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SPRUCE TREE CHEMISTRY TO ASSIST IN
GEOLOGICAL MAPPING OF AN OVERBURDEN-
COVERED EXTENSIONAL FAULT,
CENTRAL BRITISH COLUMBIA

Abstract

Biogeochemical surveys were conducted over a 150 km? area near Weedon Lake during late spring of
1988 and 1989. Twigs of black spruce (Piceamariana) were collected in an area covered by glacial material
and overlying a fault zone —the Weedon Fault—which juxtaposes Triassic basalt with Mesozoic and Tertiary
gneiss and granite. Twig ash was analyzed for 35 elements by instrumental neutron activation.

Results indicate that certain elements — namely Fe, Co, U, and rare-earth elements — found in spruce
trees could reflect the chemical contrast between the two bedrock types on either side of Weedon Fault,
despite the presence of glacial overburden. For some transects, concentration contrasts are quite sharp
and appear to clearly delineate the fault, while others are much less noticeable and are subtle contrasts.
For elements such as Ca and Zn, concentrations were controlled by the growth characteristics of spruce
trees rather than the bedrock composition.

High Au concentrations in twigs were found scattered throughout the study area and have no obvious
relationship with the fault. In several areas, anomalous Au concentrations were accompanied by enrichment
of Ba and As. Whereas data analysis revealed no significant statistical correlation between Au and any
other element, spatial relationships were noted.

Résumé

Des levés biogéochimiques ont é1é entrepris dans une région de 150 km?, prés du lac Weedon, en fin de
printemps 1988 et 1989. Des rameaux d’ épinettes noires (Picea mariana) ont été prélevés dans une région
tapissée de matériaux glaciaires qui recouvrent la faille de Weedon, laquelle juxtapose des basaltes du
Trias a des gneiss et des granites du Mésozoique et du Tertiaire. Les rameaux réduits en cendre ont été
analysés pour 35 éléments, par activation neutronique instrumentale.

Les résultats indiquent que certains éléments (Fe, Co, U et éléments des terres rares) identifiés dans
les épinettes pouvaient refléter les différences chimiques qui existent entre les types de substratum rocheux
de part et d’ autre de la faille de Weedon, en dépit de I’ existence de dépots glaciaires. Dans le cas de certains
cheminements, les différences dans les concentrations sont assez prononcées et semblent clairement
délimiter la faille; dans d’autres, cependant, les différences sont beaucoup moins notables et plus subtiles.
Dans le cas des éléments comme le Ca et le Zn, les concentrations correspondaient aux caractéristiques
de croissance des épinettes noires plutdt qu’ a la composition du substratum rocheux.

De fortes concentrations auriféres dans les rameaux ont été identifiées dans toute la région étudiée;
elles n’ont pas de rapports évidents avec la faille. Dans plusieurs zones, des concentrations auriféres
anomales étaient accompagnées de fortes teneurs en Ba et en As. L' analyse des données n’ a révélé aucune
corrélation statistique significative entre I'or et tout autre élément; des rapports spatiaux ont cependant
é1é notés.



SUMMARY

Spruce trees were regionally sampled and chemically
analyzed to assist in the mapping of subsurface bed-
rock geology in central British Columbia. Much of
central British Columbia is covered by a veneer of
glacial deposits. In the McLeod Lake map area, glacial
till and fluvial deposits cover an area where Takla
Group basalt and diorite, and Wolverine Metamorphic
Complex granitoids and gneisses are juxtaposed across
a regional normal fault (Weedon Fault). Spruce tree
twigs (primarily black spruce) were systematically
sampled across the suspected location of the fault. The
chemistry of the trees was determined to test the
hypothesis that bedrock chemistry would be reflected
in the tree chemistry.

The biogeochemical survey was done over 150 km?
near Weedon Lake, British Columbia during the late May
of 1988 and 1989. Twig samples were taken at 250 m and
500 m intervals along variably spaced traverses perpen-
dicular to the suspected fault zone. The twigs of black
spruce (locally white spruce) were of similar age and size,
and were collected from the bottoms of the trees. The
twigs were shipped to the GSC laboratories in Ottawa
where they were stripped of needles, dried, and ashed.
The ash was analyzed for 35 elements by instrumental
neutron activation, Of these elements 8 were consistently
below detection limit and were not considered further in
the investigation.

Statistical investigation of the element concentrations
revealed tree growth characteristics and substrate rela-
tionships. A large difference in overall concentrations
between the two sample years appears to reflect changes
in the spring growth pattern perhaps controlled by climate
differences. Warmer, moist conditions in the late winter
months of 1988 probably led to the onset of an earlier
spring and gave extra time for element accumulation
within the trees. Another possible factor that could have
contributed to this variation may have been that samples
taken in the first year were much closer to logging roads
than in 1989. Contamination, of mostly silicates and
possibly other elements, due to dust from these roads,
may have occurred. Some element concentrations (Ca,
Zn) were influenced by the tree metabolism.

Correlations were discovered between certain tree
element concentrations and substrate element concen-
trations (Fe, Co, U, rare-earth elements). These corre-
lations confirmed the interpreted position of the
contact between the Takla Group basalt and Wolverine
Complex granitoids and gneiss. They also confirmed
the hypothesis that regional variations in bedrock
lithology could be mapped in the tree chemistry. No
particular element was found to be concentrated along
the trace of the Weedon Fault.

SOMMAIRE

Des épinettes ont fait 1’objet d’un échantillonnage régional et
d’analyses chimiques, comme aide a la cartographie géologique du
substratum rocheux dans le centre de la Colombie-Britannique. La
majeure partie de ce territoire est recouverte d’un placage de dépdts
glaciaires. Dans la région du lac McLeod, du till glaciaire et des
dépbts fluviatiles couvrent une zone ol du basalte et de la diorite du
Groupe de Takla sont en juxtaposition avec des granitoides et des
gneiss du Complexe métamorphique de Wolverine, par 1’inter-
médiaire d’une faille normale régionale (la faille de Weedon). On a
prélevé systématiquement des rameaux d’épinettes (surtout
d’épinettes noires) a ’emplacement présupposé de la faille. La
chimie des arbres a ét¢ déterminée pour vérifier 1’hypothése selon
laquelle la chimie du substratum rocheux correspond a celle des
arbres.

Le levé biogéochimique a été effectué sur un territoire de
150 kmz, prés du lac Weedon, en Colombie-Britannique, a la fin du
mois de mai de 1988 et de 1989. Les rameaux ont été prélevés a des
intervalles de 250 et de 500 métres, le long de cheminements
espacés de fagon variable et perpendiculaires a la zone de failles
présupposée. Les rameaux d’épinettes noires (par endroit
d’épinettes blanches) étaient d’age et de dimension semblables et
ont été pris au bas des arbres. Ils ont été expédiés au laboratoire de
la CGC, a Ottawa, ott on les a débarrassés de leurs aiguilles, séchés
etréduits en cendre. Les cendres ont été analysées pour 35 éléments
par activation neutronique instrumentale. La teneur de huit de ces
éléments était systématiquement inférieure a la limite de détection;
on ne s’est donc plus préoccupé de leur analyse pour le reste de
1I’étude.

L’analyse statistique des concentrations d’éléments a révélé
I’existence de rapports entre les caractéristiques de croissance des
arbres et le substrat. Un grand écart dans les concentrations globales
entre les deux années d’échantillonnage semble refléter des vari-
ations dans la croissance printanicre, lesquelles sont peut-étre le
résultat de différences climatiques. Des conditions plus chaudes et
humides durant les derniers mois de I’hiver de 1988 sont prob-
ablement & 1’origine d’un printemps plus hétif, donc d’une plus
grande période de temps pour I’accumulation des éléments dans les
arbres. Un autre facteur qui peut avoir contribué a cette variation est
le fait que les échantillons prélevés durant la premiére année étaient
situés beaucoup plus pres des routes d’exploitation forestiere que
ceux de 1989. Il peut y avoir eu une contamination par la poussiére
provenant de ces routes, surtout en silicates et peut-étre en d’autres
éléments. Certaines concentrations d’éléments (Ca, Zn) ont été
influencées par le métabolisme des arbres.

