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Chapter One 

INTRODUCTION 

Petroleum 
geochemists and 

In order to reach the Truth, it is 
necessary, once in one's life, to 
put everything in doubt so far 
as possible. 

BACKGROUND 

resource evaluations have been 
statisticians for many decades, 

Descartes 

performed by 
in an attempt 
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geologists, 
to estimate 

resources or potentials that may exist in a given region. Resource evaluations 
often vary as a result of differences in geological and statistical methods used. 
Various methods have been compiled by Haun (1975), Grenon ~1979), Drew et al 
(1980, 1982), Schuenemeyer and Drew (1983), Masters (1985), and Rice (1986). 

Information required in petroleum resource evaluation generally includes 
all available reservoir data and data compiled from exploratory and development 
wells. Other essential geological information comes from regional geological, 
geophysical, and geochemical studies, as well as from work carried out in 
analogous basins. To summarize, any comprehensive resource evaluation procedure 
must combine raw data with information acquired from regional analysis and 
comparative studies. 

In order to achieve accountability, the Hydrocarbon Assessment System 
Processor, HASP (Energy, Mines, and Resources Canada, 1977; Roy, 1979), blended 
available exploration data with information previously gathered. Combinations 
of exploration data and expert judgment were expressed as probability 
distributions for specific population attributes (pool area, net pay, porosity, 
etc) . Since this procedure was first implemented, demands on the evaluation 
capability have steadily increased, and the evaluation results have been 
increasingly applied to economic analysis. Traditional procedures can no longer 
be adapted to handle the new challenges. Therefore, a probabilistic formulation 
for HASP was established and new capabilities and features have been added (Lee 
and Wang, 1983a, 1983b, 1984, 1985, 1986, 1988; Lee, Nair, and Wang, manuscript 
in preparation). This formulation led to the development of the Petroleum 
Exploration and Resource Evaluation System, PETRIMES, which is the subject of 
this book. 
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OBJECTIVES 

The objective of an assessment is to evaluate total resources (the term 
"resource" is defined as that quantity of hydrocarbons made up of discovered 
and undiscovered pools or fields), or potentials (the term wpotential" is defined 
as an undiscovered quantity of hydrocarbons). Results of petroleum resource 
evaluations, however, are usually given as aggregated numbers representing total 
resources. Aggregated potential values are not specific enough to be used in 
economic, exploration, or development planning analyses, because all of these 
processes require a knowledge of the number and size of pools. Consequently, the 
objectives of a resource assessment are as follows: (1) to estimate the number 
of yet-to-be discovered pools; (2) to estimate the sizes of the undiscovered 
pools; (3) to estimate the reservoir characteristics of the undiscovered pools; 
(~) to provide adequate information for economic analysis; ( 5) to validate 
exploration concepts against known information; and (6) to estimate pool size 
distributions and relate these distributions to geological models. 

AH OUTLINE OF THE EVALUATION PROCEDURE 

In this book, the procedure for resource evaluation may be outlined as 
follows: 

1. A pool size cistribution is estimated using either (1) the exploration­
discovery process model for mature plays or (2) multiplication of probability 
distributions of geological variables according to a pool size equation for 
conceptual or immature plays. 

2. Geological risk factors of a play are identified and their marginal 
probabilities are estimated. 

3. A number-of-pools distribution is derived from the operation of 
exploration risk on the number-of-prospects distribution. 

4. Individual pool sizes of a play can be estimated from the number-of-pools 
distribution and the pool size distribution. 

5. A play resource and/or potential distribution can then be obtained. 

THE SCOPE OF THIS BOOK 

Chapter 2 of this book explains the meaning and usefulness of geological 
and statistical models in determining petroleum resource evaluations. In Chapters 
3 and 4, the superpopulation model and data from the Beaverhill Lake play are 
used to illustrate the procedure in an example for which a discovery record is 
available. In Chapter 5, a frontier play is used to illustrate a conceptual play 
evaluation. In Chapter 6, the information required to undertake an assessment, 
the interaction between the assessors and the system, and the mechanisms for the 
feedback processes during the assessment are given. 



Chapter Two 

EVALUATION MODELS 

How quaint the ways of paradox­
At common sense she gaily mocks. 

w.s. Gilbert 

GEOLOGICAL MODELS AND PLAY DEFINITIONS 
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The initial step in the evaluation of any petroleum resource is the 
identification of an appropriate geological population or model, which can be 
delineated through subsurface study or basin analysis. A geological model 
represents a natural population and possesses a group of pools and/or prospects 
sharing common petroleum habitats. A natural population can be a single 
sedimentation model, a single structural style, a single type of trapping 
mechanism or geometry, a statistical population, or any combination of these 
criteria. Reasons for adopting these criteria in the definition of a model are: 
(1) geologists can use the data from comparative geological studies as well as 
that gathered from prior experience; (2) the natural population normally exhibits 
a probability distribution such as lognormal distribution; (3) statistical 
concepts, such as the superpopulation concept, can be applied to geological 
models so that, for specific plays, an estimate of undiscovered pool sizes can 
be made; and (4) evaluations can be made of mature plays that have hundreds of 
pools. Data analysis may be required to assist in the differentiation of pools 
in homogeneous populations for the purpose of generating a statistical popula­
tion. In this case, the geological meaning of the statistical population may not 
be clear, but the estimates may be acceptable. Furthermore, it is important to 
remember that a geological model is merely a working hypothesis that should be 
revised or redefined as new information becomes available. 

Figure 2-1 illustrates a variety of possible sedimentary environments 
(tidal flats, lagoons, beaches, and patch reefs ) that can be used as geological 
models in resource evaluation. Each of these models has its own distinguishing 
characteristics of source, reservoir, trapping mechanisms, thermal history of 
source beds, and migration pathways. To assure the integrity of statistical 
analysis, each of them should be treated as a separate, natural population in 
resource evaluation. The logical steps for the description of plays are, 
therefore: ( 1) the identification of a single sedimentation model and ( 2) 
examination of subsequent geological processes, such as faulting, erosion, 
folding, diagenesis, biodegradation, thermal history of source rocks, and 
migration history that may provide a basis for further subdivisions of the model. 
In some cases, two or more populations may be mistakenly considered as one 
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because of a lack of understanding of the subsurface geology. The resulting mixed 
population may possess two or more modes in its distribution and this may have 
a significant impact on the resource evaluation results. An example of a mixed 
population was described by Lee, Eggen and Vann (1988). 

For our first example, let us look at the Leduc reef trend from the Western 
Canada Basin. Figure 2-2 (left) displays the trend of the Devonian Leduc reefs. 
The setting includes persistent shelf, slope, and basinal facies belts. Reefs 
are regions of persistent high energy stromatoporoid rudstone, rooted to the 
carbonate platform of the underlying regressive hemicycle persistent through the 
succeeding transgressive hemicycle. Traps on the carbonate shelf are controlled 
by transgressive-regressive hemicycles of a different order than carbonate build­
ups in the persistent basinal facies belt. The traps along the Middle Devonian 
shelf exhibit a negative correlation between net pay and pool area, whereas the 
t~aps along the Rimbey-Meadowbrook chain exhibit a positive correlation. For 
purposes of petroleum evaluation, the three settings should be separated into 
three models. 

Our second example involves the Slave Point-Elk Point succession. In the 
northeastern part of British Columbia (Fig. 2-2, right), the Middle Devonian 
Slave Point and Elk Point succession consists of two predominantly transgressive 
hemicycles separated by the Watt Mountain regression. A persistent Keg River­
Sulphur Point-Slave Point carbonate barrier separates the persistent evaporitic 
platform to the south and east from the persistent Horn River basin to the north 
and west (Griffin, 1965a, 1965b William_s, 1984). 

The lateral facies transition between persistent carbonate and shale facies 
belts, referred to as the facies front, generally occupies a zone of several 
kilometres in width, and extends over a maximum stratigraphic interval of about 
430 m. At the front of the shelf, prolific organic growth occurred, in places 
resulting in the formation of reef structures. 

Barrier reefs form reservoirs along the rim of the platform, whereas 
pinnacle-reefs constitute the reservoirs in the basin adjacent to the shelf. The 
Slave Point, and probably the Sulphur Point and the Pine Point formations, are 
dolomitized and diagenetically altered enhancing reservoir development. 

In the Slave Point Formation, there are at least two types of reef 
populations (i.e., reef rim and inner shelf). Thus, the distributions of area! 
extent and the net pay of these populations may be quite different. The effects 
of the geology on the accumulation of hydrocarbons may also differ. Consequently, 
the Slave Point Formation in northeastern British Columbia is divided into two 
plays with respect to natural gas resource evaluation: i.e., shelf edge and inner 
shelf. 

The important point to emphasize here is that the first step in any 
resource evaluation is to properly identify geological models that will serve 
as the framework upon which to formulate a statistical evaluation. 
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STATISTICAL MODELS 

Geological variables include net pay, porosity and others. These variables 
can be quantified with single values or a range of values. Let us take, for 
example, the porosity values from a sandstone formation. What is immediately 
obvious is that some of the values occur more frequently than others. The basic 
idea, therefore, is to associate each porosity value with a real number, or the 
likelihood of occurrence of that value (the likelihood that the value may occur: 
a large number for a likely outcome and a small number for an unlikely one). In 
other words, all the porosity values of a formation will be associated with a 
probability that describes their likelihood of occurrence. All these values and 
their probabilities form a probability distribution (see Fig. 2-4). 

We know the probability associated with each value, but we may not be able 
to explain the process that leads to this distribution. This class of physical 
phenomenon (so-called random phenomenon) , behaves randomly according to a 
probability distribution. Therefore, if we sample a specimen from a given 
formation and we wish to predict its value, we need to know the probability 
distribution of that variable. 

One of the steps in resource evaluation is to estimate the probability 
distributions of geological variables. There are two types of distributions, i.e. 
discrete and continuous. Let us take, for example, a finite number of pools in 
a play. Certainly all pools constitute ~ finite population and will exhibit a 
discrete distribution (Fig. 2-3, left). On the other hand, pool values can be 
thought of as coming from an infinite population having a continuous probability 
distribution. This continuous probability distribution is called a superpopula­
tion or a parent population (Fig. 2-3, right). 

In cases where we have a random or a very large sample set, normal 
statistics can be used to construct a probability distribution. For example, 406 
porosity values have been obtained from the Lower Mannville Formation of the 
Western Canada Basin. This sample set can be used to construct a histogram (Fig. 
2-4, top), a cumulative less-than (Fig. 2-4, lower left) or a cumulative greater­
than distribution (Fig. 2-4, lower right) . These types of continuous 
distributions are considered to be superpopulations. The greater-than form is 
generally used to express probability distributions in petroleum resource evalua­
tions. In reality, the samples of certain variables resulting from exploration 
are neither random, nor large enough to represent the population. Therefore, 
specifics of the exploration-discovery process are required if we are to estimate 
the mean and variance of the population. 

Petroleum resource estimation procedures make use of the following 
statistical models: 

1. The superpopulation or finite population model. These models are needed 
to predict individual pool sizes in a populatio_n and to measure prediction 
uncertainties. -

2. The exploration-discovery (or discovery) process model. This model can 
be used to estimate the mean and variance of the population using data resulting 
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from a discovery process. 

3. The lognormal distribution model. If a prior distribution such as a 
lognormal distribution is specified, then only the mean and variance of a 
population are required for the distribution to be estimated; the values for each 
percentile can be generated according to the lognormal distribution. On the other 
hand, if no prior distribution (nonparametric) is specified, then the values for 
each percentile must be estimated from the data. 

