

Ressources Naturelles Canada

Commission géologique du Canada

AGGREGATE TESTING OF MARINE SAND AND GRAVEL SAMPLES FROM OFFSHORE CAPE BRETON ISLAND

Submitted by:
Maritime Testing (1985) Limited
116-900 Windmill Road
Dartmouth, N.S.
B3B 1P7

Submitted to:
Atlantic Geoscience Centre
Bedford Institute of Oceanography
Dartmouth, N.S.
B2Y 4A2

NAO-1268

February, 1995

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale. OPEN FILE DOSSIER PUBLIC

3087
GEOLOGICAL SURVEY
COMMISSION GEOLOGIQUE
OTTAWA

February 6, 1995

NAO-1268

Atlantic Geoscience Centre Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, Nova Scotia B2Y 4A2

Attention:

Mr. Gordon B. J. Fader

Dear Mr. Fader,

RE:

AGGREGATE TESTING OF MARINE SAND AND GRAVEL SAMPLES FROM OFFSHORE CAPE BRETON ISLAND SSC FILE NO. HAL94-00782-(110) CONTRACT NO. 23420-4M195/01-HAL

On November 8, 1994 Maritime Testing (1985) Limited picked up fifteen marine sand and gravel samples at the Atlantic Geoscience Centre (AGC), Dartmouth, NS. These samples were obtained by the AGC from offshore Cape Breton and were to be evaluated for possible use as Portland Cement and Asphaltic Cement Aggregates. Fifteen Canadian Standards Association (CSA) tests and one British Standards (BS) test were to be conducted on these samples.

Because of the small mass and the gradation of these samples, some changes were made in the testing regime. Tests were scheduled in a specific order and material reused where possible in order to obtain the maximum amount of information from a limited amount of sample material. The minimum mass of test sample suggested by CSA in some of the tests was not obtainable. However, where our experience indicated testing a smaller sample could yield an accurate result, we carried out the test. In instances where a small sample size could give erroneous results we deleted the test and reported it as having insufficient sample to conduct that test.

The CSA test procedures were designed for relatively clean (less than $4\% < 80 \ \mu m$) concrete sand aggregate and concrete stone aggregate. The test samples from offshore Cape Breton consist of a mixture of gravel, sand, and silt. This made certain CSA tests inappropriate for these samples.

The soft, rounded sandstone would not make a good concrete aggregate because of its low strength, low density and high absorption rate.

The samples tested contain a relatively high amount of minus $80~\mu m$ diameter particles. This excess of fine material would decrease the strength of the concrete. The excess fines would have to be removed through a screening or washing procedure. This screening procedure would also have to separate the material into coarse and fine aggregate to meet CSA gradation specifications.

The presence of salt in the test samples would have to be addressed. Marine samples which contain chlorides can have detrimental effects on concrete. Chlorides can cause efflorescence, increase drying shrinkage, and alter time of set. It is not recommended to use aggregates with chlorides present in the production of steel reinforced concrete. The chlorides can increase the risk of corrosion of the steel reinforcement. The amount of salt present in this aggregate could be reduced by washing the material at the time of screening and processing.

SUITABILITY OF MATERIAL FOR USE AS ASPHALTIC CONCRETE AGGREGATE

The aggregate test results are compared to Nova Scotia Department of Transportation and Public Works Canada Specifications on the attached Table 2.

This table compares ranges of results with the predominantly granite samples in one group and predominantly sandstone samples in the other group.

If these were terrestrial samples we would recommend against the use of the sandstone samples due to high percentage lumps, high soundness losses, high absorptions, and poor petrographic values. The granite samples could have some potential, however there are a wide range of easily accessible terrestrial granite deposits available in Nova Scotia.

CSA test A23.2-6A, Relative density and absorption of fine aggregate and CSA test A23.2-11A, Surface moisture of fine aggregate could not be conducted because of the difficulty in determining the surface saturated dry state of the samples. These tests were developed for relatively clean sands, not for mixtures of gravel, sand, and silt. The test samples were received in a saturated condition and the moisture content was obtained for all samples and reported. The CSA test A23.2-12A, Relative density and absorption of coarse aggregate was conducted on all samples with sufficient mass.

CSA test A23.2-16A, Los Angeles Abrasion (LAR) of small size coarse aggregates and CSA test 23.2-17A, LAR of large size coarse aggregate require relatively large masses of aggregate to conduct testing. Substituting smaller amounts of aggregate could yield erroneous test results. Sample #16 was the only sample which had the required mass to run this test.

CSA test A23.2-4A, Low density granular material was modified as follows: Sucrose was used to create a liquid with a specific gravity of approximately 1.5 instead of a zinc chloride to create a liquid with a specific gravity of 2.0. This was because of the difficulty in acquiring zinc chloride.

CSA test A23.2-18A, Clay size particles in aggregate was conducted on all the samples. The test results have been reported in conjunction with CSA A23.2-2A, Sieve analysis of fine and coarse aggregate. As can be seen on the report forms there is an anomaly in regards to the percent of particles smaller than the 80 μ m diameter size. This is due to the presence of salt in the test samples which gave an artificially high hydrometer reading for these particles. This results in test results that show a slightly higher percent of minus 80 μ m diameter size particles than actually exist in the test samples.

SUITABILITY OF MATERIAL FOR USE AS PORTLAND CEMENT AGGREGATE

Attached is a table from CSA Standard A23.1-94, A23.2-94, Limits for Deleterious Substances and Physical Properties. (Table 1) This table lists properties for both coarse and fine concrete aggregate.

The samples from Offshore Cape Breton are either predominantly granite material or predominantly sandstone material.

The granite is rounded but durable. The rounded, smooth surface of the granite may cause a decrease in the bond strength between the aggregate and the paste in the hardened concrete. But a concrete mix using rounded aggregate usually requires less water to obtain a workable mix. This can allow for the use of a lower water to cement ratio.

We trust the above is self explanatory, however, if you have any further questions please feel free to contact this office at your convenience.

Sincerely,

MARITIME TESTING (1985) LIMITED

Kevin Bearnes, C.E.T. Laboratory Supervisor

Table 1
Limits for Deleterious Substances* and Physical Properties

	Maximum pe	ercentage by mass of	total sample
		Coarse aggregate	
Property	Fine aggregate	Exposure classifications† F-1, C-1, C-2,	Other exposure conditions
Standard Requirements Clay lumps (see Note 1)	1.0	0.25	0.5
Low-density granular materials (see Note 2)	0.5	0.5	1.0
Material finer than 80 μm	3.0§	1.0‡	1.0‡
MgSO₄ soundness loss (see Note 3)	16	12	18
Abrasion loss**	N/A	50	50
Alternative Requirements (see Note 3) Micro-Deval test (see Note 4))		
, ,	20		
Unconfined freeze-thaw test (see Note 5)	_	6	10

^{*}Limits for deleterious substances not listed in the Table, such as shalestone, siltstone, sandstone, or argillaceous limestone, shall be specified by the Owner to encompass deleterious materials known to be present in a particular region. In the absence of such information aggregate shall be accepted or rejected in accordance with Clause 5.9.

Notes:

- (1) Clay lumps are defined as fine-grained, consolidated, sedimentary materials of a hydrous aluminosilicate nature.
- (2) A liquid with a relative density of 2.0 is generally used to separate particles classified as coal or lignite. Liquids with relative densities higher or lower than 2.0 may be required to identify other deleterious low-density materials.
- (3) The MgSO₄ soundness loss requirements can be waived provided the material meets the Alternative Requirements detailed in Table 3.
- (4) CSA Test Method A23.2-23A. This test for fine aggregate is rapid, has excellent precision, and has a significant correlation with the more complex and variable MgSO₄ soundness test. For more information see "Micro-Deval Test for Evaluating the Quality of Fine Aggregate for Concrete and Asphalt", C.A. Rogers, M. Bailey, and B. Price, Transportation Research Board, Record No. 1301, pp. 68–76, 1991.

(Continued)

[†]See Table 7.

[‡]In the case of crushed aggregate, if material finer than the 80 µm sieve consists of the dust of fracture, essentially free from clay or shale, the maximum shall be 1.5%.

[§]This limit shall be 5% if the clay size material (finer than 2 μ m) does not exceed 1% of the total fine aggregate sample. The amount of material of clay size shall be determined by performing a hydrometer analysis as per ASTM Standard D422 on a sample washed through an 80 μ m sieve.

^{**}The abrasion loss shall not be greater than 35% when the aggregate is used in concrete paving or for other concrete surfaces subjected to significant wear. This does not refer to air-cooled iron blast-furnace slag coarse aggregate.

TABLE 2: Comparison of Test Results to Typical Asphalt Aggregate Specifications

Test Method and Discription	Test R		N S DOTC	PWC	Comments
	Granite	Sandstone	Spec	AK Spec	
A 23.2 - 2A Sieve Analysis of Fine and Coarse Aggregate		mounts of and Clay	Various	Various	Highly variable gradations
A 23.2 - 3A Clay Lumps in Natural Aggregate	Low	0 - 90 %	"Free from clay"		Too much clay in sandstone samples
A 23.2 - 4A Low Density Material in Aggregate	0	0	"Free from deleterious Material"		O. K.
A 23.3 - 5A Amount of Material finer than 80 µm in Aggregate	Vari	able	Typically 8 % Max	Typically 8%	Samples variable, many require washing
A 23.2 - 7A Organic Impurities in sands for Concrete	Typica	lly > 3	Not Appl	icable	
A 23.2 - 9A Magnesium Sulphate Soundness	Typically Less Than 2%	Some samples 18 - 27 %	Max 10 or 15 %	Max 12 or 16 %	Sandstone samples failed Spec
A 23.2 - 10A Density of Aggregate					
A 23.2 - 12A Relative Density and Absorption of Coarse Aggregate	1 - 1.6	2 - 4	Max 1.75 %		Granitic aggregates O.K. Sandstone Failed
A 23.2 - 13A Flat and Elongated particles in Coarse Aggregate	Predom rounde subro	ed and	B S 812 Max 45 %	"Free from flat elongated"	
A23.2 - 15A Petrographic Examination of Coarse Aggregate	223 323 121,119 198 121,136 261,241		135 -200 Depending on traffic		Granitic Samples could be be O.K. Sandstones too soft
A 23.2 - 16A Los Angeles Abrasion Small Aggregate (< 40 mm)	22		35% Maximum	25% Maximum	

TABLE OF CONTENTS

Covering I	ætter
------------	-------

Table #1

Table #2

Appendix A - Test Reports

Test	Description	Page
A23.2 - 2A	Sieve Analysis for fine and coarse aggregate	1
A23.2 - 5a	Amount <80 microns	1
A23.2 - 18A	Clay size particles in aggregate	1
A23.2 - 3A	Clay Lumps	. 16
A23.2 - 4A	Low-density granular material (modified)	. 31
A23.2 - 7A	Organic impurities in fine aggregate	. 46
A23.2 - 9A	Soundness of aggregate by MgSO ₄	. 47
A23.2 - 10A	Density of aggregate	. 62
A23.2 - 12A	Relative density and absorption of coarse aggregate	. 77
A23.2 - 13A	Flat and elongated particles in coarse aggregate	. 78
A23.2 - 15A	Petrographic examination (modified)	. 87
A23.2 - 17A	LAR of large size coarse aggregate	. 96
BS882: 1992	Shell content	. 97
	Moisture content	. 98

APPENDIX A TEST RESULTS

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS - CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

DATE:

19 JANUARY 95

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94–131 J.L. HART P.O.#23420–4–M195/01–HAL

SOURCE:

STN #1

DEPTH:

