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FOREWORD

In 1990, under a Memorandum of Understanding between the Geological Survey of Canada
(GSC) and the Geological Survey of Prague (GSP), an agreement was made to undertake studies
related to environmental geochemistry. One topic that warranted investigation was that of ‘black
shale as a natural hazard’. The complex assemblage of chemical elements that black shales
commonly host has a significant bearing on the environment, and ultlmately on the quality of
human health.

The first step for the GSC was to assemble the information that was already available. It became
apparent that such information is widely scattered through the literature, and that there was a
-requirement for synthesis as well as compilation. Consequently, a contract was let for a
consultant (Ingrid Reichenbach) to undertake this task and provide some recommendations for
~ further research. Her report, submitted in 1992, has brought together into one volume a valuable
database on black shales in Canada, and has outlined the aqueous geochemistry of those elements
commonly enriched in, and readily mobilized from, black shales. This report will provide the
foundation for future studies on the environmental problems that may be related to the natural
occurrence of black shales and to the problems that may arise from their disruption.

Colin E. Dunn

Joint Coordinator, Environmental Geochemistry Programme
Applied Geochemistry Subdivision '

Mineral Resources Division

Ottawa

August, 1993




ABSTRACT

Black shales are known to be important reservoirs of carbon, sulphur and heavy metals.
As a result, they are potentially both mineral and energy resources, and environmental hazards.
This report comprises the compilation of a database on black shales in Canada. The database
includes: 1) a bibliography of over 200 entries, 2) a bedrock compilation map of black shale
deposits in Canada (by province), 3) a tabulation of salient features of black shale deposits in
Canada, and 4) general data on the speciation, mobility and toxicity of trace metals/metalloids
present in black shales (i.e., Ag, As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, U, V, and Zn).
In addition to the database, this report includes several case studies of environmental impacts
attributed to black shales, for example, acid drainage at Halifax Airport (Halifax, Nova Scotia)
- and selenium contamination of soil and water (San Joaquin Valley, California).

The term black shale includes a wide variety of sediments and sedimentary rocks. The
definition proposed by members of the U.S. Working Group of the IGCP Project 254 for a "black
shale" is "a dark-coloured (grey or black), fine-grained (silt sized or finer), laminated sedimentary
rock that generally is argillaceous and contains appreciable carbon (>0.5 wt. %)." Their proposed
definition of a "metalliferous black shale" is " a black shale that is enriched in any given metal
by a factor of 2X ... relative to the U.S. Geological Survey Standard SDO-1". Their definitions
were used rather loosely in complhng this database because geochemical data was rarely
available.

Black shales, ranging in age from Archean to Cretaceous, occur throughout Canada. They -
have been mapped in varying degrees of detail, sometimes occurring on maps as separate units,
but most often included with other rock types within a larger map unit. A compilation map of
black shale deposits in Canada is contained in this report, and was compiled from readily
available federal and provincial geological maps, theses, and scientific papers and reports.

This report concludes with several recommendations for further study. Perhaps one of the
most important is the need for further research on chemical speciation studies of those trace
elements most likely to impact the environment adversely such as mercury, arsenic, and selenium
- (based on factors such as mobility and toxicity).
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1.1

1.2

1. INTRODUCTION

BACKGROUND

Black shales are known to be important reservoirs of carbon, sulphur and heavy metals.
As a result, they are potentially both mineral and energy resources, and environmental hazards.
The importance of such shales prompted the formation of the International Geological Correlation
Program (IGCP) Project 254, Metalliferous Black Shales and Related Ore Deposits, in 1987.
More recently, collaborative research on "Black Shale as an Environmental Hazard" was begun
as a joint project among the Geological Survey of Canada, the Czechoslovakian Geological
Survey, and the British Geological Survey. This report was prepared for the Geological Survey
of Canada as part of the "Black Shale as an Environmental Hazard" Project.

SCOPE

1

2)

3)
4)

- This report comprises a review of databases on black shales in Canada. It includes:

a bibliography of over 200 entries, including: a comprehensive selection of
references on black shale deposits in Canada; overview and frequently referenced
papers on the origin and geochemistry of black shales worldwide; and references
on the aqueous geochemistry of the trace metals/metalloids of environmental
concern that are present in black shale;

a bedrock compilation map of Canada - by province - delineating major black
shale deposits, with emphasis on those occurring in populated areas;

a tabulation of salient features of black shales present in Canada; and

general data on the speciation, mobility and toxicity of trace metals/metalloids
present in black shales. '

In addition to the above, this report includes several case studies of environmental impacts
attributed to black shales and concludes with recommendations for further studies.




2. WHATIS A BLACK SHALE?
2.1  DEFINITION

"A great variety of rocks are designated as black shales. Their composition(s) and
origins differ greatly. For instance, they can be bituminous, phosphatic, carbonate-free
or -rich, high or low in trace metals, sulfidic to a point of even being considered ore, and
sometimes surprisingly low in carbon when compared to the average shale. With respect
to (the) environment of deposition, a black shale can be of freshwater, brackish, marine
or hypersaline origin, in other words, black shales can virtually be found in all aquatic
habitats. They may contain abundant macro- and microfossils, or may be fossil-free.
Black shales may be laid down in the shallow epicontinental sea, along continental
margins, or in deep oceans and lakes. They can be formed in situ, or be allochthonous

. in nature. Their organic matter can be mature or immature...”Why do we group such a
diverse group of sediments together which obviously only share one property, namely that
of being black?’