CONCEPTS EMPLOYED BY PETRIMES 

Basic concepts employed by PETRIMES are illustrated in Figures 2-5 and 2-
6. The upper righthand corner of Figure 2-5 displays the facias distribution of 
a-play containing pools and yet-to-be tested prospects. The discoveries from 
the play were plotted in terms of the discovery sequence (lower lefthand corner). 
Some questions that arise from examining the discovery sequence are: "How can 
these data be used to estimate the sizes of the undiscovered pools in this play? 
Can conventional statistical methods be used to predict undiscovered resources?" 
If we adopt the usual method of computing the sample mean and variance for the 
population, the assumption is either that this is a random sample set from the 
population, or that it is large enough to represent the population. In fact, 
neither of these assumptions are valid. In the discovery process, large pools 
are normally discovered at an early stage. This implies that smaller pools remain 
to be discovered. Thus, the population mean would be overestimated by the sample 
mean obtained here, whereas the population variance would be underestimated by 
the sample variance. Therefore, we believe that the discovery process may be 
viewed as a sampling process whereby pool discovery probability is proportional 
to pool size and sampling without replacement . 

Consider the patch reef model as an example of how statistical methods may 
be applied to evaluate a reef play. Firstly, a reef model (Fig. 2-6 top) is 
defined as a collection of analogous reef pools, and a reef play (upper righthand 
corner of Fig. 2-6) contains some members of the model. In other words, a reef 
play possesses a finite number of reef pools, whereas a reef model contains an 
infinite number of reef pools. Secondly, a reef model can be described in terms 
of its geological variables such as pool size, pool area, net pay, porosity, and 
number of pools. The range of all possible values for each variable exhibits a 
continuous probability distribution because of the infinite number of reef pools, 
except that the number of pools has a discrete distribution expressed as an 
integer (upper lefthand corner). Thirdly, for a specific play, the values of a 
variable are considered to be taken as a random sample from its probability dis­
tribution, i.e. they are independently derived from a common (or identical) 
distribution. The last two statistical assumptions may be verified as follows: 
(1) a play is defined as a single and natural population; (2) the formation of 
a trap (before occurrence of hydrocarbon migration) has no influence on the 
formation of other traps; (3) if excess oil has been generated for all traps, 
then the formation of a pool (after occurrence of hydrocarbon migration) has no 
influence on the formation of the other pools in the play. The last statement 
can be verified using the geochemical material balance method. Fourthly, pool 
sizes obtained from discoveries of a play (lower righthand corner of Fig. 2-6) 
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can be used as a sample to estimate the population distributions (continuous 
pool size distribution and the discrete number-of-pools distribution). 

A play may contain many, few, or no discoveries at the time of evaluation. 
A play lacking discoveries (a conceptual play), or one containing few 
discoveries, is analyzed using the pool size equation (see Chapter 5). If a play 
has sufficient discoveries (such as those shown in the lower righthand corner 
of Fig. 2-6), there are two statistical approaches that may be applied to 
estimate the sizes of the remaining undiscovered pools. 

The first approach, called the superpopulation approach or concept 
(Cochran, 1939; Cassel, Sarndal and Wretman, 1977, Baecher, 1979), is used to 
estimate the continuous pool size distribution and the discrete number-of-pools 
distribution. The superpopulation approach views a play (the finite population) 
as one of the possible cases from the geological model (the infinite population 
or superpopulation), and has been described by Kaufman, Balcer, and Kruyt (1975). 
The second approach is to estimate the play (upper righthand corner of Fig. 2-
6) without using the superpopulation concept. The play has a finite number of 
pools and possesses a discrete pool size distribution. This approach is called 
the finite population approach (Kaufman, 1986). In this book, the superpopulation 
approach is discussed. 

Once the superpopulation pool size distribution and the number-of-pools 
distribution have been estimated, the individual pool sizes of the play can then 
be estimated, as is shown in the lower lefthand corner of Figure 2-6. The boxes 
that express the estimation intervals may be matched with the present discoveries 
(shown in the lower righthand corner). This matching process is one of several 
kinds of feedback mechanisms provided by PETRIMES that allow geological 
interpretations to be combined with statistical analysis. 
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Chapter Three 

ESTIMATING MATURE PLAYS 

A discovery 
assumptions 
features of 
and fields 
discovered. 

process mode~ is one built from 
that directly describe both physical 
the deposition of individual pools 
and the fashion in which they are 

Gordon M. Kaufman 
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Geological models possess continuous population pool size distributions 
which are to be estimated from samples. Consequently, it is important to un­
derstand the nature of geological populations in order to choose appropriate 
probability distributions for them. In geological populations, important 
properties such as outlier proneness and correlation of variables may be 
observed. In this chapter, the Beaverhill Lake play from the Western Canada Ba­
sin is used as an example to illustrate statistical concepts used to evaluate 
mature plays. The first section provides background information on the Beaverhill 
Lake play. The second section describes the nature of geological populations. 
The third and fourth sections explain the lognormal and nonparametric discovery 
process models . 

THE BEAVERHILL LAKE PLAY 

Geological Setting 

Let us take the Late Devonian Beaverhill Lake play as an example of a 
mature play. The Late Devonian Beaverhill Lake transgression began with the de­
position of the Slave Point carbonate on a broad shelf in northeastern British 
Columbia, northern Alberta, and the adjacent part of the Northwest Territories . 
A carbonate reef-front facies, similar to the underlying Elk Point reef car­
bonate, developed in British Columbia. 

Continued transgression terminates the Slave Point carbonate platform 
which is succeeded by basinal lithofacies of the overlying Waterways Formation 
in northern Alberta and in the Edmonton area. However, in the swan Hills region 
of north-central Alberta, a shallow-water platform, protected to the north by 
the emergent Peace River Arch and flanked to the southwest by the Western Alberta 
Ridge, provided a setting conducive to bank development and subsequent reef grow­
th. Emergence of the reefs, followed by rising water levels during Beaverhill 
Lake deposition, terminated growth of some Swan Hills reefs (Hemphill, Smith and 
S z abo, 19 6 8) . 

Subsurface study has revealed a sedimentation model in which the Slave 
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Point carbonate platform passed laterally into open marine mudstone environment. 
Most of the pools discovered are situated along the platform margin or are 
adjacent to the platform (Fig. 3-1). Thus, the play contains traps that are 
related to organic buildups within the Beaverhill Lake carbonates of the Slave 
Point platform, and to deeper water equivalent sediments of the platform margin. 

The area studied extends over 40,000 square kilometres. There have been 
over 13,000 wells drilled in this area, but only about 1450 wildcats have 
penetrated the Beaverhill Lake Group. Since 1956, 32 oil pools as well as several 
gas pools have been discovered. Over 946 106 m3 (6 billions of barrels) of 
in-place oil has been discovered. 

The Discovery Sequence 

In addition to the 32 oil pools, there are 55 exploratory wells which have 
recovered oil in their drill-stem tests. Some of the 55 wells have been producing 
since their tests. It is assumed that these 55 wells are capable of producing 
for about 200 hours at the same rates of the drill-stem tests. Therefore, their 
reserves were then converted into in-place volume using an average recovery 
factor of 0.10. These 55 wpools" were combined with the 32 discovered pools to 
form the discovery sequence in Figure 3-2 used in the resource assessment. The 
upper half of Figure 3-2 displays the discovery sequence of all defined pools. 
The gaps on the horizontal axis are failed exploratory wells. The lower half 
displays results from drill-stem tests. 

The reason for combining undefined •pools" with defined pools in an 
integrated discovery sequence is to obtain representation from the small pools. 
Additional statistical assumptions are not required in this approach; however, 
the estimation of reserves from drill-stem test results is time consuming and 
requires expertise in reservoir engineering. 

THE NATURE OF GEOLOGICAL POPULATIOHS 

Outlier Proneness 

An outlier is defined as a member of a population with either a relatively 
small or a large value in relation to other members of the same population. 
Outlier characteristics have been described by Neyman and Scott ( 1971) as 
follows: if a population distribution has a long tail for the relatively large 
values (i.e., a large variance), then there is a higher probability of there 
being one or more outliers in it. Both large and small outliers are observable 
in many geological populations, but only large outliers are discussed here. 

Outliers may be recognized by plotting a variable on a boxplot with a 
logarithmic scale. Boxplots display where the median of a sample lies, and just 
how the outliers relate to the median (Velleman and Hoaglin, 1981). For example, 
Figure 3-3 displays the boxplots for the in-place pool size of several plays in 
the Western Canada Basin. In the boxplot, the box covers the middle· (50%) of the 
data; the horizontal bar within the box indicates the median of the sample; the 
vertical short bars beyond the box cover the range occupied by three quarters 
of the data; and the small squares and crosses outside the box indicate 



11 

relatively large values. The largest or largest two values in each sample are 
classed as outliers. The magnitude of an outlier is relative to the values of 
the sample. 

Correlation Between Variables 

Correlation between geological variables (such as pool area, net pay, 
recovery factor, reservoir pressure, and others) is aiso a common feature of 
geological populations. For example, the pool area and net pay variables of the 
Zarna reef play of the Western Canada Basin exhibit a negative log-linear 
association (left of Fig. 3-4). That is, as the values of the pool area increase, 
the values of net pay decrease. In contrast, the pool area and net pay of the 
Beaverhill Lake play show a positive log-linear association (right of Fig. 3-
4). That is, as pool area value increases, net pay value increases. Correlation 
between variables is an important element to consider in resource evaluation, 
because if a correlation is ignored, then the mean of a pool size distribution 
may be over- or under-estimated (Refer to Chapter 5). 

Mixed Populations 

Figure 3-5 (left) is a log probability plot of all Keg River reefs known 
at present from the Black Creek basin of the Western Canada Basin. The lack of 
linearity in the plot may be indicative of any or all of the following: (1) the 
data set that was chosen is not from a 1ognormal population; (2) the data set 
was not chosen randomly; (3) there is more than one population in the data set; 
and ( 4) the sample size is too small. ·The plot shown in Figure 3-5 (right) 
displays the reefs from the Rainbow basin, a sub-basin within the Black Creek 
basin. The majority of the data in Figure 3-5 (right) do follow a straight line, 
but the plot tends to be Flightly convex upward. This convex-upward phenomenon 
may result from biased sampling during the discovery process, i.e. large pools 
have higher probabilities of being discovered. Therefore, the nonlinearity in 
Figure 3-5 (left) is indicative of a mixed population. 

Lognormal Distributions 

To this point, we have examined the nature of geological populations, 
possible correlation of variables, and outlier proneness. We shall now choose 
a probability distribution to represent populations that can handle these 
properties. In this chapter, a family of lognormal distributions is used to 
describe the lognormal discovery process model, and the nonparametric discovery 
model is also applied to illustrate an alternate method. Examples of lognormal 
distribution shapes are presented in Figure 3-6. In this book, p is the mean of 
logarithmic transformed data and a 2 is the variance of the transformed data, n 
is the number of discoveries, and N is the total number of pools, including 
discovered and undiscovered pools in the play. Reasons for adopting a lognormal 
family have been discussed by Kaufman (1965), Meisner and Demirmen (1981), Lee 
and Wang (1988) and Lee, Nair and Wang (manuscript in preparation) and are listed 
as follows: 

1. A natural geological population can be adequately approximated from a 
family of lognormal distributions. Examples from the Western Canada Basin can 
be used to demonstrate that a lognormal distribution is adequate for approxi-
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mations of various large sample sets, e.g. net pay (Fig. 3-7, top, n = 109), 
porosity (Fig. 3-7, lower left, n = 381), and pool area (Fig. 3-7, lower right, 
n = 211). Figure 3-7, (lower right) displays a peculiar data set, the big steps 
between 60 and lOO hectares are due to the assignment of 64 hectares to some of 
the pools. In these cases, a prior distribution may provide a framework for 
estimating the population distribution. 