Des corrélations ont été établies entre certaines concentrations
d’éléments dans les arbres et dans le substrat (Fe, Co, U, terres
rares). Ces corrélations ont confirmé la position, résultant de
I’interprétation, du contact entre, d’une part, le basalte du Groupe
Takla et, d’autre part, les granitoides et les gneiss du Complexe de
Wolverine. Elles ont aussi corroboré I’hypothése selon laquelle les
variations régionales de la lithologie du substratum peuvent étre
cartographiées par la chimie des arbres. Aucun élément particulier
n’a été trouvé en concentrations le long de la trace de la faille de
Weedon.



Gold concentrations were found to be higher than
average for trees from other surveys. The gold concen-
trations are not systematic with relation to the Weedon
Fault. Locally anomalous gold concentrations were
accompanied with enriched barium and arsenic.

This survey has shown biogeochemistry to be an
effective and efficient geochemical tool. It samples
multiple substrates rather than the single horizons of
soil samples. It is especially useful in areas of heavy
glacial overburden. Twig sampling proved tobe amuch
faster and less strenuous activity than traditional till or
soil sampling and the cost was comparable to other
geochemical methods. The importance of sampling
consistency cannot be over-stressed, as there are a
multitude of factors that affect the uptake of elements.
Minimizing these factors through uniform conditions
of sampling is required to achieve the most accurate
analyses and results.

On a observé que les concentrations auriféres étaient plus
élevées que la moyenne dans le cas d’arbres ayant fait 1’objet
d’autres études. Les concentrations auriféres ne sont pas en relation
systématique avec la faille de Weedon. Par endroits, des concentra-
tions anomales d’or étaient accompagnées de hautes teneurs en
baryum et en arsenic.

Ce levé a démontré que la biogéochimie peut étre un outil
géochimique efficace et efficient. Elle permet d’échantillonner des
substrats multiples plutdt que de simples horizons par échantillon-
nage des sols. Elle est surtout utile dans les régions ou les dépdts
glaciaires sont épais. Le prélévement des rameaux s’est révélé une
activité plus rapide et moins épuisante que 1’échantillonnage
régulier des tills et des sols et le colit se comparait aux autres
méthodes géochimiques. On ne peut trop mettre I’accent sur
I’importance d’une bonne méthode d’échantillonnage, compte tenu
du fait qu’il y a une multitude de facteurs qui influent sur I’assimi-
lation des éléments. Il est nécessaire de minimiser ces facteurs par
des conditions uniformes d’échantillonnage, afin d’en arriver a des
analyses et a des résultats d’une précision maximale.

INTRODUCTION

Bedrock geology of the McLeod Lake map area is mostly
covered by unconsolidated Pleistocene deposits. Complexi-
ties within the bedrock geology and its significance for eco-
nomic mineral potential and local chemistry have stimulated
the need to map the bedrock under the unconsolidated cover;
however, defining the geology cannot be done simply by
extrapolating from bedrock exposures because the overbur-
den cover is so vast. An approach examined in this report is
the application of black spruce twig chemistry to assist in
mapping the concealed bedrock.

Through multi-element analysis of black spruce trees
(Picea mariana) an attempt was made to: 1) map the Weedon
Fault, since there is a different bedrock chemistry found on
either side of the fault; 2) detect any significant concentrations
of economic minerals near or along the suspected fault trace
(an extension fault along which minerals can be deposited by
hydrothermal activity); and 3) record the local biogeochemi-
cal signature as a baseline for further research in exploration
and environmental management.

Cost effectiveness and improved analytical techniques,
coupled with a multitude of background data and literature
(see Brooks, 1983; Erdman and Olsen, 1985; Dunn, 1989a)
have made biogeochemistry a viable prospecting tool for a
variety of economic minerals. Unlike soils or tills, plants
derive their chemical composition from multiple sources
which may include all soil horizons, bedrock, groundwater,
and surface water. In areas of glacial terrain and transported
overburden, this method may be effective in revealing buried
mineralization and bedrock composition.

Although plants require certain elements for their growth,
their root systems can accumulate both essential and
nonessential elements in measurable quantities, including Au,
Ag (Warren and Delavault, 1950), U (Barakso, 1979), and
platinum group elements (Dunn, 1986a). Pape (1981) suc-
cessfully conducted multi-element analysis of plant ash to
recognize underlying rock types. He was able to observe
tectonic fault zones based on the concentration levels of
highly mobile Na. Dunn (1986c) and Ashton and Riese (1989)
were also able to differentiate lithology and recognize fault
and contact zones using biogeochemistry.

Factors and conditions affecting element uptake in
organic matter are complex, however a complete understand-
ing is not required to utilize plants as sampling media. When
certain rules and guidelines such as those outlined by Dunn
(1991a) are carefully followed in the design and implemen-
tation of a biogeochemical survey, meaningful and unique
information can be obtained. There is no attempt here to
completely characterize the potential chemical sources such
as the distribution of glacial materials or the flux of ground-
water; rather the tree chemistry is used to support a possible
model of bedrock distribution.

LOCATION AND SETTING

Environment

The project area is located in central British Columbia on the
NTS 93], 1:250 000 scale McLeod Lake map sheet and the
NTS 93J/11, 1:50 000 scale Weedon Lake map sheet (Fig. 1).
The area is accessible by a network of logging roads. The
terrain in the study area of approximately 150 km?2, is typical
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of the Interior Plateau. Topography is low and rolling with
elevations ranging from 2500 ft. (760 m) to 3200 ft. (975 m).
The landscape of moderately dense forest cover is interrupted
throughout by numerous lakes, marshes, streams, and other
wetlands. This area has been interpreted as belonging to the
Sub-boreal Spruce biogeoclimatic zone (Krajina, 1969).
Climate is characterized by short, warm summers followed
by severe winters. Temperature conditions range from -50°C
to +35°C. Annual precipitation averages 45-60 cm with much
of it falling during the late autumn and winter months.
Average sunshine during the spring and summer months is
250 hours, dropping to below 85 hours during fall and winter.

The area is mostly old growth forest with recent logging
activities. The cut-blocks encountered along traverses are
approximately 2-5 years in age. Black and white spruce
(Picea mariana; Picea glauca), lodgepole pine (Pinus con-
torta), and subalpine fir (Abies lasiocarpa) are the dominant
conifers. The main deciduous trees, including aspen (Populus
spp.), willow (Salix spp.), and alder (Alnus spp.), are common
in lowland and riparian areas. In poorly drained, damp
regions, only black spruce are found. Extremely wet and
swampy conditions prohibit the growth of trees and encour-
age mainly grasses, mosses, and small shrubs.

Regional bedrock geology

Weedon Lake area (Fig. 1) is underlain primarily by rocks of
the Wolverine Metamorphic Complex and the Takla Group.
These rocks form part of the morphogeological Omineca Belt
that traverses the length of the Canadian Cordillera (Gabrielse
and Yorath, p. 16, 1991; Fig. 2). The rock types and geological
history of these local rock suites are common throughout the
Omineca Belt.

Wolverine Metamorphic Complex records the compres-
sion of the Precambrian through Early Jurassic continental
margin of western North America during the Mesozoic and
early Tertiary (Parrish, 1976; Deville and Struik, 1990;
Struik, 1993). The complex consists of mainly sillimanite-
grade paragneiss, amphibolite, calc-silicate, marble, large
volumes of deformed granite and granodiorite, and unde-
formed granite, granodiorite, and syenite. Northwest of
McLeod Lake map area, rocks of the Precambrian Ingenika
Group and Cambrian Atan Group form part of the protolith
for the Complex (Ferri and Melville, 1990).

Ingenika Group consists of continent-derived arkosic
sandstone, shale, and carbonate. Atan Group consists of con-
tinental shelf quartz sandstone, shale, and reefal and shallow
water limestone.

Takla Group basalt, diorite, volcaniclastics, greywacke,
and minor limestone formed offshore of the western margin
of Triassic and Early Jurassic North America as an island arc
(Monger et al., 1972). During Mesozoic compression, the
Takla arc was thrust eastward over the margin (Monger et al.,
1972). Takla Group forms part of Quesnel Terrane which
includes the Nicola Group of southern British Columbia
(Wheeler and McFeely, 1991). The island arc suite is known
for its late stage (Early Jurassic) intrusives which host Cu-Au
deposits.

