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Building a litho geochemical dataset for GIS analysis: Methodology, problems, and 
solutions 

Lori Wilkinson, Jeff Harris, and Eric Grunsky 

Abstract 

This paper summarizes the methodology and considerations involved in the compilation and 

preparation of a large lithogeochemical dataset derived from disparate sources into a Geographic 

Information System (GIS). Approximately 4500 lithogeochemical samples, from 6 sources, have been 

compiled into a single lithogeochemical dataset for the Swayze Greenstone Belt area ofNorthern Ontario. 

Problems dealt with during the compilation process include: missing data, uncertain locations, non-unique 

sample identifiers, O's in the data, censored data and analytical uncertainty. The combined 

lithogeochemical dataset was scrutinized statistically and spatially, so that the data can be reliably used for 

regional mapping and exploration activities. 
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1.0 Introduction 

A three-year project to compile and analyze a variety of digital data for the Swayze greenstone 

belt in northern Ontario (Figure 1), using Geographic Information System (GIS) technology, was initiated 

in 1993 by the Geological Survey of Canada (GSC) and the Ontario Geological Survey (OGS). The 

project was funded byNODA (Northern Ontario Development Agreement), part ofthe Canada-Ontario 

Economic and Regional Development Agreement (ERDA). Project goals included compilation of a digital 

geoscience database, assessment of the ability of GIS to aid in geologic mapping and mineral exploration 

activities, and transfer of GIS technology to the geological and mining community (see Harris et al. 1994, 

Harris et al. 1995a,b). The study is unique in that industry partners (Falconbridge Ltd. and Hemlo Gold, 

formerly Noranda Exploration Company Ltd.) agreed to supply much needed proprietary digital data and 

exploration expertise to the project in return for a one-year period of exclusivity over the results generated 

by the project. 

0 Kilometers 300 I 
Figure 1: General location map ofthe Swayze greenstone belt in Ontario. 

The Swayze greenstone belt (SGB) is the westernmost extension of the mineral-rich Abitibi 

greenstone belt (AGB), and has recently been re-mapped by both the OGS and the GSC (Ayer and 
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Theriault 1993; Heather and van Breeman 1994; Heather et al. 1995). Similar to the AGB, the SGB 

contains a number offolded 2730-2680 Ma mafic-felsic metavolcanic packages that are unconformably 

overlain by Timiskaming-type metasedimentary rocks and cut by high-strain zones thought to be 

extensions of the major "breaks" (Destor-Porcupine and Cadillac-Larder Lake Faults) found in the AGB 

(Ayer and Theriault 1993; Heather and van Breeman 1994; Heather et al. 1995). Figure 2 is a 

generalized geology map of the SGB. Unlike, the AGB however, few economic deposits have been found 

within the SGB, and the exploration level is still relatively low. 
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Figure 2: Generalized geology of the Swayze greenstone belt (from 1 :SO 000 scale compilation provided 
by Falconbridge Ltd.). 

The use of Geographical Information Systems (GIS) is relatively new to the mining industry in 

Canada. Much like Computer Aided Drafting (CAD) systems, GIS are capable of storing, displaying and 

plotting georeferenced points (lithogeochemical samples, drill hole locations, etc.), lines (roads, faults, 

etc.), and polygon data (lithologic units, drainage basins). However, GIS offers a number of advantages 
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over CAD systems in that the "graphic primitives" (points, lines and polygons) can be linked to a database 

which contains attributes or descriptive information that are associated with each graphic element. 

Secondly, a GIS provides a wide range of spatial analysis tools with which to display, query, manipulate 

and analyze the data. A GIS is a useful tool for the mining and exploration industry in that it offers the 

capability for spatial analysis in a problem-solving environment. GIS provide powerful tools for 

developing user-specific applications, such as procedures for generating exploration favourability maps 

(Bonham-Carteret al. 1988; Harris 1989; Bonham-Carter 1994; Harris et al. 1994; Rencz et al. 1994; 

Wright and Bonham-Carter 1996). 

One of the most difficult aspects of compiling a large GIS database involves the integration of 

data in many different formats. Analog data must be converted to digital form, either by scanning or 

manual digitization. This process is often time consuming and laborious. Equally challenging in the 

compilation of a large GIS database is the integration of data from many disparate sources. Creating 

continuous seamless data is desirable for point data in which a specific location has a number of attributes 

that record information such as structural or lithologic observations at an outcrop. In exploration, 

combining various datasets (i.e., separate lithogeochemical whole rock analyses) is desirable to assist in 

defining regional geochemical trends, which in turn, can yield valuable information on geologic and ore

forming processes. Furthermore, an extensive and seamless lithogeochemical dataset is useful for 

characterizing regional litho-tectonic patterns and identifying anomalous geochemical populations that 

may be related to mineralization. 

Combining geochemical data which has been collected at different times, by different 

organizations using different sampling strategies and analyzed by different laboratories using different 

analytical techniques, is full of potential pitfalls. It is desirable to maintain as much of the original data 

coding as possible, to retain the lineage information, and to track all the potential sources of error being 

built into the dataset through the compilation process. Once the dataset has been compiled it is also 

necessary to verify and evaluate its integrity. This is particularly important for analytical data, acquired 

from different sources, and hence, potentially different analytical techniques. 
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This paper emphasizes a regional approach to compiling, evaluating and interpreting 

lithogeochemical data. It is important to note that the scale of compilation and project objective affects 

the approach used in subsequent analysis. The objectives of the compilation must be clearly defined. 

Since compilations and interpretations are scale-dependent, methods of analysis and interpretation must 

be chosen to suit the scale of study. Mining camp-scale studies require different approaches to both 

compilation and analysis than do greenstone belt wide studies. 

This paper provides a methodology for the creation of a combined lithogeochemical dataset, 

derived from a variety of sources, using a GIS and associated relational database software. The problems 

encountered during the data compilation process are grouped into 2 types of errors. Each is discussed and 

possible solutions are suggested. The integrity of the final combined database is tested using a number of 

simple statistical comparisons and problems inherent in analyzing the data are discussed. 

2.0 Lithogeochemical data 

Approximately 4500 whole rock samples were acquired from three principle sources; GSC, OGS 

and Falconbridge Ltd. ·Individual datasets and their specifications are listed in Table 1. The proprietary 

data received from Falconbridge were contributed as part of a legal agreement between the GSC and 

Falconbridge Ltd. and Hemlo Gold Ltd. for this GIS project (Harris et al. 1994). 