2. A lognormal family can handle the outlier-proneness of the variables, 
and yet it is sufficiently flexible to provide a good approximation of variables 
that may not have this property. The magnitude of variance measures the outlier 
proneness; the larger o 2 is, the higher the probability of there being an outlier 
in the population. 

3. If a pool size distribution is computed from the products and divisions 
of several dependent or independent lognormal distributions, then the end product 
is a lognormal distribution. Furthermore, from the central limit theorem, the 
end product also tends to be a normal or lognormal distribution, irrespective 
of original probability distribution types. 

4. Correlation among variables can be conveniently handled with a lognormal 
distribution. In lognormal cases, the value of o 2 is expressed by Equation 5-
1 (see Chapter 5, p. 32). It is evident that the value of o 2 can be conveniently 
handled by a lognormal distribution. 

5. Lognor.nal distributions adequately approximate the distributions 
recognized by geologists (Lee and Wang, ··1983a). 

6. In lognormal distributions, there is independence between p and o 2 • 

Consequently, this type of distribution can handle all combinations of p and 
oz. 

1. From a study of the nonparametric discovery process model, it appears 
that the lognormal distribution may be the best choice among many distributions 
studied. One disadvantage is that a lognormal distribution is unbounded at the 
upper limit . However, lognormal distributions have finite means and variances. 

LOGNORMAL DISCOVERY PROCESS MODEL 

Once a probability distribution is chosen, the next step is to estimate 
the parameters of the underlying superpopulation distribution from samples 
obtained from exploration. Taking a lognormal as an example, if the parameters, 
p and o 2 have been estimated, all the upper percentiles of the distribution can 
then be generated. 

Estimation Procedure 

We shall now discuss the principle of petroleum resource estimation from 
a statistical point of view. Figure 3-2 shows that pool size gradually decreases 
with time; however, variations from that trend or wwavesw occur over the course 
of exploration. 
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In cases where the discovery data for a play comes from a random sample 
or, alternatively, if all the discoveries have been made, the sample mean and 
variance adequately represent the population. In reality, however, discovery is 
influenced by many factors, such as exploration techniques, drilling technology, 
acreage availability, and company objectives. Furthermore, geologists tend to 
test what is perceived as the best or largest prospect, which may not, in fact, 
turn out to be the largest pool of the play. Testing for 'the best prospect first 
tends to characterise the discovery process as a sampling procedure. We are then 
faced with the question of how to use these types of biased samples to estimate 
the population. For the superpopulation model, a lognormal pool size distribu­
tion is assumed as follows: 

f 9 (y) = 1 /( y o~) exp [ -1/2 (ln y- p )
2 

/ o 2 ] (3-1) 
for y > 0 

where 0 = ( p, o 2 ) is the population parameter to be estimated. 

The estimation is based on the principle that the probability of 
discovering a pool is proportional to its size, and that a pool will not be 
discovered twice (Kaufman, 1963; Kaufman, Balcer, and Kruyt, 1975; Barouch and 
Kaufman, 1977). For the sake of simplicity, the concept of the discovery process 
model may be expressed as follows . The probability for pool j to be discovered 
is proportional to its size XJ as: 

PJ 
IX) XJ (3-2) 

x, + ••••. + XJ + + XN 

where N is a total number of pools in the play. 

Take N = 3 and n = 2 ( number of discoveries) as an example to illustrate 
the concept of the discovery model. Let the sizes of the three pools be: x1 = 50, 
x2 = 300, x3 = 100 MM bbl. The probabilities for all possible discovery sequences 
are graphed in Figure 3-8, which indicates that the most likely sequence is (x2 , 

x 3 , x 1 ), even though other sequences are also possible. Thls is the concept 
adopted by the discovery process model to characterize the sampling process. 

In Equation 3-2, the probability is completely proportional to pool size, 
but in reality pool size may be merely one of many controlling factors. Thus, 
Equation 3-2 is generalized by the addition of exponent ~ into the equation as 
follows: 

(3-3) 

p x, + •• + + • • • • + XN 
p 

where the ~ value ranges from negative to 1 or greater than 1. The larger the 
~ value, the higher the exploration efficiency. When ~ = 0, then the discovery 
process can be considered as a random sampling process. 

Therefore, the probability of observing (x1 , •••• , xn), given Y1, i = 1, .. , 
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N, is expressed as 

n 

IT (3-4) 

j=1 

Where bj = X] + • • • + Xn (diSCOVered p00l SizeS) r Y 1 S = UndiSCOVered p00l SizeS • 

In general, the probability of the j-th pool to be discovered is the 
product of the following probabilities: the probability of pool j in the 
lognormal pool size distribution f 8 (xl); and the probability of pool j to be 
discovered in a sequence. Thus, the joint density function of all discovered 
pools can be shown as follows: 

Nl n n xp 

IT 
J 

L(0)= IT f 8 (XJ) Ee [ 

(N - n) 1 j=1 j=1 bl + 
{1 y {1 yn+1 +. • • • .+ N 

(3-5) 

where 0 represents the distribution parameters (p,a 2 ), Nl/(N-n)l is the number 
of ordered samples of size n without replacement from a population of N pools, 
and bl = x/ + ••• + x/, and y n+/ , •• , yJl = undiscovered pool sizes. 

Quantity L(0) indicates the likelihood of a discovery sequence. The maximum 
likelihood method is used to obtain solu~ions for p, a 2 , Band N such that L(0) 
is maximized. The resultant L(0) value is the maximized log-likelihood value. 
The pool size distribution f 9 (y), in fact, can be any probability distribution, 
but the lognormal family is applied here. 

Furthermore, Equation 3-5 consists of two parts, f 9 and E9 [.]. fe 
represents the pool size distribution which results from tectonism, 
sedimentation, generation, migration and accumulation of hydrocarbons, whereas 
E9 [.] represents the manner in which pools are discovered (Fig. 3-9). 

Validation of the Discovery Process Model 

Simulated data sets may be used to validate the discovery process model. 
The validation procedure is as follows: A hypothetical population is assigned 
parameters (e.g. p = -4 and a 2 = 20). A random sample of size 200 is then drawn 
from the population(e.g. N = 200). A discovery process model is simulated (using 
B = 0.3, 0.6, and 1.0). For each B value, various numbers of •pools" are also 
"discovered" (given in this example values of n = 20, 40, 80, and 150). The 
model is then used to analyze each of these discovery sets. 

It is important to note that the discovery process model does not require 
prior distributions for p, a 2 , and {3, or truncation of large values. All 
available data are used to estimate population mean and variance, bec~use an 
adequate estimate of population variance cannot be derived from truncation of 
data. Furthermore, the procedure involves estimating the population rather than 
fitting a curve to the discovery sequence. 
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For convenience of calculation, let the values of N range from a minimum 
to a maximum value. They should not be considered as a prior distribution of N. 
Results are listed in Tables 3-1, 3-2, and 3-3. Each table gives one value of 
~. The first column gives the values of n used as sample size, whereas the second 
column shows the different values of N when n equals a specific value. The third 
column displays the estimated ~ value. The 4th to 6th columns display the point 
(middle value) and 95% interval (first and third values) estimates of ~· The 
7th to 9th columns display the point (middle) and the 95% interval (first and 
third values) estimates of o 2 • The last column, or Log L, of the tables gives 
the values of the maximized log-likelihood values. Each value can be regarded 
as an index to the likelihood of the particular combination of N and ~, given 
the discovery sequence. The larger the index, the more plausible the combination 
for the given sequence of discovery pools. The interpretations are summarized 
as follows: If the log-likelihood values are given to three decimal places, the 
d~scovery process model may underestimate the population value of N. However, 
if the likelihood values are rounded off, then the model predicts an upper limit 
of N, or a range of values of N, where the n and/or ~ values are large enough. 

Given that N = 200, the adequacy of estimation for the values of ~' ~, and 
o 2 from the discovery process model can be examined as follows: 

1. Estimated~ values approximate the population values, especially when 
the estimated values are rounded off to one digit. 

2. E3timated values of ~ and o 2 fall into all 95% interval estimates, 
regardless of the values of ~ and n. 

3. As the sample size n increases, the estimation interval is reduced. 

4. The point estimates approach the population values as the sample sizes 
increase. 

The principle for determining a value of ~ and o 2 from their intervals is 
that the values of ~A, o2A, and N chosen must be able to predict present and fu­
ture discoveries, which may be validated by prospect analysis. The procedure for 
choosing a ~A and o2A is discussed in the section entitled, •pool-Size-By-Rank". 

The Beaverhill Lake Play 

Figure 3-2 shows the graph of the pool size versus discovery year for the 
Beaverhill Lake play. This figure suggests that pool sizes may have influenced 
the order of discovery (most of the large pools were discovered early in the 
play's exploration history). From the discovery model, a range of initial 
estimates of ~ and o2 can be obtained, as well as estimates for the number of 
pools in the play. Using the Beaverhill Lake play example, the steps involved 
in the estimation of ~ and o 2 are described as follows: 

1. Geological and geophysical data indicate the number of undiscovered 
pools ranges from 3 to 400 "(including recoveries from drill-stem tests). 
Therefore, let the number of pools, N, range from 100 to 400 with an increment 
of 25 (see column 1 of Table 3-4). 
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2. Let B be maximized using the model (see column 2 of Table 3-4). 

3. For each Nand B, the discovery model is used to estimate~ and o 2 such 
that the likelihood function of the discovery model is maximized. The three 
estimates under ~A and o 2 A are interval estimates and have a 0 . 9 probability. 

The last column of the table gives values of maximized log-likelihoods. 
The likelihood value jumps from N = 125 to reach a plateau when N = 150. This 
means that the value of N is at least 150. However, if we examine the group 
distributions for various values of N, the following results are observed: By 
increasing the value of N, the number of small pools also increases, but the 
largest undiscovered pool size, however, may not be yet discovered if N > 152 
(Table 3-4). The second prediction is rejected because the drilling density and 
seismic coverage suggest that the largest pool of the play should have been 
d~scovered. For each value of N, there are point and interval estimates for ~ 
and o 2 • These initial interval estimates are used in the pool-size-by-rank 
estimation. 

Figure 3-10 displays pool size distribution derived from the lognormal 
discovery process model when N = 152 and {3 = 0. 3 (A) and the pool size 
distribution derived from random sampling assumption (B). It is evident that 
the mean and variance of the superpopulation pool size distribution are over­
and under-estima~ed, respectively, if the random sampling assumption is made. 

HONPARAMETRIC DISCO~RY PROCESS MODEL 

Estimating Distributions 

In the previous sections, we demonstrated how to use the lognormal 
superpopulation model (parametric) to estimate pool size distributions. We shall 
now discuss the use of a nonparametric superpopulation model without benefit of 
a prior distribution (Wang and Nair, 1988; Lee, Nair and Wang, paper in prepara­
tion). 

A petroleum play contains N pools within the same underlying cumulative 
probability distribution F. Furthermore, if n pools are discovered randomly from 
the play, then the probability density for each pool is simply 1/n. Unfor­
tunately, then pools are not a random sample, but a biased sample from the play. 
Therefore, the statistical estimation of F requires use of the lognormal dis­
covery process model as described above. On the other hand, under the discovery 
process model, the underlying parent distribution F can also be estimated without 
making any assumptions about its shape. In this case, the probability density 
for each discovery is estimated and then an empirical pool size distribution, 
FA(y), is obtained. This empirical distribution is graphically presented using 
quantile-quantile (Q-Q) plots. 

