bin may
only represent a proportion of the age estimate.



distribution for the age estimate, only 29.02% of the distribu-
tion defined by the first analysis (2015 ± 20 Ma) lies within
the bin limits. (For the purposes of discussion here, the distri-
bution associated with an individual age calculation will be
referred to as the ‘age estimate’ and defined as a Gaussian dis-
tribution defined by a mean xi (calculated age) and standard
deviation ei (analytical error). In the strictest sense, the
assumption of a symmetrical Gaussian distribution is not
valid for absolute age calculations based on U-Pb isotopic
measurements. Because the relationship between measured
U-Pb and Pb-Pb ratios and absolute age is not linear, analyti-
cal error propagation results in a slightly asymmetrical distri-
bution, particularly those with relatively large analytical
errors. However, for the sake of discussion here, it is assumed
that the asymmetrical nature of age estimates is only rarely
significant.) In effect this is saying that although the mean of
the age estimate distribution is 2015 Ma and thet value lies
within the bin limits 2000 and 2020 Ma, there is a 70.98%
probability that the ‘true’ value of the age lies outside the bin
limits. In comparison, 99.38% of the age estimate defined by
the second analysis (2015 ± 2 Ma) lies within the bin limits, so
the bin may be considered representative. However, if the bin
width was the same, but the limits were, for example, 1996
Ma and 2016 Ma, then even the relatively more precise sec-
ond analysis would have 30.85% of its age estimate outside
the bin limits.

From this example it can be seen that the estimate of the
sample distribution made by the binned frequency histogram
only counts the mean of the age estimates defined by the sam-
ple ages and their errors. Potentially a lot of information
about the precision of individual measurements and the over-
all sample distribution may be lost. This example focuses
attention on the second limitation inherent to binned histo-
grams, i.e. the size and location of the bins themselves. A his-
togram’s appearance, and thus its potential interpretation, is a
balance between too much detail with narrow bin widths
(undersmoothing) or too little detail with wide bin widths
(oversmoothing). In various published examples (Table 1),
the choice of bin width for displaying age data varies greatly
from 5 Ma (Davis et al., 1994, Fig. 8B) through 20 Ma
(Gehrels and Dickinson, 1995, Fig. 6), and from 33.33 Ma
(Scott and Gauthier, 1996, Fig. 4) to 100 Ma (Roback and

Walker, 1995, Fig. 8, using data from Ross et al., 1991, 1992).
Using SHRIMP-derived data, Morton et al. (1996, p. 917)
defined bin widths of 25 Ma on the basis of the precision of
the analyses, although no explanation is given of how this was
done.

Because bin width can be an arbitrary decision, accidental
or even deliberate bias in the appearance and interpretation of
the binned frequency histogram is possible. If the full set of
data is accessible and other statistical analyses are done to
describe the sample distribution, this may not present a prob-
lem. Nevertheless, in a case where a binned frequency histo-
gram is used to quickly convey salient information without
statistical details, the potential for misinterpreting subtleties
exists. Figure 3 uses a set of example age data (Dwyer Lake
quartzite, Slave Province, Northwest Territories; Bleeker
et al., 2000; K. Sircombe, W. Bleeker, and R. Stern, work in
progress, 2000) to illustrate the change in appearance of the
binned frequency histogram as the bin width changes.
Although the bimodal (~2850 Ma and ~3150 Ma) and
dispersive nature of the sample distribution is apparent in all
the histograms, some subtleties can also be seen. For
instance, the relative prominence of the two modes changes,
particularly between bin widths 33.33 Ma (Fig. 3c) and 50 Ma
(Fig. 3d) where the ~3150 Ma mode appears to become
dominant.