N/A

SAMPLE	ΓΥΡΕ:	DRE	DGED SAI	MPLE		ATE	TESTED:	16 JANUARY 95							
SIEVE	%														
	PASS			.002 m			0.080) mm				5.0 r			l
(MM)		100 _f	CLAY	, <u> </u>	S	ILT			<u>S.</u>	AND	 1		GRA	VEL	
112	100.0														
80	100.0	90													ШІ
56	79.0														
40	48.0	80													
28	39.0	80													
20	37.0	ا ا												:	
14	32.0	70													
10	29.0														
5.0	23.0	60						 	 						 /
2.5	21.0														
1.25	20.0	50	· · · · · · · · · · · · · · · · · · ·												<u>∦</u> - ∣
0.63	18.0													/	T
0.315	15.0	40							ļ						HI
0.160	7.0														
0.080	3.2	30				-									$\sqcup I$
0.0359 0.0234	5.2														
0.0234	3.8 2.8	20										B			
0.0137	2.6	20													
0.0097	1.8														
0.0089	1.0	10							1						
0.0034	0.5														
0.0014	0.5	0.0	0002 0.0	∟ <u>∎</u> 001	0.004	0.01 0.	.02	0.1).2 0	.4 1	2		1	0 4	10
			V.0	· • =									-	-	50
	l	l				PA	RTICL	E SIZ	ZE (1	mm)					Ĭ

COMMENTS:

The irregularity in gradation below 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS — CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

DATE: **19 JANUARY 95**

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94–131 J.L. HART P.O.#23420–4–M195/01–HAL

SOURCE:

STN #4

DEPTH:

N/A

CAMBIE				ADI E			4.0	16 JANUARY 95							
		DKE	DGED SAM	VIPLE	<u> </u>	DATE TESTED: 16 JANUA						95			
SIEVE	%														
	PASS			.002 mi			0.08	0 mm				5.0 r			
(MM)		100	CLAY			SILT			S.	AND			GRA	<u> </u>	π
112	100.0				}										'
80	100.0	90							_		ļi				44
56	100.0														
40	100.0									_					
28	94.0	80								-					
20	90.0									/					
14	87.0	70													
10	86.0			·					/						
5.0	85.0	60			-				-						+
2.5	84.0								/						1
1.25	82.0	50							1/-	<u> </u>					4-4
0.63	78.0														
0.315	59.0	40								`				*****	Ш
0.160	18.0	40							/						
0.080	14.1								1						11
0.0371	16.6	30							1						
0.0238	12.4								/						
0.0138	9.9	20													
0.0099	7.9														
0.0070	7.7	10					- B	_			-				
0.0034	4.1														
0.0014	2.1									<u></u>					
			0.0	01 (0.004	0.01 0.0	02	0.1	0.2 0	.4	1 2	2	10)	40
						PARTICLE SIZE (mm)						50			

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS — CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

FILE:

NAO-1268

19 JANUARY 95 DATE:

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94–131 J.L. HART P.O.#23420–4–M195/01–HAL

SOURCE:

STN #5

DEPTH:

N/A

SAMPLE	TYPE:	DRE	DGED SAM	PLE	DATE	TESTED:		16 JANUARY 95					
SIEVE	%												
SIZE	PASS			002 mm		0.080	mm C			5.0 r			
(MM)		100	CLAY		SILT			SAND			GRA	VEL	
112	100.0												1/1
80	100.0	90											И
56	100.0												
40	89.0											M-8	
28	83.0	80										pa	
20	83.0											/	
14	77.0	70										<u> </u>	П
10	69.0												
5.0	55.0	60											H
2.5	47.0		u.pu.										
1.25	44.0	50								-/			\vdash
0.63	41.0		:							_			
0.315	35.0	40											Н
0.160	17.0												
0.080	11.4	30											Ш
0.0360	12.4	30						/					
0.0231	10.8						1 /	'					
0.0135	8.5	1 1											\Box
0.0097	6.5	(1				W							
0.0069	5.3	10		-									Н
0.0034	3.1												
0.0014	2.3	1 0 -				<u> </u>							\Box
		0.0	0.002	0.004	0.01 0	.02	0.1 0.3	2 0.4	1 2	2	10	0 4	10
					PA	RTICL	E SIZ	SIZE (mm)					

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS - CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

19 JANUARY 95 DATE:

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #8

DEPTH:

N/A

		DRE	DGED SAN	MPLE	D	ATE	rested:	16 JANUARY 95							
SIEVE	%														
	PASS			.002 mr			0.080	mm				5.0 r		* - 1 - 1 *	
(MM)		100 _F	CLAY		$\frac{s}{1}$	ILT		Т	S.	AND	[GRA	VEL	\Box
112	100.0														
80	100.0	90				-									+
56	59.0														
40	48.0	80 -													Ш
28	42.0	80			į										
20	39.0														
14	37.0	70													
10	35.0														
5.0	33.0	60													\prod
2.5	31.0														/
1.25	29.0	50			-				<u> </u>		 				
0.63	27.0														1
0.315	22.0	40													+
0.160	8.0							İ							
0.080	5.9	30				1 1			ļ			_		-,	4-1
0.0367	6.8														
0.0234	6.0	20													
0.0137	4.5	20							17						
0.0098	3.8								X						
0.0070	2.9	10													
0.0034	2.0			_ __ _				'							
0.0014	1.1	0.0	002 0.0	001 0	0.004 0	0.01 0.	I 02	0.1	0.2 0	.4	1 :		1	0	40
			0.0	• -	• • • •										50
	I	J	PARTICLE SIZE (mm)												

COMMENTS:

The irregularity in gradation below the 80 um practice size is due to salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS - CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

DATE:

19 JANUARY 95

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #9

DEPTH:

N/A

16 IANIIADV OF

SAMPLE :	TYPE:	DRE	DGED SAI	MPLE	D.	ATE	TESTED:		16	JANU	ARY	95			
SIEVE	%														
ľ	PASS			.002 m			0.080) mm				5.0 r			
(MM)		100	CLAY		s:	ILT		- T	S.	AND			GRA	.VEL	
112	100.0									:					1/1
80	100.0	90													141
56	100.0														$\parallel \parallel \parallel \parallel \parallel$
40	82.0	80													
28	79.0	00													
20	72.0													 	
14	67.0	70													
10	64.0														
5.0	62.0	60													+-
2.5	60.0										ľ				
1.25	58.0	50						-							+
0.63	52.0														
0.315	39.0	40													
0.160	11.0								[
0.080	5.7	30													441
0.0378	8.2								/						
0.0242 0.0140	6.0 5.4	20							/						÷
0.0140	4.0	20							1						
0.0100	3.4	4.0													
0.0070	1.9	10													\Box
0.0034	1.5									_					
0.0014	1.5	0.0	0002 0.0	01 (D.004 0.	01 0.	02	0.1	0.2 0	.4 7	L 2		1	0	40
			***		•						_		_	-	50
	L	J				PA	RTICLI	E SIZ	ĽE (:	mm)					

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS - CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

DATE: **19 JANUARY 95**

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #12

DEPTH:

N/A

SAMPLE TYPE: DREDGED SAMPLE

DATE TESTED:

16 JANIJARY 95

YPE:	REDGED SAMPLE DATE TESTED: 16 JANUARY 95
%	
PASS	0.002 mm 0.080 mm 5.0 mm
	CLAY SILT SAND GRAVEL
100.0	
£	`
1	
1	
1	
l .	
1	
1	
1	
1	
4	
1	0 -
1	
l .	
i .	
1.8	0.0002 0.001 0.004 0.01 0.02 0.1 0.2 0.4 1 2 10 40
	PARTICLE SIZE (mm)
	% PASS 100.0 100.0 100.0 100.0 100.0 99.0 98.0 698.0 97.0 95.0 423.0 4.5 4.1 3.4 2.3 4.1 3.4 2.3 1.8 (6.5)

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS - CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE: DATE: NAO-1268

19 JANUARY 95

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN # 13

DEPTH:

N/A

DEDGED SAMPLE

DATE TESTED:

16 IANIIIARV 1995

SAMPLET		DRE	DGED SAMI	PLE	D/	ATE T	ESTED:	16 JANUARY 1995							
SIEVE	%														
SIZE	PASS)02 mm			0.080) mm				5.0 n			
(MM)		100 _F	CLAY		SI	LT			SA	AND			GRA	<u> </u>	
112	100.0														/
80	100.0	90													Ш
56	100.0	30								3					
40	84.0														
28	76.0	80													
20	76.0						İ			ļ		,			
14	62.0	70													
10	53.0														
5.0	30.0	60												/	Н
2.5	19.0													(
1.25	15.0	50				 							-/		Н
0.63	13.0														
0.315	11.0	40				-							$-\!\!\!/-\!$		Н
0.160	7.0												/		
0.080	4.5	30											/		Ш
0.0364	4.5	~												; !	
0.0233	3.9														
0.0136	3.1	20									/				П
0.0097	2.7													ı	
0.0069	2.1	10													\Box
0.0033	1.3														
0.0014	0.7	0 1	2000	1 00	^4			01 0	0 0	4 1	L 2	l	1.	0 /	10
		0.0	0.002	1 0.0	104 0.	01 0.0	JZ	0.1 0.	.2 0	.4 1		د	1	U 4	
]				PA	RTICL	E SIZ	Œ (1	mm)					50
I .									`	,					

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS — CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

DATE:

19 JANUARY 95

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94–131 J.L. HART P.O.#23420–4–M195/01–HAL

SOURCE:

STN #16

DEPTH:

N/A

DATE TESTED:

16 IANIIADV OF

		DRE	DGED SAMP	<u>LE</u>	DA	<u>TE T</u>	ESTED:		<u> 16</u>	JANU	<u> 4RY</u>	<u>95 </u>	····		
SIEVE	%														ľ
	PASS			02 mm			0.080	mm	~ -			5.0 n			
(MM)		100	CLAY		SI	$\frac{\text{LT}}{}$			SA	AND	— Т		GRA	AET _	\top
112	100.0														
80	100.0	90						_							44
56	100.0	~											, ,	ſ	
40	100.0	80											/		
28	100.0												_ /		
20	96.0												_ /]		
14	92.0	1 1						1							\prod
10	87.0	1											/		
5.0	54.0												1		+-1
2.5	13.0												, I		
1.25	8.0	, ~~	 			\longrightarrow		-							+
0.63	8.0	1 1										1			
0.315	7.0	1 40 5				\rightarrow						/	<u> </u>		\perp
0.160	5.0											/1			
0.080	3.3					\perp						$-\!$			$\perp \downarrow$
0.0367	1														
0.0235	1														
0.0137	1							-				1			\top
0.0098												<u> </u>			
0.0069	3	1 1				+		-							+
0.0034		1 1			1	B00				_	_				
0.0014	0.6	1 0 7		<u></u>						لنـــــــــــــــــــــــــــــــــــــ		l			4
		0.0	0.001	0.00	0.0	0.0)2	0.1 0.	.2 0.	4 1	. 2	•	10	3	40
	<u></u>	_				PAJ	RTICLE	E SIZ	E (1	nm)					50

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS — CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE: DATE: NAO-1268 **19 JANUARY 95**

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #17

DEPTH:

N/A

SAMPLE 7	TYPE:	DRE	DGED SA	MPLE	D	ATE:	TESTED:		16 JAN	<u>IUARY</u>	95			
SIEVE	%													l
SIZE	PASS			.002 m			0.080) mm			5.0 r			
(MM)	ĺ	100	CLAY		S:	LLT			SAND		-	GRA'	VEL	
112	100.0													
80	100.0	90												 ┃
56	100.0													
40	100.0	00												
28	100.0	80												
20	100.0													
14	100.0	70												\Box
10	100.0													
5.0	100.0	60							 		 			╁═╢
2.5	100.0								 					
1.25	100.0	50												+
0.63	100.0													
0.315	98.0	40						+						+
0.160	29.0							1 /						1
0.080	3	30						\perp						↓ ↓]
0.0392	3.6							/						
0.0248	3.6													
0.0143	3.6	20						1/						
0.0101	3.6							V						
0.0071	3.6	10		 				1						
0.0034	3.1						···•	4						-
0.0014	1.2	0	2000			<u> </u>	^0		1 1	<u> </u>	2			
		0.0	0002 0.0	001	0.004 0	.01 0.	.02	0.1	0.2 0.4	1	2	10	,	40
		_				PA	RTICL	E SIZ	ZE (mm)				50