DATASET 
J. Ayer(JA) 

K Heather (KH) 

#OF SAMPLES YEARS COLLECTED ANALYTICAL METHODS SOURCE 
135 1991-1993 91-XRF/ICP-MS/ICP-ES/AA OGS 

92-XRF/ICP-ES/ICP-MS 
348 1992-1995 92-95-XRF, 1CPMS, AA, GSC 

DIONEX 
PETROCH (PT) 646 1976-1993 OGS 
S. Fumerton (SF) 1304 unknown (variable) XRFIICP-MS/AAIFA Assessment files 
Falconbridge(FA) 1058 1978-1979 XRF FalconbridgeLtd. 
Texas Gulf(TG 943 unknown (variable) XRFIICP-ES Falconbridge Ltd. 

Table 1: Compiled dataset components. XRF - x-ray fluorescence, ICP-MS - inductively coupled plasma 
mass spectrometry, ICP-ES - inductively coupled plasma emission spectrometry, AA - atomic absorption, 
DIONEX - Dionex Ion Chromatgraphy Analyzer. 

Quality control and the assessment of analytical variability is of crucial importance when 

analyzing any type of geochemical data (Rose et al. 1979; Fletcher 1981; Thompson 1983). A critical 



- 7-

assumption made in this study is that adequate, quality control measures were undertaken by the 

proprietor of each dataset at the time of original data collection and analysis. This presumably involved 

inserting split duplicates, field duplicates, and control samples to evaluate analytical variability within 

each individual dataset. With no control or involvement in these activities, we received each dataset from 

the organizations listed in Table 1 long after the data had been collected. Therefore, our efforts in this 

study focus on the compilation and analysis of the data after quality control measures had already been 

undertaken on each dataset. 

Characteristics of each input· data source are summarized in Table 2, and are briefly described 

here. Most major oxides are present in all datasets, with the exception ofTi02, P20 5, K20 and MnO in 

the TG dataset. However, volatiles, loss on ignition (LOI) and even ''total" are frequently missing in 

many of the datasets. In addition, not all4500 samples contained even partial major oxides. Fe is 

variably measured as FeOr, Fe2~T. or as both FeO and Fe20 3 (see Table 3), even within the same dataset 

(e.g. PT, SF, KH datasets). 

Dataset Major Minor Duplicate #oftrace Duplicate L. O.L Total Lithology 
oxides oxides sam les elements Elements 

JA yes yes no 42 Nb,Rb, Sr, Y yes yes yes 
FA yes yes yes 4 no yes yes no 
KH yes yes no 41 Ce, La, Nb, Nd, partial yes yes 

Rb, Th, Y, Yb, 
Zr 

TG partial yes 32 no partial no yes 
PT yes no 13 no yes 
SF es es 61 no 

Tab1e2: Summary of data source characteristics. 

Dataset FeOr Fe:zOJr Fe20 3 +Fe0 
JA no yes no 
FA yes no no 
KH no yes yes 
TG no yes no 
PT yes yes yes 
SF no es es 

Table 3: Summary of Fe data source characteristics. 
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The range of trace elements analyzed is extremely varied and too numerous to list here. Even 

within a single dataset, an element may be measured in one sample and not the next. This problem is 

compounded in the SF and PT datasets, which were obtained from assessment files and various OGS 

studies over a 20-year period, respectively. In both these datasets, the elements analyzed and the methods 

used to analyze them have changed over the years, but a systematic study of the possible effects of these 

factors is beyond the scope of this paper. 

An additional problem affecting trace element data, is the occasional instance of multiple trace 

element analyses by different analytical techniques. Although oxide data are generally analyzed using 

XRF, it is common for different trace elements to be analyzed by several techniques within the same data 

source, such as ICP-MS for rare earth elements, and ICP-ES for other elements (see Table 1). Some 

element concentrations are occasionally determined using several techniques, and are preserved in the 

source data as duplicated columns e.g., Zr-1 and Zr-2. Since different analytical techniques have different 

detection limits, there is the possibility that an element may be below detection using one analytical 

method but above the detection limit on another method. Also, the general problem of censored data 

(below detection limit) must also be addressed within the combined lithogeochemical dataset. Levelling 

procedures (Darnley et al. 1995) can be applied to "align" data, however these procedures are time 

consuming and require careful validation. 

The meaning ofO values in each lithogeochemical database is also problematic. It is often 

unclear whether a value ofO has been entered for oxides and/or elements to represent a "no data" value 

(an unmeasured quantity), or a measured oxide and/or element at which no quantity was observed. The 

way zeros are treated can have a significant impact on the interpretation of geochemical data that is 

compositional in nature (Aitchison 1986). 

Other problems and inconsistencies observed within the individuallithogeochemical datasets 

include, "holes" or blanks in the tables where no value was entered, missing, uncertain or obviously 

wrong geographic locations, non-unique sample identifiers, e.g., duplicated sample numbers and elements 

analyzed by more than one technique. 
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Figure 3 is a flow chart that summarizes the methodology used for compiling the unified 

lithogeochemical dataset. We have divided the problems encountered in this process into two basic types; 

Type 1 problems of a practical nature, mostly identification problems, involved in building the actual 

dataset, and Type 2 problems of intrepretation in using the combined database. Figure 3 outlines the 

order in which data should be evaluated prior to the application of any types of data analysis or 

interpretation. This paper only deals with the identification of errors and the assembly of data into a 

dataset suitable for analysis. The identification of altered samples, while a Type 2 problem, is a complex 

and subjective process that is beyond the scope of this paper. 

(ANALOG ~OURCE ) l DIGITAL SOURCE) 

. ~R:wr~~~~~~~~1~A~A~~ 'l_Q __________ r== . -
/ ~ 

' TYPE 1 PROBLEMS \ 

! 

• missing values 
• uncertain locations 
• non-unique sample identifiers 
* variable elements analyzed 

TYPE 2 PROBLEMS 
* interpretation of zeros 
• use of censored data 
* dataset compatiblities 

; *closure 
\ • non-normal distributions 
'~--------r---------~/ I 

FLAG ALTERATION 

Figure 3: Flow chart summarizing preparation of 
the geochemical dataset for spatial data analysis. 
Note that flagging of altered samples was not 
demonstrated in this paper, but is an important 
consideration in mineral exploration. 
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Problems in identification (Type 1) include uncertain locations (geographic coordinates poorly 

recorded -lack of precision or inaccurate), non-unique sample identifiers (possible source of confusion) 

and the use of different methods of analysis for a given element (e.g. ICP-MS, XRF for Zr). Problems in 

the intrepretation of the data (Type 2) include missing values (incomplete analysis or not reported), 

dataset compatibility (levelling problems), use of censored data (actual value less than detection limit), 

and the nature of the geochemical distribution. 