The answer is: all black shales are linked directly or indirectly to high organic
activity and the cycling of biogeochemical elements, most notably carbon, nitrogen,
phosphorous, sulphur, oxygen plus heavy metals such as iron, molybdenum, vanadium,
and uranium" (Degens et al., 1986, as quoted in Huyck, 1990). :

Because the term black shale includes such a wide variety of sediments and sedimentary
rocks, it is difficult to find a concise, yet inclusive definition. The definition proposed by
members of the U.S. Working Group of the IGCP Project 254 for a "black shale" is "a dark-
coloured (grey or black), fine-grained (silt sized or finer), laminated sedimentary rock that
generally is argillaceous and contains appreciable carbon (>0.5 wt.%)." Their proposed definition
of a "metalliferous black shale" is "a black shale that is enriched in any given metal by a factor
of 2X (except for beryllium, cobalt, molybdenum, and uranium, for which 1X is sufficient)
relative to the U.S. Geological Survey Standard SDO-1" (Huyck, 1990).

For the purposes of compiling this database on black shales in Canada, the above
definition applies as far as "a dark-coloured..., fine-grained...sedimentary rock that generally is
argillaceous". However, this part of the definition alone encompasses too wide a range of
sedimentary rocks, since data are only sometimes available on the texture, and rarely on the
geochemistry, of black shales in Canada. Consequently, these qualifying characteristics cannot
always be used, and in lieu of all the necessary data, deposits are included in the database if they
are consistently referred to as black shale in the scientific literature.

2.2  ORIGIN
The origin of black shales is far from clearly understood, and several models have been

proposed for their formation (Berry and Wilde, 1978; Demaison and Moore, 1980; Arthur et
al., 1984; Robertson, 1984; Levanthal, 1987; Coveney et al., 1991; Wignall, 1991). Most call
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“upon the interplay of three main variables to preserve relatively high concentrations of organic
matter: 1) increasing the supply of organic matter, 2) increasing the rate of sedimentation, and
3) decreasing the oxygen content of the bottom water.

Organic matter is supplied to the sediments from primary biological productivity in the
surface waters or from terrigenous organic matter derived from land plants. Areas of increased
primary productivity occur a$ the result of upwelling of deep nutrient-rich waters. Increased
supplies of terrigenous organic matter are constrained by fluvial discharge and by the climate and
vegetation of the drainage area.

High sedimentation rates aid in the preservation of organic matter by burying it more
rapidly and removing it from zones of bioturbation, oxic decomposition, and sulphate reduction.
Although organic-carbon contents and accumulation rates may be higher in high-sedimentation-
rate sequences, the organic matter itself may be somewhat more poorly preserved than that
deposited under anoxic conditions (Arthur et al., 1984). :

One of two situations leads to oxygen depletion in natural waters - deficient oxygen
supply or excessive oxygen demand (see Demaison and Moore, 1980). Oxygen concentrations
of less than 0.2 - 0.5 ml/l inhibit the activity of benthic metazoans. Eventually, bioturbation
ceases, leaving anaerobic bacteria as the only effective reworkers of organic matter. The lack of
bioturbation acts as a limiting factor to diffusion of oxidants into the sediment and results in
laminated and organic-rich sediments. ‘ o

The above processes account for several characteristics of black shale, such as their finely
laminated or non-bioturbated texture, sparse fauna, high organic carbon content, and dark colour
" (due to high org-C content).

2.3 MINERALOGY AND GEOCHEMISTRY

Shales contain a wide range of constituents including clay minerals, quartz, feldspar,
carbonates, iron oxide, sulphur minerals, and organic materials (Potter et al., 1980). The types
and proportions of constituents present is a function of | _provenance, deposruonal environment,
geologic age and diagenetic history. - :

Pyrite is the common sulphur mineral present in black shales. It is of particular
importance to this study because many of the trace elements of environmental concern occur in
the sulphide fraction (Tardy, 1975). The amount of pyrite that may form is limited by the rates
of supply of decomposable organic matter, dissolved sulphate, and reactive iron detrital minerals.
Under euxinic marine conditions, a plentiful supply of both organic matter and hydrogen sulphide
brings about the formation of high concentrations of pyrite, which are limited only by the
availability of reactive iron-minerals (Berner, 1983). :




One of the classic studies on the geochemistry of black shale is that of Vine and Tourtelot
(1970). Statistical methods were used to determine the composition of the "average" black shale
and to provide a definition for "metal-rich" black shale for 21 minor elements (see Table 3.3.2).
More recently, the IGCP 254 U.S. Working Group recommended using the USGS reference
sample SDO-1 (see Table 3.3.2) as an average black shale against which to define metal-rich
black shale (Kane et al., 1990; Huyck, 1990). In general, one or more of the following metals
will be enriched in a metal-rich black shale relative to an average black shale: Ag, As, Cd, Co,
Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, U, V, and Zn. The availability of metals in solutions that have
come into contact with organic matter throughout its history is probably the most significant
factor in determining the suite of enriched metals present in black shale (Vine and Tourtelot,
1970). Further discussion of the complex process of enrichment in black shale is beyond the
scope of this report.

Several studies have examined the association of minor elements with major rock
constituents in black shale. Many of the trace metals are associated with the organic fraction
including Ag, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, U, V, and Zn (Bell, 1978; Breit et al., ;
. Cameron and Jonasson, 1972; Desborough and Poole, 1983; Demaison and Moore, 1980;
Tardy, 1975; Swanson, 1961; Vine and Tourtelot, 1970). As, Co, Cr, Cu, Hg, Mo, Ni, Se, V,
and Zn are also concentrated in the sulphide fraction (Cameron and Jonasson, 1972; Desborough
and Poole, 1983; Tardy, 1975); V, Cr, and Zn in the phosphate fraction (Tardy, 1975); and Zn
and Cd in the sphalerite fraction (Desborough and Poole, 1983). '

2.4 PHYSICAL PROPERTIES

There is little information and understanding regarding the physical properties of shales
compared to that available on other sedimentary rocks. This is due to inherent problems
associated with their fine grain size, and also because they are usually regarded as source rocks
and seals rather than reservoir rocks. Therefore, they have not been afforded the same degree
“of interest as conventional reservoir rocks such as carbonates and sandstones.