A number of methods exist for calculating the optimal bin
width for a given set of data. For instance, Doane (1985) pro-
posed the following modification to the earlier Sturges (1926)
method:

$

max{ , ..., } min{ , ..., }

log
h

x x x x

N K
c N c N

e
=

−

+ +1 2
(4)

where $h is the estimate of the optimal bin width, N is the sam-
ple size, and Ke is the extra classes proposed by Doane (1985)
to account for potential skewness in the data, as follows:

K
b

be = +












log2

1

1
1

σ
(5)
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Bin width Range %Range
Mean
error

Efficiency
(E ) Reference

5 Ma 70 Ma 7.14% 2 Ma1 70% Davis et al., 1994, Fig. 8B
20 Ma 3400 Ma 0.588% 5 Ma1 80% Gehrels and Dickinson, 1995, Fig. 6
25 Ma 4000 Ma 0.625% 20 Ma2 60% Morton et al., 1996, Fig. 3
33.33 Ma 1900 Ma 1.75% 50 Ma3 30% Scott and Gauthier, 1996, Fig. 4
100 Ma 2800 Ma 3.57% 3 Ma1 98% Roback and Walker, 1995, Fig. 8 †

1: thermal ionization mass-spectrometer analyses
2: SHRIMP analyses
3: laser-ablation microprobe inductively coupled mass spectrometer analyses
†: Roback and Walker (1995) histograms compiled from data in Ross et al. (1991, 1992).

Bin width
as

Table 1. Examples of bin width and other details of binned frequency histogram
displays from a variety of references. Mean error and efficiency (E, explained in text)
calculated for a subset of presented data and intended for only for broad indicative
purposes.



where b1 is a measure of skewness,

b

x
i

x
i

N

x
i

x
i

N1

3

1

2

1

3 2
=

−
=

−
=













∑

∑

( )

( )

/
(6)

and σ b1 is defined by the sample size,

σ b
N

N N1
6 2

1 3
=

−
+ +
( )

( )( )

(7)

Many statistical packages use this rule or a modification of it
to calculate the default bin width for a set of data (Wand,
1996). Recognizing that Sturges’ (1926) rule and modifica-
tions may lead to oversmoothing, more recent formulations
include Scott’s (1979) normal reference rule,

$ . $

/h n= −3 49 1 3σ (8)

where $σ is an estimate of the standard deviation, typically the
minimum of either the sample standard deviation or the
interquartile range (Wand, 1996). The interquartile range is
equal to Q3 (upper quartile, or 75% percentile) subtract Q1
(lower quartile, or 25% percentile). Increasingly sophisti-
cated calculations are based on minimizing the difference
between the estimate represented by the histogram and the
actual sample distribution (Scott, 1992; Wand, 1996;
Simonoff and Udina, 1997). For the two sets of example data
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Figure 3.

Dwyer Lake quartzite detrital zircon concordant
(95–105%) age data displayed using a series of
binned frequency histograms with varied bin
widths cited in the literature to demonstrate how
the appearance and thus the potential interpreta-
tion can vary according to an arbitrary decision
about bin width. Mean error of age data =
15.8 Ma. E= calculated efficiency of the bin
width at capturing the individual age estimates.



discussed here, equations (4) and (8) yield optimal bin widths
of 136 Ma and 210 Ma for the Dwyer Lake sample. In com-
parison, another example set of detrital zircon age data
(George Lake metagreywacke, Slave Province, Northwest
Territories; K. Sircombe, W. Bleeker, and R. Stern, work in
progress, 2000) yields optimal bin widths of 36 Ma and 22 Ma
for equations (4) and (8). This illustrates that although a use-
ful starting point in visualizing an individual set of data, such
optimal binning methods do not necessarily produce a stand-
ard bin width for easy visual comparison of different sets of
data. Critically, because these calculations assume an under-
lying Gaussian distribution in the sample data, they may not
be applicable to sets of data that have strongly non-Gaussian
distributions (Scott, 1979, 1992). This may be the case partic-
ularly in detrital age data where the sample distribution may
be multimodal, dispersed, and complex, like the Dwyer Lake
sample.