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS — CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2 0

FILE: DATE:

CLIENT PO:

NAO-1268

19 JANUARY 95

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #20

DEPTH:

N/A

DATE TESTED

10 IANULADY OF

SAMPLE -	TYPE:	DRE	DGED SAI	MPLE	D,	ATE	<u> </u>		16	JANU	<u>ARY</u>	95			
SIEVE	%														
i .	PASS			.002 mr			0.080) mm				5.0 r			
(MM)		100	CLAY		s.	LLT		1	S.	AND			GRA	<u>∧₽₽</u>	T_{λ}
112	100.0														I
80	100.0	90													4
56	100.0													y - y	
40	92.0	80													Ш
28	86.0	00												. 🏓 .	.
20	86.0	70													
14	78.0	70												i	
10	69.0														
5.0	55.0	60			<u> </u>								/		\Box
2.5	46.0													ı	
1.25	39.0	50			-										+
0.63	34.0													ı	
0.315	21.0	40				 		 	-						
0.160 0.080	13.0													ı	
0.0370	8.7	30							-	-					+
0.0370	7.3								/	/				ı	
0.0237	5.4	20													\perp
0.0098	5.1													ı	
0.0069	4.6	10													Ш
0.0034	2.9	1													
0.0014	1.7	1				Ī , I				,					
0.0011	'''	0.0	0002 0.0	001 0	.004 0.	.01 0.	02	0.1	0.2 0	.4 1	. 2	2	1	0	40
								E OT	7 17 /						50
	<u> </u>	_				PΑ	RTICL	F 21	ZE (m m)					

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS - CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

19 JANUARY 95 DATE:

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #21

DEPTH:

N/A

DATE TESTED

16 IANILIADY 05

SAMPLE		DRE	DGED SAN	MPLE	D	ATE.	TESTED:		16	JANU	ARY	95			
SIEVE	%														
4	PASS			.002 mr		m	0.08) m		* ***		5.0 r	nm GRA	t/ET	
(MM)		100	CLAY		S.	ILT		$\neg \vdash$	<u> </u>	AND	ļ		AND	V ET	$\neg \neg$
112	100.0													_ /	
80	100.0	90				ļ		-							
56	100.0								İ					,	
40	100.0	80													44
28	100.0	00											اِ	[
20	98.0													1	
14	86.0	70													
10	74.0														
5.0	61.0	60				 									
2.5	51.0														
1.25	44.0	50				 									+
0.63	38.0														
0.315	24.0	40		<u> </u>		-									+
0.160	10.0					ĺ									
0.080	6	30								/					4-1
0.0366	7.2									1					
0.0234	6.0	1													
0.0135	5.4	20													
0.0097	4.3								Å						
0.0068	3.9	10													
0.0033	2.4			_											
0.0014	1.4	0 0	0000		004 0	<u> </u>	02	0.1	0.2).4	1 :	 2	1	.0	40
		0.0	0.002	101 0	.004 0	0.01 0	.02	V.1	0.2	7.4		۷	1	v	50
]				PA	RTICL	ES	SIZE (mm)					50

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS — CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

DATE:

19 JANUARY 95

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #24

DEPTH:

N/A

		DRE	DGED SAN	1PLE	D	ATE:	TESTED:			16	JANU	<u>ARY</u>	95			
SIEVE	%															
	PASS			.002 m			0.080) n	nm	~			5.0 r		T TIPT	
(MM)		100	CLAY		$\frac{s}{1}$	ILT		Т		<u>S.</u>	AND			GRA	.VEL	
112	100.0															<u> </u>
80	100.0	90						\perp								_
56	100.0															
40	100.0	80 -														
28	95.0				1								į			
20	95.0	70			İ											
14	94.0	70														
10	93.0									1			ľ			
5.0	93.0	60														
2.5	92.0									ĺ						
1.25	92.0	50				 		\dashv								
0.63	91.0								\							
0.315 0.160	88.0 16.0	40 =						\dashv								+
0.180	5.4								1							
0.0377	6.8	30						\dashv					-			\dashv
0.0377	5.6		ı						}							
0.0233	5.0	20														_
0.0098	4.1								<u> </u>							
0.0069	3.4	10						Ц,					ļ		ļ	
0.0034	1.8	*				1 10										
0.0014	1.8															
		0.0	002 0.0	01	0.004 (0.01 0	.02	0.	1 0.2	2 0	.4	1	2	1	.0	40
						PA	RTICL	E	SIZ	Ε(mm)					50
1										'	,					

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS — CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

DATE: **19 JANUARY 95**

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART

P.O.#23420-4-M195/01-HAL

SOURCE:

STN #25

DEPTH:

N/A

SAMPLE TYPE: DREDGED SAMPLE

DATE TESTED:

16 JANUARY 95

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS - CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE: DATE: NAO-1268

19 JANUARY 95

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #28

DEPTH:

SAMPLE	YPE:	DREDGE	D SAMPLE	<u> </u>	DATE	TESTED:		16 J	ANUA	RY 95			
SIEVE	%												
	PASS		0.002	mm	0 T T III	0.080) mm	SAI	TD.	5.0	mm L GRA	1757 .	
(MM)		100	CLAY		SILT	T	1	SAI	ND		GRA	Viii	$\neg \neg $
112	100.0												
80	100.0	90						-					
56	100.0				1			9					
40	100.0	80									<u> </u>		_ _
28	100.0	80						/					
20	100.0	70											
14	100.0	70						/					
10	100.0						/	{					
5.0	100.0	60					1 /						
2.5	99.0						#						
1.25	99.0	50					+/-				1		11
0.63	97.0												
0.315	86.0	40											+
0.160	54.0						1						
0.080	24.4	30					А	-			1	<u> </u>	
0.0355	24.3						<u>/</u>]						
0.0227	21.9						•						
0.0133	17.0	20											
0.0095	13.4												
0.0068	10.0	10											
0.0033	5.3 3.6	1 1	=						.				
0.0014	3.6	0.0002	0.001	0.004	0.01	0.02	0.1	0.2 0.4	1	2	1	10	40
		0.0002	0.001	0.004						_	_		50
	<u> </u>	j			PA	ARTICL	E SIZ	ĽE (m	ım)				

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

GRAIN SIZE ANALYSIS - CSA CERTIFIED LAB

TO:

ATLANTIC GEOSCIENCE CENTRE/BIO

DARTMOUTH, NOVA SCOTIA

B2Y 4A2

0

FILE:

NAO-1268

19 JANUARY 95 DATE:

CLIENT PO:

ATTENTION:

MR. GORDON FADER

PROJECT:

94-131 J.L. HART P.O.#23420-4-M195/01-HAL

SOURCE:

STN #29

DEPTH:

N/A

CAMBLET		שמח	DGED SAMPL	F	DATE	rested:		16	JANU	ARY	95			
		חחב	DGED SAMEL	<u> </u>	DAIL	LOILD.		10	07 (1 (0)	,				
SIEVE	%		0.000) mm		0.080) mm				5.0 r	nm		
8	PASS		CLAY	2 mm	SILT	0.000	, ,,,,,,,	SA	.ND		J.U I		VEL	
(MM)	1000	100	CIMI											Λ
112	100.0									Į				F
80	100.0	90		 			_					***		
56	100.0													
40	100.0	80		<u> </u>										
28	94.0		1											
20	61.0	70												_ _
14	56.0	"[-						
10	50.0													
5.0	48.0	60		1										
2.5	47.0							ĺ						
1.25	46.0	50		 	-								¥	
0.63	42.0													
0.315	27.0	40					-							
0.160	10.0								/					
0.080	5.3	30						A					<u> </u>	_
0.0366	7.4)						
0.0234	6.1													
0.0136	4.8	20						/						
0.0097	3.8													
0.0069	3.2			1										
0.0034	1.6													
0.0018	1.1	0 0				^^			, .		L	l	1	40
		0.0	0.001	0.004	0.01 0.	02	0.1 0.	2 0.	4 .	1 2	2		10	
	<u> </u>]	PARTICLE SIZE (mm)											
			ran icle size (mm)											

COMMENTS:

The irregularity in gradation below the 80 um particle size is due to the salt present in the sample.

Client Atantic Geoscience Center (B.I.O.)	Job # NAO-1268
Sample #1	Date
COARSE AGGI	REGATE
M, Mass of Sample (g)	=
R, Mass After Clay Removed (g)	
M - R = L = Clay Lumps M%	=
FINE AGGREGATE	100g - 1.25mm
M, Mass of Sample (g)	=
R, Mass After Clay Removed (g)	
M - R = L = Clay Lumps M%	
COMMENTS: Insufficient Sample T	o Conduct Test

CLAY LUMPS

CSA A23.2 - 3A

CDA AZ	23.2 - 3A	
Client Atlantic Geoscience Center	Job # NAO-1268	
(B.I.O.)	315-34 31	
Sample #4	Date	
COARSE AG	GREGATE	
M, Mass of Sample (g)	= 313.9	
R, Mass After Clay Removed (g)	= 294.9	
M - R = L = Clay Lumps	=	
M%	6.1%	

FINE AGGREGATE	100g - 1.2	5mm
M, Mass of Sample (g)	lend U-0	126.1
R, Mass After Clay Removed (g)	=	38.4
M - R = L = Clay Lumps M%	=	69.5%

COMMENTS:		
		_

CLAY LUMPS

CSA A23.2 - 3A

<pre>lient Atlantic Geoscience Center (B.I.O.)</pre>						
	Date Jan.2	26/95				
GREGATE						
	1656.9	······································				
	1632.4					
=	1.5%					
	=	GREGATE = 1656.9 = 1632.4 =				

FINE AGGREGATE	100g - 1.	25mm
M, Mass of Sample (g)		129.6
R, Mass After Clay Removed (g)		109.7
M - R = L = Clay Lumps	=	
М%	 	15.4%

COMMENTS:		

CLAY LUMPS

	23.2 - 3A		
Client Atlantic Geoscience Center (B.I.O.)		Job #	NAO-1268
Sample #8		Date	Jan.26/95
COARSE AG	GREGATE		
M, Mass of Sample (g)	gamen and the second	1277.6	
R, Mass After Clay Removed (g)		1274.4	*1-1
M - R = L = Clay Lumps M%	=	0.3%	
			

FINE AGGREGATE	100g - 1.2	25mm
M, Mass of Sample (g)		115.3
R, Mass After Clay Removed (g)		73.1
M - R = L = Clay Lumps		
M%		36.6%

COMMENTS:	

CLAY LUMPS

Job # NAO-1268 Date Jan.26/95 403.5 402.8
403.5
402.8
402.8
0.1%
99.9
81.9
18.0%

Client Atlantic Geoscience Center (B.I.O.)		Job #	NAO-1268
Sample # 12		Date	Jan.26/95
COARSE AGG	REGATE		
M, Mass of Sample (g)	=		
R, Mass After Clay Removed (g)	=		
M - R = L = Clay Lumps M%	=		
FINE AGGREGATE	100g - 1.25	 mm	
M, Mass of Sample (g)	=		
R, Mass After Clay Removed (g)			
M - R = L = Clay Lumps M%	=		
COMMENTS: Insufficient Sample To (Conduct Toot		
COMMENTS: Insufficient Sample To (Conduct lest		