Some recent research includes: discussion of the origin of shale fabric (Bennett et al.,
1991; Moon and Hurst, 1984; Robertson, 1984); porosity, permeability and grain density data
on cores of Devonian shales in the Appalachian Basin (Davies et al., 1991); and research on the
microstructure of shales undertaken to evaluate them as potential nuclear waste repositories (Lee
et al., 1991).

Results from research on shales generally document that they have a fine grain size, small
pore size, and low values of porosity and permeability. Permeabilities range from 1076 to 107
cm? and porosities range from 0-10% (Freeze and Cherry, 1979). Shales are a diverse and highly
variable type of rock, therefore, these values can vary significantly, particularly if the rock is
highly fractured. :




3. BLACK SHALES IN CANADA

3.1 LOCATION

Black shales, ranging in age from Archean to Cretaceous, occur throughout Canada. They
have been mapped in varying degrees of detail, sometimes occurring on maps as separate units,
but most often included with other rock types within a larger map unit. The provincial sketch
maps on the following pages (Figures 3.1.1 to 3.1.12) show locations of black shale deposits as
compiled from readily available federal and provincial geological maps, theses, and scientific
papers and reports. Taken together, they comprise a compilation map of black shale deposits for
all of Canada.

Because the overall focus of this project is on the potential environmental impact of black
shale, particularly on the human population, more emphasis was placed on black shale deposits
in populated areas. Table 3.2.1 summarizes population centres across Canada in the vicinity of
black shale deposits. Some black shales are not included on the compilation maps because they
occur in remote, unpopulated parts of Canada. Alternatively, black shales may not appear if they
are not reported in readily available scientific literature.

3.2 © CHARACTERISTICS

The salient features of the black shale deposits compiled in Section 3.1 are tabulated in
Table 3.2.1. The characteristics listed are modified from a data form developed for IGCP 254
(see Huyck, 1990). One modification is the addition of data on the lithology of the member,
formation or group containing the black shale of interest because the black shale units are rarely
formally named, or mapped, separately from surrounding beds. However, data on the fabric,
colour, mineralogy, TOC, organic type, maturity, paleontology, bioturbation and depositional
environment refer specifically to the black shale unit. The thickness refers to that of the formal
mapped unit. :

Another modification of the IGCP form is the inclusion of the age of the black shales, in
addition to known (or hypothesized) correlations as taken from the scientific literature. This will
help to place individual black shales within a broader, regional framework.

3.3 GEOCHEMISTRY

Tables 3.3.1 and 3.3.2 are a compilation from the scientific literature of average trace
element analyses and average major element analyses for black shales in Canada. Many more
black shales have been sampled and analyzed than this compilation suggests. For example,
Goodfellow (pers.com.) has collected over 6000 samples of Paleozoic black shales from the
Selwyn Basin, Richardson Trough, Blackstone Trough and Matepedia Trough and analyzed for
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40-50 major and trace elements; however, the data have not yet been compiled and tabulated for
publication. Similarly, van Staal (pers.com.) has collected and analyzed numerous black shales
from New Brunswick; again, the data are not yet ready for publication. There are likely many
other examples of unpublished geochemical data sets on black shales. Therefore, the compilation
of analytical data in Tables 3.3.1 and 3.3.2 has the potential to be greatly expanded.

For comparative purposes, Table 3.3.2 includes analyses for average black shale (Vine and
Tourtelot, 1970), metal-rich black shale (Vine and Tourtelot, 1970), USGS SDO-1 standard (Kane
et al., 1990) and metalliferous black shale - defined relative to USGS SDO-1 (Huyck, 1990).
Unfortunately, none of the black shales from Canada have been analyzed for as complete a suite
of trace elements as the reference analyses. Based on the available data, they do not appear to
be metal-rich, with the exception of the Kettle Point Formation and the Road River Formation.
The Marcellus Formation does not appear enriched, which may be a result of sampling bias
(Johnson et al., 1989). :
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Figure 3.1.1  Distribution of the Curling and Cow Head Groups,
Newfoundland (after Williams and Cawood, 1987).
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Figure 3.1.2  Distribution of the Shoal Arm Formation, Harbour Shale, and Dark Hole Formation, Newfoundland
(after Kean, Dean and Strong, 1981).
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Figure 3.1.3  Distribution of the Halifax Formation, Nova Scotia (after Keppie, 1979).
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Figure 3.1.4  Distribution of black shale bearing formations,
New Brunswick (after van Staal and Fyffe, 1991).
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Figure 3.1.5  Distribution of the Saint John Group, New Brunswick (after Tanoli, 1987).
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Distribution of the Magog and Utica Groups (after Avramtchev, 1985)
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and the Collingwood Member, Ontario (Ontario Geological Survey, 1991).
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Figure 3.1.9  Distribution of the Boyne Member and Favel Formation, Saskatchewan (Byers et al., 1981).
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and Road River Groups, British Columbia (after Tipper et al., 1981);

b) Distribution of the Fernie and Besa River Formations, British Columbia
(above 56° after Stott, 1982; below 56° after Tipper, 1974).
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Figure 3.1.12 Distribution of Selwyn Basin stratigraphy, including the Mount Mye and Vangorda
Formations and the Road River and Earn Groups, Yukon and Northwest Territories
(after Jennings and Jilson, 1983).
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Table 3.1.1 Population centres across Canada in the vicinity of black shale deposits.