Another approach to calculating bin width is briefly dis-
cussed here for the purpose of completeness. Using informa-
tion theory, bin widths can be defined using the concept of
maximum entropy (Full et al., 1984). Basically, entropy can
be applied as a measure of the contrast between bins in a his-
togram. The greater the calculated entropy, the greater the
amount of information conveyed by the bin structure. Histo-
grams with low entropy have a large difference between bins,
with the lowest state occurring when all the values fall within
a single bin. Histograms with high entropy have little differ-
ence between bins. Maximum entropy can be obtained if the
bin widths are made unequal and arranged so that the analyses
are evenly distributed among the intervals. The optimum
number of bins for a set of sample data can also be derived
using information theory (Torley, 1998), but the binning
results depend on the set of samples being analyzed and thus
are not universally applicable for comparison. Therefore,
although useful for further mathematical examination of a set
of age data, such a histogram will generally be unacceptable
for displaying age data for the purpose of geological interpre-
tation. The use of the information theory method also does
not address the limitation regarding analytical errors.

To define an appropriate bin width for the age data
described here, an empirical approach has been taken to
assess the efficiency of a variety of histogram bin widths to
represent the individual age estimates in a sample. A set of
100 random ages were generated from a uniform distribution
and assigned random errors from a normal distribution with a
range of means {1, 2, 5, 10, 20, 30} Ma. It was found that the
variance in the distributions from which these random errors
were selected did not, at least to this level of analysis, effect
the results. Two sets of real data, for the Dwyer Lake quartz-
ite and the George Lake metagreywacke, were also examined
and have mean errors of 15.8 and 10.8 Ma at 1 s.e. respect-
ively. Both can be considered typical of mean errors in
SHRIMP detrital analysis. For each individual age estimate
in a sample, the proportion of the age estimate that is captured
within the same bin as the age is calculated (as illustrated in
Figure 2). The mean of these values for each set of data is
taken as a proxy for the efficiency (E) of the bin width in esti-
mating the age data as follows:

E

dx

N

x

zi
L

zi
U

i

N

=

−
=

∫∑ 1

2

2 2

1 π
exp /

(9)

which involves summing the normal distribution function for
each sample xi bounded by standard normal variables defined
on the basis of the lower and upper limits of bin j about xi,

z
x jh x

z
x j h x

i
L o i

i

i
U o i

i

=
+ −

=
+ + −

( )

( ( ) )

σ

σ

1
(10)

Figure 4 shows that for a set of age data with a mean error
of 1 Ma (more typical of thermal ionization mass spectrome-
ter analysis) that a bin width of 10 Ma is enough to capture
90% of the age estimates. Table 1 also includes an assess-
ment of the mean error and calculated efficiency for the litera-
ture histograms discussed above with a wide range of results.
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within same bin as age) for a variety of real and
simulated age data with mean errors ranging
from 1 Ma to 30 Ma.



For the Dwyer Lake and George Lake samples, a 10 Ma bin
width will capture only about 30% of the age estimates; a 20
Ma bin width is needed to go beyond 50% efficiency, but 90%
efficiency is not approached until bin widths of over 75 Ma
are used. Using this approach as a basis for quantitatively
assessing the suitability of the chosen histogram bin width,
presented histograms should include a description of the cal-
culated efficiency of the bin width selected for that data.
Table 2 lists some suggested bin widths to achieve 50% and
90% efficiency for age data with a variety of mean errors
based on the empirical calculations discussed above,
although calculations based on the actual data being dis-
played are recommended. The mean of the sample errors
should also be included in the diagram description. In some
cases where the range of errors is extremely skewed, it may be
preferably to report the median of the sample errors.

Finally, to complete the discussion of parameters affect-
ing histograms, the selection of an origin in a binned histo-
gram display can also significantly alter the appearance and
potential interpretation of the data (Simonoff and Udina,
1997). However, in the case of age data presentation, this
effect should be minimal because for the general aesthetic
sense of ‘rounded’ limits proposed by Doane (1985), the ori-
gin should either be 0 Ma or an integer multiple of the bin

width. For example, with a bin width of 25 Ma and minimum
value at 2037 Ma, the histogram origin would not be
2036 Ma, but 2000 Ma or 2025 Ma. Any selection of a less
orthodox origin would require detailed justification in terms
of potential instability in the appearance of the histogram
(Simonoff and Udina, 1997).