Modeling Distributions 

Essentially, probabilistic statistical analysis assumes that a set of data 
arises as a sample from some classes of probability distributions. This section 
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deals with informal graphic methods used to assess distributional assumptions. 
The information applied to the graphic methods is based on the results of the 
nonparametric procedure described in the previous section. The advantage of the 
procedure is that it is not based on any assumption about the shape of a 
probability distribution. However, the procedure assigns mass only to the 
observed data, and assumes that the largest pool in the population is no larger 
than the largest pool in the sample, and that the small~st undiscovered pool is 
no smaller than the smallest discovered one. This is a clearly unrealistic 
situation. In order to overcome this disadvantage, the F estimated nonpara­
metrically is approximated by various probability distributions, and then the 
best fit among the distributions is judged using the informal graphic proce­
dure. 

Suppose F" is estimated nonparametrically and we test whether F" = F
0 

where 
F9 is the hypothesized distribution and is completely specified. There are a 
number of graphic methods which can be applied to test the hypothesis. The 
percent-percent (P-P) plot is checked to determine whether it falls along a 
straight line through the origin with a slope of one. However, the P-P plot has 
several disadvantages. Firstly, it only allows one to check the adequacy of 
completely specified distributions. In practice, it would be used more to 
determine the shape of the distribution, such as lognormality, rather than to 
specify the parameters. Secondly, if the plot is nonlinear, it becomes difficult 
to determine what alternative shapes one should consider. 

The Q-Q plot, on the other hand, is designed to overcome these drawbacks 
inherited from P-P plots and can be used to assess the adequacy of a hypothesis 
whether a data set comes from a family F0 [(y-~)/cr) for unknown location parameter 
~ and scale parameter cr. Under the hypothesis that the data set is indeed from 
a distribution with shape F0 , the data will follow a linear configuration. So one 
just needs to look for linearity without having to estimate values for~ and cr 2 • 

If the linearity does exist, then the intercept of the line is an estimation of 
~' and the slope is an estimation of cr. Nair (1984) presents examples about this 
fitting procedure. Departures from straightness in the theoretical Q-Q plot 
clearly indicate that the observed and theoretical distributions do not match. 
When they do not match, the plot may suggest the nature of the mismatches as 
follows: (1) presence of outliers at either end; (2) curvature at both ends, 
indicating long or short tails; (3) convex or concave curvature, related to 
asymmetry; and ( 4) plateaus. The significance of these mismatches will be 
discussed below (Chambers, Cleveland, Kleiner and Tukey, 1983). 

Outliers. Samples of geological populations often contain outliers. It must be 
noted that, when outliers are encountered in a set of data, it is prudent to go 
back to the source of data, if possible, to verify the values. If they are in 
error, they can be corrected or set aside, but if they really belong to the 
population, they might be the most important observations in the sample. 

Long or short tails at both ends. Another departure from the linearity often 
observed in Q-Q plots is displayed in Figure 3-11 (top); the ends of the 
configuration curve upward to the right and downward to the left. A straight line 
can be fitted to the central portion of the plot. This indicates that these data 
represent a longer tails than the hypothesized distribution, F0 • 
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Symmetrv, Another possibility is that the theoretical distribution is symmetrical 
but the data are not. For example, if the plot is an inverted s-shaped (Fig. 3-
11, lower left), then the data are more or less symmetrical but have a longer 
tail than that of Fa• On the other hand, if Fa is a symmetrical distribution and 
the Q-Q plot is S-shaped, then the data may be more or less symmetrical, but have 
a shorter (lighter) tail than that of Fa• 

Plateaus. Figure 3-11 (lower right) shows a related phenomenon. There are two 
rough plateaus. This means that there are two distinct clusters of points which 
are not accounted for by the theoretical distribution. Indeed, Figure 3-11 (lower 
right) contains two populations. 

Validations Using Siaulated Data Sets 

The nonparametric discovery model was also validated using the simulated 
data sets, For purposes of comparison, pA and a:z A are computed after the 
estimation is completed. The results are listed in Tables 3-6, 3-7, and 3-8, and 
may be explained as follows: 

1. The nonparametric model does not yield an estimate for N, but the model 
does provide upper or lower estimates for N. 

2. With some exceptions, the model predicts 8 values reasonably well. 

3. The estimated values of p and az fall into 95\ interval estimates, 
except in cases where there are high values of ~. 

4. As the sample size increases, the estimation interval is usually 
reduced. 

5, The point estimates approach the population values as the sample sizes 
increase. 

The Beaverhill Lake Play 

The Beaverhill Lake data set was also evaluated using the nonparametric 
discovery process model. The analysis is summarized as follows: The likelihood 
value increases to a relatively flat value when N > 152 (Table 3-9). This 
indicates that the value of N is at least 150. These 150 "pools" include 
commercial pools and oil recoveries from drill-stem tests. The group distri­
butions for different values of N are listed in Table 3-10 for purposes of 
comparison. Furthermore, if Table 3-5 and 3-10 are compared, one finds that the 
lognormal model predicts more both large and small pools than does the non­
parametric model. The explanation for this discrepancy is that the small and 
large pools are predicted by the shape of the lognormal distribution. On the 
other hand, the nonparametric model cannot predict the lefthand side of 
distribution because there are no pools in the sample. The nonparametric 
distributions of the Beaverhill Lake play for N = 150 and ~ = 0.3 are displayed 
in Figure 3-12 (discrete distributions). 
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Various probability distributions (namely 1 normal, lognormal, power normal, 
geometric, Pareto, Weibull, one parameter exponential, and two parameter exponen­
tial distributions) were hypothesized and were fitted to the nonparametric 
distribution (Fig. 3-12). The results of the Q-Q plots for these distributions 
are displayed in Figures 3-13. 

The result of the assessment of the distributional assumption is summarized 
as follows: the Beaverhill Lake data have a longer tail' than do normal, power 
normal (with power= 0.5), uniform, gamma (with shape factor= 5 to 0.01), one 
parameter and two parameter exponential distributions. The Q-Q plots for the 
truncated and truncated shifted Pareto distributions display a combination of 
s- and inverted s-shapes. The lognormal, Weibull, and power normal (with power 
= 0.001) may have a slightly longer tail. However, the lognormal or power normal 
with low power is a better choice than other distributions, if one has to use 
a-prior distribution. The nonparametric discrete distribution of Figure 3-12 is 
approximated by a continuous lognormal distribution that is used to estimate 
individual pool sizes. 
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Chapter Four 

POOL-SIZE-BY-RANK 

If you do not expect the unexpected, 
you will not find it; for it is hard 
to be sought out, and difficult. 

Heraclitus 
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In resource evaluations, the most useful type of information is the 
estimation of pool-size-by-rank (for the r-th largest pools), that is, the size 
of the largest pool, the second largest pool and so on. The minimum data required 
to obtain this type of information is (1) a pool size distribution and (2) the 
number-of-pools, N, in the play, or their distrib•ttion. The superpopulation 
concept must be assumed for this estimation. Furthermore, the pool size 
distribution and the number-of-pools distribution can vary independently, and 
a lognormal assumption is not required to operate pool-size-by-rank. 

INTERPRETING POOL-SIZE-BY-RANK 

If N = 1 (i.e. a single pool play), then the distribution of the largest 
and smallest pool is precisely given by the pool size distribution. More 
generally, if X1 , X2 , , XN are pool sizes generated independently from an 
identical pool size distribution, denoted by Fe where e = (p, c 2 ), then the 
greater than distribution of the largest pool (assuming there are N pools) is 

N 
LN,r (X) = 1 - [ 1 - Fe (X) ] I X > 0 (4-1) 

The greater-than distribution of the r-th largest pool is given by 

LN,r (x) = N 

k=r K 

N-K ) F(x) 9 [ 1 - F9 (x) ] , 

for r = 1, 2, .•• , N. 

X > 0 (4-2) 

Equations (4-1) and (4-2) are the distributions of the largest and the r-th 
largest order statistics (Bickel and Doksum, 1977) for a random sample of size 
N from the superpopulation. When the number of pools is a random variable, then 
the density of the r-th largest pool can also be derived (Lee and Wang, 1983a) 
as follows: 
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oo n n 

lr = :E :E k ) F(x)k [1 - F(x) ]n-r f(x) P(N=n)/P(N?!r) 
n=r k=r 

for x > 0 and r = 1, 2, ••• (4-3) 

where P(N=n) = number-of-pools distribution when N = n, P( N ~ r ) = number­
of-pools distribution when N ~ r, for r = 1, 2, ••• From Equation (4-1) we see 
that: (1) for a fixed set of parameters ~ , a 2 , the probability of depositing 
a largest pool size of at least x increases to 1 as the total number of pools 
(N) increases, and (2) for a fixed N and also a given pool size x, the 
probability of the largest pool being at least x will increase as ~ and/or a 2 

increases. 

This information is interpreted geologically below: 

1. If all pools in a play were deposited as a result of the same geologi­
cal processes (i.e. they are part of the same population), then as the number 
of pools deposited rises, the more likely it is that one of them is a relatively 
large one. 

2. The magnitude of the largest pool tends to change with respect to other 
pools for different values of~ and a 2 , i.e. with respect to different geological 
mouels. 

For purposes of illustration, let us re-examine the Beaverhill Lake play. 
Here, as indicated by Figure 4-1 (top A)~ the Swan Hills A&B pool size (290 106 

m3
) is located at the upper one percentile on the superpopulation pool size 

distribution. The interpretation is that the frequency of occurrence of a pool 
as large or larger than the Swan Hills A&B pool within the superpopulation is 
about 1%. On the other hand, the probability that the largest pool in the 
Beaverhill Lake play is as large as the Swan Hills A&B is not 1% but much larger 
(unless there is only one pool). In the case of more than one pool, the 
probability can be obtained from the distribution of the largest pool among N 
pools. The largest pool size distributions for N = lOO and 152, for example, 
are displayed in Figure 4-1 (top B and c, respectively), together with the 
superpopulation pool size distribution. The probabilities of having the largest 
pool size as large as Swan Hills A&B are 0.56% and 0.76% for N = 100 and 152, 
respectively. Given N = 152, for example, then 152 pools have been deposited with 
sizes generated from the superpopulation pool size distribution, the chance of 
having the largest of the 152 pools as large as Swan Hills A&B is 76%. That is, 
if the processes can be repeated under similar geological conditions, and 152 
pools are generated at a time, then roughly 76% of the time the largest pool will 
have a size at least as large as the size of Swan Hills A&B. This is a 
frequentist interpretation of probability that employs the superpopulation 
concept of pool size distribution. 

The distributions of the first two largest pool sizes, when N = 152, are 
displayed in Figure 4-1 (lower). This figure indicates that the probability of 
the largest pool being bigger than x (say, 290 106 m3

) is greater than the proba­
bility of the second largest pool being bigger than x. For example, the proba­
bility of having the second largest pool size as large as 290 106 m3 is 0.17. 
This provides an indication about the ranking of the Swan Hills A&B pool. 



23 

The difference in size between two adjacent pools can be examined as a 
function of a 2 , if Nand p remain unchanged. In Figure 4-2 (left), the medians 
of individual pool size distributions, where p = 0.25, a 2 = 7 and N = 60, are 
displayed by dots, whereas the medians of individual pool size distributions, 
where a 2 = 2 and p and N remain the same, are displayed by squares. This figure 
clearly indicates that pool size decreases more rapidly when a 2 is relatively 
large than when a 2 is relatively small. For any skewed pool size distribution, 
such as a lognormal one, given constant values of p and 'N, the larger the value 
of a 2 , the bigger a single pool tends to be. Hence the magnitude of the first 
few large pools among the N pools tends to be greater. 