Location Population Range Black Shale Deposits
Newfoundland .
Rocky Harbour < 10 000 . Curling and Cow Head Gps
Cox’s Cove < 10 000 Curling and Cow Head Gps
Trout River < 10 000 Curling and Cow Head Gps
Badger < 10 000 Shoal Arm Fm, Lawrence Harbour Shale,
Dark Hole Fm
Nova Scoatia
Halifax 100 000-250 000 Halifax Fm
Bridgewater 25 000-100 000 Halifax Fm
Liverpool 25 000-100 000 Halifax Fm
Yarmouth 25 000-100 000 Halifax Fm
Digby 25 000-100 000 Halifax Fm
Canso 25 000-100 000 Halifax Fm
Seal Harbour 25 000-100 000 Halifax Fm
Sherbrooke 25 000-100 000 Halifax Fm
Sheet Harbour 25 000-100 000 - Halifax Fm

New Brunswick

Tetagouche, Miramichi, Fournier and

Bathurst 10 000-25 000

Balmorel Gps
St. John 25 000-100 000 St. John Gp
Quebec
Quebec 250 000-1 000 000 Utica Shale, Magog Gp.
Montreal 250 000-1 000 000 Utica Shale
Chibougamau 10 000-25 000 Blondeau Fm
Ontario
Ottawa 250 000-1 000 000 Billings Fm
Toronto 250 000-1 000 000 Collingwood Mb
London 250 000-1 000 000 Marcellus Fm
Manitoba
Dauphin < 10 000 Boyne Mb, Favel Fm
Brandon - 25 000-100 000 Boyne Mb, Favel Fm
Saskatchewan . ]
Meadow Lake < 10 000 Boyne Mb, Favel Fm
Nipawin < 10 000 Boyne Mb, Favel Fm
Carrot River < 10 000 Boyne Mb, Favel Fm
Hudson Bay < 10 000 Boyne Mb, Favel Fm
Prince Albert 25 000-100 000 Boyne Mb, Favel Fm
Alberta
Banff < 10 000 Fernie and Exshaw Fms
Jasper < 10 000 Fernie and Exshaw Fms
Hinton < 10 000 Fernie and Exshaw Fms
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4. AQUEOUS GEOCHEMISTRY

4.1 TRACE ELEMENTS

The focus of this section is on the aquatic behaviour of metals and metalloids present in
black shale that are of environmental concern due to their potential toxicity to aquatic life or
humans. The elements discussed in the following sections include: Sb, As, Cd, Cr, Co, Cu,
Pb, Hg, Mo, Ni, Se, U and V. These trace elements may be introduced to the hydrosphere by
natural processes, such as weathering and mineral dissolution, or by anthropogenic activities,
-such as quarrying of shale. The latter activity can result in the release of metals, because
relatively impermeable shale is broken up and exposed to water and oxygen.

Whether a particular trace element goes into solution depends on the mineral in which
the element occurs. For example, the trace elements may be present in chemically resistant
minerals such as apatite, or in sulphides, which weather rapidly in oxygenated water.

4.1.1 Antimony

Antlmony is commonly found in the +3 and +35 oxidation states. Sb(lll) complexes with
inorganic and organic acids to produce antimonial salts. Trivalent complexes include antimony
trioxide and antimony trichloride. Little is known about the aqueous geochemistry of Sb(V)

(CCREM, 1987). '

Under moderately oxidizing conditions, antimony is found as a hydrated trioxide. As a
result of the relative stability of the antimonites and antimonates in the redox range of surface
water, most of the antimony is probably transported in solution. The extent to which sorption
processes reduce the concentrations of antimony in solution is unknown, although antimony does
have an affinity for clay and mineral surfaces. Coprecipitation with hydrous iron, manganese
and aluminum may also occur. In reducing environments, stibine (SbH;) may be formed, but
will be readily transformed to the oxide Sb,0, in aerobic water.

There are few studies on the bioaccumulation of antimony in the aquatic environment.
The biomethylation of antimony has not been demonstrated; it is, however, thought to occur
because the elements surrounding antimony in the periodic table are subject to methylatlon
(Parris and Brinckman, 1976).

4.1.2 Arsenic

Arsenic exists in the +5, +3, 0, and -3 oxidation states in aquatic systems. The metal
is extremely rare and As(-lll) is found only at extremely low Eh values (Moore and
Ramamoorthy, 1984). As(V) is the stable form in aerobic water. As(lll) is the predominant
form under anaerobic conditions. Arsenic may form a wide range of inorganic and organic
compounds with a large number of elements.
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Adsorption and coprecipitation are major factors in controlling aqueous arsenic
concentrations. Phases that may coprecipitate with, or adsorb arsenic include hydrous oxides
and hydroxides of iron, aluminum, manganese, metal sulphides, clay minerals and organic
matter (Pierce and Moore, 1980; Wagemann, 1978). Laboratory studies of arsenic adsorption
on ferric oxyhydroxide indicate that higher pH solutions have a lower adsorption capacity
relative to more acidic solutions. Because ferric oxyhydroxide is nearly always found in
oxidized sedimentary environments, this lowered adsorption capacity at elevated pH values is
consistent with a tendency for slightly alkaline, non-thermal groundwater to have elevated
arsenic concentrations. Under most conditions, coprecipitation or sorption of arsenic with
hydrous iron oxides is probably the predominant process in the removal of dissolved arsenic
from the water column.

Inorganic forms of arsenic prevail in most natural waters; however, both As(lll) and
As(V) form stable bonds with carbon, resulting in numerous organo-arsenical compounds
(Lemmo et al., 1983). The deadly poisonous organic derivative, dimethyl arsine, is converted
from inorganic arsenic by methanobacteria which are normally present in anaerobic sediments
of the aquatic environment (Luh et al., 1973). Like many other toxic metals, arsenic can be
biologically concentrated through food chains.