CLAY LUMPS

		A23.2 - 3A		
Client	Atlantic Geoscience Center (B.I.O.)		Job #	NAO-1268
Sample	9 #13		Date	Jan.26/95
	COARSE AC	GREGATE		
M, Ma	ass of Sample (g)	= 19	36.3	

COARSE AGGREGATE					
M, Mass of Sample (g)	=	1936.3			
R, Mass After Clay Removed (g)	=	1936.3			
M - R = L = Clay Lumps M%	=	0 %			

FINE AGGREGATE	100g - 1.	25mm
M, Mass of Sample (g)	=	127.4
R, Mass After Clay Removed (g)	=	126.5
M - R = L = Clay Lumps M%	=	0.7%

COMMENTS:			
	···	 	 ······

Client Atlantic Geoscience Center (B.I.O.)		Job # NAO-1268			
Sample #		Date			
COARSE AGGREGATE					
M, Mass of Sample (g)	=	904.7			
R, Mass After Clay Removed (g)	=	903.3			
M - R = L = Clay Lumps	=				
M%		0.2%			
FINE AGGREGATE	100g - 1.	.25mm			
M, Mass of Sample (g)	=	136.2			
R, Mass After Clay Removed (g)					
	=	135.1			
M - R = L = Clay Lumps	=	135.1			
M - R = L = Clay Lumps M%		0.8%			

Client Atlantic Geoscience Center (B.I.O.)	Job #NAO-1268
Sample #17	Date
COARSE AGGR	REGATE
M, Mass of Sample (g)	=
R, Mass After Clay Removed (g)	=
M - R = L = Clay Lumps M%	=
FINE AGGREGATE	100g - 1.25mm
M, Mass of Sample (g)	=
R, Mass After Clay Removed (g)	=
M - R = L = Clay Lumps M%	· =
COMMENTS: Insufficient Sample To C	onduct Test

Client Atlantic Geoscience Center (B.I.O.)		Job # <u>NAO-1268</u>
Sample #		Date Jan. 26/95
COARSE AG	GREGATE	
M, Mass of Sample (g)	=	2047.9
R, Mass After Clay Removed (g)	=	2045.8
M - R = L = Clay Lumps M%	=	0.1%
FINE AGGREGATE	100g - 1	.25mm
M, Mass of Sample (g)	=	110.7
R, Mass After Clay Removed (g)	=	108.0
R, Mass After Clay Removed (g) M - R = L = Clay Lumps M%	=	2.4%
M - R = L = Clay Lumps		
M - R = L = Clay Lumps		
M - R = L = Clay Lumps M%		

CLAY LUMPS

	3.2 - 3A		
Client Atlantic Geoscience Center		Job #	NAO-1268
(B.I.O.)			
Sample #21		Date	Jan.26/95
COARSE AG	GREGATE		
M, Mass of Sample (g)	=	994.8	
R, Mass After Clay Removed (g)	=	994.8	
M - R = L = Clay Lumps	=		
M%		0 %	

FINE AGGREGATE	100g - 1	1.25mm	
M, Mass of Sample (g)	=	114.4	
R, Mass After Clay Removed (g)	=	112.9	
M - R = L = Clay Lumps	=		
M%		1.3%	

COMMENTS:	 			

Client Atlantic Geoscience Center (B.I.O.)		Job #	NAO-1268		
Sample #24		Date	Jan.26/95		
COARSE AGGRE	GATE				
M, Mass of Sample (g)	=				
R, Mass After Clay Removed (g)	=				
M - R = L = Clay Lumps M%	=				
FINE AGGREGATE 1	00g - 1.25mm				
M, Mass of Sample (g)					
R, Mass After Clay Removed (g)	=				
M - R = L = Clay Lumps M%	=				
COMMENTS: Insufficient Sample To Conduct Test					
			and the state of t		

CLAY LUMPS CSA A23.2 - 3A

REGATE	Date Jan. 26/95
REGATE	
guag Bara	469.4
=	460.1
=	2.0 %
100g - 1	.25mm
3-si	100.6
=	56.2
=	44.1%
	100g - 1

CLAY LUMPS CSA A23,2 - 3A

CSA F		
ient Atlantic Geoscience Center (B.I.O.)		Job # _NAO-1268
mple #28		Date Jan.26/9
COARSE AG	GREGATE	71 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -
I, Mass of Sample (g)	=	
, Mass After Clay Removed (g)		
<u>f - R</u> = L = Clay Lumps M%	=	
FINE AGGREGATE	100g - 1.25mm	
	100g - 1.25mm =	106.6
l, Mass of Sample (g)		106.6
FINE AGGREGATE I, Mass of Sample (g) I, Mass After Clay Removed (g) I - R = L = Clay Lumps M%	=	

CLAY LUMPS

CSA A23.2 - 3A

Client Atlantic Geoscience Center	Job # <u>NAO-1268</u>	
(B.I.O.) Sample #	Date Jan.26/99	5
COARSE AGO	GREGATE	
M, Mass of Sample (g)	= 3737.4	
R, Mass After Clay Removed (g)	= 3733.0	
M - R = L = Clay Lumps M%	= 0.1%	
FINE AGGREGATE	100g - 1.25mm	
M, Mass of Sample (g)	=	
R, Mass After Clay Removed (g)	=	
M - R = L = Clay Lumps M%	=	
COMMENTS: Insufficient Fine Aggr	egate To Conduct Test	

LOW DENSITY MATERIAL CSA A23.2 - 4A (MODIFIED)

Client AGC/BIO		Job #NAO-1	268
Sample # Station #1		Date January	31, 1995
COARSE AGGRE	GATE	E	
M ₂ , Dry Mass of Aggregate (g)	_	655.8	_
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0	-
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles	=		-
M ₂	-	0%	-
FINE AGGREGA	ATE]
M ₂ , Dry Mass of Aggregate (g)	=	110.3	_
M ₁ , Dry Mass of Decanted Aggregate (g)	= _	0.0	_
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles	=		
M_2	-	0%	-
COMMENTS:			

LOW DENSITY MATERIAL

Client AGC/BIO			Job #	NAO-126	8
Sample # Station #4			Date _	January	31 , 1995
COARSE AGGREGATE					
M ₂ , Dry Mass of Aggregate (g)		* *			
M ₁ , Dry Mass of Decanted Aggregate (g)	=	**			
$\underline{\underline{M}}_1 = L = \%$ Low Density Particles			,	·	
M ₂		**			
FINE AGGREGA	ATE				
M ₂ , Dry Mass of Aggregate (g)	***		93.3		
M ₁ , Dry Mass of Decanted Aggregate (g)	=		0.0		
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=				
M_2		6	0%		
COMMENTS: **Insufficient Coarse Agg	rega	te to co	nduct test	•	

LOW DENSITY MATERIAL

Client Atlantic Geoscience Centre/ B. I.O.			Job #	NAO-126	8	
Sample #5			Date _	January	31,	<u>1</u> 995
COARSE AGGRE	GAT	E				
M ₂ , Dry Mass of Aggregate (g)	=	1581.2				
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0				
$\underline{\underline{M}}_1 = L = \%$ Low Density Particles	=					
M ₂		0%				
FINE AGGREGA	ATE					
M ₂ , Dry Mass of Aggregate (g)	=	144.2				
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0				
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=					
M_2	-	0%				
COMMENTS:						

LOW DENSITY MATERIAL

•	Job #	NAO-1268	3
	Date _	January 3	1 , 199
EGATE			
	1268.1		
=	0.0		
=	,		
	0%		
ATE			
	107.0		
-	0.0		
=			
	0%		
	•		

	EGATE =	Date	Date January 3 EGATE = 1268.1 = 0.0 = 0% ATE = 107.0 = 0.0 = 0.0

LOW DENSITY MATERIAL

Client Atlantic Geoscience Centre/B.I.O.		Job #NAO-12	68	
Sample #9		Date January	30,	<u>1</u> 995
COARSE AGGRE	GATI	E		-
M ₂ , Dry Mass of Aggregate (g)	==	1382.4		
M ₁ , Dry Mass of Decanted Aggregate (g)	= .	0.0		
$\underline{\underline{M}}_1 = L = \%$ Low Density Particles	=			
M ₂		0%		
		·		
FINE AGGREGA	ATE			
M ₂ , Dry Mass of Aggregate (g)	=	199.5		
M ₁ , Dry Mass of Decanted Aggregate (g)	= .	0.0		
$\underline{\underline{M}}_1 = L = \%$ Low Density Particles	=			
M_2	-	0%		
COMMENTS:				

LOW DENSITY MATERIAL CSA A23.2 - 4A (MODIFIED)

Client AGC/BIO		Job #NAO-1268		
Sample # Station #12		Date January 31, 1995		
COARSE AGGRE	GAT	E		
M ₂ , Dry Mass of Aggregate (g)	=	**		
M ₁ , Dry Mass of Decanted Aggregate (g)		**		
$ \underline{M}_1 = L = \% $ Low Density Particles $ \underline{M}_2 $	=	**		
FINE AGGREGA	ATE			
M ₂ , Dry Mass of Aggregate (g)	==	117.7		
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0		
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles \mathbf{M}_2	anna man	0%		
COMMENTS: **Insufficient Coarse Aggregate to conduct test.				

LOW DENSITY MATERIAL

Client Atlantic Geoscience Centre/B.I.O.		Job #	IAO-1268
Sample #		Date Jar	nuary 31, 1995
COARSE AGGRE	GAT	E	
M ₂ , Dry Mass of Aggregate (g)		1930.5	
M ₁ , Dry Mass of Decanted Aggregate (g)	= '	0.0	
$\underline{\underline{M}}_1 = L = \%$ Low Density Particles	=	:	
M ₂		0%	
FINE AGGREGA	ATE		
M ₂ , Dry Mass of Aggregate (g)	=	212.4	
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0	
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=		
M_2	-	0%	
COMMENTS:			
·			

LOW DENSITY MATERIAL

Client Atlantic Geoscience Centre/B.I.O.		Job # NAO-1268
Sample #16		Date January 31, 199
COARSE AGGRE	GATE	
M ₂ , Dry Mass of Aggregate (g)	Paras Caras	895.5
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	-	
M_2		0%
FINE AGGREGA	ATE	
M ₂ , Dry Mass of Aggregate (g)	Çum,	227.6
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles	=	
M_2		0%
COMMENTS:		

LOW DENSITY MATERIAL

Client AGC/BIO		Job #NAO-1268
Sample # _ Station #17		Date January 31, 1995
COARSE AGGRE	GAT	E
M ₂ , Dry Mass of Aggregate (g)	=	**
M ₁ , Dry Mass of Decanted Aggregate (g)	-	**
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=	
M ₂		**
FINE AGGREGA	ATE	
M ₂ , Dry Mass of Aggregate (g)	=	
M ₁ , Dry Mass of Decanted Aggregate (g)	=	
$ \underline{\mathbf{M}}_{1} = \mathbf{L} = \% $ Low Density Particles \mathbf{M}_{2}	=	
2		
COMMENTS: **Insufficient material	to co	onduct either test.
		