Plays from the Western Canada Basin reveal an interesting pattern. They 
are the Beaverhill Lake, Bashaw, and Zama plays. Values of a 2 ~ were estimated 
from pool size data published by the Energy Resource Conservation Board of 
Alberta. Figure 4-2 (right) displays the sizes of the largest ten pools for three 
plays, which have a 2 ~ values of 6.6, 3.0, and 1.0, respectively. These ten pools 
include discovered and undiscovered pools of the plays. The sizes in the 
Beaverhill Lake play (indicated by the dots) decrease more rapidly than those 
of the Bashaw reef play (indicated by the crosses) and those of the Zama play 
(indicated by triangles). The reason for this change is that the pool size 
distribution for the Beaverhill Lake play has the largest variance of all. The 
reserves from the first ten pools amount to 91, 68 and 46 percent of their total 
resources, respectively. This phenomenon demonstrates that the magnitude of a 2 

allocates the resources to individual pools. 

A summary of the above follows: 

1. Distribution of pool-size-by-rank should be computed from the number 
of pools, N, and the pool size superpopulation distribution, which does not need 
to be lognormally distributed. 

2. The size of the largest pool increases as the number of pools, N, 
increases. The amount of increase depends on the magnitude of p and a 2 • For 
example, the po~l size increases rapidly when a 2 is large. 

3. In resource evaluations, when the constant in Equation (S-1) is not 
scaled, p dominates az in Equation (S-2) for the mean of a pool size. Therefore, 
parameters p and N can be thought of as indicators of the richness of the play, 
whereas a 2 and N are indicators of the outlier-proneness of the geological model. 

4. For each hydrocarbon-bearing play, there is a set of p, a 2 , and N values 
associated with the geological model that produced the play. Different geological 
models may have different values for p, a 2 and N, and correspondingly distinct 
pool sizes. 

s. If a play has a pool size distribution with a large a 2 , then the major 
portion of the play's resources will be made up by the first few largest pools. 
On the other hand, if a 2 is relatively small, then the pool sizes of the play 
will be more or less equal. 

The number of pools in a play, which is a finite number, should include 
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all small pools that may not be economically viable at present. One might be 
concerned that if small pools are included in the assessment, then the mean (of 
the untransformed data) of the pool size distribution will be reduced substan­
tially. Consequently, the mean would not adequately describe the economic 
resources. Further explanation is required to clarify this statement: firstly, 
the mean of a population is not an ideal index for resource measurement, and 
secondly, a play that includes small pools may not be economically viable at the 
time of analysis. From the viewpoints of exploration and' economic analysis, the 
remaining largest pool sizes are far more significant than the mean value of the 
pool size distribution. 

As previously mentioned, the superpopulation concept is employed by 
PETRIMES. Thus, the predictions made by the system are of cases that would occur 
most frequently. A singular case, for example, is that of the Cardium marine 
sandstone play, in which the largest pool size is about 10 times larger than the 
size of the second largest pool. Under such situation, pools of sizes in between 
the two largest pools may be mistakenly predicted. However, if additional 
information indicates that no other sizes of pools would exist, then the 
information can be entered into the system as a condition for predicting the 
individual pool sizes. 

The concept of pool-size-by-rank can also be explained using Monte Carlo 
simulation. Assume we have a pool size distribution and a number-of-pools 
distribution. A random number is generated and the number of pools, N1 (say 100), 
is obtained from the number-of-pools dis7ribution. A total of N1 (= 100 in this 
case) pool sizes is randomly drawn from the pool size distribution(e.g. x 1 , 

x 2 , ••••• , x 100 ). These pool sizes are sorted in descending order, and the steps 
are repeated many times. The largest pool sizes from each simulation trial are 
then used to construct the size distribution of the largest pool. The size of 
second largest pool, the third largest pool and others are similarly obtained. 
In practice, the statistical approach for the estimation of individual pool sizes 
is more effective and can also provide various matching options. 

Factors that distort estimations of pool-size-by-rank include the problem 
of mixed populations, error in the estimation of the number-of-pools and/or pool 
size distributions, and errors in measurement of pool sizes. The problem of mixed 
populations is the most severe one, and causes either under- or over-estimation 
of undiscovered pool sizes when prior distributions are specified. Revisions to 
the play definitions may solve the mixed population problem. 

With respect to the significance of changes in the values of N, ~, and a 2 

and their impact on the estimation of individual pool sizes, the largest pool 
size is sensitive to the following factors (in decreasing importance): a 2 , N 
and/or ~, and errors in pool measurements. 

MATCHING PROCESS 

In the previous section, we described how pool-size-by-rank may be 
estimated when the total number of pools in the play, N, is known and the pool 
size distribution is provided. In this section, we shall determine values of ~A 
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and cr 2
A from an interval estimate for a given N. The method begins by assigning 

values to N according to available geological information and values of ~A and 
o 2 

A from the intervals. The individual pool sizes are then estimated. The 
estimated pool sizes should be matched with the discovered pool sizes to 
determine which values of ~A' o 2

A and N yield satisfactory discovery fits. A 
satisfactory fit is one that is reasonable statistically and corresponds to the 
current geological interpretation of the play. This procedure combines geological 
interpretation and statistical analysis. This may be a complicated and time­
consuming process; nevertheless, it can be quite useful. 

Distributions of individual pool sizes can be conveniently characterized 
as a few selected upper percentiles without much loss of information. Take a pool 
size distribution as an example. The upper percentiles of 95, 75 50, 25, and 5 
of the distribution are 5.5, 8.6, 11.9, 16.4, and 26.4 106 m3 of oil (Fig. 4-
3}, respectively. For purposes of comparison, the variability of this 
distribution can be measured by its interquartile range, which measures the 
variability of the middle 50 percent of the distribution. In this example, the 
range for 25% to 75% is given as 16.4 - 8.6 = 7.8. The larger the interquartile 
range, the more variable the distribution; hence, the higher the degree of 
uncertainty. 

There are several reasons for which the upper percentiles, as measureruents 
of the individual pool size distribution, are preferred to the mean and the 
variance. They are: (1) the mean and standard deviation do not relate directly 
to probabilities; (2) the mean may tend to over-predict individual pool sizes; 
and (3) the standard deviation is typically larger than the mean, which makes 
it less useful for purposes of prediction and comparison. 

The interval from the 75th upper percentile (8.6 106 m3
) to the 25th upper 

percentile (16.4 106 m3
) is a 50% prediction interval for the pool that contains 

the median. That is, the probability that the pool will have a value between 
8.6 and 16.4 106 m3 is 50%. Similarly, 5.5 to 26.4 106 m3 is a 90% prediction 
interval for the largest pool. The latter prediction interval has a higher 
probability of occurrence, but at the expense of having a much wider interval, 
i.e. more uncertainty. In what follows, we will start with the 75% - 25% 
prediction interval as a statistical measure of goodness-of-fit, and the median 
will be used as a point estimator of pool-size-by-rank. 

The 75-25% interval, in fact, was derived from pilot studies. In our 
experience, the most effective method is to divide the sample into two sets. 
The first sample set is used to establish an interval (such as 75-25% or 95-
5%) that can predict present discoveries. The interval derived may then be used 
to predict future ones. In cases where the 75-25% interval does not match most 
or all of the discoveries, then the 95-5% interval should be used to match 
present ones. 

Geological gauges for measuring goodness-of-fit compared to statistical 
fit method are difficult to quantify. Statistical fits may be verified by 
examining their geological implications. After each statistical fit, we observe 
whether or not the implications are in accord with the geological model. Examples 
of the type of questions that one should ask following each fit are: 
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Have we discovered the largest pool? 
What are the sizes of the remaining largest pools? 
What is the potential of the remaining undiscovered pools? 
Have we predicted enough small pools for the play? 
How do recent discoveries, which are not included in the analysis, 

fit into the prediction picture? 

AH EXAMPLE OF MATCHING 

If we take, for example, the Beaverhill Lake play, we find that both the 
lognormal and the nonparametric discovery process models indicate that values 
of N range from 150 and up. The matching procedure is explained as follows: 

1. The intervals for p and o 2 are chosen from the output of lognormal 
and/or nonparametric discovery process models. For example, the intervals 
from the lognormal model, when N = 150 and ~ = 0.3 are: 

-7.93 ~ p ~ 

19.45 ~ a2 ~ 

-5.54, and 
41.35. 

2. The final intervals used in the matching process are: 

-8 ~ 

20 ~ 

-6 with an increment of 1, 
45 with an increment of 10 or 5. 

3. The pool-size-by- rank are computed for each combination of increments, 
i.e., pA = -8 and o 2 A = 20. The estimated individual pool sizes are then matched 
with the present discoveries. 

4. Repeat steps 1 to 3 for other intervals. 

5. When all possible intervals have been analyzed, one acceptable match 
is chosen among all matches, based on geological criteria. 

There are other options to choose pool size distributions for matching 
purposes. The first option is to take the empirical pool s ,ize distribution 
derived from the nonparametric discovery process model and the second option is 
to use the values of pA and o 2 A obtained from the lognormal approximation of the 
empirical pool size distribution. The advantages of the second over the first 
option has been discussed in the, nModeling Distributionw section in Chapter 
Three. 

If we take the lognormal approximation in Figure 3-12 having values of p 
= -6.80 and o 2 = 29.55 when N = 152, and~= 0.3 as an example, we find that the 
pool-size-by-rank listed in Table 4-1 (also see Fig. 4-5) may be interpreted as 
follows: 

1. The best match interval is 95-5% because it matches to all discoveries, 
except the 8th, 9th, and lOth ranks. The unmatched ranks may result from 
irregularities of nature, given that the pool sizes estimated are just one of 
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several possible cases from the superpopulation studied. 

2. The largest 17 pools have been discovered. 

3. The largest remaining pool size is about 0.7 106 m3
• 

4. If we examine Table 4-1 carefully, we find that there are a number of 
options for us to match the discoveries, such as matching the 11th discovered 
pool rank to the 12th population pool size rank; or matching the 12th discovered 
pool rank to the 14th rank. In order to verify any of these matches, the 
following ad-hoc procedure is used: (1) The pool area corresponding to the 
remaining largest pool size is obtained from the cross-plot of the pool areas 
vs pool sizes of the Beaverhill Lake play (Fig.4-4), and (2) the pool areas so 
obtained can be validated against seismic coverage when seismic grids are small 
epough to reveal prospects having the range of pool areas. For now, the match 
displayed in Figure 4-5 (left) is assumed to be the final match for purposes of 
illustration(see below). 

POOL SIZES CONDITIONAL TO POOL RANKS 

As indicated in Figure 4-5 (left), the predicted pool sizes have a wide 
range of prediction intervals which overlap with the two adjacent pool sizes. 
This overlapping phenomenon is a result "of the uncertainty in the estimations. 
In this section, we introduce a method by which the uncertainty in the estimation 
of pool size can be reduced when pool rank is entered into the analysis (Lee and 
Wang, 1985). 

Once the acceptable match has been obtained, the remaining individual pool 
sizes and hydrocarbon potential of the play can be estimated by adding conditions 
to the match. For the Beaverhill Lake play, the remaining pool sizes were 
estimated by constraining the pool sizes of the 87 discoveries and their ranks. 
Figure 4-5 (left) displays the result based on N = 152 and is discussed below. 

1. The largest remaining pool sizes range (0.9 probability) from 2 106 to 
6 106 m3 of oil in-place, with a median of 4 106 m3

• 

2. The range of the prediction intervals following conditional analysis are 
smaller than those of intervals for which conditional analyses were not 
performed. For example, the remaining largest pool size ranges from 2 106 to 6 
106 m3 as compared with the 0.7 106 m3 to 10 106 m3 shown in Figure 4-5 (left). 