Type 1 and 2 problems can also be expressed another way. Type 1 problems can require that the 

data be deleted from the study, or that certain restrictive assumptions be made in order to proceed. On the 

other hand, Type 2 problems can be accommodated through additional analysis and adjustment. The 

applications of data analysis, and the use of Geographical Information Systems, can help resolve some of 

the Type 2 problems. 

The importance of metadata, e.g., details of chemical analysis protocols and reporting 

procedures, is now broadly recognized and its use is becoming increasingly common, which will help to 

minimize the types of problems faced in this study. 

3.0 Data Compilation and Type 1 Problems 

Of the 6 individuallithogeochemical datasets, all but one (TG) was in a digital form in 

spreadsheet or database format (e.g., FoxPro, Access, dBase, Excel). Thus, the first step was to manually 

enter the TG dataset into a database. Next, a flat (non-relational) table of each dataset, containing sample 

number, easting, northing, lithology (if available), and elements/oxides available, including duplicated 

elements by more than one methodology, was created. The 6 tables were then appended to form a single, 

flat table dataset containing all6 sources. Numeric missing values (null values) were replaced with a 

value of -9999, while character missing values (null values) were replaced with ''NO DATA"'. Thus all 

"holes" in each data source were removed, important for the import of the data into the GIS. 

Since lithogeochemical data without a location cannot be interpreted in a spatial context, samples 

with uncertain locations were eliminated. Samples simply lacking Easting or Northing information or 
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containing obviously wrong coordinates (i.e., 5 digits for Easting, or 6 digits for Northing) were also 

eliminated from the other datasets, since no means for establishing their correct location was available. 

All databases and GIS rely on the concept of a unique identifier (or "key") for each piece of 

information, whether point, line or polygon. This unique identifier allows linkage of the spatial location 

of the point, line or polygon with its descriptive information (i.e., attributes) held in the GIS database. In 

the case of the 6 sources used in this compilation, duplicate sample numbers often occur (see Table 2). In 

some instances the same record was exactly duplicated within the source, permitting deletion of the 

repeated record. In other instances, the value of the attributes (oxides or elements) were different, 

suggesting that either that two samples were run with the same identifier, or that the same sample was run 

twice, perhaps as a split or field duplicate (Figure 4). This was checked by examination of the geographic 

coordinates of the two points. If both points had the same location, an assumption can be made that the 

sample was run twice, perhaps as a split duplicate and one sample can be deleted. In the case of samples 

with different locations, it is likely that one sample is incorrectly labeled. However, for both cases, 

without field notes or any other means of determining the source of the slightly different chemistry (and 

without any metadata descriptions), it is impossible to know which sample to delete. These samples are 

left in the database but are suffixed with a -1 or -2 to signify the first or second record with the same 

sample number (see Figure 4 for examples). This preserves the maximum amount of data in the 

combined dataset, but serves also to flag potential problem samples. The goal is thus to provide the 

database user with the necessary information to make informed decisions about its use; not to take these 

decisions out of their hands. Thus, the user may decide prior to spatial and statistical analysis, which of 

the duplicated samples to use or delete, or may choose to average duplicates. 

To facilitate the amalgamation process, and to provide both an archive and a back up of the 

source data, all 6 original sources were imported into a single PC-based relational database to create a 

digital archive. In our case, the database serves as an archive of our original data and as a means by 

which to combine the tables for import into the GIS. All 6 tables were appended to form a single, large 
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table of samples, maintaining all elements including duplicates due to alternative analytical 

methodologies. 

2 

3 
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I 
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Figure 4: Example of problem of duplicate samples within a data 
source (top table), and the solution used (bottom table). Note a 
value of -9999 indicates a NULL value for a numeric value field. 

The import of the data to the GIS (Arc/Info version 6.1.2) was accomplished using a comma-

delimited, ASCII file format. A macro (AML) was written within the GIS environment to convert the 

ASCII file to an Arc/Info "coverage". A new field was added to each dataset to identify the original 

source of a particular sample in the final combined dataset. The new attribute, called "dataset" in this 

case, was then filled with the appropriate initials, (e.g., TG for Texas Gulf; SF for S. Fumerton data etc.) 

thus preserving the original source of each sample in the compiled dataset. 
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4.0 Type 2 problems: Using the combined dataset 

i\ variety of difficulties are inherent in using geochemical data compiled from a number of 

sources. Problems which include O's and incomplete analyses within the dataset, censored data, closure 

and dataset compatibility problems are addressed here. It should be noted that a number of assumptions 

must be made when building and using the combined datasets. These assumptions are summarized in 

Appendix A. 

A number of the datasets, especially TG, contained incomplete oxide analyses as mentioned 

previously. Although individual oxide elements can still be used for comparative evaluations, incomplete 

chemical analyses will preclude their use in chemical classification (i.e., ternary classification) and 

statistical analysis (i.e., classification, cluster and principal component analysis) procedures. The 

evaluation of individual oxide elements can only be used if they are used "as reported". Thus, they cannot 

be recalculated to 100%, and then used for classification or the creation of a lithogeochemical index such 

as an alteration index. Recalculating the data compounds the closure problem, and can often provide 

results that may be misleading or difficult to interpret. In some cases, ternary diagrams can be 

constructed and indices can be calculated providing that none of the essential oxide elements are missing. 

However, the interpretation of these analyses can be misleading if the values of the missing oxide 

elements do not fall within "acceptable" limits. Since these values are unknown, the use of incomplete 

analyses are suspect. 

4. 1 Zero values 

It is uncertain in most cases, whether a value of 0 actually represents zero concentration or if it 

was entered to reflect a null value or unanalyzed element. Grunsky et al. (1992) in a lithogeochemical 

study using PETROCH (PT) data, considered O's as missing values for major element oxides (excepting 

Na20, K20, Ti02, P20 5, and MnO), and therefore eliminated these data from further consideration. Table 

4 summarizes the minimum values that were observed for the major element oxides. It can be seen from 
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the values below that there are as many as three lower limits of detection in the data. This is due to 

varying detection limits in each source dataset. In addition, within each original source dataset, multiple 

detection limits were possible if the data were collected over a period of time and analyzed using a variety 

of techniques. 