4.1.3 Cadmium

The form and fate of cadmium in water are complicated. They depend upon its chemical
speciation, which is determined by water pH and hardness, as well as the presence of ligands
and coexisting metal cations (Moore and Ramamoorthy, 1984). In natural surface waters,
cadmium occurs principally as free Cd(ll) ions, cadmium chloride and cadmium carbonate.
Cadmium solubility decreases as water pH increases above pH 9.0 because of the formation of
cadmium hydroxide (Moore and Ramamoorthy, 1984). Redox potential is believed to have little
direct influence on cadmium speciation; however, under reducing conditions and in the presence
of sulphur, insoluble cadmium sulphide is produced.

“Sorption is probably the most important process for the removal of cadmium from the
water column. For example, exchange of cadmium for calcium ions in - carbonate;
coprecipitation with hydrous iron, aluminum and manganese oxides; and, in waters of high
organic content, adsorption of cadmium to humic substances and other organic complexing
agents occurs. '

Cadmium may be accumulated by a number of aquatic organisms. Bioaccumulation of
cadmiym is influenced by water hardness, temperature, pH, and presence of complexing agents.
There are few recorded instances of cadmium poisoning in humans following consumption of
contaminated fish or water; however, several epidemiological studies have demonstrated a
causal relationship between exposure to cadmium and cancer incidence (Moore and
Ramamoorthy, 1984). :
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- 4.1.4 Chromium

The two important oxidation states of chromium in natural waters are +3 and +6.
Cr(V]) predominates under oxidizing conditions while Cr(11l) predominates under more reducing
conditions. Cr(lll) has a strong tendency to form stable complexes with negatively charged
inorganic and organic species, or colloidal hydrous oxides in neutral solutions. It is essentially
immobile in most groundwaters because of its low solubility above a pH of 4-5. Cr(V1) is quite
soluble, existing in solution as a complex anion. However, Cr(V1) is easily reduced to Cr(lll)
by Fe(ll), dissolved sulphides, and certain organic compounds. By contrast, Cr(lll) is oxidized
rapidly by a large excess of MnO, and slowly by oxygen under natural conditions (Moore and
Ramamoorthy, 1984).

Cr(lll) adsorption by soils and clays is generally very high, with adsorption increasing -
with pH. At around a pH of 4, Cr(lll) is relatively immobile due to adsorption. Adsorption of
Cr(Vl) by clays and soils is low to moderate in the pH ranges of natural groundwater.
Adsorption of Cr(Vl) decreases with increasing pH. Little or no adsorption occurs above a pH
of 8.8 (see Calder, 1988). '

Chrorhium is bioaccumulated by aquatic organisms. Cr(V1) is more toxic to animals and
plants than Cr(lll) because of its ability to penetrate cell membranes (Moore and Ramamoorthy,
1984).

4.1.5 Cobalt

Cobalt exists inthe -1, 0, +1, +2, +3 and +4 states; however, only Co(ll) and Co(ll1)
are common in aqueous solutions. The major dissolved species of cobalt in aerobic fresh water
at pH 8.0 are Co(ll) and carbonate. Cobalt forms very stable complexes with such compounds
as EDTA and NTA; the chelation of cobalt to such multidentate ligands. strongly enhances its
solubility and mobility in aqueous systems.

Cobalt may be removed from solution by adsorption to suspended particulates and
sediment materials. In laboratory experiments, 90% of the cobalt was -adsorbed by
montmorillonite and illite (Kharkar et al., 1968). Adsorption to clay minerals is influenced by
pH; it is low at low pH, but approaches 100% when the pH is between 7-10. In aerobic fresh
water, calculations predict that adsorption to silica, ferric oxide and manganese oxide amount
to less than 2% (Vuceta and Morgan, 1978). Organic compounds in water may cause desorption
and solubilization of cobalt from inorganic fractions of sediment.

Some aquatic organisms may readily accumulate cobalt. Because concentration factors
generally decrease with increasing trophic status, biomagnification is not considered to be
significant.
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4.1.6 Copper

Copper exists in the 0, +1, +2 and +3 oxidation states; the two most common are
Cu(l) and Cu(ll). Cu(l) is unstable in aerated solutions and will normally be oxidized to Cu(ll).
The dissolved phase may contain free ions as well as copper complexed to inorganic or organic
ligands (Moore and Ramamoorthy, 1984). Copper is generally more soluble in acidic water,
and precipitates as Cu(OH), at pH values above 6.5. In the presence of excess cupric ion in
alkaline waters, carbonates, hydroxides, oxides and sulphides will form colloidal suspensions
or will precipitate out of solution. :

Sorption and precipitation play major roles in determining the abiotic fate of copper in
the aquatic environment. Copper has a high affinity for hydrous iron and manganese oxides,
clays, carbonate minerals and organic matter. In reducing acidic environments, remobilization
of sorbed or coprecipitated copper can occur.

Copper is highly toxic to aquatic plants, invertebrates and freshwater fish. It is readily
accumulated by plants and animals; however, it is not thought to be biomagnified to any
significant extent. Copper is not acutely toxic to humans (Moore and Ramamoorthy, 1984).