3. The overlapping range of two consecutive pool sizes is also much smaller 
than the case shown in Figure 4-5 (left). 

4. The degree of uncertainty in the prediction intervals is controlled by 
four factors: (1) the uncertainty inherited from the superpopulation; (2) errors 
in measurements of the pools, ( 3) the ratio of the number of discoveries to total 
number of pools, and (4) the difference in reserves between the two nearest 
pools, as illustrated by the 21th to 28nd pools of Figure 4-5 (right).2 
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5. Individual pool size distributions computed from specified discovery 
records tend to be less skewed and more concentrated around the medians than 
those computed without specified conditions. 

The estimation of pool sizes constrained to a discovery record serves not 
only to estimate remaining resources, but can also reduce the uncertainty 
inherited from its superpopulation. 

PLAY RESOURCE DISTRIBUTION 

A geological model can generate a variety of play resource values under 
the superpopulation concept. All these resource values constitute the play 
resource distribution for the model. 

In PETRIMES, the play resource distribution is the sum of all pool sizes 
of the play. If the pool sizes are approximated using lognormal distributions, 
then the play resource distributions are the sum of the lognormal distributions. 
This summation does not have an analytical form. Therefore, the summation is 
executed numerically by convolution, or by using a Monte Carlo procedure. The 
mean and the variance of the play resource distribution are as follows: 

where E [ X 
a2 

E [ N 

aN 2 

= e X E[ X 1 X E [ N 1 
= a 2 X E[ N 1 + (E [ X 1)2 x aN2 

1 = mean of the pool size distribution, 

= variance of the pool size distribution, 

= mean of the number-of-pools distribution, 
e = exploration risk, and 

= variance of the number-of-pools distribution. 

(4-4) 
(4-5) 

Figure 4-6(A) displays the play resource distribution for the Beaverhill 
Lake play. There is a 50% chance that the play will have a play resource ranging 
from 887 106 to 15,739 106 m3 of oil in-place. An amount of 941.43 106 m3 of oil 
has been discovered. 

This play resource distribution is the superpopulation distribution and 
contains the uncertainties explained in the previous chapter. If the pool ranks 
of discoveries are known, then the uncertainties and the variance of the 
distribution can be reduced by constraining the distribution. 

PLAY POTENTIAL DISTRIBUTION 

Play potential is defined as undiscovered resources which can be estimated 
from play resource distribution conditional to matched pool ranks. 
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Figure 4-6(B) is the play potential distribution (conditional to the output 
of the match) for the Beaverhill Lake play. Interpretations follows. 

1. There is a 50% chance that the remaining play potential ranges from 13 
106 m3 to 16 106 m3

• 

2. There is a 90% chance that the potential ranges ~rom 12 106 to 18 106 3 m. 

3. The mean and standard deviation of the distribution are 15 106 m3 and 
1.8, respectively. 

4. The median equals 15 106 m3
; i.e. there is a 50% chance that the 

remaining play potential will be greater than 15 106 m3
• 



30 



31 

Chapter Five 

EVALUATING CONCEPTUAL PLAYS 

As time goes on qualitative. methods 
are replaced by quantitative methods. 

F.Y. Loewinson-Lessing 

GEOCHEMICAL APPROACHES 

A conceptual play is a play which has not yet been proven by exploration 
and is postulated from geological information, whereas an immature play is a play 
in which a number of discoveries have been made but the number of discoveries 
is not sufficiently large to apply the discovery process model described in 
Chapter 3. When a conceptual play is evaluated, the amount of data available for 
assessment may range from no data at one end to some data at the other end. 
Therefore, the methods for evaluating a conceptual play are based on the amount 
and types of data available for assessment. Possible methods are outlined as 
follows: 

Types of Data Available 

No data 

Types of source rocks 
(conceptual or real) 

Conceptual or real stratigraphic 
columnar section 

Areal extent and volume of 
source rock 

Method 

Geologic comparative study 

Types of expected products (oil, gas, 
or heavey oil) 

Burial history, maturation stages, oil 
and gas windows; timing of hydrocarbon 
generation 

Amount of oil or gas generated; timing 

Detailed descriptions of the above methods are beyond the scope of this book. 
However, the numerical method presented in this chapter may be applied to 
conceptual or immature plays. For immature plays, discoveries may be applied to 
validate estimates obtained. 
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POOL SIZE EQUATIONS 

In reservoir engineering, a pool size can be calculated by using the 
equation as follows: 

Pool size = Constant x Pool Area x Net Pay x Porosity x 
Hydrocarbon Saturation x Recovery Factor f 
Gas or oil Formation Volume Factor (5-1) 

For resource evaluations, Equation (5-1) is adapted to define a pool size 
distribution (Roy, 1979). In PETRIMES, the geological variables are jointly 
approximated by using a multivariate lognormal distribution. Because the result 
of product and/or division of lognormal random variables is again a lognormal 
~riable (Aitchison and Brown, 1973), it follows from Equation (5-1) that the 
pool size distribution is lognormal. If we let ,_,, a 2 and a 11 , i,j = 1, 2, ••• , 

denote the means, variances and covariances of the natural logarithms of the 
geological variables, then the mean and variance of a pool size distribution are 
given by: 

Mean = exp (/-I + 1/2 az ) (5-2) 

Variance = exp (2 1-l + az [exp ( a 2 ) - 1 ] (5-3) 

1-l = ln (constant) + I: 1-'1 (5-4) 

az = I: az 
I + 2 I: I: all (5-5) 

i<j 

To solve Equation 5-1, the various distributions are multiplied together. 
This type of multiplication can be accomplished using the Monte Carlo approach 
or an approximation of a lognormal family to the distributions and the operation 
of products of lognormal distributions. Usually the result derived from the Monte 
Carlo approach has a smaller v:1riance compared to that derived using the 
lognormal approximation method (Lee and Wang, 1983a). Equation (5-1) can be 
applied to both mature and conceptual plays. 

For conceptual plays, we have no discovery record to apply to the discovery 
process model. The pool size equation may then be used to derive a pool size 
distribution, as shown in Equation 5-1. Furthermore, distributions of variables 
such as pool area, net pay, and so on are based on interpretations by geologists 
and/or comparative studies. These are considered to be superpopulation distribu­
tions. 

For the Beaverhill Lake play, variabilities in hydrocarbon saturation and 
the oil shrinkage factor are relatively small in comparison with other variables. 
Furthermore, there is no significant correlation between hydrocarbon saturation 
and the oil shrinkage factor with the other variables; hence, not much is lost 
by ignoring them in the total variance. Thus, we shall.only consider pool area, 
average net pay and average porosity. Equation (5-1) is reduced to: 



Oil pool size in-place (106 m3
) = Constant x Pool Area 

x Net Pay 
x Porosity 
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(5-6) 

where the constant is equal to the product of average hydrocarbon saturation, 
average oil shrinkage factor, and the conversion factor from hectare-metre to 
million cubic metres, 0.00681. 

The reason for computing the oil in-place is that enhanced oil recovery 
techniques have been applied to some but not all of the pools. Thus, the recovery 
factor for the play varies greatly from a few percent to as much as 25 percent. 
Incorporation of the recovery factor here will introduce an inconsistent measure­
ment of pool size. Nevertheless, the system can still handle all relevant factors 
in Equation (5-1). 

Detailed information for each geological variable is given in Table 5-l 
(raw data were obtained from the report by Energy Resources Conversation Board, 
1989). From this table we can see that the pool area contributes most to the 
values of p and o 2 and therefore, it is most important contributing variable to 
the pool size equation. Correlations and covariances of the three variables are 
also given in Table 5-1. The pool area and average net pay variables (Fig. 3-
4, right), as well as porosity and pool area are highly correlated, having a 
correlation coefficient of 0.682. In this example, if the covariances are incor­
porated, the mean of the pool size is 151 106 m3 of oil. In contrast, if they are 
all ignored, the mean is reduced to 46 106 m3 of oil. In a similar way, if 
negative correlations are omitted, then.the mean will be overestimated. 

The advantag~ of using the pool size Equation (5-1) is that we can gain 
a better understanding of the variables, their interdependencies and their 
influence on pool size distribution. Furthermore, geological variables for an 
undiscovered pool such as pool area, average net pay, and others can also be 
regenerated for a given pool size by using Equation (5-l) (see the section on 
Generation of Reservoir Parameters). Moreover, we usually do not have sufficient 
deta to compute covariances of geological variables for conceptual plays. There­
fore, the variance of the pool size distribution may be under- or over-estimated. 
Furthermore, correlations of variables may change from population to population. 
For example, log-linear relationships between porosity and water saturation for 
the Cardium marine sandstone (Fig. 5-1, left) and the Bashaw reefs (Fig. 5-1, 
right) display very distinct correlation patterns. Examination of possible 
correlations may lead to justification of the addition or subtraction of variance 
from the pool size distribution. If a lognormal distribution is adopted, then 
the variance and covariance can be adjusted. The Beaverhill Lake play was used 
to describe the roles of Equation 5-4 and 5-5 in the pool size equation. This 
is a very serious problem, and no adequate solution to it has yet been proposed. 

The preceding example was given to demonstrate the impact of correlation 
on the mean of a pool size distribution. In this example, the sample covariance 
matrix was computed and used. The population covariance matrix should, in fact, 
be computed using a multivariate discovery process model (Wang and Nair, 1988; 
Lee, Nair and Wang, manuscript in preparation). 



34 

CONSTRUCTION OF PROBABILITY DISTRIBUTIONS 

After pool size equation variables are chosen, probability distributions 
are estimated either using statistical methods or geological interpretations. 
In this section, guidelines for constructing probability distributions from 
geological information are outlined. In constructing probability distributions 
for frontier plays, all relevant data and information from similar basins should 
be collected by the assessment team to address the following questions and 
concerns: 

1. In frontier cases, the first question that should be asked is: What is 
the probability that the play exists? The existence of a play can be analyzed 
in terms of the presence or absence of factors such as source rocks, maturation, 
migration, favourable reservoir facies and so on. A marginal probability is 
applied to each factor to indicate that the factor would exist (See "Geological 
Risk Factors"). 

2. If the geological model in question has an extreme range for the values, 
then the variance of the variable should be relatively large. On the other hand, 
if values are quite uniform, then variances should be small. 

3. Remember that we do not have enough data to compute covariances between 
variables; however, positive or negative covariances are evident from the 
geological data. Therefore, if the largest pool size estimated is not what we 
expect, the following questions should be addressed: Are the mean and variance 
of the pool size distribution adequate? How much covariance does exist? 

4. What is the sensible maximum value that the model can never have? This 
value will be set at zero in the upper percentile of the probability distribu­
tion. 

5. What is the largest possible value that the model may have? This value 
will be set at one or two upper percentiles of the probability distribution. 

6. What is the value for each variable above which half of the members of 
the population will be greater? This value will be placed at the 50 percentile 
of the distribution. 

7. What is the minimum value? This value will be set at lOO in the upper 
percentile. 

8. In determining the geological risk factors that dictate the final 
accumulation of hydrocarbons, one should ask the question "What are the most 
unpredictable risk factors in this model?" 

9. The number of prospects may be obtained from anomalies showing closure 
on a structural contour map of time isochrons constructed from seismic data. Some 
questions, however, remain unanswered: How many anomalies were not detected by 
the present orientation and density of seismic lines? What is the maximum number 
of prospects that could exist in this play? How many prospects would be there 
at 50% chance? The answers to these questions provide us with information needed 
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to construct probability distributions for the prospects. Other values at various 
upper percentiles can also be used. 