Wolverine Metamorphic Complex was uplifted and
exposed during the Tertiary (primarily during the Eocene
and Oligocene) by northwest directed crustal extension
(Deville and Struik, 1990; Struik, 1993). Compressional
fabric within the complex is overprinted with extensional
fabric near the contact with overlying low-grade
sequences. Shallow extensional faults and dextral strike-
slip faults bound the complex in the McLeod Lake map
area (Struik, 1993; Fig. 3). The complex has all the char-
acteristics of a core complex formed as a pull-apart during
dextral strike-slip motion (Parrish et al., 1988; Struik,
1989; Deville and Struik, 1990; Struik, 1993). Rock
sequences that originally lay between the Takla Group and
the Wolverine Metamorphic Complex are thought to
underlie the Takla Group in the hanging wall of the low-
angle extension faults above the complex. These rocks
include equivalents of upper Paleozoic Slide Mountain,
Earn, Road River, and Kechika groups (Struik, 1992).

Economic mineral occurrences are known in the region.
They are primarily Cu and Cu-Au intrusive systems in Takla
Group rocks (Nelson et al., 1991), with Hg along strike-slip
faults (Armstrong, 1949; Paterson, 1977). Precious metals
found locally in placer deposits may also occur as lodes
deposited by hydrothermal systems along the extension faults
bounding the Wolverine complex (Struik, 1989). Such
precious-metal deposits are known from similar tectonic
environments in the western United States (Wilkins et al.,
1986) and interpreted for southern Canada (Tempelman-Kluit
and Parkinson, 1986).

Local geology

Weedon Fault in central McLeod Lake map area (Fig. 1) is
interpreted as a low-angle extension fault separating the hang-
ing wall Takla Group basalt from the footwall Wolverine
complex felsic and amphibolitic rock. Struik and Fuller
(1988) interpreted the fault to follow the contact between and
Takla Group and Wolverine complex as mapped by Muller
and Tipper (1969) using aeromagnetic intensity patterns.

Wolverine complex northwest of the Weedon Fault
consists mainly of garnet-muscovite granite pegmatite and
sillimanite-muscovite-biotite psammite. Amphibolite and
calc-silicate exposures, a marble unit (interpreted from some
boulders of marble), and tufa springs lie in a thin belt northeast
of Joanne Lake. Takla Group southeast of the fault consists
mainly of agglomeratic augite basalt and a hornblende diorite
pluton (Fig. 4). Takla Group basalt is exposed east of Weedon
Lake and appears to be progressively more deeply buried by
glacial deposits to the south and southwest of the lake.

The formation of the Weedon Fault by crustal thinning
and tectonic denudation of the Wolverine complex makes it
a target for economic mineral deposits.

Quaternary geology

The surficial geology of the Weedon Lake area is dominated
by Pleistocene glacial deposits, which obscure most of the
bedrock geology. The Fraser glaciation of approximately



15 000 years ago (Clague et al., 1987) has been recognized
as the final stage of glacial history for this area (Tipper, 1971).
During that time, ice originating from the Coast Mountains
flowed down onto the Interior Plateau travelling northeast
before being diverted by glaciers from the Cariboo Mountains
to the east.

VO3ANINO

Figure2. Morphogeological belts of the Canadian
Cordillera with the location of the McLeod Lake area (see
Fig. 1 for detail).

Glacial grooves and drumlins dominate the landscape and
clearly define the northeasterly direction of ice advance
(Fig. 4). Till, the main deposit type, covers approximately
60% of the study area, including most of the Weedon Fault.
Also within the area, and partially overlying the fault, are the
remnants of a northeast-trending meltwater channel, sub-
parallel to both fault trace and ice movement, and marked by
lower elevations. Sand and gravel, sorted and deposited by
glaciofluvial processes, are present along many of the roads
south and southwest of Weedon Lake. Outwash plains, esker
complexes, and lateral overflow channels are other glacial
features found in the area. The absence of terminal moraines,
kettle deposits, and other ice stagnation features suggests
constantly active ice during both advance and retreat of the
Fraser ice sheet.
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Figure 3.

Generalized bedrock geology of the McLeod
Lake and Pine Pass (SW)map areas encompassing the study
area (Struik, 1993).
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METHOD
Sampling

Sampling consistency over time is an important consideration
for any biogeochemical study. Species, age, tree organ type,
and health of the material sampled all play significant roles
in varying element concentrations, and inconsistencies will
often make comparisons difficult (Dunn, 1983). For this
project black spruce (Picea mariana) twigs were chosen as
the sampling medium. In addition to the overall abundance of
black spruce in the area, previous work is most abundant
(Dunn, 1981, 1988, 1989b; Warren et al., 1968; Cohen et al.,
1987) thus allowing for more data comparisons. Spruce has
been reliably shown to accumulate a variety of nonessential
metals and their pathfinders, including Au, Ag, U, As, plati-
num group metals, and Hg (see references above).

Seasonal variations also contribute to fluctuations in plant
chemistry and may enhance or diminish anomaly-to-back-
ground contrasts. Evidence from Schiller et al., (1973) and
Cohen et al. (1987) indicates that spring, a time of accelerated
sap rise, appears to be the optimum sampling season since this
is when the highest concentrations occur; therefore this pro-
ject was conducted in spring to take advantage of these
findings.

Fieldwork was carried out in late May of 1988 and 1989.
Black spruce twigs were collected along seven traverse lines
across the suspected position of the Weedon Fault. Within

1 km of either side of the fault, samples were collected at
250 m intervals along the traverse route. Beyond this 1 km
zone, additional samples were taken at 500 m intervals up to
3 km away from the fault (Fig. 5). The philosophy for this
sampling approach was to maintain a regional spread of sites
with as simple a control grid as possible. In all, 151 samples
were collected and analyzed.

Sampling in 1988 lasted two days beginning May 27.
Four traverses, using two sampling teams, were conducted
along existing logging roads that crosscut the fault. To mini-
mize contamination of samples from roads (through leaching
and airborne particles), collection sites were at least 30 m
from the roadside. The 1989 sampling period began on
May 24. A single sampling team completed three traverses in
a total of four days. These cross-country traverses were
located between the previous year’s lines in order to increase
the sampling density. Summary cross-sections of topography,
tree distribution, glacial deposit type, and sample sites for the
seven transects are presented in Figure 6. Of the 50 samples
taken in 1989, 11 were later discovered to be white spruce
(Fig. 5).

At each sample site, twigs of similar size and diameter
(approximately five to ten years of growth), taken from trees
of similar size and age, were collected from within reaching
distance using teflon-coated anvil clippers. Approximately
100-150 g of combined twig and needle from each sample
tree was placed in 20 x 30 cm cloth bags.
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Sampling time was usually quick and the light load of twigs
proved to be a definite advantage for the cross-country traverses.
Some minor problems arose during the sampling process. Log-
ging activities often created difficulties in obtaining twig sam-
ples since extensive clear-cut blocks left no trees to sample.
Logged areas were unavoidable in this region, and resulted in
missed samples or lengthy detours to obtain one. Species iden-
tification and distribution also created difficulties in the field.
Although the decision was made to sample only black spruce,
sampling errors resulted in two non-spruce samples in 1988 and
almost a dozen samples of white spruce in 1989. Another
occasional problem was the absence of reachable twigs which
led to shoulder-standing in order to obtain a sample.

Analysis

The bagged twig and needle samples were shipped to the
Geological Survey of Canada in Ottawa for preparation and
chemical analysis, using the technique described by Dunn
(1986¢). The samples were first air dried and microwaved to
remove all moisture. The needles were then separated from the
woody material and archived for possible future use. The twigs
were weighed, then ashed in a kiln at 470°C; the resultant
products were placed in vials and subjected to multi-element
analysis performed by Activation Laboratories (ACTLABS)
using instrumental neutron activation analysis (INAA). Costs for
sample preparation and analyses were approximately
$15/sample (1990 prices).

Concentration values received from the lab were then
transferred to a database and subsequent analyses were
performed on these data using simple statistical programs and
a geological statistics package. Maps and graphs were gener-
ated using CAD and spreadsheet programs.

RESULTS

Datareceived from ACTLABS are provided in Appendix A. Units
of concentration and minimum detection levels for ash samples are
given for each element. Overall precision and accuracy based on
sevenduplicate pairs and eight standards were generally better than
+ 10% with greater differences near detection limit.