LOW DENSITY MATERIAL CSA A23.2 - 4A MODIFIED

ClientAtlantic Geoscience Centre/B.I.O	•	Job #NAO-1268	3
Sample #		Date January 3	31, 1995
COARSE AGGRE	GAT	E	
M ₂ , Dry Mass of Aggregate (g)		2053.4	
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0	
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles		:	
M_2		0%	
FINE AGGREGA	ATE		
M ₂ , Dry Mass of Aggregate (g)	=	180.6	
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0	
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles	=		
M_2		0%	
COMMENTS:			

LOW DENSITY MATERIAL

Client Atlantic Geoscience Centre/B.I.O.		Job #	NAO-12	68	
Sample #21		Date _	January	31,	<u> 19</u> 95
COARSE AGGRE	GAT	E			
M ₂ , Dry Mass of Aggregate (g)	=	941.2			
M ₁ , Dry Mass of Decanted Aggregate (g)	= .	0.0			
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=			-	
M_{2}	•	0%		_	
FINE AGGREGA	ATE				
M ₂ , Dry Mass of Aggregate (g)	=	241.1		ı	
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0		•	
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles	=			•	
M_2	-	0%			
COMMENTS:					
					

LOW DENSITY MATERIAL

CSA A23.2 - 4A Modified

Client Atlantic Geoscience Centre/B.I.O.	•	Job #	NAO-12	68
Sample #		Date _	January	31, 1995
COARSE AGGRE	GATE			
M ₂ , Dry Mass of Aggregate (g)	Provi			
M ₁ , Dry Mass of Decanted Aggregate (g)	=			
$ \underline{M}_1 = L = \% $ Low Density Particles $ \underline{M}_2 $	=			
	-			
FINE AGGREGA	ATE			
M ₂ , Dry Mass of Aggregate (g)	=		<u> </u>	
M ₁ , Dry Mass of Decanted Aggregate (g)	=			
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles \mathbf{M}_2	=			
COMMENTS: Insufficient material reta	ained	on the required s	sieves.	

LOW DENSITY MATERIAL

Client Atlantic Geoscience Centre/B.I.0	•	Job #NAO-12	68
Sample #		DateJanuary	31, 1995
COARSE AGGRE	EGA7	TE	
M ₂ , Dry Mass of Aggregate (g)		455.1	
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0	
$\underline{\underline{M}}_1 = L = \%$ Low Density Particles	=		
M_2		0%	
FINE AGGREGA	ATE		
M ₂ , Dry Mass of Aggregate (g)		152.4	
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0	
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=		
M_2		0%	
COMMENTS:			

LOW DENSITY MATERIAL CSA A23.2 - 4A (MODIFIED)

Client AGC/BIO		Job #	NAO-1268
Sample #Station #28		Date _	January 31, 1995
COARSE AGGRE	GAT	E	
M ₂ , Dry Mass of Aggregate (g)		**	Marine (Commission of the Com
M ₁ , Dry Mass of Decanted Aggregate (g)	=	*.*:	
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=		
M_2		**:	·
FINE AGGREGA	ATE		
M ₂ , Dry Mass of Aggregate (g)	=	85.4	
M ₁ , Dry Mass of Decanted Aggregate (g)	=	0.0	
$\underline{\mathbf{M}}_1 = \mathbf{L} = \%$ Low Density Particles	=		
M ₂		0%	
COMMENTS: **Insufficient Coarse Ag	greg	ate to conduct test	•
	"		

LOW DENSITY MATERIAL

Client Atlantic Geoscience Centre/B.I.	ο.	Job #NAO-126	8
Sample #		Date January	31 , 1995
COARSE AGGRE	GATE		
M ₂ , Dry Mass of Aggregate (g)	=	3713.6	
M ₁ , Dry Mass of Decanted Aggregate (g)	= -	0.0	
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=		
M ₂	_	0%	
FINE AGGREGA	ATE		
M ₂ , Dry Mass of Aggregate (g)	=	231.7	
M ₁ , Dry Mass of Decanted Aggregate (g)	= -	0.0	
$\underline{\mathbf{M}}_{1} = \mathbf{L} = \%$ Low Density Particles	=		
M ₂	_	0%	
			, v
COMMENTS:			

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

ORGANIC IMPURITIES IN FINE AGGREGATE CSA A23.2 - 7A

CLIENT:

AGC/BIO

PROJECT:

NAO-1268

CONTACT:

Gordon Fader

DATE TESTED:

February 2, 1995

SAMPLE #	COLOUR
1	2
4	4
5	between 4 & 5
8	between 3 & 4
9	3
12	between 2 & 3
13	3
16	2
17	1
20	4
21	between 4 & 5
24	2
25	4
28	4
29	4

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #1	Aggregate: Gravel
Date Sampled: -	Sampled By: Client
Date Received: -	Date Tested: Jan.23-31/95
Test Solution: MgS04	Number of Cycles: 5

Coarse Aggregate		Fine Aggregate			
Sieve Si Passing/Re		Weighted Average % Loss	Sieve Passing/F		Weighted Average % Loss
80 mm	56 mm				
56 mm	40 mm		10 mm	5 mm	
40 mm	28 mm		5 mm	2.5 mm	
28 mm	20 mm		2.5 mm	1.25 mm	
20 mm	14 mm		1.25 mm	0.630 mm	- Constitution of the Cons
14 mm	10 mm		0.630 mm	0.315 mm	
10 mm	5 mm	0.8			
Loss Sub	total:		Loss Su	ıbtotal:	
		Total Loss:	%		1

Comments:		
) 	Divis No.	
Certified by:	Plate No.	

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #4	Aggregate: Sand
Date Sampled:	Sampled By: Client
Date Received:	Date Tested: Jan.23-31/95
Test Solution: MgS04	Number of Cycles: 5

	Coarse Aggregate	Fine Agg	regate
Sieve Size Passing/Retaine	Weighted ed Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss
80 mm 56 n	nm		
56 mm 40 n	nm	10 mm 5 mm	
40 mm 28 n	nm	5 mm 2.5 mm	
28 mm 20 n	ım	2.5 mm 1.25 mm	
20 mm 14 n	nm	1.25 mm 0.630 mm	8.02
14 mm 10 n	nm	0.630 mm 0.315 mm	18.64
10 mm 5 mi	n		
Loss Subtotal:		Loss Subtotal:	
	Total Loss:	%	27
Comments:		,	
Certified by:	Í.	Plate No.	

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #5	Aggregate: Gravel	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.23-31/95	
Test Solution: MgS04	Number of Cycles: 5	

	Coarse Aggregate		Fine Aggregate		egate
Sieve Passing/F		Weighted Average % Loss	Sieve Size Passing/Retained		Weighted Average % Loss
80 mm	56 mm				
56 mm	40 mm		10 mm 5 mi	m	
40 mm	28 mm		5 mm 2.5 r	nm	0.72
28 mm	20 mm		2.5 mm 1.25	mm	
20 mm	14 mm		1.25 mm 0.63	0 mm	
14 mm	10 mm	0.96	0.630 mm 0.3	15 mm	
10 mm	5 mm	2.69			
Loss Su	ıbtotal:		Loss Subtota	l:	
		Total Loss:	%		5
Comments:	/				
Certified by:	h		Plate No.		

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

NAO-1268

Test No.: STN #8	Aggregate: Gravel	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: -	
Test Solution: -	Number of Cycles: -	

Coarse Aggregate		Fine Aggregate		
Sieve Size Passing/Retained	Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss	
80 mm 56 mm				
56 mm 40 mm		10 mm 5 mm		
40 mm 28 mm		5 mm 2.5 mm		
28 mm 20 mm		2.5 mm 1.25 mm	t the control of the	
20 mm 14 mm		1.25 mm 0.630 mm		
14 mm 10 mm		0.630 mm 0.315 mm		
10 mm 5 mm				
Loss Subtotal:		Loss Subtotal:	- to the state of	
	Total Loss:	%		

Comments: INSUFFICIENT MATERIAL FOR TEST

Certified by: Plate No.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CLIENT:

CSA A23.2 - 9A Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #9	Aggregate: Sand	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.23-31/95	
Test Solution: MgS04	Number of Cycles: 5	

Coarse A	Coarse Aggregate		regate
Sieve Size Passing/Retained	Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss
80 mm 56 mm			
56 mm 40 mm		10 mm 5 mm	
40 mm 28 mm		5 mm 2.5 mm	
28 mm 20 mm	·	2.5 mm 1.25 mm	0.26
20 mm 14 mm		1.25 mm 0.630 mm	0.52
14 mm 10 mm		0.630 mm 0.315 mm	1.46
10 mm 5 mm		·	
Loss Subtotal:		Loss Subtotal:	
	Total Loss:	%	2
Comments:			
Certified by:		Plate No.	

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

Atlantic Geoscience Centre/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

NAO-1268

Test No.:STN #12	Aggregate: Sand	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: -	
Test Solution: -	Number of Cycles: -	

Coarse Aggregate		Fine Aggregate		
Sieve Size Passing/Retained	I		Weighted Average % Loss	
80 mm 56 mm				
56 mm 40 mm		10 mm 5 mm		
40 mm 28 mm		5 mm 2.5 mm		
28 mm 20 mm		2.5 mm 1.25 mm		
20 mm 14 mm		1.25 mm 0.630 mm		
14 mm 10 mm		0.630 mm 0.315 mm		
10 mm 5 mm				
Loss Subtotal:		Loss Subtotal:		
	Total Loss:	%		

Comments: Insufficient Sample to Conduct Test.

	K			
Certified by:	N.	7		
continua by.				

Plate No.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #13	Aggregate: Gravel	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.23-31/95	
Test Solution: MgS04	Number of Cycles: 5	

	Coarse A	aggregate	Fine Aggregate		
Sieve Passing/		Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss	
80 mm	56 mm				
56 mm	40 mm		10 mm 5 mm		
40 mm	28 mm		5 mm 2.5 mm	0.18	
28 mm	20 mm		2.5 mm 1.25 mm		
20 mm	14 mm		1.25 mm 0.630 mm		
14 mm	10 mm	0.02	0.630 mm 0.315 mm		
10 mm	5 mm	0.11			
Loss St	ubtotal:		Loss Subtotal:		
•		Total Loss:	%	0.3	
Comments:	,				
Certified by:	m		Plate No.		

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #16	Aggregate: Gravel	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.23-31/95	
Test Solution: MgS04	Number of Cycles: 5	

Coarse	Aggregate	Fine Agg	regate
Sieve Size Passing/Retained	Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss
80 mm 56 mm			
56 mm 40 mm		10 mm 5 mm	
40 mm 28 mm		5 mm 2.5 mm	0.15
28 mm 20 mm		2.5 mm 1.25 mm	
20 mm 14 mm	0.01	1.25 mm 0.630 mm	
14 mm 10 mm	0	0.630 mm 0.315 mm	
10 mm 5 mm	0.04		
Loss Subtotal:		Loss Subtotal:	
	Total Loss:	%	0.2
Comments:			
Certified by:		Plate No.	

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Centre/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

NAO-1268

Test No.: STN #17	Aggregate: Sand	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: -	
Test Solution: -	Number of Cycles: -	

Coarse Aggregate		Fine Aggregate	
Sieve Size Passing/Retained	Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss
80 mm 56 mm			
56 mm 40 mm		10 mm 5 mm	
40 mm 28 mm		5 mm 2.5 mm	
28 mm 20 mm		2.5 mm 1.25 mm	
20 mm 14 mm		1.25 mm 0.630 mm	
14 mm 10 mm		0.630 mm 0.315 mm	
10 mm 5 mm			
Loss Subtotal:		Loss Subtotal:	
	Total Loss:	%	

Comments: Insufficient Sample to Conduct Test.

Certified by: Plate No.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #20	Aggregate: Gravel	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.23-31/95	· · · · · · · · · · · · · · · · · · ·
Test Solution: MgS04	Number of Cycles: 5	

	Coarse A	Aggregate		Fine Agg	regate
Sieve Passing/		Weighted Average % Loss	1	e Size 'Retained	Weighted Average % Loss
80 mm	56 mm				
56 mm	40 mm		10 mm	5 mm	
40 mm	28 mm		5 mm	2.5 mm	0.14
28 mm	20 mm		2.5 mm	1.25 mm	
20 mm	14 mm		1.25 mm	0.630 mm	
14 mm	10 mm	0	0.630 mm	0.315 mm	
10 mm	5 mm	0.13			
Loss Sı	ubtotal:		Loss S	ubtotal:	
		Total Loss:	%		0.2
Comments:					
Certified by:	h		Plate No.		