4.1.7 Lead

Lead exists in the 0, +1, +2 and +4 oxidation states; Pb(ll) is the most common.
Chemical speciation of lead compounds in water is complex, and depends upon several factors
including the solubility of lead compounds, pH, dissolved oxygen and the presence of coexisting
inorganic and organic compounds (Moore and Ramamoorthy, 1984). The sulphides, sulphates,
oxides, carbonates and hydroxides of lead are almost insoluble (Hem and Durum, 1973). Lead
solubility is very low in water containing lead, carbon dioxide and sulphur and in strongly
- reducing environments of low pH (pH<2). Between pH 6-8, solubility of lead is a complex
function of pH and dissolved CO,. At constant pH, the solubility of lead decreases with
increasing alkalinity. Below pH 6.5, the solubility of lead increases. In natural water, most of
the lead in the dissolved phase may be complexed by organic ligands. In addition, a significant
portion of lead is bound to colloids, either hydrous iron oxides or organic macromolecules
depending on the composition of the water (Moore and Ramamoorthy, 1984).

Sorption is the dominant mechanism controlling the distribution of lead in the aquatic
environment and is correlated to organic content and grain size. In the absence of soluble
complexing species, lead is almost totally sorbed as precipitated species at pH > 6.

Biomethylation of Pb(ll) has been observed only in laboratory anaerobic conditions
(Moore and Ramamoorthy, 1984). Lead is bioaccumulated by aquatic organisms. Microcosm
studies indicate that lead is not biomagnified (Lu et al., 1975). Many environmentally important
lead compounds such as halides, sulphates, phosphates, and hydroxides are insoluble and thus
are of relatively low toxicity in aquatic systems (Moore and Ramamoorthy, 1984).
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4.1.8 Mercury

Mercury exists in the 0, +1 and +2 oxidation states. The chemical speciation depends
on pH, redox potential, and nature and concentration of anions which form stable complexes
with mercury (Moore and Ramamoorthy, 1984). In deionized water under moderate oxidizing
conditions above pH 5, the predominant spécies present is elemental mercury. In natural waters
containing micro- and macrosolutes which may be potential ligands for mercury, Hg(11) is
expected to predominate at low redox potential (Ramamoorthy and Masssalski, 1979). Under
mildly reducing conditions, mercury will be in the form of insoluble sulphide.

_ Mercury concentrations in aqueous solution are relatively small due to the tendency of
mercury compounds to sorb onto sediments. Sediment binding capacity is related to organic
content, and appears to be little affected by pH. In anaerobic sediments, mercury tends to
combine with sulphur. '

The chemical behaviour of mercury is complicated by the ability of microorganisms to
convert inorganic mercury to mono- and dimethylmercury under both aerobic and anaerobic
conditions. The organic compound formed is a function of the microbial flora, organic carbon
and inorganic mercury concentrations, pH and temperature (Bisogni and Lawrence, 1975).
Methylated mercury has a high affinity for biotic tissue and is readily taken up by organisms.
- Analyses of fish have shown that the mercury accumulated in their tissues is almost entirely in
the form of methylmercury. Mercury bioconcentration factors for aquatic organisms are usually
high (CCREM, 1987). Lower pH values generally increase mercury solubility, rate of
methylation and rate of uptake. The microbial methylation of mercury is probably responsible
for increasing the toxicity and geochemical mobility of mercury in aquatic systems.

4.1.9 Molybdenum

Molybdenum occurs in five oxidation states with Mo(1V) and Mo(V1) predominating;
it does not exist in nature in a pure metallic state (Jarrell et al., 1980). Dissolved molybdenum
in water occurs mainly as molybdate (MoO,)* and bimolybdate (HMoO,). Adsorption and
coprecipitation of the molybdate anion by hydrous oxides of iron and aluminum play primary
roles in determining the aquatic fate of molybdenum.

Above pH 35, the influence of sorption decreases, and molybdenum in natural ‘waters is
essentially dissolved (Jarrell et al., 1980). As redox potential is lowered, the solubility of
molybdenum increases. Molybdenum concentration and organic content are weakly correlated.

Molybdenum is not a serious environmental contaminant in terms of human health, but
has potentially hazardous implications for ruminant animals by causing a copper deficiency
(Doyle and Fletcher, 1977; Jarrell et al., 1980; Erdman, 1990).




31
4.1.10 Nickel

Nickel may occur in oxidation states ranging from -1 to +4 in aqueous systems;
. however, it occurs predominantly in the divalent state. Under anaerobic conditions and in the
presence of sulphur, nickel will form insoluble sulphides. Under aerobic conditions below pH
9, nickel will form compounds with hydroxide, carbonate, sulphate and organic ligands. The
concentration and speciation of nickel will depend on competing processes such as coagulation,
precipitation, sorption, and complexatlon/chelatlon with dissolved organic and inorganic ligands
(Moore and Ramamoorthy, 1984).

Nickel adsorbs to iron and manganese oxides and suspended organic matter, which is an
important mode of nickel transport, and coprecipitates with iron and manganese oxides. It is
considered highly mobile in aqueous systems, with sorption playing a relatively minor role in
water below pH 6.

Nickel is bioaccumulated by some aquatic organisms. Studies with freshwater fauna
indicate the absence of biomagnification through the food web. Nickel is essential at trace levels
for human health. Acute toxicity arises from competitive interaction with five major essential
elements: calcium, cobalt, copper, iron and zinc (Moore and Ramamoorthy, 1984).

4.1.11 Selenium

The oxidation state of selenium may be -2, 0, +4 or +6. Inorganic species are
determined principally by the pH and Eh conditions, but competitive solubilities, complexation,
and biological interactions play a part (Herring, 1991). Selenide will be present only under very
reducing and alkaline conditions. Its mobility will be limited by the extremely low solubility
of most selenide compounds. Under usual redox and pH conditions, selenite will be the stable
form of selenium. Selenites may undergo significant sorption onto hydrous metal oxides and
clay minerals, in the pH range of 3-8, causing immobilization of Se. Under acidic and reducing
conditions, selenites are reduced to elemental Se, which is very insoluble in aqueous systems and
generally resistant to oxidation or reduction.  Alkaline and oxidizing conditions favour the
formation and stability of the selenates which are the most mobile of the selenium species
because they form soluble compounds. Previously, selenate was thought to be either unstable
or not to form. :

Selenium forms organic compounds. Microbial processes can produce reduced
organoselenium species, such as dimethyl selenide, and the ubiquity of these compounds in the
environment suggests these processes are an important part of the aqueous geochemistry and
geochemical cycle of selenium (Cooke and Bruland, 1987).