Element SiOz FeO MgO CaO 
Weight% NA 0.01 .01/.20 0.2 0.01 0.01 .011.02/.03 

Element K20 Ti~ MnO P20s C02 H20- H20+ 
Weight% .011.021.05 0.01 0.01 0.01 .01/.10 0.01 NA 

Table 4: Lower limits of detection observed for the combined datasets. Note: 
NA means that no value close to zero was observed for the data. In some cases 
(Na20, K20, Fe2~, C02), mutliple lower limits of detection were observed. 

Alternatively, any entry ofO can be considered to be an unlikely geochemical value, and thus be 

treated as a censored value (Miesch 1976). One of the difficulties in treating zero values as censored 

values is due to the fact that there may be more than one detection limit in a dataset that has been derived 

by different analytical procedures. In many cases, the true lower limit of detection is not available. In 

practice, the replacement value suggested by Aitchison (1986, p. 268), which is based on the minimum 

precision (resolution) of the data (0.01 %), is a default lower limit of detection and thus zero values can be 

treated as censored data. 

If the SGB lithogeochemical database is intended for regional mineral exploration, then the 

detection of anomalous values (e.g.,> 90th percentile) is important. Therefore, it is desirable to preserve 

as many samples as possible to obtain a reliable estimate between regional background and truly 

anomalous data. Thus, 0 values were included in the study to maximize the number of sample points 

available. This has the advantage of maximizing the number of samples used, and preserving the lower 

abundance oxide information (e.g., P20 5) but can result in a cluster of data around zero. Such an effect 

can distort any parametric statistical procedures, and creates the possibility of under-estimating thresholds 

for anomalous populations. Such problems can be minimized by visually examining the probability plots 

of the data for a threshold that is not necessarily percentile based. 
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For procedures requiring normally distributed populations, only results greater than 0 were 

selected to allow for log-transformation. This is particularly important in statistical procedures that 

require homogeneity of variance/covariance. Although this invokes the assumption that 0 is an unlikely 

geochemical value, it is a mathematical necessity. To minimize the elimination of samples, it is 

recommended that the modified procedure of Grunsky et al. ( 1992) be used, whereby zero values for 

oxides Na20, K20, Ti02, P20 5, and MnO are treated as censored data and replaced. Alternatively, if the 

lower limit of detection is known for a specific group of samples, then the method of Sanford et al. ( 1993) 

can be applied as discussed below. 

4.2 Data Compatibility 

The most important problem remaining in the dataset is one of compatibility between sources. 

The combined dataset is compiled from 6 sources, 4 of which are themselves compilations of other data 

sources (i.e., SF is a compilation of assessment files). This can result in significant variations in 

chemistry between samples of different sources or as multiple populations within a single oxide. To assess 

the degree to which these variations may affect final geochemical results, we have examined oxide 

population distributions both statistically and spatially. 

4.2.1 Interchanged Na20 and Si02 

Probability plots and frequency histograms for Na20 revealed a distinct sub-population ofNa20 > 

40 weight percentage, and> 60 cation volume percentage, representing 198 samples (Figure 5a). Figure 

5b also shows a probability plot and frequency histogram for Si02, in which an anomalous population 

comprising values < 20 wt% Si02, can be clearly seen. Figure 5c shows a scatterplot ofNa20 vs. Si~ 

where the clusters of data are obvious. The lack of any spatial correlation between the anomalous Na20 

samples, and the fact that a rock with > 40 % Na20 and < 20% Si02 would be highly unusual, indicates a 

data transcription error. Alll98 apparently switched Na20 and Si~ values came from the same dataset, 

indicating that the error is not random within the combined lithogeochemical database, but rather a 
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systematic recording error within the TG dataset. Si02 and Na20 values for the 198 samples were 

therefore switched, and the probability plots and histograms recalculated. These are shown in Figure 6a

c. Both Si02 and Na20 now display single population distributions with meaningful geochemical values. 

Had this error not been detected, any subsequent statistical procedures, such as percentile calculation and 

principal component analyses, would have been significantly affected. 

4.2.2 Levelling of datasets 

Examination of oxide populations across the belt by dataset revealed sub-populations of Al20 3 < 

5, Na20 >5 and MgO > 10 weight % within the TG dataset (Figures 7a, band c, respectively). These sub

populations were not duplicated or were much smaller within the other datasets, suggesting a problem 

with the TG data, and possible need to eliminate it from the combined dataset. To test whether the 

problem represented simply "bad data", or if it was due to the location of individual samples with respect 

to varying lithologies, the spatial characteristics of each dataset were examined. Although all datasets, 

except KH, are dominated by mafic metavolcanics, examination of Figure 7d, displaying the location of 

each point in the combined data by dataset origin, as well as a breakdown of each dataset displayed 

graphically as pie charts, indicates a number of sampling trends. KH data is located predominantly within 

granitoids; JA within the northern Swayze mafic metavolcanics; PT within mafic metavolcanics in the 

southeast high strain area; FA inN-S oriented grid lines within the center (undeformed) portion the belt 

dominated by mafic metavolcanics; SF strongly clustered in mafic meta volcanics in the north and south, 

and TG somewhat scattered within primarily undeformed mafic metavolcanics. In addition, although 

mafic metavolcanics typically account for 34-62% of samples within a dataset, the remaining 38-66% of 

samples are quite variable between datasets, mafic-ultramafic intrusive rocks being strongly sampled 

within JA, PT, KH and TG, while metasedimentary rocks were strongly sampled within KH, TG and FA 

(Figure 8). It is therefore possible that the TG dataset sub-populations represent a spatial or sampling 

trend rather than a ubiquitous, but non-quantifiable dataset error. To test this, Ah03, Na20 and MgO 
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populations were broken down into specific ranges and plotted· statistically using box and whisker plots, 

and spatially on an existing geology map (1 :50,000 OGS compilation, supplied by Falconbridge Ltd.) by 

dataset (Figures 9, 10, and 11, respectively). 
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Figure 7: Q-plots of A}z03 (A), Na20 (B), and MgO (C) populations by dataset. 

Samples with A}z03 < 10 weight% are plotted by dataset on Figure 9. Examination of the 

accompanying box and whisker plots demonstrates that A}z03 values for the TG dataset are significantly 

lower compared to the other datasets. The majority of the TG samples are clustered about the Isaiah Lake 
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Stock, indicated by black box (labeled "A") in the lower left portion of the map, and a small sliver of 

greenstone in the southeast portion of the main belt (lower right of map - labeled "B"). 