CONSTRUCTING AND INTERPRETING AGE
PROBABILITY DENSITY DISTRIBUTIONS

The probability density distribution (PDD) diagram (e.g.
Figure 5; Dodson et al., 1988) is a graphical approach to the
display of age data that attempts to address the limitations of
binned frequency histograms. (The original probability plots
applied to detrital zircon age data were presented in Dodson
et al. (1988) and were the product of a technique and program
(“Nouveau Stats”) developed by Dr. P. Zeitler then at the
Research School of Earth Sciences of the Australian National
University (I.S. Williams, written comment.) Technically,
the age probability density distribution is another estimate of
the sample distribution like the binned frequency histogram.
In this case, it produces a density estimate of the sample dis-
tribution using a Gaussian kernel (Silverman, 1986) that var-
ies with each individual age estimate. The shape of these age
estimates, and thus the kernel, will vary from a narrow, tall
distribution if the error is small (Fig. 5a), to a wide shallow
distribution if the error is large (Fig. 5b). These individual
distributions are summed together to form the age probability
density distribution function, f(t), for the sample being exam-
ined (e.g. Fig. 5c), using the following formula:

f t
ei

t xi ei
i

N
( ) exp

( ) /
=

− −

=
∑ 1

2

2 2 2

1 π
(11)

where xi is the ith age measurement and ei is the ith analytical
error, t is the age and N is the sample size. In practice, the dis-
tribution function can be approximated by assessing the value
of f(t) in fixed increments (typically 1 Ma) across a range that
completely encompasses the required data. Because no sim-
ple assumption about the underlying sample distribution can
be made, the use of 1 Ma increments can only be tested
against the function defined by smaller increments (e.g.
0.1 Ma) by assessing the deviation of interpolated values.
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Mean
error

Bin width required for

>50%
efficiency

>90%
efficiency

1 Ma 2 Ma 10 Ma
2 Ma 5 Ma 20 Ma
5 Ma 10 Ma 40 Ma

10 Ma 15 Ma 100 Ma
15 Ma 20 Ma 120 Ma
20 Ma 30 Ma 160 Ma
30 Ma 45 Ma 220 Ma
50 Ma 75 Ma 360 Ma

Table 2. Suggested bin widths
required to reach 50% and 90%
efficiency in a set of age data with
various mean errors based on
empirical analysis described in text.

0.000

0.005

0.010

0.015

0.020

0 50 100 150 200 300 350 400
Age (Ma)

P
ro

ba
bi

lit
y

250
255

(a)

(b)

(c)

Total probability
distribution

Individual
distributions

Figure 5.

Example of individual and accumulated
ageestimates. a) Individual age estimate with a
small error; b) age estimate with a large error;
c) accumulated density distribution with six con-
tributing age estimates in two modes. Although
it is the area beneath the curve that is important
(see text) the probability distribution can be read
as follows: the probability of an age of 255 Ma
within the distribution is 0.015 or 1.5%.



Using the Dwyer Lake sample data, it was found that devia-
tion in the function using 0.1 Ma and 1 Ma increments was
trivial (R² = 0.9993). For comparison, the function defined by
a 10 Ma increment has a correlation of 0.9413, and 25 Ma
increments yield a correlation of 0.6715. Because of this and
the fact that most SHRIMP geochronological results are usu-
ally reported to a round Ma value, standard increments of
1 Ma are considered a suitable approximation for the distribu-
tion function. In some cases, particularly involving younger
ages, the size of these increments may have to be reduced fur-
ther to ensure a smooth appearance. It is important to note
that for the distribution to be a true probability distribution, it
must be scaled so that the cumulative total sums to one, as
follows:

f t
N e

dt
i

t xi ei
i

N
( ) exp

( ) /
= =

− −

=

∞
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1 1

2
1

2 2 2

10 π
(12)

The appropriate scaling in equation (11) can be also
achieved by ratioing by N and the cumulative probability
function can be approximated by summing each of the 1 Ma
steps. This also ensures that the diagram is standardized for
comparative purposes. It is also good practice to retain the
probability scale on the y-axis to allow meaningful compari-
son between sets of data. The number of individual analyses
contributing to the total distribution should also be clearly
indicated on the diagram.