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

NAO-1268

Test No.: STN #21	Aggregate: Sand	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.23-31/95	
Test Solution: MgS04	Number of Cycles: 5	

Coars	e Aggregate	Fine Aggi	regate
Sieve Size Passing/Retained	Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss
80 mm 56 mm			
56 mm 40 mm		10 mm 5 mm	
40 mm 28 mm		5 mm 2.5 mm	0.30
28 mm 20 mm		2.5 mm 1.25 mm	
20 mm 14 mm		1.25 mm 0.630 mm	
14 mm 10 mm	0	0.630 mm 0.315 mm	
10 mm 5 mm	0.22		
Loss Subtotal:		Loss Subtotal:	
	Total Loss:	%	1

Comments:

3	
Certified by:	Plate No.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Centre/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

NAO-1268

Test No.: STN #24	Aggregate: Sand	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: -	
Test Solution: -	Number of Cycles: -	

Coarse Aggregate		Fine Aggregate	
Sieve Size Passing/Retained	Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss
80 mm 56 mm			
56 mm 40 mm		10 mm 5 mm	
40 mm 28 mm	44	5 mm 2.5 mm	
28 mm 20 mm		2.5 mm 1.25 mm	
20 mm 14 mm		1.25 mm 0.630 mm	
14 mm 10 mm		0.630 mm 0.315 mm	
10 mm 5 mm			
Loss Subtotal:		Loss Subtotal:	
	Total Loss:	%	

Comments: Insufficient Sample to Conduct Test.

Certified by:

Plate No.

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #25	Aggregate: Sand	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.23-31/95	
Test Solution: MgS04	Number of Cycles: 5	

Coarse Aggregate		Fine Aggregate	
Sieve Size Passing/Retained	Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss
80 mm 56 mm			
56 mm 40 mm		10 mm 5 mm	
40 mm 28 mm		5 mm 2.5 mm	
28 mm 20 mm		2.5 mm 1.25 mm	
20 mm 14 mm		1.25 mm 0.630 mm	
14 mm 10 mm		0.630 mm 0.315 mm	17.5
10 mm 5 mm			
Loss Subtotal:		Loss Subtotal:	
	Total Loss:	%	18
Comments:			
Certified by:		Plate No.	V. Control of the Con
1//			

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #28	Aggregate: Sand	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.24-Feb.2/95	
Test Solution: MgS04	Number of Cycles: 5	

Coarse Aggregate		Fine Aggregate	
Sieve Size Passing/Retained	Weighted Average % Loss	Sieve Size Passing/Retained	Weighted Average % Loss
80 mm 56 mn			
56 mm 40 mn		10 mm 5 mm	
40 mm 28 mn		5 mm 2.5 mm	
28 mm 20 mn		2.5 mm 1.25 mm	
20 mm 14 mn		1.25 mm 0.630 mm	
14 mm 10 mn		0.630 mm 0.315 mm	2.3
10 mm 5 mm			
Loss Subtotal:		Loss Subtotal:	
	Total Loss:	%	2
Comments:			
Certified by:		Plate No.	

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AGGREGATE SOUNDNESS REPORT

CSA A23.2 - 9A

CLIENT:

Atlantic Geoscience Center/

B.I.O.

DATE:

February 3, 1995

CONTACT:

Gordon Fader

PROJECT NO:

Test No.: STN #29	Aggregate: Sand	
Date Sampled: -	Sampled By: Client	
Date Received: -	Date Tested: Jan.23-31/95	
Test Solution: MgS04	Number of Cycles: 5	

Coarse Aggregate		Fine Aggregate				
Sieve Passing/l		Weighted Average % Loss	Sieve Size Passing/Retained		Weighted Average % Loss	
80 mm	56 mm					
56 mm	40 mm		10 mm	5 mm		
40 mm	28 mm		5 mm	2.5 mm		
28 mm	20 mm		2.5 mm	1.25 mm		
20 mm	14 mm		1.25 mm	0.630 mm		
14 mm	10 mm		0.630 mm	0.315 mm	4.5	
10 mm	5 mm					
Loss St	ubtotal:		Loss S	ubtotal:		
		Total Loss:	%		5	
Comments:						
Certified by:	Certified by:			Plate No.		

TO Atlantic Ceoscience Centre/B.I.O.

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

SAMPLE DATE: DATE RECEIVED:

STATION

SAMPLE TYPE -

DATE TESTED:

January 13, 1995

RODDED UNIT WEIGHT

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE			
TARE			
SAMPLE		**	
DENSITY			
	AVERAGE DENSITY	Insufficient Material for density of aggregate.	

CSA A23.2 - 10A

TO Atlantic Geoscience Centre/B.I.O.

FILE:

NAO-1268

Dartmouth, Nova Scotia

B2Y 4A2

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

SAMPLE DATE: DATE RECEIVED:

STATION

SAMPLE TYPE

Sand

DATE TESTED:

January 13, 1995

UNIT #20

RODDED UNIT WEIGHT

Factor = 141.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	13780	13818	13922
TARE	4288	4288	4288
SAMPLE	9492	9530	9634
DENSITY	1338	1344	1358
	AVERAGE DENSITY	1347 kg/m³	

CSA A23.2 - 10A

FILE:

NAO-1268

Dartmouth, Nova Scotia

B2Y 4A2

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

SAMPLE DATE: DATE RECEIVED:

STATION SAMPLE TYPE

Gravel

DATE TESTED:

January 12, 1995

UNIT X

RODDED UNIT WEIGHT

FACTOR = 350.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	7396	7434	7478
TARE	2704	2704	2704
SAMPLE	4692	4730	4774
DENSITY	1642	1656	1671
	AVERAGE DENSITY	1656 kg/m³	

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

SAMPLE DATE:

DATE RECEIVED:

STATION #8 SAMPLE TYPE

DATE TESTED:

January 12, 1995

UNIT X

RODDED UNIT WEIGHT

FACTOR = 350.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	7940	7907	
TARE	2704	2704	
SAMPLE	5236	5203	
DENSITY	1833	1821	
	AVERAGE DENSITY	1827 kg/m³	

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

SAMPLE DATE: DATE RECEIVED:

STATION

#9

SAMPLE TYPE Sand

DATE TESTED:

January 13, 1995

UNIT #20

RODDED UNIT WEIGHT

FACTOR = 141.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	16413	16584	16600
TARE	4288	4288	4288
SAMPLE	12125	12296	12312
DENSITY	1710	1734	1736
	AVERAGE DENSITY	1727 kg/m³ .	

FILE:

NAO-1268

Dartmouth, Nova Scotia

B2Y 4A2

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

Sand

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

STATION

SAMPLE TYPE

#12

SAMPLE DATE:

DATE RECEIVED:

DATE TESTED:

January 12, 1995

UNIT X

RODDED UNIT WEIGHT

FACTOR = 350.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	6915	6947	6955
TARE	2704	2704	2704
SAMPLE	4211	4243	4251
DENSITY	1474	1485	1488
	AVERAGE DENSITY	1482 kg/m³	

FILE:

NAO-1268

Dartmouth, Nova Scotia

#13

B2Y 4A2

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

SAMPLE TYPE

94-131 J.L. Hart

SOURCE STATION

Offshore Cape Breton

SAMPLE DATE:

Grave1

DATE RECEIVED: DATE TESTED:

January 12, 1995

UNIT X

RODDED UNIT WEIGHT

FACTOR = 350.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	8104	8168	8171
TARE	2704	2704	2704
SAMPLE	5400	5464	5467
DENSITY	1890	1912	1913
	AVERAGE DENSITY	1905 kg/m ³	

FILE:

NAO-1268

Dartmouth, Nova Scotia

B2Y 4A2

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT: 94-131 J.L. Hart

SOURCE

Offshore Cape Breton

SAMPLE DATE:

STATION

#16

DATE RECEIVED:

SAMPLE TYPE

Gravel

DATE TESTED:

January 13, 1995

UNIT #20

RODDED UNIT WEIGHT

FACTOR = 141.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	16201	16312	16355
TARE	4288	4288	4288
SAMPLE	11913	12024	12067
DENSITY	1680	1695	1701
	AVERAGE DENSITY	1692 kg/m ³	1

FILE:

NAO-1268

Dartmouth, Nova Scotia

B2Y 4A2

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT: 94-131 J.L. Hart

SOURCE

Offshore Cape Breton

Sand

SAMPLE DATE:

STATION

#17

SAMPLE TYPE

DATE RECEIVED: DATE TESTED:

January 13, 1995

RODDED UNIT WEIGHT

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE			
TARE			
SAMPLE			
DENSITY			
	AVERAGE DENSITY	Insufficient Material for density of aggregate test.	

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

STATION

#20 SAMPLE TYPE

Grave1

SAMPLE DATE:

DATE RECEIVED:

DATE TESTED:

January 12, 1995

UNIT X

RODDED UNIT WEIGHT

FACTOR = 350.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	8015	8101	8098
TARE	2704	2704	2704
SAMPLE	5311	5397	5394
DENSITY	1859	1889	1888
	AVERAGE DENSITY	1879 kg/m³	

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

Sand

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

STATION

SAMPLE TYPE

#21

SAMPLE DATE:

DATE RECEIVED:

DATE TESTED:

January 13, 1995

IINIT X

RODDED UNIT WEIGHT

FACTOR = 350.0

UNII A	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	8175	8136	8129
TARE	2704	2704	2704
SAMPLE	5471	5432	5425
DENSITY	1915	1901	1899
	AVERAGE DENSITY	1905 kg/m³	

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

STATION

#24

SAMPLE TYPE

Fine Sand

SAMPLE DATE:

DATE RECEIVED:

DATE TESTED:

January 13, 1995

RODDED UNIT WEIGHT

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE			
TARE			
SAMPLE			
DENSITY			
	AVERAGE DENSITY	Insufficient material for density of aggregate test.	

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

STATION

SAMPLE TYPE Fine Sand

DATE RECEIVED:

DATE TESTED:

SAMPLE DATE:

January 13, 1995

UNIT X

RODDED UNIT WEIGHT

FACTOR = 350.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	7126	7149	7161
TARE	2704	2704	2704
SAMPLE	4422	4445	4457
DENSITY	1548	1556	1560
	AVERAGE DENSITY	1555 kg/m³	!