Na20 between 5 and 10 wt. %, and MgO greater than 10 wt.% samples are plotted by dataset on 

the geologic map, and statistically as a box and whisker plots in Figures 10 and 11, respectively. These 

plots show that the TG dataset is characterized by significantly lower MgO and higher Na20 (with the 

exception of the JA dataset) values than the other datasets. Again, the majority ofTG samples plot 

around the Isaiah Lake Stock area and the lower right comer of the map area. This spatial bias in the TG 

dataset indicates that the dataset as a whole is not biased in MgO, Na20 and Al20 3, but that the problem is 

areally restricted. It is therefore apparent that two areas of the belt (labeled "A" and "B" on Figures 9, 10 

and 11 ), are marked by anomalous chemistry with respect to the TG dataset. There are 3 possibilities to 

investigate for the source of these apparent anomalies: one, systemic errors associated with the TG dataset, 

two, lithologic variation of samples, and three, spatially-restricted alteration effects. 

Box and whisker plots of the TG samples over the Isaiah Lake Stock area show that the 

anomalous chemistry is not related systematically to lithology (Figure 12). While Na20 anomalies occur 

mainly within mafic metavolcanic rocks, Ah~ and MgO anomalies occur within felsic intrusive rocks, 

felsic-intermediate metavolcanic rocks, mafic metavolcanic rocks and mafic-ultramafic intrusives rocks. 

For the TG anomaly to be due to alteration (which does not affect the other datasets), one would expect 

that the TG dataset to be isolated spatially. This is, in fact, the case for the Isaiah Lake Stock area shown 

on Figure 13. Although the TG samples are clustered in the local area, a few TG samples occur in close 

proximity to FA samples within mafic metavolcanic rocks in the northwest. Comparison of oxide values 

reveals Ah03 is approximately 13 wt.% for the FA sample and only 1-2 wt.% for the TG sample. 

ConverselyNa20 is 2-3 wt.% in FA and 9-10 wt.% in the TG sample. MgO and FeO values are likewise 

very different. A similar comparison within felsic intrusive rocks corroborates that the anomalous 

chemistry is consistent across lithology. This lack of consistency across lithology and datasets, and the 

unusual chemistry of the anomalous samples, suggests an alteration origin for the anomalous data is not 

plausible. Therefore, it is likely that the anomalous Isaiah Lake Stock area TG chemistry is due simply 
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to errors in the data. As a result, 76 samples from the TG dataset in this area were discarded. 
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The area in the lower comer ofNTS sheet 410/9 (area "B" on Figures 9, 10 and 11) is somewhat 

different in that the majority of samples are TG. This makes the assessment of the origin of the 

anomalous chemistry more difficult, as there are fewer samples from the other datasets with which to 

compare the TG samples. Samples occur within only two lithologies; mafic metavolcanic rocks and felsic 

intrusive rocks (Figure 14). The TG geochemical data within the felsic intrusive data were checked by 

comparing to two nearby KH samples (see areas "A" and "B" on Figure 14). This comparison showed 

that the TG and KH values were similar. Within the mafic metavolcanic rocks, TG samples often 

contained no FeO or Fe20 3• Samples with Fe203 < 5 wt. %, were characterized by other anomalous 

oxides, namely Ah03 < 5 wt.% and Na20 > 9 wt.%. All samples lacking Fe or with F~03 <5 (a total of 

113 samples) were eliminated. The remaining samples were compared with PT samples in close 

proximity and revealed excellent correlation. 
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Identification of systematic problems with the TG dataset in these two areas, discussed above, 

necessitates an evaluation of TG samples outside these areas. Using the same criteria discussed above 

(Fez03 < 5 wt.% and Ah03 < 5 wt.%), an additional98 TG samples were flagged as "bad", and 

eliminated from the dataset. In total, 287 ''bad data" samples were eliminated from the TG dataset by 

using these screening procedures. 

It is often helpful to compare data sets graphically by plotting adjacent histograms as shown in 

Figure 15. Re-plotted Na20, Al20 3, and MgO (Figure 15a, b, and c, respectively) sample values by 

dataset demonstrates that the anomalous TG dataset sub-population has been eliminated, and the TG 

dataset distribution is now similar to the other 5 datasets. Statistics for each dataset source population are 

tabulated in Table 5, for Ah~, Na20 and MgO. Standardized skewness and kurtosis values within the -2 

to 2 range indicate a normal distribution, and it can be seen from Table 5, that few populations are 

normally distributed, particularly for the oxides Al20 3 and MgO. 

Size Mean Std. Min. Max. Skewness Std. Kurtosis Std. 
dev. Skewness Kurtosis 

Ah03 
KH 153 14.06 3.62 1.0 24.76 -1.83 -8.40 4.36 9.97 
JA 135 12.32 4.52 1.32 20.83 -1.02 -4.83 -0.06 -0.14 
SF 1286 13.84 3.12 0.0 31.8 -1.76 -25.80 8.02 58.71 
PT 646 15.17 2.28 1.44 32.1 -0.13 -1.39 18.90 98.03 
TG 460 13.91 1.56 9.00 18.0 -0.39 -3.40 0.45 1.97 
FA 1012 13.42 2.57 0.00 23.0 -2.28 -29.62 52.22 52.22 

Na20 
KH 149 3.59 1.70 0.00 7.97 -0.44 -18.4 -0.44 -1.61 
JA 126 2.46 1.78 0.01 8.71 0.68 3.16 0.32 0.65 
SF 1274 2.88 1.72 0.00 10.6 0.43 6.24 -0.15 -1.29 
PT 642 3.01 1.51 0.01 8.71 0.45 4.67 0.06 0.36 
TG 451 2.92 1.73 1.00 18.00 2.13 18.50 12.86 55.75 
FA 1012 2.87 1.56 0.00 8.06 0.43 5.56 -0.08 -0.51 

MO 
KH 153 4.91 7.81 0.14 37.1 2.91 13.78 7.99 17.99 
JA 135 10.37 10.64 0.32 41.29 1.43 6.76 1.01 2.39 
SF 1286 4.31 4.99 0.00 40.2 3.65 53.39 18.01 131.62 
PT 646 4.56 4.29 0 41.00 4.33 44.90 29.44 152.75 
TG 430 4.33 2.77 1.00 14.00 0.77 6.55 0.50 2.11 
FA 1012 5.69 4.81 0 39.90 2.90 37.68 12.18 79.00 
Table 5: Summary of cleaned oxide database by input dataset source for Ah03, Na20 and MgO. 
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Box and whisker plots of each oxide by dataset are shown in Figure 16, and demonstrate that 

there is some statistical variation between dataset populations, as indicated by non-overlapping notches. 