The age probability density distribution diagram counters
the two limitations of the binned frequency histogram. Firstly,
the individual age errors are used in calculating the probability
density distribution estimation and an overall visual impression
of the relative precision of the set of data can be made. Never-
theless, it remains good practice to report the mean or median of

the errors in the set of data being displayed. Secondly, by esti-
mating the sample distribution in 1 Ma steps, the potential for
altering the appearance of the diagram as bin width varies is
eliminated and the diagram is in effect standardized to allow for
comparison between sets of age data.

Probability density distribution diagrams are particularly
good at displaying the modality of a set of age data, as
revealed by the peaks of the distribution curve (e.g. Fig. 6).
Nevertheless, care must be taken in drawing geological inter-
pretations of the peaks, in particular in picking out peaks as an
exact representation of protosource ages in a set of detrital
age data. Overlapping modes may slightly skew the location
of neighboring peaks, and a mode with few data may be visu-
ally indistinct near a relatively larger mode (the same limita-
tions of visual interpretation also apply to binned frequency
histograms). The creation of entirely false peaks and modes
by the overlap of near, but significantly different, ages is
unlikely because for typical SHRIMP detrital ages (e.g. with
10–15 Ma errors at 1 s.e.) to be considered statistically signif-
icantly different, a difference between the ages in the order of
25 to 35 Ma is needed, based on a z-test hypothesis at 95%
confidence that the real difference between the two ages is not
zero. Such a difference is typically seen in a probability den-
sity distribution as either distinctive peaks or a pronounced
shoulder on a larger peak.

Defining and assessing the significance of modes within
multimodal density distributions is a sophisticated process
(e.g. Good and Gaskins, 1980; Izenman and Sommer, 1988)
that is largely beyond the scope of this paper and will only be
discussed briefly. For the purposes of initial data analysis,
modes in an age probability density distribution can be
defined in terms of the function derivatives as those points
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Figure 6.

Dwyer Lake quartzite age data represented using
a probability density distribution diagram.
Lighter shading indicates distribution with all
ages (concordant plus discordant, N=87),
darker shading indicates distribution of ages
considered concordant (95–105%, N= 68). Ver-
tical dashed lines and ages indicate mixture
model ages given in Table 3.



where ƒ’(t)=0 and ƒ”(t)<0 (Scott, 1992). For objectively
deriving modal ages from a set of age data, the analyst should
use a deconvolution methodology, such as the maxi-
mum-likelihood mixture modelling of Sambridge and
Compston (1994). Starting with an estimate of the number of
components within the set of age data, the mixture modelling
algorithm attempts to model the sample distribution by vary-
ing the proportion and variance of the modelled components
until the best statistical fit is found. The process is continued
with increasing numbers of assumed components until the
increase in goodness of fit is trivial or, more typically, com-
ponents begin to repeat. Because of its mathematical basis,
this approach avoids any potential bias in visual inspection,
although it is interesting to note, as in the case of the Dwyer
Lake sample (Table 3, Fig. 6), these calculations often define
components that closely match the prominent peaks seen in
the probability density distribution. The geological interpre-
tation of these model components and peaks should be
weighted carefully in terms of the number of individual mea-
surements making up each component. As a general rule of
thumb any modelled component should consist of three or
more individual measurements before being considered
meaningful. In the Dwyer Lake data, the modelled compo-
nents at 2962 ± 4 Ma (n=15) and 3146 ± 8 Ma (n=10) should
be given greater significance in geological interpretation than
the 2993 ± 9 Ma (n=2) component. At this point, data assess-
ment may pass from the objective rigour of mathematical
modelling and statistical significance to more subjective geo-
logical interpretation. For example, the Dwyer Lake data
contain two >3800 Ma ages. Mathematically these could be
dismissed as insignificant, but geologically they are poten-
tially very interesting. Similar significance is often also
placed on the youngest analysis in a set of detrital data as an
indicator of the maximum age of deposition.