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT:

94-131 J.L. Hart

SOURCE

Offshore Cape Breton

SAMPLE DATE: DATE RECEIVED:

STATION

#28

. Sand

DATE TESTED:

January 12, 1995

UNIT # 20

SAMPLE TYPE

RODDED UNIT WEIGHT

FACTOR = 141.0

7	, , , , , , , , , , , , , , , , , , , ,		11101010 11110	
	TRIAL 1	TRIAL 2	TRIAL 3	
SAMPLE + TARE	14123	14133	14105	
TARE	4288	4288	4288	
SAMPLE	9835	9845	9817	
DENSITY	1387	1388	1384	
	AVERAGE DENSITY	1386 kg/r	n ³	

Dartmouth, Nova Scotia

B2Y 4A2

FILE:

NAO-1268

DATE:

January 26, 1995

CLIENT P.O. 23420-4-M195/01-HAL

ATTN:

Gordon Fader

PROJECT: 94-131 J.L. Hart

SAMPLE TYPE Sand

SOURCE STATION

#29

Offshore Cape Breton

SAMPLE DATE:

DATE RECEIVED:

DATE TESTED:

January 13, 1995

UNIT X

RODDED UNIT WEIGHT

FACTOR = 350.0

	TRIAL 1	TRIAL 2	TRIAL 3
SAMPLE + TARE	8009	7965	7987
TARE	2704	2704	2704
SAMPLE	5305	5261	5283
DENSITY	1857	1841	1849
	AVERAGE DENSITY	1849 kg/m ³	

MARITIME TESTING (1985) LIMITED
Suite 116, 900 Windmill Road
Dartmouth, N.S. B3B 1P7 468-6486

COARSE SPECIFIC GRAVITY AND ABSORPTION CSA A23.2 - 12A

CLIENT:

AGC/BIO

PROJECT:

NAO-1268

CONTACT:

Gordon Fader

DATE TESTED:

January 26, 1995

SAMPLE #	BULK SPECIFIC GRAVITY	APPARENT SPECIFIC GRAVITY	ABSORPTION %
1	2.43	2.60	2.7
4	2.38	2.62	3.9
5	2.47	2.63	2.5
8	2.45	2.65	3.1
9	2.47	2.64	2.6
12	*	*	*
13	2.57	2.64	1.0
16	2.60	2.63	0.9
17	*	*	*
20	2.54	2.65	1.6
21	2.59	2.66	0.9
24	*	*	*
25	2.54	2.69	2.2
28	*	*	*
29	2.41	2.64	3.6

^{*}Insufficient sample to conduct test

FLAT & ELONGATED PARTICLES

Client Atla	ntic	Geosci	enc	e Center B	.I.O.			Job) # <u>.</u>	NAO-1268
Sample #	1		_					Dat	te _	Jan.26/95
Particl Size	е	Fla %		Elonga %	ated	F & E %		Sphere %).	Blocky %
Particle	And	gular	Ç,	AN bangular	GULAR	ITY unded		Rounded	14/	ell-Rounded
Size		%	J.	%		6		%	AA6	%

COMMEN	TC.	-								
COMMEN	13.	ıns	uII1	icient Samp	ole To C	onduct '	Tes	t		

FLAT & ELONGATED PARTICLES

Size % % % % % %	
Size % % % % % %	6/95
Particle Angular Subangular Subrounded Rounded Well-Ro	locky %
Particle Angular Subangular Subrounded Rounded Well-Ro	
Particle Angular Subangular Subrounded Rounded Well-Ro	
Particle Angular Subangular Subrounded Rounded Well-Ro	
Size % % % % 9	ounde %

FLAT & ELONGATED PARTICLES

Client Atla	ntic G	Geosci	<u>ence Center l</u>	3.I.O.		Job) # <u>NAO-1268</u>
ample # _	8		-			Da	te Jan.26/95
Particle Size	e	Flat	Elong %		F & E	Sphere %	e. Blocky
		 					
					<u> </u>		
Particle Size	Angı %		Al Subangular %	1	ITY ounded %	Rounded %	Well-Rounded
COMMEN	TS:	Insu	fficient Samp	ole To C	onduct 5	lest	

FLAT & ELONGATED PARTICLES

Client At1	antic	Geosc	ien	ce Centre E	B.I.O.			Job)#.	NAO-1268
Sample #	5	· · ·						Dat	te <u>J</u>	an.26/95
Particl Size	e	Fla %		Elonga %	ited	F & E %		Sphere %).	Blocky %
+ 10 1	nm	20.	5	Ø		ý		3.7		75.8
								·		
Particle Size		gular %	Sı	AN Jbangular %	1	ITY unded %	R	lounded %	W	ell-Rounded %
+ 10 mm		12.1		40.0	36			7.8		3.7
COMMEN	TS:				ı					

FLAT & ELONGATED PARTICLES

CSA A23.2 - 13A MODIFIED

Client	Atlantic Geoscienc	e Center B.I.O.	Job #	NAO-1268
Sample	2 #13		Date _	Jan.26/95

Particle Size	Flat %	Elongated %	F&E %	Sphere. %	Blocky %
+ 14 mm	31.0	Ø	Ø	Ø	69.0
+ 10 mm	32.9	Ø	Ø	2.3	64.8

Particle Size	Angular %	Subangular %	Subrounded %	Rounded %	Well-Rounded %
+ 14 mm	10.6	43.5	28.2	17.7	Ø
+ 10 mm	6.1	34.7	40.6	16.2	2.3

COMMENTS:			

FLAT & ELONGATED PARTICLES

CSA A23.2 - 13A MODIFIED

Client Atlantic	: Geoscieno	ce Center B.I.O.		Job #	NAO-1268
Sample #				Date "	an.26/95
Particle Size	Flat %	Elongated %	F & E %	Sphere. %	Blocky %

Size	%	%	%	<u> </u>	%
+ 10 mm	41.7	Ø	5.6	Ø	52.7

Particle Size	Angular %	Subangular %	Subrounded %	Rounded %	Well-Rounded %
+ 10 mm	1.0	31.2	41.3	26.5	Ø

COMMENTS:			

FLAT & ELONGATED PARTICLES

CSA A23.2 - 13A MODIFIED

Client Atlant	ic Geoscienc	Job #	NAO-1268		
Sample #	20			Date _	Jan.26/95
Particle Size	Flat	Elongated %	F&E	Sphere. %	Blocky %

Particle Size	Flat %	Elongated %	F&E %	Sphere. %	Blocky %
+ 14 mm	4.4	Ø	Ø	Ø	95.6
+ 10 mm	2.4	2.8	Ø	4.9	89.9

Particle Size	Angular %	Subangular %	Subrounded %	Rounded %	Well-Rounded %
+ 14 mm	Ø	Ø	Ø	83.2	16.8
+ 10 mm	1.5	2.2	3.6	82.0	10.7

COMMENTS:		 	

FLAT & ELONGATED PARTICLES

CSA A23.2 - 13A MODIFIED

Client Atlantic Geoscience Center B.I.O.	Job # _{NAO-1268}
Sample # 21	Date Jan.26/95

Particle Size	Flat %	Elongated %	F&E %	Sphere. %	Blocky %
+ 14 mm	1.8	0	Ø	1.7	96.5
+ 10 mm	1.7	7.1	ø	4.9	86.3

Particle Size	Angular %	Subangular %	Subrounded %	Rounded %	Well-Rounded %
+ 14 mm	Ø	Ø	Ø	95	5
+ 10 mm	Ø	Ø	Ø	95	5

COMMENTS:		

FLAT & ELONGATED PARTICLES

		CSA A23.2 - 13A	MODIFIED		
Client Atlantic	Geoscience	e Center B.I.O.		Job #	NAO-1268
Sample #29				Date _J	an.26/95
Particle Size	Flat %	Elongated %	F & E %	Sphere. %	Blocky %

%	<u></u>	%	%	<u></u> %
5.2	Ø	Ø	Ø	94.8
		% % 5.2 Ø		

Particle Size	Angular %	Subangular %	Subrounded %	Rounded %	Well-Rounded %
+ 20 mm	Ø	10.9	24.7	61.1	3.3

COMMENTS:			

COARSE AGGREGATE PETROGRAPHIC ANALYSIS

PER:

CLIENT:	Atlantic Geoscience Centre/BIO PRO	JECT	NAO-126	8
CONTACT:	Gordon Fader DATE	: :	January 31, 1995	
PIT NAME:	Station: #1 DATE	TESTED	January	31, 1995
DATE SAM	PLED: _ ANAL	YST:	K. Bear	
	TYPE		WEIGHT	7 %
FACTOR (1)	QUARTZITE			
	QUARTZ			1.3
	GREYWACKE			
	SANDSTONE			3.9
	GRANITE			46.0
	CARBONATES			
	VOLCANICS			
	BASALT			
	SUBTOTAL			51.2
FACTOR (3)	SANDSTONE			47.8
	VOLCANICS		Radi	-
	GRANITE (BRITTLE OR WEATHERED)			1.0
	SLATE			1.0
	OUTTOTAL			48.8
FACTOR (6)	SUBTOTAL			40.0
FACTOR (0)	SANDSTONE VOLCANICS			
	SLATE		· · · · · · · · · · · · · · · · · · ·	
	SHALE			
	SCHIST			
	SUBTOTAL			
FACTOR (10)	SLATE			
	SHALE			
	OCHRE			
	SUBTOTAL			<u></u>
COMMENTS:	Crushed by FACTOR 1 X	51.2	= 5	51.2
	FACTOR 3 X	48.8		16.4
	antly hard rounded granite and	-70 • 0	=	1
soit rou	and brown bandscone.			
	FACTOR 10 X		=	

"P.N." TOTAL

198

CLIENT:	Atlantic Geoscience Centre/BIO	PROJECT	NAO-1268
CONTACT:	Gordon Fader	DATE:	January 31, 1995
PIT NAME:	Station: #4	DATE TESTED	January 31, 1995
DATE SAMPLED:		ANALYST:	K. Bearnes

	TYPE	WEIGHT	%
FACTOR (1)	QUARTZITE		7.8
	QUARTZ		
	GREYWACKE		
	SANDSTONE		15.2
	GRANITE		
	CARBONATES		
	VOLCANICS		
	BASALT		
		SUBTOTAL	23.0
FACTOR (3)	SANDSTONE		56.1
	VOLCANICS		
	GRANITE (BRITTLE OR WEATHERED)		
	SLATE		6.4
		SUBTOTAL	62.6
FACTOR (6)	SANDSTONE		8.1
	VOLCANICS		
	SLATE		
	SHALE		
	SCHIST		
		SUBTOTAL	8.1
FACTOR (10)			
	SHALE		
	OCHRE		
	Sandstone		6.4
		UBTOTAL	6.4

			23.0	_ = _	23.0
Predominantly soft brown and grey sandstone. FAC	CTOR 3	x _	62.6	_ = _	187.8
FAC	CTOR 6	x _	8.1	= _	48.6
FAC	CTOR 10	x _	6.4	= =	64.0

\Box	ځ

I			
PER:	*P.N." TOTAL	323	

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

CLIENT:	Atlantic Geoscience Centre/ B.I.O.	PROJECT:	NAO-1268	
Contact:	Gordon Fader	DATE:	January 26, 1995	
PIT NAME:	Station #5	DATE TESTED:	January 24 , 1995	
DATE SAM		ANALYST:	K. Bearnes	
<u> </u>	TYPE		WEIGHT %	
FACTOR (1)	QUARTZITE		5.8	
	QUARTZ		2.7	
	GREYWACKE			
	SANDSTONE		9.5	
	GRANITE		29.5	
	CARBONATES			
	VOLCANICS			
	BASALT			
.*		SUBTOTAL	<u>- 47.5</u>	
FACTOR (3)	SANDSTONE		35.4	
	VOLCANICS			
	GRANITE (BRITTLE OR WEATHERED)			
	SLATE		11.1	
	Siltstone			
	C-1 to the control of	SUBTOTAL	46.5	
FACTOR (6)	Siltstone		6.0	
	VOLCANICS			
	SLATE			
		SUBTOTAL	6.0	
FACTOR (10)	SLATE	SOBIOTAL	0.0	
PACION (10)	SHALE			
	STALE			
		SUBTOTAL		
COMMENTS:	Crushed by FACT	OR 1 X 47.5	= 47.5	
Hard, row	nded, red/brown granite, soft, brown, FACT	OR 3 X 46.5	= 139.5	
		OR 6 X 6.0	= 36.0	
	FACT	OR 10 X	=	
	83			
PER:	-P.N.	* TOTAL 223		

Sulte 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

Contact: Gord		Atlantic Geoscience Centre/B	.I.O. PROJECT:	PROJECT:		NAO-1268		
		Gordon Fader		DATE:		January 26, 1995		
		Station #8	DATE TES	TED:		ry 25, 1995		
		Station "0	ANALYST:					
			ANALTSI.		K. Be	arnes		
	TYPE			<u> </u>	WEIGHT	%		
FACTOR (1)	QUARTZ	TF				5.9		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	QUARTZ					1.9		
	GREYW							
	SANDST					15.2		
	GRANITI					10.9		
	CARBO	NATES						
	VOLCAN	IICS		<u>'</u>				
	BASALT							
			SUBTOTAL			_ 33.9		
FACTOR (3)	Sands	tone				63.6		
	_VOLCAN	NICS						
	GRANIT	E (BRITTLE OR WEATHERED)						
	SLATE							
			SUBTOTAL			63.6		
FACTOR (6)	Mudst	one				2.5		
	VOLCAN	NICS						
	SLATE							
			SUBTOTAL	<u> </u>		2.5		
FACTOR (10)	SLATE							
	SHALE							
			SUBTOTAL					
COMMENTS:	Crushed b	у	FACTOR 1 X 33.	9	_ =	33.9		
Predomin	antly s	oft, brown, rounded sandstone.	FACTOR 3 X 63.	9		191.7		
	-		FACTOR 6 X 2.	5	_ =	15.0		
			FACTOR 10 X					
		90	<u> </u>					
PER:			*P.N.* TOTAL 241					