For each probability distribution, values of the four upper percentiles 
(1.0, 0.5, 0.02 or 0.01, 0.0) are required to construct a probability distribu­
tion. The process is as follows: a lognormal distribution is fitted to these four 
values and generates all other upper percentiles. In general, assessors may 
either (1) enter the four upper percentiles and let tne shape of a lognormal 
distribution generate other percentiles or (2) enter all percentiles and examine 
how good is the lognormal approximation. 

Table 5-2 presents a format for entry of probability distributions. Formats 
for entry of exploration risks (Table 5-3) and numbers of prospects and pools 
are also presented in Table 5-4. 

GEOLOGICAL RISK FACTORS 

Exploration Risk 

A play consists of a number of pools and/or prospects. It is possible that 
a prospect may not contain hydrocarbons. Thus, associated with each prospect 
there is an exploration risk that measures the probability of a prospect being 
a pool. Methods for quantifying exploration risks are described below. 

Geological risk factors that determine accumulation of hydrocarbons 
include, for example, presence of closure and of reservoir facies, as well as 
adequate seal, porosity, timing, source, migration, preservation, and recovery. 
For a specific play, only a few of these factors, ' such as presence of closure 
and of reservoir facies, and adequate source and seal, are recognized as critical 
to final accumulation. Consequently, if a prospect located within a sandstone 
play, for example, is to be tested, it could prove unsuccessful for any of the 
following reasons: a lack of closure; unfavourable reservoir facies; lack of an 
adequate source or migration path; and/or absence of cap rock. 

Geological risk factors present or absent may be expressed as marginal 
probabilities. For example, if the marginal probability for the presence of 
closure factor is 0.9, then this means there is a 90% chance that prospects 
drilled will have adequate closure. For a prospect to be a pool, simultaneous 
presence of all the geological factors in the prospect is necessary. This 
requirement leads us to the analysis of exploration risks. 

Methods for Estimating Marginal Probability 

When we assess a conceptual play, we begin by formulating a play 
definition. At this stage, a number of questions emerge: 

Does the play in question exist? 
Does the play have an adequate source? 
Can we recover oil or gas from a play which lies under deep water? 
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Some of the geological factors such as source, maturation, and migration, 
for example, would normally exist throughout a play, but at an early stage of 
exploration, we cannot say whether these factors occur throughout. The system 
provides ways of handling this type of uncertainty. To this end, we need to 
explore the concepts of play level and prospect level risk. 

Play Level Risk. This risk measures the chance that a geoiogical factor is common 
to all prospects within the play. Play level risk is a regional phenomenon across 
an entire play. The occurrence of play level risk is denoted by a (global), and 
the marginal probability of this event is represented by e

9
• White ( 1980) 

referred to play level risk as play chance, or group risk (White and Gehman, 
1979; Gehman, Baker and White, 1981). 

If a play contains hydrocarbons, all geological factors are present. Let 
these factors or events be denoted by a1 , a2 , ••• ~. The probability of a play 
having hydrocarbons, then, is 

e 91 = P [ a, 1 
= P [ the play has factor ~ ] 
= P [ the geologic factor ~ is satisfied 

within the play, i = l, ••• j ] 

For example, 

for all prospects 
(5-7) 

a, = {adequate source}, G2 = {adequate preservation}, 
If all play level geological factors exist, then 

e g = P [ G1 n G2 n ..... n G
1 

1 
= P [ play possessing all factors ] (5-8) 

If any of these values G
1 

are not satisfied, then the play does not contain 
hydrocarbons. If e91 , e

92
, ••• , e

91 
are statistically independent, then the 

marginal probability of having all play level risks simultaneously is defined 
as follows: 

j 
eg =we~, fori= 1, 2, .•••••. ,j (5-9) 

i 

This play level risk can be considered as a parameter to be estimated from data, 
or may be the expression of an expert's opinion. 

White (1980) describes a facies-cycle wedge (Fig. 5-2) as a body of 
sedimentary rock bounded above and below either by regional unconformities or 
by the tops of major nonmarine tongues. The ideal wedge represents a transgre­
ssive-regressive cycle of deposition including, from base to top, a vertical 
succession that varies from nonmarine to coarse-textured marine, to fine-textured 
marine, to coarse-textured marine and back to nonmarine facies. Exploration plays 
located within a facies-wedge can be allocated into either wedge-base, wedge-mid­
dle, wedge-top, wedge-edge, or subunconformity plays. Each play type listed above 
is associated with a play level risk. White summarizes 1150 plays in 80 
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productive basins of the free world and presents the relationships between play 
characteristics and the chances of the play containing hydrocarbons. The results 
are reproduced in Table S-S. 

Prospect Level Risk. This measures the marginal probability that a geological 
factor exists for an individual prospect. Prospect level risk is represented by 
R(local), and its marginal probability is denoted by er. The risk can also be 
considered as a superpopulation parameter, and may be estimated from data. For 
prospect level risk, absence of such factors such as closure, reservoir facies, 
or porosity will result in a prospect lacking of hydrocarbons. This, however, 
does not imply that these factors are also absent from other prospects. 

Let R1 , R2 , ••• , Rk denote the geological factors for an individual prospect 
at the prospect level. For example, 

R1 = {presence of closure}, 
R2 ={adequate seal}, ... and 

Let us define G = G1 n G2 n 
R=R1 nR2 n 

so on. 

A prospect within a play contains hydrocarbon if and only if (i) the play 
has all the play level risk factors; and (ii) the prospect has all prospect level 
risks. In other words, a prospect contains hydrocarbons if and only if Gn R. 

Define erl = p ( R, G] and er = p ( R 1 G] I then the probability of there 
being hydrocarbons present is defined as: 

p a prospect containing hydrocarbon 
= P ( Gn RJ = P ( Rt GJ P ( GJ 

(S-10) 

If the geological risk factors are independent, then the prospect level risk 
is defined as 

k 
er = 7r, erl' 

~ 
for i = 1 I 2 I • • • • 1 k • (S-11) 

If the risk factors are not independent, then the rule of multiplication 
or conditional probability rule must be applied as follows: 

er = P ( R1 n ~ n . • • n ~ ] . (S-12) 

Identification of the presence or absence of a particular prospect level 
risk factor may be accomplished by integrating information obtained from tested 
wells together with adjacent wells. For example, presence or absence of closure 
can be recognized by reviewing stratigraphic correlations after drilling; the 
existence of reservoir facies is identified from mechanical logs; adequacy of 
seal may be established by examining (i) the presence or absence of cap rock, 
(ii) the quality of the seal, and (iii) possible leakage of the closure; adequate 
source and migration factors means that oil has migrated into the trap. There­
fore, if a potential reservoir is shown from drill-stem tests to either contain 
oil, oil shows, or oil traces, then the factor is considered as present. 
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More Examples of Marginal Probability Distributions. Figure 5-3 (top) displays 
a probability distribution for the adequate maturation geologic risk factor. The 
assumption used here is that either the sample size is large enough to represent 
the play (population), or the sample is a random sample from the play (popul­
ation). We also assume that geochemical interpretations are valid. 

The distribution suggests that there is a 70% chance that the percent 
hydrocarbon in extract from the play in question ranges' from 40% to 60%, which 
is considered to be a mature source rock, i.e.: 

P [ 40% ~ mature ~ 60% ] = 0.70. 

Figure 5-3 (lower) displays the probability distribution for total organic 
carbon. From this distribution, there is a 70% chance that the play has a total 
organic carbon content in excess of 0.5. The marginal probability for adequate 
source is interpreted to be 0.7, ~.e: 

P [ TOC ~ 0.5% ] = 0.7. 

DEPENDENCE OF PROSPECT LEVEL RISKS 

Traditionally, exploration risk is an expression of the products of 
marginal probabilities of geological risk factors such as presence of closure, 
presence of reservoir facies, adequate source, and adequate seal, to name a few 
of them. The statistical assumption presumed in such a product operation is that 
risk factors are independent. The assumption of independence of risk factors has 
been challenged by exploratory well data obtained from the Huang-hua Basin of 
eastern China. 

A total of 242 exploratory wells in a sandstone play from the Huang-hau 
Basin (Fig. 5-4) were interpreted to determine why a particular well failed. In 
this case, the presence or absence of closure and of reservoir facies, as well 
as the adequacy of source and seal were recorded for each well. Table 5-6 
presents some of the results obtained by Lee, Qin and Shi (1989). In this table, 
the number 1 indicates that the factor is present, and the number 0 is used to 
indicate that the factor is absent. 

Firstly, if we assume that these factors are independent of each other, 
then, the overall prospect level risk is the product of 184/242, 220/242, 
185/242, and 228/242, which equals 0.50. 

Secondly, the geological factors were analyzed using the following 
conditional probability formula: 

P Closure n Reservoir Facies n Source n Seal ] 
= P Closure ) x 

P Reservoir Facies Closure ) x 
P Source Closure n Reservoir Facies 
p Seal I Closure n Reservoir Facies n Source ] 
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= 184/242 X 127/184 X 111/127 X 109/111 = 0.45. (5-13) 

The difference between these two approaches is O.OS. This example demon­
strates that geological risk factors may not be independent. The dependency 
between any two risk factors has been studied further by using chi-square tests 
which have indicated that three pairs of risk factors (closure and source, 
closure and seal, and facias and source) are dependent risk factors, whereas 
other pairs are independent. The data set was also sUbjected to correlation 
analysis. In summary, for all dependent pairs of risk factors, significant 
correlations can be established. 

CONCEPTUAL PLAYS 

Pool Size Equations 

One of the plays from the east coast of Canada was selected as an example 
to illustrate the application of PETRIMES in a conceptual play. The data used 
include probability distributions of area of closure, reservoir thickness, 
porosity, and trap fill. The equation used to calculate a pool size distribu­
tion follows: 

Pool size = c x Area of Closure x Reservoir Thickness 
x Porosity x Trap Fill 

(S-14) 

where c is the product of hydrocarbon saturation and a conversion factor of cubic 
feet to millions of barrels, and pool size is oil in-place measured in terms of 
millions of barrels. 

From the superpopulation concept, the probability distributions for 
reservoir thickness, porosity, and trap fill are superpopulation distributions. 
The distribution of the area of closure, for example, was derived from structural 
contour maps based on seismic data. The distribution proposed by geologists was 
plotted as a solid line on Figure S-S, and was approximated by a lognormal 
distribution (indicated by dots in the same figure). This method was used for 
variables of reservoir thickness, porosity, and trap fill. 

If the geological variables are approximated by lognormal distributions with 
parameters p, and cr 2 , and if they are independent, then 

ln X = ln c + l: ln Z1 
(5-15) 

is normally distributed with pA = 2.882 and cr 2 A = 2.5, and its density is given 
by 

h(x) = (1 / x cr~) exp [ -(ln x - p) / 2 cr 2 ] (5-16) 

where x is pool size in millions of barrels. 

Equation (5-16) was plotted as circles on Figure 5-6. At the same time, 
the pool size distribution was derived using the Monte Carlo approach, based on 
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the original four distributions plotted as solid lines in Figure 5-6. 

In this example, the pool size distribution derived from a Monte Carlo 
simulation agrees remarkably well with the lognormal distribution, except at the 
0.5% level, because the Monte Carlo simulation usually tends to yield a less 
skewed distribution, whereas a lognormal approximation tends to extend the tail 
of the distribution. 