Selenium is not toxic to plants, but it can easily become toxic to animals through
excessive dietary intake (e.g. Boon, 1989). The particular species of selenium is critical.
Elemental selenium is considered to be practically nontoxic. However, when converted into
more biologically assimilable forms, selenium can readily concentrate in organisms in tox1c
quantltles (Wilbur, 1980).
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4.1.12 Uranium

Uranium may exist in the +3, +4, +5 and +6 states. U(VI) is the most stable.
Uranium does not occur naturally in elemental form. Generally, in oxidizing environments,
U(V1) predominates; U(IV) is present in reducing environments. The chemical speciation of
uranium ions in aqueous solution is quite complex because of the many possibilities of
- complexing reactions with all ions. In aerobic waters, the most significant complexing agent for
uranium is carbonate (Drever, 1982). The uranyl carbonate species are all quite stable in the
typical ranges of redox potential found in natural waters. Sulphur complexes are also soluble;
whereas potassium and phosphate complexes are quite insoluble. ' '

Sorption to clay minerals such as kaolinite below pH 5 and sorption to hydrous ferric
oxide at higher pH in aerobic waters will reduce the mobility of uranium (Giblin et al., 1981).

Uranium is not an essential element; however, it is found in most living tissues. It may
be accumulated by numerous aquatic plants, lower organisms, invertebrates and fish. Because
uranium concentrations decrease with increasing trophic status, biomagnification is not expected.

4.1.13 Vanadium

Vanadium may exist in the 0, +1, +2, +3, +4 and +5 oxidation states. It is highly
mobile in neutral or alkaline environments. Its mobility decreases in oxidizing and acidic
environments, whereas in reducing environments it is nearly immobile. Dissolved vanadium is
usually in the pentavalent form. Although vanadium speciation has been studied extensively in
~ marine systems, studies of vanadium speciation in freshwater systems are scarce (CCREM,
1987).

Little information is available on the bioaccumulation of vanadium by freshwater species.
Trace quantities of vanadium have been found in freshwater and marine fish. Studies on the
extent of vanadium bioaccumulation in aquatic ecosystems show little evidence for
biomagnification (CCREM, 1987). '

4.2 ACID DRAINAGE

As discussed in Section 2.3, many black shales are rich in pyrite, which is recognized
as a major source of acid drainage (Drever, 1982; Stumm and Morgan, 1981). Acid waters
- cause environmental problems because most organisms are adapted to waters buffered by the
carbonate system and cannot tolerate strong acidity. Furthermore, many toxic trace elements
are mobilized only under strongly acidic conditions. It is clear from Section 4.1 that black
shales have the potential to release toxic metals to both ground and surface water.
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If black shale deposits are disturbed, pyrite is exposed to air and water and the following
sequence occurs: - the sulphide of the pyrite is oxidized to sulphate, which releases dissolved
ferrous iron and acidity; the ferrous iron is then oxidized to ferric iron, which hydolyzes to
insoluble ferric hydroxide, releasing more acidity (Stumm and Morgan, 1981). The acidity may
initially be neutralized by the alkalinity in the ground water. If the acidity generated is greater
than the initial a]kahmty of the water, all the alkalinity will be consumed and an acid water will
result.

Research suggests that the abiotic oxidation of sulphide is catalyzed by sulphide oxidizing
bacteria. They thrive under acid conditions, so that once acidity is initiated, acid production
becomes more rapid and the acidity problem increases (Drever, 1981).

In the absence of some disturbance such as quarrying, blasting, mining, road cutting, or
excavatmg, acid waters are uncommon because dissolved oxygen in the groundwater is
insufficient to produce acidity greater than the alkalinity of the groundwater. Therefore, acid
drainage is probably only a potential environmental hazard of black shale that has been
significantly disturbed.

4.3 DISCUSSION

For any calculations involving chemical equilibria, adsorption, mobility, bioavailability,
bioaccumulation, or toxicity, it is necessary to know the speciation of a particular element. For
example, chelated forms of heavy metals such as copper, cadmium, mercury, etc. are less toxic
than the unbound ions (Moore and Ramamoorthy, 1984).

The solubility of phases containing the trace element of interest as a major constituent
provides a general upper limit to the aqueous concentration of that element. Adsorption, by
manganese and iron oxides in particular, is probably the most important process in maintaining
the aqueous concentrations of trace elements at levels far below those predicted by equilibrium
calculations (Drever, 1982).
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5. CASE STUDIES

There are several documented cases of adverse environmental impacts related to black
shale. The following synopses of a few cases discuss impacts such as: release of toxic metals
to surface and ground water, acid drainage to surface and ground water, and elevated indoor and
outdoor radon levels.

5.1 HALIFAX, NOVA SCOTIA

In 1982, a large quantity of mineralized slate bedrock of the Halifax Formation was
excavated at the Halifax Airport. The bedrock was used as taxiway fill with the remainder
placed in a disposal area. Acid drainage (pH 3) began discharging at both locations and a lime
treatment facility was established to neutralize the runoff. Nonetheless, acid drainage continued
discharging into the Salmon River watershed. This led to the initiation of an environmental
impact study to determine the effects of acid dralnage on the Salmon River aquatic system (Lund
et al., 1987); the results follow.