Of the 35 elements tested, eight were found to be consistently
below the limits of detection and were subsequently discarded
from any further data analyses. Of these elements Ag, Ir, W, Tb,
Ta, and Ni likely reflect the actual concentrations within the
sample, whereas any Hg would have been volatized during the
ashing process (C.E. Dunn, pers. comm., 1989) as would some
Se (Dunn, 1986b). Of the remaining 27 elements, concentrations
below detection level were reduced to one-half the detection
limit for statistical purposes. Summary statistics and probability
plots for these elements were performed separately for 1988 and
1989 samples and are included in Appendix B.

Annual variation

Basic statistics for the elements (mean and median), for 1988
and 1989 samples, revealed mean element concentration
values appreciably higher in the first year (Table 1).
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Concentrations for 18 of the 27 elements were found to be
greater in 1988, with the remaining nine ¢lements either
higher in 1989 or generally consistent between years. As a
result of this, values for the two years were not combined and
statistical analyses were done separately for each year.

Variation of element concentrations from one year to
another was not unexpected, since it has been observed by
others (Dunn, 1983; Stednick and Riese, 1987) in past

Table 1. Mean and median concentration values (ppm) for
1988 and 1989 samples

MEAN | MEDIAN MEAN | MEDIAN
1988 1988 1989 1989
Au 12.19" 11.0% 651" 7.15*
As 6.61 6.2 11.59 12.49
Ba | 281838 | 2697.7 3757.8 4049.5
Br 103 10 19.06 17
Ca 125" 13.46" 18.67" 18.1%
Co 9.37 10 4.84 5
cr 43.56 60 11.4 11
Cs 1.31 13 0.771 0.85
Fe 121" 1.30" 388" 0.38"
Hf 154 1.7 0.62 0.8
K 10.02* 103" 13.38" 12.95"
Mo 3.56 4 4.07 5
Na | 69183 7500 2492.6 2440.1
Rb 89.13 68.55 98.14 935
Sb 0.97 0.8 0.6 0.6
Sc 4.46 5.4 1.22 12
sr | 877 2.83 1264.1 1200.1
Th 1.02 12 0.34 0.4
U 0.33 0.6 0.067 0.05
zn | 13122 -1256 2204.8 2099.9
La 7.35 7.95 2.6 2.65
Ce 133 15 4.14 45
Nd 5.82 7.15 3.16 25
sm 1.34 1.35 0.38 0.4
Eu 0.2 0.42 0.019 0.01
Yb 0.714 0.84 0.2 0.25
Lu 0.091 0.11 0.036 0.025
*
+[E:srb cent




surveys; however, the variation between years differs widely
between elements, and the magnitude of that variation for
some elements was surprisingly large. To illustrate, Mo
concentration median for the two years (4.0 and 5.0 ppm)
show little variation compared to Na values of 7500 and
2440.1 ppm. For most of the elements, a substantial differ-
ence between 1988 and 1989 values exists that cannot be
explained by natural variations or sampling error.

Species variation

The opportunity arose to compare the chemistry of twigs from
white spruce with those from black spruce. Note, however
that only 11 white spruce samples were taken so that statistical
analysis is somewhat restricted and any conclusions can only
be regarded as tentative.

Dunn (1991b) noted that black and red spruce have similar
chemical compositions, but found them distinctly different
from those of white and Engelmann spruce. For this survey,
the data for most elements obtained from the 1989 collection
of white spruce more closely resemble the black spruce
concentrations of the same year than those of 1988. An
assemblage of elements, observed to be higher in either black
or white species were compared using median values
obtained in this survey. Iron, sodium, chromium, thorium,
and uranium levels were found to be higher in black spruce,
confirming observations by Dunn (1991b). Rubidium,
calcium, strontium, and zinc values showed greater concen-
trations in white spruce.

Lithological variation

Chemistry of the trees overlying the area was used to differ-
entiate between the felsic and mafic rocks and thereby more
clearly define the position of the Weedon Fault. Spruce tree
chemistry was also used to search for potential economic
mineral deposits along the Weedon Fault. To assess possible
chemical differences in spruce twigs on either side of Weedon
Fault, a significance test was performed on a selection of
element concentrations. The elements chosen represent com-
mon constituents of either felsic or mafic rock compositions.
By performing this test it was hoped that element concentra-
tions of twig ash from trees overlying mafic Takla Group
basalt could be distinguished from those overlying felsic
granite of the Wolverine complex. The mean concentrations
of twenty-two element populations were compared for each
year using the Student’s t-test and are shown in Tables 2, 3,
and 4.

Based on 37 degrees of freedom and at 95% confidence,
nine elements were found to have significant t-values (>2.04)
in 1989. In 1988, based on 67 degrees of freedom, eighteen
elements (including all elements significant in 1989) were
considered to be significant (>2.0). The 1989 white spruce
element means were also tested and resulted in significant
t-values for only two elements — Ba and Na.

At the upper confidence level (99.5%) there is again a
greater number of elements with significant t-values in 1988
than 1989; a total of fifteen elements with meaningful t-values

in 1988 compared to only five the following year. For both
years Cr, Na, Sc, Th, and Yb showed highly significant
concentration differences between the two sides of the fault.
All of these elements displayed greater concentrations south-
west of the fault, an area underlain by Takla Group basalt. A
test using 1989 white spruce elements did not produce any
t-values above the 99.5% level.

In most cases variations across the fault appear to reflect
bedrock compositions. There were, however, some
unexpected results. Concentrations of Na and Th, elements
more abundant in felsic rocks, were found to be greater in
trees overlying mafic rocks. In conifers these elements char-
acteristically follow Fe, which is enriched in mafic rocks.
Conversely, Ca and Zn concentrations were greater in areas
underlain by felsic material despite their abundance in mafic
compositions. These two elements are essential for plant
growth and may therefore not reflect concentrations in the
underlying rocks. '

A selection of element profiles (As, Au, Co, Fe, K, La, Sc,
U, Zn) were plotted for two traverses — one from each year
(Fig. 7). In addition, concentration profiles of Cr were plotted
for all seven traverses (Fig. 8). These profiles effectively
illustrate both the variation of concentration between years,
and in some cases the variation of element concentrations
between either side of the fault. Chromium transects II, IV,
and VI — sampled in 1989 — show much smaller values than
1988 transects (I, I, V, VII). Both years obtained highly
significant t-values, however the subdued contrast of concen-
tration values across the fault make it less obvious than those
of 1988. Iron, lanthanum, and uranium values along transect
I appear to delineate the contrasting bedrock chemistry
perfectly.

Probability plots were used to construct maps for 16
elements (Fig. 9), outlining the distribution of concentration
levels above the 80, 90, and 95th percentiles. By plotting
percentiles separately for both years, as opposed to simply
indicating the largest numbers, normalization and combina-
tion of two distinct data sets was accomplished. While there
are elements which indicate a relationship to one or the other
side of the fault, there do not appear to be any elements —
metals in particular — related to the inferred Weedon Fault
itself.

Element correlations

Correlation analysis was conducted to determine possible
interrelationships between element pairs. R-values were
calculated using a selection of elements, and are displayed in
a correlation coefficient matrix (Table 5).

A high degree of linear correlation based on 99% prob-
ability exists for most of the elements in the table. Consistent
negative correlation values occur for Ca, K, and Zn, indicat-
ing an inverse relationship with the other elements. Values
for Cs, Rb, Br, and Mo had few relationships with other
elements. Linear regression plots are also given (Fig. 10)
illustrating the range of r-values found in the matrix.
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Table 2. T-test evaluation for black spruce population — 1988 Takla Group basalt vs.
Wolverine Metamorphic Complex