An important limitation of age probability density distri-
bution diagrams is the loss of easily accessible frequency
information that can be seen in a traditional binned frequency
histograms and is often the instinctive demand of someone
viewing such a diagram: they simply want to know, even
roughly, how many analyses are in a particular interval. In a
binned frequency histogram estimate, this information is con-
veyed by the height of the columns, but this paradigm does

not necessarily follow for probability density distribution
diagrams. Because probability density distribution diagrams
illustrate probability density, it is the area beneath the curve
that conveys frequency and proportion information. The
height of the curve in a probability density distribution dia-
gram is a function of both quantity and precision rather than
simple quantity, i.e. a singular and particularly precise analy-
sis will have a tall peak (e.g. Fig. 5a) that may compare,
height-wise, with a peak of accumulated, less precise analy-
ses (e.g. Fig. 5c). For this reason it is important to retain the
quantity of individual analyses displayed in a probability den-
sity distribution diagram to permit a reasonable comparison
between different sets of data. Unfortunately, area is not an
intuitively recognized attribute of a diagram and frequency
information may be lost to a casual audience. For example, in
Figure 5c the distribution contains six individual analyses,
three in each mode, but the left-hand peak is higher, convey-
ing on first glance that it is the dominant mode, whereas in
reality it has exactly the same quantity as the other mode. The
height difference is a result of the three analyses on the left
being more precise.

There are numerous cases where the display of frequency
information is not required, for example, if the intention is to
simply display a series of data for comparison where the pres-
ence or absence of particular modes is of primary interest
(e.g. Geslin et al., 1999). If frequency information is
required, overlaying the probability density distribution dia-
gram with an equivalent binned frequency histogram of the
same set of age data is recommended. The binned frequency
histogram (with bin widths chosen and justified as explained
above) will convey frequency information whereas the prob-
ability density distribution will constrain the histogram by
illustrating the overall precision of the analyses and by providing
an unbiased distribution for interpretation. Scaling the probabil-
ity density distribution to match the area represented by the
equivalent histogram simply involves multiplying the probabil-
ity distribution equation (11) by the number of samples N and
histogram bin width h (Bevington and Robinson, 1992):

f t f t Nhscaled ( ) ( )= (13)

In practice, clarity of presentation may result in modifying
the scaling for one or the other of the overlying diagrams. In
all cases it is recommended that the sample size,
mean/median error, and efficiency of the selected bin width
also be displayed or included in the diagram description.

CONCLUSIONS

Absolute age data are displayed to convey the salient features
of the sample data (e.g. modes, ranges, and proportions) for
both data analysis and communication of interpretations
where concordia diagrams may be unsuitable (Table 4). In
mathematical terms, displays of univariate age data such as
binned frequency histograms and probability density dia-
grams are estimates of the distribution of the sample. They
are often very effective in conveying information, although
the analyst should be aware that both approaches involve
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Component
age (Ma)

± error
(1 s.e.)

ages in
component

relative
proportion

2945 13 3 4.4%
2962 4 15 22.0%
2993 9 2 2.9%
3042 21 3 4.4%
3111 11 8 11.8%
3146 8 10 14.7%
3180 11 5 7.4%

Table 3. Components within the Dwyer Lake
quartzite data as indicated by the mixture
modelling deconvolution method of Sambridge and
Compston (1994). The wide range of ages older
than 3200 Ma deconvolve to individual ages and
are not listed here.



limitations and potential for misinterpretation, especially if
the diagram is the principal means of communication. In par-
ticular, the following points are considered important:

– The analyst should carefully consider the purpose of and
the audience for the display. Decisions about the type of
display and information conveyed should be made on the
basis of questions such as: Is salient sample information
about modes, ranges, and proportion sufficient? Will the
audience demand and/or have access to analytical infor-
mation about accuracy and precision?