Field observations of the bedrock revealed pyrite and arsenopyrite, with minor amounts
of pyrrhotite, sphalerite and chalcopyrite. These minerals occur along quartz veins and cleavage
planes and were exposed to weathering and leaching following blasting. They were the principal
source of acid dralnage at the airport and contain iron, arsenic, copper, zinc, nickel and
aluminum.

Undisturbed bedrock groundwater is a calcium sulphate type water with high pH (7.7).
Water in both the disturbed bedrock and the waste rock pile had a lowered pH: 3.25-3.75 for
the former, and 2.4 for the latter. Chemical data indicated significant loadings of metals and
acidity to receiving waters from the airport. The effect of acid drainage was observed up to 10
km downstream from the airport vicinity. The resulting water quality in the Salmon River
watershed was considered toxic to fish, which will not survive in the longer run unless the
acidity of the airport drainage is returned to background. levels. '

5.2 SOTKAMO, FINLAND

Early Proterozoic black shale formations occur in eastern Finland. They are rich in
carbon, sulphur and metals and commonly contain 0.2 ppm mercury, on average. In the area
of Lake Kolmisoppi, in Sotkamo, there is a Ni-Cu-Zn occurrence in black shales, which contains
1.7 ppm mercury, on average, up to a maximum of 7.5 ppm.

Pike in Lake Kolmisoppi exhibit anomalous mercury concentrations in relation to two
other lakes studied in Sotkamo. As metalliferous black shale is one of the most readily
weathered rocks in Finland, and mercury concentrations in the shale near Kolmisoppi are
anomalous, the shale is strongly indicated as the source of the mercury in the fish (Loukola-
Ruskeeniemi, 1990).
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53 SAN JOAQUIN VALLEY, CALIFORNIA

In the San Joaquin Valley, California, subsurface agricultural drainage waters, resulting
from the leaching of salinized soils, have been used in wildlife habitats. At one, Kesterton
National Wildlife Refuge (KNWR), up to a 64% rate of deformity and death in embryos and
hatchlings of wild aquatic birds was documented in 1983. The contamination of the ecosystem
has developed from naturally occurring Se, in a form that is highly mobile in the environment
and that is able to bioaccumulate in the food chain. Presser and Swain (1990) considered the
Coast Ranges as a source of the Se contamination. Their conclusions follow.

Acidic (pH 4) seeps issue from weathered shales of the Moreno Formation in the Coast
Ranges. Their solution chemistry indicates the oxidation of pyrite, yielding hydrous sodium and
magnesium sulphate salts. The salts act as temporary geological sinks for selenate, which is
incorporated in the space normally occupied by the sulphate anion. When coupled with a semi-
arid to arid climate, fractional crystallization and evaporative concentration can occur creating
a Se-enriched fluid. The oxidative alkaline conditions necessary to ensure the concentration of
soluble selenate (see Section 4.11) are provided in the accompanying marine sandstones of the
Panoche and Lodo Formations and the eugeosynclinal Franciscan assemblage. Runoff and mass
wasting in the area provide the mechanisms which transport Se to the farmlands of the west-
central San Joaquin Valley. Subsurface drainage from these soils consequently transports Se to
refuge areas in amounts elevated enough to cause a threat to wildlife.

5.4 OHIO

- Radon, a natural radioactive gas, can cause lung cancer in people who have been exposed
to high levels over a long period of time. Radon gas is clearly associated with the geologic
occurrence of uranium (Tanner, 1986). In Ohio, the black Ohio Shale of Upper Devonian age
is the most enriched and widespread of the uranium-bearing bedrock formations. For this
reason, Harrell et al. (1991) investigated the indoor radon hazards associated with its outcrops.

Study results showed that the amount of radon gas emanating from the Ohio Shale is a
direct function of the uranium concentration in the shale. Where the average thickness of the
sediment overburden exceeds 27 m, much of the radon in houses may be derived from Ohio
Shale clasts in the glacial till. In other areas where the average overburden thickness is 6 m or
less, the indoor radon levels appear to be directly controlled by emanations from the underlying
Ohio Shale bedrock. Abundant vertical fractures in the bedrock may be greatly facilitating the
upward migration of radon. : '




36

6. RECOMMENDATIONS

Based on the preceding information, recommendations for further study are the following:

1.

Prioritize black shale deposits in Canada according to their potential to impact the
environment in a manner harmful to humans and wildlife. Factors to consider
include: proximity of the black shale to population centres, potable water
sources, and surface waters; extent of fracturing in the black shale; pyrite
content; disruption of the black shale by quarrying, road cutting, or excavating,
in general; and, the fate of the black shale if disturbed (e.g. stockpiling, road
bedding). One example of a "priority black shale" would be the Halifax
Formation in Nova Scotia.

Prioritize those trace elements known to occur in black shales according to factors
such as mobility and toxicity. Some "priority trace elements" would be mercury,
selenium, and uranium, among others. :

Compile geochemical data (published and unpublished, if available) on the
priority black shales. If no data are available, collect unweathered rock samples,

- or utilize archival samples, and analyze for a complete suite of priority trace

elements. Quantify pyrite content simultaneously. Re-evaluate the priority black
shales based on their trace element and pyrite contents and eliminate those shales
that do not pose an environmental threat due to potential toxic metal release or
acid drainage.

Compile available ground water and surface water geochemical data upgradient
and downgradient of both undisturbed and disturbed priority black shales; or,
collect the appropriate water samples for analyses. Analyze for major ions and
priority trace elements. Compare rock geochemistry with water geochemistry to

evaluate the impact of the black shale on the aqueous system.

Initiate further research on chemical speciation studies of the priority trace
elements. Perform leaching tests to elucidate the importance of different mineral
phases (e.g. carbonate, sulphide, silicate, orgamc) on the leachability of the
priority trace elements from black shale
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