This is not surprising however, given the variable spatial distribution and the resulting wide range of 

lithologies sampled by each data set. 

AI, 0, by dataset MgO by dataset Na, 0 by dataset 

19 
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15 
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Figure 16: Box and whisker plots showing Ah03, MgO, and Na20 populations by dataset (for all 
lithologies). Lack of overlap between notches indicates statistically distinct population (e.g., KH and PT 
inMgO). 

4.2.3 Lack of "total " oxide data 

Although some errors in the TG data have been eliminated, the TG dataset is still problematic 

given the lack of"total" oxide information, and the paucity of oxide analyses for Ti~. P20 5, K20 and 

MoO. Therefore, a comparison ofTG oxide analyses with analyses from other datasets via various 

lithologies was undertaken to assess the accuracy of the oxide measurements in the TG dataset. The 

results of this comparison are shown in Figure 17, which summarizes oxide concentrations in felsic-

intermediate metavolcanic rocks and in mafic metavolcanic rocks in two different sites ("A" and "B"- see 

Figure 17) for different datasets. In general, oxide values for TG correspond well with other, more 

complete samples from other datasets at these particular sites, and we infer that these data are acceptable 

for use in further analysis. However, it is not acceptable to use this data in any calculations or 

classifications that necessitate a complete oxide composition. 
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Figure 17: Comparison ofTG oxide concentrations in felsic to intermediate and mafic 
metavolcanic rocks, with nearby samples from other sources. 

4.2.4 Spatial control of oxide populations 

The variability of oxides by datasets and even within datasets is controlled in part by the 

sampling process with respect to lithology. The effects of this can been seen within "normal" oxide 

populations. For example, two felsic units (unit 1 and unit 3 shown on Figure 18) were selected for 

comparison on the basis of dense whole rock sampling (unit 1 > 120 samples, unit 2 > 50 samples). A 
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"point-in-polygon" 4 operation was undertaken using the GIS to identify the geochemical sample points 

that fell within each felsic lithology mentioned above. It is recognized that the mapped geology is a 

generalization of the diversity oflithology identified on the ground, thus our mapped felsic units may have 

interbedded iron-formation or mafic units. To ensure variability of oxides is a reflection of sampling, 

rather than lithologic variation, these samples were then categorized into volcanic rock types using the Al-

Fe+Ti-Mg cation classification (Jensen 1976) which is a popular scheme for establishing volcanic rock 

types from chemical analyses. Samples that were not classified as felsic (i.e. calc-alkaline rhyolites- CR) 

and tholeiitic rhyolites- TR) were eliminated as unreliable as their Al-(Fe+Ti)-Mg classification did not 

match the mapped lithology, in this case felsic volcanic rocks. Summary statistics for these samples were 

calculated, the results of which are shown in Table 6. Units 1 and 3 appear to be chemically distinct with 

Si02 and K20 higher, and all other oxides lower in unit I (Table 6). Standardized skewness and kurtosis 

values calculated for each unit, and each oxide, indicate all oxides are normally distributed in unit 3, with 

the exception ofP20 5 and MnO. Unit 1 oxides range from normally distributed (P20 5, FeO, Na20, Si02, 

MgO, Ti02 and CaO), to log-normally distributed (FezOJ, MnO), to strongly skewed (Ah03, K20). The 

assessment of the significance of the difference in means between the unit 1 and unit 3 oxide data, using 

the t-test, requires normal distributions, and no significance difference in the variances at the 95% 

confidence interval. Only Si02, FeO, Na20, Ti02, CaO and MgO populations can be compared on the 

basis of normal populations, and of these only Ti02 and CaO do not have a statistically significant 

difference in variance at the 95% confidence interval. The results from the t-test for these two oxides 

indicate both have a statistically significant difference in means at the 95% confidence level. In addition, 

unit 1 appears to be more chemically variable than unit 3, as shown by the typically larger range in oxide 

values. It must be noted however, that sampling (and by corollary, dataset origin) may be a control on 

felsic unit chemistry. Figure 18 shows Si02 samples, between 65 and 75 wt.%, by dataset origin. Note 

the concentration of SF samples within unit 1 and FA and TG samples within unit 3. Box and whisker 

4 "Point-in-polygon" operation refers to an intersection operation of the GIS in which the 
lithogeochemical point cover is overlain on the geological unit polygon map to identify the points which 
overlap with each polygon. The results of the intersection can then be extracted for each polygon. 
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plots of Si02 between 65 and 75 wt.% (Figure 19) reveal systematically lower Si02 content within FA and 

TG datasets overall. Thus felsic unit 3, dominated by FA and TG datasets, may be characterized by a 

lower Si02 content than unit 1 simply due to the dataset which dominates its sampling. 

Unit 1 Unit3 
#of samples min-max mean #of samples min-max mean 

Si02 184 63.5-81.0 71.99 56 61.6-70.9 65.55 
Ti02 182 0.04-0.52 0.27 28 0.23-0.5 0.33 
P20s 182 0.03-0.16 0.08 28 0.08-0.28 0.12 
Al203 184 11.8-20.3 14.54 56 12.3-18.1 15.02 
Na20 184 0.07-6.92 3.70 56 2.0-7.74 4.51 
CaO 184 0.08-6.43 1.99 56 1.0-6.0 2.67 
K20 182 0.11-8.01 2.34 52 0.43-3.8 1.7 
MgO 184 0.01-1.71 0.56 56 0.59-1.47 0.98 
MnO 182 0.0-0.3 0.06 28 0.0-0.19 0.05 
Fe203 174 0.29-7.26 2.16 31 0.90-3.0 2.65 
FeO 13 0.0-3.98 1.72 26 1.26-2.45 1.78 
Table 6: Summary of major oxides for unit 1 versus unit 3 felsic metavolcanic packages. 
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Figure 19: Box and whisker plots offelsic unit three for K20, Ah03, Si02, and 
Na20 concentrations, by dataset source. 
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A paucity of samples within unit I does not permit a rigorous statistical comparison between 

datasets, as FA has only 10 samples, and TG, 2, with the majority of samples coming from SF (172). 