TAKLA WOLVERINE T TAKLA WOLVERINE T
N=34 N =35 VALUE N =234 N=35 VALUE
Au X=14.59 X =282 La X=105 X=6.64
ppb m=9.0 m=11.0 4.40 ppm m=97 m =5.85 3.94
s =20.46 s=35.54 $=4.43 §=3.50
<510 119 <510 168 2910 19.0 2.0to 15
As X=7.81 X=7.64 Mo X=4.46 X=437
ppm m = 6.40 m =6.05 0.235 ppm m=4.0 m=4.0 0.36
=517 s=4.48 §=2.53 $=2.89
2.0t021.0 2.0t0 24 <2.1010.0 <2.t012.0
Ba X =2597.06 X =3440.0 Na X=9994.12 X = 6396
ppm m =2200.0 m = 3150.0 -3.50 ppm m = 9950 m=5165 3.88
s=1110.42 s=1161.69 s =4105.26 s =13890.8
1400 to 5500 2000 to 6100 2790-17800 1760-16600
Br X=10.74 X=13.31 Rb X=84.18 X=109.77
ppm m=9.0 m=12.0 -2.03 ppm m=78.0 m=98.5 -2.79
s=948 s=8.92 5=32.83 s =50.44
4.0 10 60.0 4.0t0 55.0 3910 150 55 to 280
Ca X=1143 X=15.09 Sb X=1.79 X =0.846
% m=10.8 m=14.25 -3.98 ppm m=20.9 m=.750 2.95
s=450 s=3.58 s=1.84 s =0.366
5.6t024.8 7.3t021.2 0.5t06.2 02t0 1.9
Co X=12.08 X=8.53 Sc X=6.89 X=4.05
ppm m=12.0 m = 8.50 3.58 ppm m=6.5 m=3.9 4.18
s=3.88 §=3.23 s=2.99 s=2.47
4.0t019 1510 15.0 171013 0.6t09.9
Cr X=6174 X =40.37 Sr X =857.21 X=1213.57 )
ppm m =62.0 m = 40.0 3.82 ppm m =780.0 m = 1050.0 -2.42
s§=24.77 s=22.69 $=618.99 s=727.21
15.0to 130 10 to 90 155 to 4000 155 to 3400
Cs X=147 X=1.60 Th X=1.49 X=0.976
ppm m=1.4 m=1.25 -0.16 ppm m=1.6 m = 0.950 3.20
s=.571 s=1.24 s=0.642 s =0.523
<5102.8 <5105.9 0.3t0 3.0 <1t0o2.1
Fe X=1.752 X=1.11 U X=0.797 X =0.401
% m=1.66 m=1.07 3.88 ppm m =.800 m = 0.075 4.42
$=0.739 s =0.609 s =0.496 s=0.448
0.50 t0 3.37 0.26 t0 2.62 <1t023 <1to15
Hf X=1.87 X=1.58 Yb X=1.07 X=0.679
ppm m=1.90 m=1.40 .908 ppm m=1.0 m = 0.61 3.45
s=0.703 s=0.608 s =.455 s =0.365
<.5t0 3.1 <51029 0.31t01.92 <.05t0 1.43
K X=9.31 X=12.15 Zn X'=1193.53 X =1636.57
% m=9.22 m=11.25 -3.04 ppm m=1100 m = 1600.0 -3.46
§=3.27 s=4.06 s = 447.36 s = 659.62
26710175 5.09t0 21.2 520 to 2500 870 to 3800

Significance values for t-test
n = 69; Degrees of Freedom (n-2) = 67
95.0% confidence level = 2.00

99.5% confidence level = 2.91




Table 3. T-test evaluation for black spruce population — 1989 Takla Group basalt vs.
Wolverine Metamorphic Complex

TAKLA WOLVERINE T TAKLA WOLVERINE T
N=17 N =22 VALUE N=17 N =22 VALUE
Au X=28.06 X=7.89 La X=3.271 X=2.28
ppb m=7.0 m=7.0 0.592 ppm m=23.0 m=2.4 2.82
s=5.03 s=7.80 s=1.35 s$=0.78
<5t021.0 <51043.0 1.5106.9 1.0t03.7
As X=12.29 X=13.23 Mo X=4.82 X =3.96
ppm m=10.4 m=13.0 -0.283 ppm m=5.0 m=4.0 1.05
$=6.37 s=5.88 §=235 s=2.24
4710 25.0 2510240 <2.t010. <2.109.0
Ba X =13876.47 X =4209.09 Na X =3097.65 X=2161.82
ppm m = 4050 m = 4300 -.472 ppm m=2715.0 m =2040.0 3.14
s=1258.24 s=1525.30 s=1245.91 s=616.37
2100 to 6300 1700 to 8500 1690 - 6000 1250 - 3360
Br X =19.882 X =20.96 Rb X=112.12 X=117.27
ppm m=17.0 m=20.0 -0.33 ppm m = 99.50 m=984.0 .380
s=6.36 $=845 5=37.48 $=81.33
15.1to0 34. 11.0 to 35. 59.21t0 210 53 to 450
Ca X=17.99 X=19.577 Sb X =0.959 X=0.518
% m=17.55 m=19.6 -2.12 ppm m = 0.65 m=0.5 2.88
s=2.24 s=257 s=0.893 s =0.261
15.1t023.2 15.21024.3 0.3to 4.1 03to14
Co X=6.0 X =468 Sc X =1.688 X =1.009
ppm m=5.0 m=4.0 1.15 ppm m=1.55 m=1.0 3.45
s=3.59 s§=224 s=0.81 s =0.383
2.0t0 16.0 2.0t012.0 0710 3.7 04101.8
Cr X=16.24 X =9.46 Sr X =1324.71 X =1281.82
ppm m=14.5 m=10 3.87 ppm m = 1200 m = 1200 0.39
s§=7.30 s=4.19 s = 407.51 s =423.35
7.0t0 35 401019 780 to 2100 810 to 2300
Cs X=1.112 X =.848 Th X =.541 X=.293
ppm m=0.95 m=0.80 1.30 ppm m = 0.50 m=20.3 3.37
s=.789 s=.734 s =.240 s=.167
<5103.7 <5102.3 0210 1.0 .0510 .50
Fe X=.513 X =0.333 U X=0.109 X =0.098
% m = .435 m=.320 2.95 ppm m=0.05 m = 0.05 .251
s =.247 s=0.124 5=0.153 §=0.122
221t01.14 .190 t0 .60 <.1100.6 <1t00.5
Hf X=.812 X=.732 Yb X=.324 X=0.18
ppm m = .80 m = 0.80 .385 ppm m = .280 m=.210 3.32
s=.472 s=.432 s=.127 s=.118
<5014 <51t01.5 1910 .63 <.05 t0 .380
K X =13.458 X=14.61 Zn X=2117.65 X=282273m
% m=13.1 m=13.9 -1.12 ppm m=2100 = 2400 -1.04
s =3.61 s =3.60 $=542.3 s =578.02
7.9110 20.5 9.07t021.4 1400 - 4000 1100 to 3600

Significance values for t-test

n = 39; Degrees of Freedom (n-2) = 37

95.0% confidence level = 2.04
99.5% confidence level = 3.03




Concentration values from spruce twigs were compared
to values collected from a regional stream sediment survey of
the same area. This comparison emphasizes the differences
between silt and plant geochemical surveys. Plant metabolism
controls much of the element uptake unlike the straightfor-
ward concentrations in the silts. These sediments, taken in
1985 (British Columbia Geological Survey, 1988) originate
from a large source area and represent concentration levels
from both sides of the fault. These samples were analyzed
using atomic absorption spectroscopy (except for U),

resulting in different detection levels for some elements.
Concentration values, however, appear adequately above
detection level to make comparisons. Eight elements common to
both surveys were compared (Table 6).

Barium, molybdenum, zinc, antimony, and uranium differ
substantially between surveys. With the exception of U, sedi-
ment mean values appear to be lower than those found in the
ash of the twig samples. Concentrations of Co, As, and Fe
show lesser variation.

Table 4. T-test evaluation for white spruce population — 1989 Takla Group basalt vs.