– In the transition from a bivariate concordia plot to a
univariate age data display, visual information regarding
the accuracy of the measurements will be lost. Therefore
the first step in constructing a display of age data from
U-Pb isotopic measurements is to filter the data for accu-
racy. For detrital SHRIMP analyses, this is typically an
arbitrary constraint on concordance such as 95% to 105%.
In some cases, such as material less than ~1500 Ma, this
filtering has to be judged carefully. The method of filter-
ing should be stated in the diagram description and in
some cases it may be useful to display both concordant
and discordant data.

– The most widely used estimate is that of the binned fre-
quency histogram, but this display has two major limitations
when applied to absolute age data. Firstly, analytical errors
are discarded so in effect the bins only count the age. There-
fore visual information conveying analytical precision is
lost. Diagram description should include an assessment of
the mean or median analytical error of the sample.

– The second limitation of binned frequency histograms
involves the arbitrary selection of bin width. The appear-
ance, and thus potential interpretation, of the histogram
itself is strongly controlled by the bin width parameter
and, to a lesser extent in age data display, by the origin. A
variety of methods may be applied to find an optimal bin

width for the data (e.g. equations (4) and (8); Doane,
1985; Scott, 1979, 1992) but these assume a sample distri-
bution that may not be valid. An alternative approach is
proposed (equation 9) where the efficiency of a particular
bin width at representing the individual age estimates is
calculated. For typical thermal ionization mass spectrom-
eter data with analytical errors of about 1 Ma (1 s.e.), bin
widths of 10 Ma will reach 90% efficiency (Table 2). For
typical SHRIMP analytical errors at 10 to 15 Ma (1 s.e.),
bin widths of at least 20 Ma are needed to reach over 50%
efficiency and of much larger than 100 Ma to reach 90%
efficiency (Table 2). The diagram description should
include a justification of the chosen bin width and a dis-
cussion of how the appearance of the distribution varies
with other bin widths.

– Probability density distribution diagrams counter the two
limitations of binned frequency histograms. A standardiza-
tion of display can also be achieved by assuming that 1 Ma
increments are a suitable approximation of the sample distri-
bution, although in some cases the increment may be
smaller. It is good practice to include sample size and
mean/median sample error in the diagram description.

– An important limitation of probability density distributions
is the loss of visual frequency information. To convey the
maximum amount of detailed information about a sample, it
may be beneficial to combine the equivalent probability den-
sity distribution and binned frequency histogram.

– Care must be taken in the geological interpretation of
modes displayed in both binned frequency histograms
and probability density distributions. Overlapping modes
may slightly skew peaks and numerically smaller modes
may be visually indistinct. If detailed derivation of sample
modes are required, the analyst should use a mixture mod-
elling method.
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Style of diagram Advantages Disadvantages

Concordia diagrams • Display of precision and accuracy of
results, allows for visual assessment
of concordance, Pb-loss.

• Display of analytical errors.
• Widely used among specialists.

• Quickly becomes visually cluttered as
sample size increases.

• Difficult to assess for modality and
proportions.

• Potentially difficult for nonspecialist or
nontechnical audience.

Binned frequency histograms • Effective communication of salient
features of data: modes, ranges, and
proportions.

• Widely used by both specialist and
nonspecialist audiences.

• Appearance and interpretation vulnerable to
bias because bin width is arbitrary. Not
necessarily a widely appreciated issue.

• Analytical errors discarded, places all
emphasis on calculated age.

Probability density distribution • Effective communication of modality,
range, and overall precision of data.

• Uses analytical errors in data and is
thus mathematically a better estimate
of sample distribution.

• Standardization of appearance.

• Potential confusion and misinterpretation
because area equals frequency rather than
height alone.

• Potentially difficult for nontechnical
audiences.

Table 4. Summary of the advantages and disadvantages of concordia diagrams, binned frequency
histograms, and probability density distributions for displaying relatively large sets of age data.
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