Likewise, unit 3 contains samples from 3 different datasets, with FA comprising 25 and TG 28 samples 

while the KH dataset contains only 3 samples. Figure 19 shows box and whisker plots for several oxide 

analyses for unit 3. It can be seen that the range of values for Si{h, Ah~, and Na20 are similar between 

the two datasets FA and TG. However, there is a difference in K20 between TG and FA. A plot of unit 3 

samples by dataset (Figure 20) indicates that the central portion of the belt has been more selectively 

sampled in the FA dataset, which may explain the difference in K20 values. 

o FA dataset (25 samples) 

• TG dataset (28 samples) 

£::, KH dataset (3 samples) 

Figure 20: Spatial distribution of felsic samples by dataset origin, with felsic unit 3. 

4.3 Censored data 

An important consideration for industry is to minimize the amount of time and money chasing 

after false anomalies (i.e., anomalies not related to mineralization). It is always a difficult task for a 

geochemist to determine a threshold. If it is too low then there are too many anomalies. If it is too high, 

then potentially valuable ground may be missed. Thus a careful evaluation of the population distribution, 

and a clear understanding of the lithologies must be kept in mind when determining suitable thresholds. 

Censored data (i.e., geochemical analyses that fall below the detection limit of the particular technique 

used to analyze the data) can bias the computation of distribution parameters (i.e., mean, variance), and 

potentially affect the determination of preliminary thresholds. 

The problem of censored data has been studied by Chung (1985, 1988), and Sanford et al. (1993). 

Many laboratories have reported data that is less than the detection limit by recording the detection limit 
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value as a negative number (e.g. -5 ppm), or occasionally as less than values (e.g.< 5 ppm). A common 

method of handling this data is to replace it with a suitable value, affecting the computation of the 

distribution parameters (i.e., mean, variance) of individual geochemical data distributions. However, if 

the distribution is assumed to be normal, or can be transformed to be, then the replacement value of the 

censored data and parameters of the distribution (mean, variance) can be estimated from the portion of 

the distribution that is not censored. A better estimate of the mean and variance of the distribution can 

therefore be determined and ultimately, this assists in the identification of atypical (anomalous) values, 

particularly in multivariate applications (Grunsky 1995; Sanford et al. 1993). 

The combined dataset contains varying levels of censorship, identified by negative and zero 

values. Assignment of an arbitrary replacement value such as 3/4 of the detection limit is not practical 

given the uncertainty in the origin, method of collection and accuracy of the analytical procedures. 

Concerns about the accuracy of replacing censored values with simple fractions (i.e. 1/2 the detection 

limit) have also been raised (Sanford et al. 1993). Calculation of a more suitable replacement value, using 

the method of Sanford et al. ( 1993 ), allows a better estimate of population parameters to be made. 

However, given the large sample population, mixed lithologic sources and the generally low level of 

censoring, replacement values are unlikely to affect the final statistical and spatial geochemical 

interpretation. An example is shown in Figure 21 for Na20 data, in which a small, censored population 

has been replaced by 0. Visual comparison of Q-plots (cumulative density function plots) reveals little 

difference in the shape of the population and no difference in the shape at the high end of the distribution 

of values. Breakpoints in the distribution ofNa20 values are identical (see arrows, Figure 21), and 

anomalous high value preliminary thresholds are easily identified on both plots at 7.5 wt. %. Any break 

in the Q-plot at the censored data range is easily interpreted, and unlikely to mask any other breakpoint. 

Of more concern, is the stair-step geometry of the breakpoints caused by the restriction ofTG dataset 

values to integer values only. This may be obscuring more subtle breakpoints due to geochemical 

processes. Removal of the TG data andre-inspection of the Q-plots indicates the stair-step breakpoints 

are eliminated (Figure 22). Preliminary thresholds for anomalous data possibly related to mineralization 
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were the same for the censored and uncensored datasets at <1.1 wt.% Na20 (possible Na depletion?) and 

>7.5 wt.% Na20 (possible Na metasomatism?). Thus for subsequent analysis using these data, a 

replacement value of 0 will be used, or the data eliminated if a log-transformation was required to 

normalize the distribution. However, censored data can be considered important when the 

characterization of element variation with respect to geochemical processes is being sought. This is 

particularly important in multi-element geochemical studies where the presence of a censored value may 

exist for one element, while another element maybe "significant" from an exploration point ofview. 

Na. 0 (without censored data) 
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Figure 2l:Q-plots, and histograms showing distribution ofNa20 populations without censored data (left), 
and with censored data replaced by a value ofO (right). Arrows indicate apparent breaks in population 
caused by integer TG values of 1, 2, 3, 4, and 5. 
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4.4 Closure 

The problem of closure represents an additional type 2 problem that should be considered when 

analyzing the combined lithogeochemical dataset. Compositional data such as weight percentages 

reported for oxides sum to 100%. From a statistical point of view this standard form of representing 

geochemical analyses by a constant sum can result in statistical inconsistencies and spurious correlations. 

Basically, variables in a closed number system such as data expressed as percentages are not free to vary 

independently, as a change in the value of any one oxide by definition must affect the value of the rest in 

order for the total to remain at 100%. The problem of closure was initially noted by Pearson ( 1897), but 

has been largely ignored by the geoscience community. Chayes (1960, 1966, 1970) and Chayes and 

Kruskal (1966) attempted to deal with the problem with limited success for specific applications and only 

recently Aitchison ( 1986) has developed a method for dealing with the problem of closure of 

compositional data based on log-ratio transformations. Rollinson (1993) provides a detailed summary of 

the closure problem. 

The application of statistical procedures on closed data has a number of implications; one, false 

correlations may be induced between elements, and two, subpopulations (such as using Al203, MgO and 

FeO+ Ti02 to plot mafic metavolcanic variability on an AFM diagram) may not reflect chemical 

relationships within the complete dataset (Rollinson 1993). Meisch (1976) has suggested that the effects 

of closure are not as significant when both variables being compared occur in only minor amounts but that 

covariance and hence correlation coefficients may not reflect geochemical relationships in oxides 

occurring in major abundances. More recently, Madiesky and Stanley (1993) have used closed data 

successfully in exploration applications by applying Pearce element ratios (Pearce 1968). This approach 

can be used when a particular cation is known to be conserved in a particular magmatic fractionation 

sequence. However, such an approach cannot be currently applied to regional geochemical data since 

there is no one cation that is likely to be conserved. Multiple geochemical processes must be modeled 

effectively to interpret the data. This can be time consuming and difficult. 
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Aitchison ( 1986) overcomes the problem of closure by projecting the closed data to real number 

space using log-ratio transformations. This method involves dividing each major oxide element by a 

common divisor (i.e., Ti~ or P20 5) and then performing the logarithmic transformation on the resulting 

ratio value. Results can be presented in a covariance matrix in which each ratio is compared with every 

other ratio (see Table 2.5- Rollinson 1993). Problems with this method include the loss of one element 

from consideration (i.e., the oxide which is used for the common divisor), and the lack of spatial 

information this yields. Spatial information is lost because each sample undergoes a unique 

transformation depending on its original oxide values. For example, a continuous surface map ofMgO 

values may indicate an anomalously high area. However, with transformation, this cluster could be lost 

depending on the divisor used, and the variability in the value of the divisor amongst the clustered 

samples. 