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

CLIENT:	Atlantic Geoscience Centre/B.I.O.	PROJECT:	NAO-126	58
Contact:	Gordon Fader	DATE:	January	, 26 , 1995
PIT NAME:	Station #13	DATE TESTED:	January	24, 1995
DATE SAMI		ANALYST:	K. Bear	
DAIL OAM	Eule 6/1		Tre Bott.	
				1
	TYPE		WEIGHT	10.0
FACTOR (1)	QUARTZITE			7.9
	QUARTZ			7.9
	GREYWACKE			4.0
	SANDSTONE			67.6
	GRANITE			07.0
	CARBONATES			
	VOLCANICS BASALT			
	DOOLI		•	
		SUBTOTAL		89.5
FACTOR (3)	SANDSTONE			10.0
	VOLCANICS			
	GRANITE (BRITTLE OR WEATHERED)	·		
	SLATE			0.5
			······································	-
		SUBTOTAL		10.5
FACTOR (6)	SANDSTONE			
	VOLCANICS			
	SLATE			
	<u> </u>	SUBTOTAL		
FACTOR (10)	SLATE			
	SHALE			
		OUDTOTAL		
		SUBTOTAL		
COMMENTS:	Crushed by FACTOR	1 X 89.5	=	89.5
D 1 4	antly hard, rounded, red/brown granite, FACTOR	3 X 10.5	=	31.5
milky qua	artz and grey quartzite. FACTOR		=	
· J 1 1 - 1	FACTOR	10 X	=	
	91			
PER:	*P.N.* TO	OTAL 121	,	
, had to				

Sulte 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

CLIENT: Atlantic Geoscience Centre/ B.I.O.		B.I.O. PROJ	ECT:	NAO-1268		
Contact:		_		DATE:		26, 1995
PIT NAME:		Station #16	DATE TEST		January 2	
	u ED.	Station #10	ANAL	YST:	K. Bearne	
DATE SAMP	LED:				K. Bearing	= 5
						1
	TYPE				WEIGHT	%
FACTOR (1)	QUARTZ	ITE				6.7
	QUARTZ					6.2
	GREYW	ACKE				<u> </u>
	SANDST	ONE				
	GRANITI					70.0
	CARBON	NATES				
	VOLCAN	IICS		,		
	BASALT					-
	•		SUBTOTAL			₋ 82.9
FACTOR (3)	SANDST	ONE				16.5
	VOLCAN	IICS				
	GRANIT	E (BRITTLE OR WEATHERED)				
	SLATE					
			SUBTOTAL			16.5
FACTOR (6)	SANDST	ONE				0.6
	_VOLCAN	IICS				
	SLATE					
						0 (
			SUBTOTAL			0.6
FACTOR (10)	_\$LATE					
	SHALE					
			SUBTOTAL			
COLUMNICATIO	Couchad b		FACTOR 1 X	82.9	=	82.9
COMMENTS:			FACTOR 3 X	16.5	=======================================	49.5
Predominantly hard, rounded red/brown granite and soft, rounded brown sandstone.		-				
granite a	na sort	, rounded brown sandstone.	FACTOR 6 X	0.6		3.6
			FACTOR 10 X		=	
			92			
PER:			"P.N." TOTAL	136		

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

CLIENT:	Atlantic Geoscience Centre/B.I.O.	PROJECT:	NAO-1268	
Contact:	Gordon Fader	DATE:	January 26 , 1995	
PIT NAME:	Station #20	DATE TESTED:	January 25, 1995	
DATE SAME		– ANALYST:	K. Bearnes	

	TYPE		WEIGHT % 8.4	
FACTOR (1)	QUARTZITE		19.0	
	QUARTZ		19.0	
	GREYWACKE			
	SANDSTONE		62.9	
	GRANITE			
	CARBONATES	,		
	VOLCANICS BASALT		·	
	DAOALI			
		SUBTOTAL	_ 90.3	
FACTOR (3)	SANDSTONE / MUDSTONE		9.7	
	VOLCANICS			
	GRANITE (BRITTLE OR WEATHERED)			
	SLATE			
		SUBTOTAL	9.7	
FACTOR (6)	SANDSTONE			
	VOLCANICS			
	SLATE			
		SUBTOTAL		
FACTOR (10)	ŞLATE			
	SHALE			
		SUBTOTAL		
COMMENTS:	Crushed by FACT	TOR 1 X 90.3	= 90.3	
Predominantly hard, rounded, red/brown granite and milky quartz with soft, brown sandstone FACTOR 6		TOR 3 X 9.7	= 29.1	
			=	
and silts	tone.	TOR 10 X	*	
	~; Ee			
		* TOTAL 110		
PER:	-P.N	*TOTAL 119		

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

CLIENT:		Atlantic Geoscience Centre/B.I	.o. PROJECT:	,	NAO-12	268	
Contact:		Gordon Fader	DATE:		Janua	ry 26, 199)5
PIT NAME:	4	Station #21	DATE TEST	ED:	Janua:	ry 24 , 199)5
DATE SAMPLED:		-	ANALYST:		K. Bearnes		
							-
	TYPE			,	WEIGHT	%	
FACTOR (1)	QUARTZIT	E				15.0	<u> </u>
,,	QUARTZ					16.8	3
	GREYWAC	CKE					
	SANDSTO					9.2	2
	GRANITE					48.3	3
•	CARBONA	TES		· · · · · · · · · · · · · · · · · · ·			_
	VOLCANIC			,			_
	BAŞALT						
							_
		3	SUBTOTAL			_ 89.1	<u>3</u>
FACTOR (3)	SANDSTO	NE/Mudstone				9.1	<u>3</u>
	VOLCANIC	OS					4
	GRANITE	(BRITTLE OR WEATHERED)		•			
	SLATE					1.	4
				·····			
			SUBTOTAL			10.	7
FACTOR (6)	SANDSTO	NE					
	VOLCANIC	os					_
	SLATE						
			SUBTOTAL	· · · · · ·			
FACTOR (10)	SLATE						
	SHALE			· · · · · · · · · · · · · · · · · · ·			
	<u> </u>						
			SUBTOTAL			1	
COMMENTS:	Crushed by	1	FACTOR 1 X 89.	3	=	89.3	
		nantly red/brown, rounded,	FACTOR 3 X 10.			32.1	
hard gra	predomi nite, mi	mancry red/brown, rounded,	FACTOR 6 X	<u>/</u>	_ <u></u>	<u> </u>	
0-~	,		FACTOR 10 X				
		54	TACION IU A				
PER:			*P.N.* TOTAL 121				

Sulte 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

CLIENT:	<u>Atlantic Geoscience Centre/</u>	B.I.O. PROJECT:	NAO-126	3	
Contact:	Gordon Fader	DATE:	January	26, 1995	
PIT NAME:	Station #29	DATE TESTED	: January	25, 1995	
DATE SAMPLED:		ANALYST:	K. Bearnes		
	TYPE		WEIGHT	\ %	
FACTOR (1)	QUARTZITE			13.3	
	QUARTZ			3.3	
	GREYWACKE				
	SANDSTONE			2.2	
	GRANITE			9.2	
	CARBONATES				
	VOLCANICS				
	BASALT				
		SUBTOTAL		_ 28.0	
FACTOR (3)	SANDSTONE			66.4	
	VOLCANICS				
	GRANITE (BRITTLE OR WEATHERED)				
	SLATE				
		OUDTOTAL		66.4	
FACTOR (6)	SANDSTONE/Mudstone	SUBTOTAL		5.6	
FACTOR (6)	VOLCANICS			3.0	
	SLATE				
	OLATE				
		SUBTOTAL		5.6	
FACTOR (10)	SLATE				
	SHALE				
		SUBTOTAL			
0014457550	Ourholdhu	FACTOR 1 X 28.0		0 0	
COMMENTS: Crushed by				28.0	
Predominantly rounded, soft brown sandstone		FACTOR 3 X 66.4		9.2	
and siltstone.		FACTOR 6 X 5.6	3	3.6	
	E	FACTOR 10 X	=		
PER		*P.N.* TOTAL 261			

LOS ANGELES ABRASION METRIC TEST REPORT

Atlantic Geoscience Centre/Bio TO

Dartmouth, Nova Scotia

B2Y 4A2

Attention: Gordon Fader

PROJECT NO.

NAO-1268

DATE CLIENT P.O. January 26, 1995 23420-4-M195/01-HAL

CC

PROJECT 94-131 J.L. Hart					
SOURCE Station #16	TYPE OF SAMPLE 0.50"	Gravel	SAMPLED BY	Client	
DATE SAMPLED -	DATE RECEIVED	_	DATE TESTED	January 26,	1995
MATERIAL	. GRADING:	D			
ACTUAL SIEVE SIZES		AM	OUNT		
5mm + 2.5mm				5003.0	g
+					g
_ +					g
+					g
	TOTAL SAMPLE			5003.0	g
NO. OF REVOLUTIONS 500					
NO. OF SPHERES 6	TOTAL SAMPLE	out the same of th		5003.0	
WT. OF SPHERES g	+ 1.8 MATERIAL AFTER			3904.4	g
	- 1.8 MATERIAL AFTER			1098.6	g
LOS ANGELES ABRASION= LOSS TOTAL SAMPLE	1098.6 x 100 = 5003.0	22	%		

COMMENTS:

CSA A23.2 - 16A

96

TECHNICIAN D.Garden/B. Mercer REPORT CERTIFIED

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

SHELL CONTENT TEST RESULTS

CLIENT:

AGC/BIO

PROJECT:

NAO-1268

CONTACT: 23420-4-M195/01-HAL

DATE TESTED:

JANUARY 16, 1995

ANALYST: BM/KB

BS882:

1992

SAMPLE #	SHELL CONTENT COARSER THAN 10 mm		SHELL CONTENT FINER THAN 10 mm	
	%	***	%	***
1	0	0	0.1	0
4*		-		-
5	0.4	0	0.3	0
8	0	0	0.7	1
9	0.2	0	1.0	1
12*	-	-	-	-
13	0.2	0	0.3	0
16	0	0	0	0
17*	-	-	-	-
20	0	0	0.1	0
21	0	0	0	0
24*	mat .		-	-
25	0	0	1.0	1
28*	-	-	-	-
29	0.3	0	2.3	2

^{*}Insufficient material to conduct test

^{***}Rounded to nearest whole number

Suite 116, 900 Windmill Road Dartmouth, N.S. B3B 1P7 468-6486

AS RECEIVED MOISTURE CONTENT

CLIENT:

AGC/BIO

PROJECT:

NAO-1268

CONTACT:

Gordon Fader

DATE TESTED:

January 6, 1995

SAMPLE #	MOISTURE CONTENT %
STN #1	14.4
STN #4	41.4
STN #5	31.7
STN #8	24.4
STN #9	24.0
STN #12	26.6
STN #13	14.8
STN #17	32.6
STN #16	13.1
STN #20	18.3
STN #21	15.2
STN #24	34.3
STN #25	25.6
STN #28	43.2
STN #29	16.9

As received moisture; all samples arrived in a saturated condition.

c:\wpdoc\forms\armc.kb