Wolverine Metamorphic Complex

TAKLA WOLVERINE T TAKLA WOLVERINE T
N=6 N=5 VALUE N=6 N=5 VALUE
Au X =6.67 X=52 La X=5.95 X =1.60
ppb m=75 m=6.0 0.85 ppm m=3.45 m=1.50 1.93
s=3.40 s§=275 s =552 s=0.37
As X =12.93 X=9.88 Mo X=3.0 X =220
ppm m=12.0 m=12.0 1.10 ppm m=25 m=1.0 0.723
s=4.74 s=5.43 §=2.28 s=1.64
Ba X =2700.00 X = 3800 Na X =6313.3 X =1634
ppm m = 2350.0 m = 3700 -2.09 ppm m = 6291.8 m = 1560 4.20
s =885.0 s =1039 s=2715 s =294
Br X=17.83 X=23.8 Rb X=127.3 X=212.4
ppm m=16.0 m=198.0 -0.97 ppm m=95.0 m =170.0 -1.36
s=8.77 s=13.63 s =280.8 s = 146.21
Ca X =14.57 X =20.94 Sb X=217 X =0.380
% m=16.4 m=21.4 -3.02 ppm m=.65 m =0.40 1.75
§=4.37 s=3.08 s =251 s =0.080
Co X=8.33 X =5.60 Sc X =3.82 X=0.72
ppm m=6.0 m=6.0 1.05 ppm m=1.3 m=0.7 1.76
s=592 s =2.61 §=4.32 s=0.19
Cr X =28.83 X =5.80 Sr X=1190 X =1272.0
ppm m=13.5 m=>5.0 2.03 ppm m = 1200 m = 1100.0 -.428
s=27.7 s=1.64 s =298 s = 406.0
Cs X=1.28 X=1.64 Th X =0.87 X =0.20
ppm m=1.2 m=2.30 -0.56 ppm m=0.3 m = 0.30 1.75
s=1.05 s=1.31 s=0.93 s=0.14
Fe X=107 X =0.21 U X =0.350 X =0.05
% m=0.43 m=021 1.86 ppm m =.050 m = 0.05 1.56
s=1.13 s =0.04 s =0.470 s=0
Hf X =093 X =0.25 Yb X =0.63 X =0.08
ppm m=0.25 m = 0.25 1.56 ppm m=.36 m = 0.025 2.10
s=1.07 s=0 s =.64 s=0.07
K X =15.03 X =16.08 Zn X =1763.33 X =2340.0
% m = 16.95 m = 15.80 -0.45 ppm m = 1700 m = 2500.0 1.35
s=481 s=3.26 s=773.0 s =792.46
Significance values for t-test
n = 69; Degrees of Freedom (n-2) = 67
95.0% confidence level = 2.36
99.5% confidence level = 4.03
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Gold

Gold levels in spruce ash were unusually high in 1988 sam-
ples; background levels in black spruce twigs elsewhere are
commonly less than 10 ppb Au (Dunn, 1986b). Gold
concentration values range from below detection level
(5 ppb) to above 100 ppb in 1988 samples and are below
45 ppb in 1989 samples. Mean and median values using log
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respectively and of the 1989 survey, 6.5 and 7.2 ppb
respectively.

A single value of 187 ppb Au, sampled on transect III at
T88-28 (1988 sample), was later discovered to be from
subalpine fir. Despite this, adjacent black spruce with Au
values in the upper ranges (above the 80th percentile) con-
firm a probable zone of Au enrichment. Another zone of high
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Figure 7. Element concentration profiles along 1988 sample traverse I (C88-41 to C88-26; squares)
and 1989 traverse 11 (89-15 to 89-29; diamonds) for selected elements: A) Au, B) As, C) Co, D) Fe,
E) K, F) La, G) U, H) Zn. F denotes inferred position of Weedon Fault.
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Au occurs at transect V (1988 sample) with values of 73 and
162 ppb. High concentrations of Au in 1989 samples occur
mostly as single station anomalies. Transects IV and VI
exhibit possible small zones of enrichment with two adjacent
anomalous stations.

Unlike many of the elements listed in Table 5, Au is
noteworthy for its low statistical correlation with other
elements determined in this survey. In one exception, the
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r-value for Au and Sr obtained in 1989 samples had a rela-
tively high correlation coefficient (0.4436), yet the corre-
sponding 1988 r-value does not support this.

A visual comparison of Au anomalies with other metals
and common pathfinders reveals some possible relationships
with As and Ba. Enriched levels of these elements are found
to be either adjacent to or occupying the same stations
containing high Au (cf. Dunn, 19864, b). It should be noted
that this is not the case for the Au zone in transect V. With
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the possible exception of Rb, there appear to be no visual
correlations of any element within this zone. Anomalous
levels of Au do not appear to be directly related to the fault.
A two-site anomaly of high Au levels on transect VI fall
directly on the proposed Weedon Fault, however the remain-
ing high level zones are found to be scattered randomly
throughout the area up to 3 km away on either side of the
interpreted fault line.

It is difficult to conclude whether or not a Au concentra-
tion difference exists between the two sides of the fault.
While 1988 values are highly significant, values for neither
black nor white spruce are significant in 1989 samples.

Other elements

Arsenic, barium, and molybdenum appear to have higher than
usual levels of concentration (C.E. Dunn, pers. comm., 1991).
Spruce twigs overlying known metasomatic mineralization
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Figure 8. Profiles of chromium concentration (in ppm) along sampling
traverses. Vertical scale of transect IV applies to all transects.
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and sampled by Warren et al. (1968), contained mean As
values of 7 and 13 ppm. Mean values of 6.6 and 11.6 ppm for
the two years were obtained in this survey. Values for Mo,
usually below the detection level of 2 ppm (C.E. Dunn, pers.
comm., 1991), are 3.5 and 4.1 ppm.

The sensitivity of black spruce to U has been well docu-
mented by Dunn (1983). Uranium in this area appears to be well
below background levels of 0.5 ppm (Hawkes and Webb, 1962)
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with mean values of 0.33 and 0.07 ppm. For most stations in
1989 sampling, U is below the minimum detection level of
0.10 ppm. Significant correlation with Fe, Zn, and Sm deter-
mined in this survey support observations of the same by
Dunn (1981).

Iridium values are found to be below detection in all
samples indicating the probable absence of platinum group
metals in the area (Dunn et al., 1989).
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Figure 10. Scatterplots illustrating range of r-values; a)Au vs. As, b) Co vs. Zn, ¢) Cr vs. U,
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Table 6. Element concentrations from black spruce twig
ash and stream sediment survey, Weedon Lake area

REGIONAL SPRUCE SPRUCE
SEDIMENTS SURVEY SURVEY
1987 1988 1989
As 5.53 ppm 7.74 ppm 12.36 ppm
Ba 761.33 ppm 2588.57 ppm 3525.09 ppm
Co 12.2 ppm 11.89 ppm 6.74 ppm
Fe 2.49% 1.72% 0.67%
Mo 3.47 ppm 4.37 ppm 4.61 ppm
U 3.43 ppm 0.78 ppm 0.17 ppm
Zn 84.46 ppm 1193.72 ppm 2938.26 ppm
Sb 0.40 ppm 0.80 ppm 0.50 ppm

Ash yield

Mean percentage ash yield of twigs was higher in 1988
samples (3.16%) than in those collected the following year
(2.6%). The 1988 values range from 1.6 to 8.36% and 1989
values range from 1.6 to 6.95%. Spruce twig ash yields are
generally close to 2.0%, so 1988 sample levels are considered
high (C.E. Dunn, pers. comm., 1991). Ash levels along tran-
sect I are especially high with an average 4.34% yield. These
higher levels in 1988 samples are likely due in large part to
dust originating from the nearby logging roads. Traverses
conducted in 1989, for the most part, were away from roads
so were not subject to this source. At some sample sites
logging roads were encountered along the 1989 traverse II
(89-47 to 89-52). These stations exhibit the highest ash yields
for that year and seem to confirm the substantial contribution
made by the road dust.

Higher ash yields dilute the absolute concentration of
most trace elements, since dust contaminants are mostly
silicates. Samples with high ash yields and associated values
of high Au or any other element would be considered anom-
alous since the excess levels of ash are actually subduing these
values. The higher ash content of 1988 samples would mean
that the variation between the two years is even greater than
the uncorrected concentrations imply.

DISCUSSION

Annual variation

Climate may account for the distinct differences between the
two years of sampling. Monthly temperature and precipita-
tion data obtained from the weather station at Prince George
Airport (Fig. 11) suggest a colder, drier climate in the start of
1989 which may have resulted in a late spring and delayed
movement of sap through the trees. Several elements such as
As, Zn, Rb, and Sr are more enriched in samples collected in
1989, suggesting that uptake by some elements may not be
affected by climate or that other factors, as yet unrealized,
influence the uptake of elements.

Contrasting these observations, Stednick and Riese
(1987) found between-year variation of elements nonessen-
tial to tree growth (notably Au), but relative stability of
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essential elements such as Zn. In the 1988-1989 study essen-
tial elements Zn, K, and Fe showed considerable between-
year variation as did nonessential elements.

Lithological variation

Concentration profiles for U, Zn, Fe (with associated ele-
ments La and Sc), and Cr (Fig. 7 and 8) would seem to indicate
that bedrock chemistry does have a strong influence on the
chemical make-up of the trees. It is important to note however
that although this survey has been successful in identifying
the different bedrock composition, the trees are a reflection
of multiple substrates such as soil, groundwater, glacial and
recent fluvial deposits, and bedrock. In addition to this,
growth processes within the tree itself influence the uptake of
elements.