4.5 Non-Normal Distributions 

Typically, many trace element distributions do not display normal distribution characteristics. 

Therefore, it is often necessary to apply transformations to the data to produce normal distributions. Prior 

to applying any type of transformation it is necessary to evaluate the nature of the distribution. In many 

cases, a long-tailed distribution that may have the appearance of a log-normal distribution, may in fact be 

a mixture of two or more distributions. In such cases, it is better to separate the populations. This can be 

done on the basis of ancillary information such as lithology or it can be done using a numerical approach 

(Miesch 1981; Stanley and Sinclair 1987). 

If populations cannot be distinguished from a non-normal distribution then a number of 

transformations are available in which the data can be "normalized". A commonly applied transformation 

is the logarithmic (monotonic) transformation which is particularly useful for positively skewed data, as it 

tends to homogenize variance (Miesch 1976) and enhance background trace element associations 

(Howarth and Earle 1979). This is often applied when estimates of means are required and to trace 

element data that are almost always log normally distributed (Miesch 1976). However, a number of 
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workers have suggested the log-transform may in fact not be better than non-transformed data (Link and 

Koch 1975; Miesch 1976; Howarth and Earle 1979), and that it may enhance negative skewness and 

reduce kurtosis, particularly for already negatively skewed data (Howarth and Earle 1979). An alternate 

approach is the use of the generalized Box-Cox power transform (Smith et al. 1984; Grunsky et al. 1992). 

The application of Box-Cox power transformations and the use oflog-ratios for compositional data have 

been studied by Barcelo et al. (1995) and Grunsky et al. (in prep). However, prior to applying any type of 

transformation, atypical values must be removed from the distribution. The use of robust statistical 

methods are best employed prior to transforming the data (c.£ Campbelll980; Garrett 1989a,b), to better 

define background and accentuate atypical samples. 

5.0 Summary and Conclusions 

A large lithogeochemical dataset comprising approximately 4500 sample points, after screening 

procedures, has been compiled from 5 separate lithogeochemical datasets using relational database 

software and GIS software tools. The data have been standardized with respect to missing values in that 

all "holes" in the data have been filled. 

No studies regarding analytical variability have been undertaken with this dataset, as each dataset 

was received long past the time of original collection and analysis. It is assumed in this study that quality 

control procedures were conducted by the proprietor of each individual dataset. 

Obvious data compatibility problems have been identified using a variety of comparison 

techniques. This screening process has resulted in the deletion of approximately 300 samples, principally 

from the Texas Gulf dataset. The dataset is incomplete in some respects as various oxide elements are 

missing from, once again, the Texas Gulf dataset. One might conclude the given the plethora of problems 

discovered with the Texas Gulf dataset, the entire dataset should be discarded. However, we have tried to 

identify the most obvious problems, and have attempted to normalize the dataset with respect to the other 

datasets. Therefore, we have left the remaining Texas Gulf data in the compiled dataset. However, the 
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user should be aware of the potential problems with this dataset, and treat the data accordingly, especially 

if rigorous statistical analysis of the data is to be attempted. 

Several methods for calculating replacement values for censored data exist, permitting the 

calculation of statistical parameters assuming that the data are normally distributed. This results in better 

estimates of correlation and covariance when multi-element data are evaluated. However, the effects of 

censored data are minimal on determining population parameters of a large dataset composed of variable 

lithologies, although the statistical effects are augmented as the size of the censored population increases. 

Detailed examination ofCDF-plots for the determination of anomalous thresholds minimizes the spatial 

effects of using censored data, and the possibility of the censored data obscuring important breaks in the 

population. 

Non-normally distributed data is often the result of mixtures of two or more populations. Prior to 

applying transformations to the data, the preferred approach is to separate the populations which aids an 

appropriate choice ofbreakpoint or geochemical threshold value, and thus the spatial distribution of 

anomalous areas. A comparison of maps and distributions for both the non-transformed and transformed 

data help distinguish different geochemical processes. 

We have attempted to illustrate the potential problems and pitfalls in compiling a large 

geochemical database derived from a number of disparate sources. The relational database and GIS 

software tools were integral to this exercise as they provided a method for quickly and efficiently 

assembling, visualizing and comparing the data, both statistically and spatially. When statistically 

manipulating geochemical data, the effects on the spatial distribution of the data should be closely 

monitored for it is the spatial patterns that result from data analysis which are the most important for 

exploration purposes. Therefore, a distinction between the statistical and spatial properties of 

geochemical dataset should always be considered when manipulating and analyzing the data. 

Finally, many problems involved with the compilation of a lithogeochemical dataset can be 

avoided with proper data collection, recording and documentation. All samples should be properly 

located, and detection limits recorded at the time of data archival. In addition, the lineage of the data, 
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which should include results of quality control analysis, can be archived within the GIS database for 

future reference. 
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Appendix A 

Many of the assumptions necessary to use a lithogeochemical database compiled from a variety of 

sources have been dealt with in the body of the paper under the appropriate sections and are not repeated 

here. This appendix represents a summary of assumptions that were necessarily a priori to the 

commencement of this research. 

1) Volatiles: 

Geochemical data compiled for this study came from 6 sources, with little supporting 

documentation. Volatiles are recorded variably as H20, H20+, H2o· or LOI. and it must be assumed that 

these are entered correctly i.e. that H20 represents total H20 etc. 

2) Missing values for certain oxides: 

In cases where oxide values are missing it is assumed that the remaining values have not been 

recalculated to 1 00%. The values that are recorded are treated as the original values. This was checked 

(see "Lack of total oxide data" section). 

3) Iron: 

Iron is also variably recorded in the component sources, between FeOT, Fe20 3 T, and FeO and 

Fe20 3• These must be adjusted in a consistent manner. 

4) Locations: 

It must be assumed that locations for each sample have been accurately determined and faithfully 

recorded in a common projection and datum. 

5) Sampling 

It must also be assumed that all samples represent surface chips rather than from drill-hole, and 

that some care has been to taken in the selection of representative sample from the least altered areas. 
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