The contradiction of plant and bedrock element abun-
dance for Ca, Zn, Th, and Na in this survey illustrates the
inevitable complexities of utilizing biological systems.
While it is possible that these results may be reflecting
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Figure 11. Monthly temperature and precipitation values for
1988 and 1989 obtained from the Prince George airport
weather station.



element abundance in other media (i.e., groundwater or
glacial deposits), it may be that the tree’s metabolism itself is
promoting or inhibiting the accumulation of an element.

Element relationships, again established by the plant,
could also affect the uptake of elements. The strong antago-
nism that exists between Fe and both Ca and Zn in spruce trees
(C.E. Dunn, pers. comm., 1991) may be responsible for the
unexpected distribution of the latter elements in this study.
The presence of high Fe concentrations east of Weedon Fault
may have caused a reduction in Zn and Ca values while the
lower Fe values in areas west of the fault may have allowed
for increased uptake of Zn and Ca. Analysis of a fairly large
selection of elements and an understanding of some tree
metabolic characteristics is required to avoid the possibility
of misinterpretation.

Previous studies have been successful in detecting fault
zones based on coincident element anomalies. Pape (1981)
recognized the superimposition of Ba-Mo and Na anomalies
along fault zones in Germany. Ashton and Riese (1989) found
that Au and As anomalies in Oregon, U.S.A. were often
related to bedrock contact zones. Element anomalies in this
study do not appear to delineate the suspected position of
Weedon Fault. The lack of anomalous metal concentrations
is perhaps due to the absence of mineralization along the fault,
since elements indicating faults in the previous studies appear
to be related to extensive mineralization within or near the
fault.

Gold

The lack of anomalous Au concentration along the interpreted
Weedon Fault suggests that the suspected position of the fault
may be misinterpreted, or the fault is too constricted to allow
hydrothermal movement, or it is simply not a source of Au
mineralization. There are, however, suggestions of potential
mineralization in this area that may be worth further investi-
gation. Levels of Au along the entire length of transect I1I are
quite high (41 ppb) and well above usual background levels
of < 10 ppb Au. For comparison, a mean Au content in black
spruce twigs overlying Au mineralization in Saskatchewan
was 44 ppb (Dunn, 1986b).

The possibility of contamination of samples from transect
III has been considered. Samplers were not known to be
wearing jewellery but samples collected along this transect
were taken close (20 to 40 m) to the road — a possible source
of contamination. C.E. Dunn (pers. comm., 1991) has found
that in order to totally eliminate any possible road contami-
nation, samples should be taken at least S00 m away; how-
ever, this is unlikely to explain Au enrichment since three
other transects surveyed close to logging roads did not record
similar levels of Au. Enrichment of Au (above 80th percen-
tile) along this transect was accompanied by elevated levels
of As and Ba.

Samples along transect III also yield above average ash
values. Chukhrov et al. (1979) observed higher ash yields in
areas where bedrock is more weathered. On the basis of high

Au and ash values this may indicate the presence of another
fault, although there is no other substantial geological evi-
dence.

CONCLUSION

Concentrations of certain elements analyzed in this survey
indicate a significant difference across the fault both statisti-
cally and visually. This is believed to be due in large part, to
the different chemistry of the underlying granite and basalt.
Elements that displayed concentrations contrary to expecta-
tions based on this assumption may indicate influences by
other substrates, or more likely to processes within the tree
which promote or discourage certain element accumulation.

For some elements such as Fe, concentration profiles
along some transects displayed distinct breaks, probably rep-
resenting a fairly accurate position of the fault; however, these
distinctive profiles were not consistently observed along all
the transects, thus preventing a visual recognition of the fault
for the entire study area. Biogeochemical data in this survey
gave no evidence of any element being deposited preferen-
tially along the Weedon Fault, although this phenomenon has
been observed elsewhere by others.

Twig samples were collected consecutively for two years
during the spring. Despite this attempt at a temporal and
seasonal consistency between the sampling periods, signifi-
cant concentration variation, occurred between 1988 and
1989 for most elements. Climatic conditions were likely the
major factor in creating this disparity. Warmer, moist condi-
tions in the late winter months of 1988 probably led to the
onset of an earlier spring and gave extra time for element
accumulation within the trees.

Another possible factor that could have contributed to this
variation may have been that samples taken in the first year
were much closer to logging roads than those in 1989.
Contamination of mostly silicates and possibly other ele-
ments, due to dust from these roads may have occurred.
Higher than normal ash values in 1988 samples and in sam-
ples collected near roads in the following year appear to
indicate some affect of dust from roads on the trees.

Several sites of potential Au mineralization have been
outlined based on concentrations found in ashed twigs. In
most cases, similar distributions of common Au pathfinders
— Ba and As — are associated with these sites. Transect I11
contains the highest concentrations of Au. In addition, ash
yields for this transect are also high and together may indicate
an area of faulting. Further investigation is required to deter-
mine if these values are valid or whether contamination might
have occurred.

This survey has shown biogeochemistry to be an effective
and efficient geochemical tool. Its ability to sample multiple
substrates makes it a superior sample medium to soils. It is
especially useful in areas of heavy glacial overburden. Twig
sampling proved to be a much fastef and less strenuous
activity than traditional till or soil sampling and the cost is
comparable to other geochemical methods. The importance
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of sampling consistency cannot be over-stressed. There are a
multitude of known and yet to be discovered factors that affect
the uptake of elements. Minimizing these factors in the col-
lection of samples is required in order to achieve the most
accurate analyses and results.
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APPENDIX A

Spruce twig sample analyses (INAA)

Appendix A consists of a data table showing sample number, UTM location, and spruce twig analyses for
27 elements using INAA. Elements consistently below detection level were not included. Concentration
units vary for each element and are indicated.
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APPENDIX B

Summary statistics of element concentrations
in ash of black spruce twigs

Appendix B provides summary statistics for 27 elements including minimum detection level (d.1.), total
number of samples, mean, median, standard deviation (std. dev.), minimum and maximum value, and an
accompanying probability plot for each element.
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Appendix B (cont.)

Au (ppb)
dl.=5.0
1988 1989
n 69 39
mean 12.19 6.51
median 11.00 7.15
std. dev. 29.61 7.14
minimum <5 <5
maximum 162 43
As (ppm)
dlL =05
1988 1989
n 69 39
mean 6.61 11.59
median 6.20 12.49
std. dev. 4.80 6.1
minimum 2.0 3.30
maximum 24.0 25.0
Ba (ppm)
dl=10
1988 1989
n 69 39
mean 2818.38 | 3757.83
median 2697.70 | 40495
std. dev. 1205.6 1472.9
minimum 1400 1700
maximum 6100 8500

cumde

Au e 1988
A 1989 ~ 100
.
o* 410
& —_
® =)
o a =
. =
. N g
. LA a
a =41
LAY
A
L 1 | L
1 50 95 99.99
cum%
As o 1988
A 1989 -1 100
A “UA.A.
a b Cd
N .
& °
At K - 10
A L]
a o °
S g
° a
-1
L 1 | 1
1 %95 99.99
cum
Ba o 1988 J
4 1989 100
s A -4 10
ad apteee 2
a “l. =
a g £
s g a
. o
-1
— 1 i
50 95 99.99



Ca (%)

dl. =02
1988 1989
n -’ 69 39
mean 12,5 18.67
median 13.46 18.10
std. dev. 4.4 25
minimum 5.6 15.1
maximum 248 243
Br (ppm)
dl=10
1988 1989
n 69 39
mean 10.3 19.06
median 10.0 17.0
std. dev. 9.2 6.8
minimum 4.0 11.0
maximum 60.0 35.0
Ce (ppm)
dl.=3.0
1988 1989
n 69 39
mean 13.3 414
median 7.15 4.47
std. dev. 8.0 26
minimum <3 <3
maximum 34.0 14.0

Ca » 1988
4 1989 -1 100
ehe
A AAA “ﬁ: o s
PR
.o' — 10
°®
1]
@
I
o
a
ﬂ 1
L |
1 50 95 99.99
cum%
Br ¢ 1988
4 1989 -1 100
* °
AA A; A
o
a4 s o°
&
o 410
L ]
£
a
a
-1
L L 1 1
1 50 99.99
cum%
Ce o 1988
4 1989 100
oo *
o &
o
°® a 4
L ° A 10
.o ah
WA
® . £
a
o
L ]
a1
| .1 1
1 50 95 99.99
cum%
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Appendix B (cont.)

Co (ppm)
dl.=1.0
1988 1989
n 69 39
mean 9.37 4.84
median 10.0 5.0
std. dev. 4.0 29
minimum 1.5 20
maximum 19.0 16.0
Cr (ppm)
dl=1.0
1988 1989
n 69 39
mean 43.6 114
median 60.0 11.0
std. dev. 259 6.5
minimum 10.0 4.0
maximum 130.0 35.0
Cs (ppm)
dl.=05
1988 1989
n 69 39
mean 1.31 0.77
median 1.30 0.85
std. dev. 0.97 0.64
minimum ‘<5 <5
maximum 5.9 3.7

cum%

Co e 1988
A 1989 - 100
o002 N
e’ .. s - 10
: -
] N A £
M a Q
. Q
1
L 1 | |
1 50 99.99
cum%
Cr e 1988
A 1989 -1 100
1]
o ® - 10
o >
o *
. At z
o « E
. a at o
A 4 -1
A
A
L | 1 i
1 50 m% g5 99.99
cu
Cs o 1988
4 1989 -1 100
[ *
. ot
A
(] * “ q° =
4 )
e 4, E
£
a
o
-1
L H L 1
1 50 95 99.99



Eu (ppm)
d.l.=0.01
1988 1989
n 69 39
mean 0.20 0.019
median 0.42 0.01
std. dev. 0.29 .09
minimum 0.01 0.01
maximum 0.97 0.38
Fe (%)
d.l.=0.05
1988 1989
n 69 39
mean 1.21 0.388
median 1.30 0.380
std. dev. 0.75 0.20
minimum 0.26 0.19
maximum 3.37 1.14
Hf (ppm)
dl.=05
1988 1989
n 69 39
mean 1.54 0.62
median 1.70 0.80
std. dev. 0.67 0.45
minimum <5 <5
maximum 3.1 1.5

Eu e 1988
s 1989 — 100
. -4 10
s 5
.. A IS
.. “A &
-1
L 1 1 1
1 95 99.99
cum%
Fe o 1988
2 1989 - 100
° L]
o®
od
[ a —~
o 24 q1T
. A e
. N x
'y
[ ) A -
a =
s 8
g
-1
L I | L
1 95 99.99
cum%
Hf o 1988
4 1989 -1 100
=110
- &
..o" a
S -’ N £t
°* A‘t 11
'y
a
L ] 1 1
50 95 99.99
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Appendix B (cont.)

K (%)
d.l. = 0.05
1988 1989
n 69 39
mean 10.02 13.38
median 10.3 12.95
std. dev. 3.9 3.6
minimum 2.67 7.91
maximum 21.20 214
La (ppm)
dl.=0.1
1988 1989
n 69 39
mean 7.35 2.6
median 7.95 2.65
std. dev. 4.4 1.1
minimum 2.0 1.0
maximum 19.0 6.9
Lu (ppm)
d.l.=0.05
1988 1989
n 69 39
mean 0.091 0.036
median 0.11 0.025
std. dev. 0.07 0.04
minimum <.05 <.05
maximum 0.29 0.25

cum%

K e 1988
4 1989 - 100
LS
aa b [Ao"
a A%, 0 -1 10
. ®
o ° e
8
&
=11
L | | I
1 50 95 99.99
cum%
La e 1988
a 1989 - 100
e ®
»®
o, - 10
... A
° a
o K . g.
° A =3
a A
A
-1
L | 1 |
1 95 99.99
cum%
Lu o 1988
4 1989 - 100
2
!.
o’ a* 10
o g
. a 4 [=}
X
E
a
a
41
L | | |
1 50 95 99.99



MO (ppm) Mo e 1988
A — 100
dl - 2.0 1989 0
1988 1989
n 69 39 “&-‘x s 10
mean 3.56 4.07 e ot c
A9 [«8
median 4.0 5.0 ‘e .
std. dev. 27 2.2 11
minimum <2 <2
maximum 12.0 10.0 | 1 | 1
1 50 385 99.99
cum%
Na (ppm) Na e 1988
A -1 100
dl. =10 1989
1988 1989
o®® *°
n 69 39 'l -~ 10
mean 6918.3 | 24926 R t
median 7500 | 2440.1 oL g
std. dev. 4362.5 1019.0 11
minimum 1760 1250
maximum 17800 6000 . . . .
1 50 g5 99.99
cum%
Nd (ppm) Nd e 1988
dl.=5.0 2 1989 -1 100
1988 1989
»~°
n 69 2 .IJ. PO
mean 5.10 3.16 ¢ ! c
[«%
median 7.15 2.50 “
std. dev. 59 2.4 1
minimum <5 <5
maximum 22.0 12.0 . . 1 .
1 50 899.99
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Appendix B (cont.)

Rb (ppm)
dl.=5
1988 1989
n. 69 39
mean 89.13 98.14
median 68.55 93,50
std. dev. 44 .29 39.21
minimum 39 53
maximum 280 210
$b (ppm)
d.. =01
1988 1989
n 69 39
mean 0.97 0.602
median 0.80 0.60
std. dev. 1.4 0.65
minimum 0.20 0.30
maximum 6.2 4.1
Sc (ppm)
dl.=0.1
1988 1989
n 69 39
mean 4.46 1.22
median 5.40 1.2
std. dev. 3.1 0.7
minimum 0.6 0.4
maximum 13.0 3.7

Rb e 1988
2 1989 100
..A.
at’
A
LA { 10 -
.A ® )
X
£
o
[+%
=1
L | | L
1 50 95 99.99
cum%
Sb e 1988
4 1989 — 100
e ®
.rA A
L ]
L ]
® A
e A
o 410
e 4 =
e
° A x
E
[=%
[=}
1
L [ [ 1
1 50 95 99.99
cum%
Sc e 1988 0s ® _l
a 1989 e ¢ 100
..f
..
A
.. a A
*
[ ] A‘ A‘
o P —H10 _
4 T
s o
x
£
o
[+%
-1
L 1 i
1 50 95 99.99



Sm (ppm)
d.l.=0.1
1988 1989
n 69 39
mean 1.3 0.375
median 1.35 0.40
std. dev. 0.91 0.21
minimum 0.2 0.1
maximum 3.6 1.2
Sr (ppm)
d.l.= 100
1988 1989
n 69 39
mean 877 1264.1
median 855 1200.1
std. dev. 694.6 4183
minimum 155 780
maximum 4000 2300
Th (ppm)
d.l.= 0.1
1988 1989
n 69 39
mean 1.02 0.34
median 1.20 0.40
std. dev. 0.64 0.24
minimum <1 <1
maximum 3.0 1.0

Sm e 1988
A 1989 -1 100
o’
4
..’
° A A
o ® . - 10 ~
L] 1
a o
* ot x
L] A E
a
a
A
—H1
[ — 1 i 1
1 50 95 99.99
cum%
Sr ¢ 1988
A 1989 -1 100
P
..
(A
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a A“ o° _l
L ettt 10
. 'R
. =]
x
° £
a
o
1
L | 1 1
1 50 95 99.99
cum%
Th e 1888
4 1989 -1 100
e ®
f.
o** °*
.o N a 4 - 10 -
° rel 'e
. At *
L] A E
&
° 'y
R -1
1 | 1
50 95 99.99

cum%
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Appendix B {cont.)

U (ppm)
d.l.= 0.1
1988 1989
n 69 39
mean 0.33 0.067
median 0.6 0.05
std. dev. 0.51 0.141
minimum <.1 <.1
maximum 2.3 0.6
Yb (ppm)
d.l. = 0.05
1988 1989
n 69 39
mean 0.74 0.20
median 0.84 0.25
std. dev. 0.45 0.14
minimum <.05 <.05
maximum 1.92 0.63
Zn (ppm)
dl.=20
1988 1989
n 69 39
mean 1312.2 2204.8
median 1256.0 2099.9
std. dev. 603.7 547 1
minimum 520 1400
maximum 3800 4000

U e 1988
4 1989

-1 100

ppm (x10™Y

Yb e 1988
4 1989

95
cum%

99.99

-1100

ppm (x1071)

Zn ¢ 1988
s 1989

95
cum%

99.99

-1 100

ppm {x10%)

95
cum%

99.99
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