Exploration Risk 

Table 5-7 displays the risk factors and their marginal probabilities for 
the conceptual play. The geological risk factors were interpreted by the assessor 
as either play or prospect level risks. The first column displays the names of 
the geological factors, and the second column lists the corresponding marginal 
probabilities. The last two columns display the interpretations of each risk as 
prospect level or play level. For Case I, only the adequate timing factor is 
considered as a play level risk, whereas in Case II, adequate timing, adequate 
source and adequate preservation factors are considered as play level risks. 
There is no information to suggest that these risk factors are either dependent 
or not. Therefore, overall play level risk is calculated from the multiplication 
of all play level marginal probabilities. Similarly, the overall prospect level 
risk is the product of all marginal probabilities of prospect level. Exploration 
risk is the product of overall play and prospect levels. From the table, the 
two overall risks are very different for these two cases, but the exploration 
risk is identical. Because of the difference in play level and prospect level 
risks, the subsequent estimation will b~ different too. 

Number-of-Prospects Distribution 

If an identifiable type of trap, such as an anticline, can be mapped on the 
surface of a play or be detected seismically at depth, then the number of 
prospects can be counted. Some of the prospects cannot be mapped on the surface 
because of the presence of vegetation or be detected at depth because the seismic 
coverage is too sparse to detect small prospects. Three questions should be asked 
at this point: (1) What is the maximum number of prospects that the play could 
have? (2) Given a 50% chance, what is the least number of prospects that the play 
will have? and (3) What is the observed number of prospects? Based on the answers 
to these questions, one can construct a number-of-prospects distribution. This 
distribution can be considered as a superpopulation distribution. 

Figure 5-7 displays an example of a number-of-prospects distribution for 
a conceptual play. The mean and variance of the distribution are 103 and 77.09, 
respectively. Given a 50% chance, the play will have more than 100 prospects. 

Number-of-Pools Distribution 

The number-of-prospects distribution will be used with exploration risk to 
derive a number-of-pools distribution. Let M be the random variable denoting 
the total number of prospects in a play and m be a value of M. Let its 
probability function be 
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P [m] = P [M= m], m = IIIo' • •• • • • '~ 

This distribution may be obtained from seismic detections and expert knowledge 
of the play. 

Associated with the i-th prospect, we define 

I = { 
1 if the i-th prospect satisfies the condition R 

0 otherwise 

fori= 1, 2, ••.•. If it is given that event G has occurred, i.e. the play has 
all the conditions necessary for hydrocarbon occurrence, the total number of 
pools in the play is given by 

Note that N is a sum of random variables. The conditional probability distribu­
tion of N, given G (the play exists), is 

p N = n G 

= :E 
m 

P N = n, M = m I G 

= :E 
m 

p N = n I M = m, G P [ M = m 

= :E 
m 

p I 1 + I 2 + •.. + Im = n I M :: m, G ] P [ m ] (5-17) 

where N = random variable for the number of pools; n = a specific value for N. 
We have assumed { M = m } is statistically independent of G for all m. Moreover, 
we assume I 1 , I 2 , •••• are independent of M and all I 1's are also independent. 

Since P [ I
1 

= 1 G ] = ~' for all i, then 

P [ N = n 
m 

G ] = ~ ( n ) ern ( 1 - er ) m-n p [ m ] ' 

for n = 0, ••• , m1 

The sum extends from m= max(n,lllo) to m1 • 

The distribution of N is now given by 

P[ N = n ] = P[ N = n I G ] P[ G ] + P[ N = n I G' ] P[ G' ] 

- Elg) + eg :E ( 1 - El,) m p [ m J, if n = 0 

m 

(5-18) 
m 

) e,n ( 1 - e, ) m-n p [ m ] ' if n ~ 1 
m n 

Also 
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P play has at least one pool 1 = P [ N ~ 1 1 

= 1 - P [ N = 0 1 

= e [ 1- ~ ( 1- e, )m P [m 11· (5-19) 
g m 

For example, Case II gives e
9 

= 0.57 and e, = 0.68. If M = 6, then 

P N ~ 1 = 0.57 { 1- 1- 0.68) 6
} = 0.57, and 

p N = 0 = 1 - 0.57 = 0.43, or 43%. 

The expectation of N is given by 

E [ N 1 

Therefore, E 
E 

Similarly, 
E 

= 
= 

eg E [ N G 1 + ( 1 - eg E [ N I G' 
m en 1 ) m-n eg ~ n ~ n ) - e, p [ m 

n r 

m-1 e,n-1 ( 1- e,)m-n P[ = eg ~ m e, ~ ( ) m 
m n n-1 

N = e
9 

x e, x E [ M 1 , 
M = ~ m P [m 1· 

m = expected number of prospects. 

N2 : G 1 = ~ ~ n2 ( m ) e,n ( 1 - e,) m-n p m 
m n n 

= ~ [ m e, ( 1 - e, ) + m2 e/ P m 
m 

(5-20) 

(5-21) 

= e ( 1 - e ) E[m1 + eg2 X OM 2 + e2 (E[M1) 2 
r r r 

Hence, VAR [ N 1 = 
= 
= 

Therefore, 

E N2 1 - E [ N 1 1 2 

eg E N2 G 1 - e 2 x e 2 
X E [ M 12 g r 

eg X 0 2 E [ M 1 2 - e 2 X e2 X E [ M 12 + r g r 

0
9 

X 0, ( 1 - e, ) X E [ M 1 + 0
9 

X 0,
2 

X 

e r 
E 

1 - 0 9 ) x E [ M 12 + 

M 1 + 0, X OM 2 1 

0 2 
M • (5-22) 

(5-23) 

It is obvious that oN2 is dominated byE [M ], because the contribution 
from oM 2 is diminished by the multiplier e,. 

The number-of-prospects distribution (Fig. S-7) and the risks for Case I 
and Case II (Table S-8) were applied to derive the number-of-pools distribution. 
From the result we can conclude that: 

1. Their means are identical, but Case II has a much larger standard 
deviation. 

2. Given a SO% chance, the play will have more than 42 pools for Case I and 
62 pools for Case II. 

3. For Case I, there is about 5% chance that the play has no pools, whereas 
the chance for no pools is about 57% for Case II. 

4. The play is interpreted as a very risky play in Case II. 
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The Play Resource Distribution 

The operation using a number-of-pools distribution and 
distribution will yield a play resource distribution. The 
distribution is defined as follows: 

a pool size 
play resource 

M 

T = X 1 + X2 + • . • • • . + XN = :E X1 

i 

The play potential distribution is discontinuous at 0 as follows: 

Now, 

where 

P [ T = 0 ] = P [ N = 0 ] 

= P no pools 

for t > 0, the greater-than cumulative density 

FT(t) = p play resource > t l 

= p [ T > t l 

m1 
= :E Fn(t) p [ N = n l 

n=l 

Fn(t) = p [ x1 + x2 + ... + xn > t l . 

The probability function of T is given by 

N = 0 ], (;,I 
~ fn(t) P [ N = n ], 

n=l 

if t = 0 

if t > o. 

function of T 

(5-24) 

(5-25) 

is 

where fn(t) is the probability density function of the convolution X1 + •.... + 
xn of n pool 
sizes. 

The expectation and variance of T are: 

E[ T ] = E[ X 

a 2 
T 

where E 

E 
cr2 

ON 

[ 
[ 

2 

X E 

N = 
X = 

= 
= 

x E [ N 1 = e
9 

x e, x E [ M 1 x E [ x 1 

N ] + (E [ X ])
2 x a 2 

N 

mean of the number-of-pools distribution, 
mean of the pool size distribution, 
variance of the pool size distribution, and 
variance of the number-of-pools distribution. 

If X is lognormally distributed with p and cr 2 , then 

(5-26) 

(5-27) 
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E [ T ] = E [ N ] exp( ~ + o 2 /2 
oT 2 = exp (2 ~ + o 2 ) [ E(N) (exp (o2)- 1) + oN2] 

(5-28) 
(5-29) 

The uncertainty contained in the play resource distribution as measured by 
its variance is relatively insensitive to the uncertainty inherited from the 
prospect distribution. This can be examined by substituting the oN2 of Equation 
(5-23) into Equation (5-29). 

The play resource distribution is the superpopulation distribution of the 
geological model. The uncertainty contained in the distribution can be reduced 
if we have pool sizes and their ranks as we have discussed for the mature play. 
In frontier plays, we may not have the information necessary for the reduction 
of this type of uncertainty. 

The play resource distributions for Cases I and II are listed in Table 5-
9. The results are interpreted as follows: 

1. Their means are identical, but Case II has a much larger standard 
deviation than Case I. 

2. Case I suggests that there is about 10% chance that the play has no 
potential, while Case II implies there is about 45% chance that the play has no 
potential (as indicated by: 1 - probability of the first occurrence of play 
potential, e.g. 1.0- 0.55). 

3. From examination of Table 5-9, Case II has higher potential at the tail 
of the play resource distribution than does Case I. This is due to different 
interpretations of the geological factors as play or prospect levels of risk. 
For Case II, if source and preservation factors do exist in one prospect then 
they also exist in every prospect. This is the reason why Case II has a higher 
probability of having more potential (if the potential does exist) than does Case 
I. 

Pool-Size-By-Rank 

In frontier cases, pool-size-by-rank is normally obtained from operations 
of pool size and number-of-pools distributions. Because number-of-pools 
distribution is used in estimations of individual pool sizes, therefore, a 
probability of having at least r pools is provided. The results of the two cases 
are listed in Tables 5-10 and 5-11. These tables can be interpreted as follows: 

1. The probabilities for having at least one pool, or two pools, and so on, 
are very different for the two cases. For example, the probabilities for at least 
one pool existing are 0.95 and 0.57, respectively, for Case I and II. 

2. The sum of the products (of each individual pool size and its probability 
of existence) equals the mean of the play resource distribution. 

3. The estimated pool sizes for Case II are much larger than those of Case 
I. This variability is inherited from the variances of the play resource 
distributions. 
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Generation of Reservoir Parameters 

For economic analysis of petroleum resources, it is necessary to find the 
conditional distribution of the geological variables of Equation (5-l) for a 
given pool size x. This conditional distribution is also of interest to 
geologists. For example, the following question may be asked: 

Given a pool size equal 714 MM bbl, what are the likely values for its pool 
area and net pay? 

We assume the vector of the geological variables 

associated with the pool size equation 

(5-30) 

has a multivariate lognormal distribution ( g, ~ ) , where ~is positive definite. 

The conditional probability distributions for the reservoir parameters were 
computed for each given pool size in the conceptual play. Examples of the values 
at the 75th, 50th, and 25th upper percentiles are listed as follows: 

Pool size 
(MM bbl) 

714 

409 

Reservoir 
parameter 

Area (mile2
) 

Reservoir 
thickness 

Porosity 
Trap fill 

Area (mile2
) 

Reservoir 
thickness 

Porosity 
Trap fill 

Upper 
75 

35 

(ft) 108 
0.11 
0.25 

27 

(ft) 82 
0.10 
0.21 

percentiles 
50 25 

58 81 

187 331 
0.14 0.19 
0.39 0.61 

46 77 

144 249 
0.14 0.18 
0.34 0.53 

A larger pool size has a larger distribution for the area of closure, the 
reservoir thickness, the porosity, and the trap fill than for that of a small 
pool size. This phenomenon is the result of all the geological variables cons­
trained by Equation (5-l). In fact, the conditional distribution of the same 
variables for a given pool size overlap to a certain extent, reflecting (i) the 
nature of the irregularities, e.g. small pool size with excellent porosity, 
and/or (ii) little variations in variables such as porosity. This type of 
information can then be used for calculating productivity. 

Estimated conditional pool area distributions can provide information for 
calculating the number of wells required for development of an undiscovered pool. 
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Chapter Six 

PROCEDURES AND FEEDBACK MECHANISMS 

Far better an approximate ans~er to the right 
question, which is often vague, than an exact 
answer to the wrong question, which can always 
be made precise. 

John W. Tukey 

PROCEDURES 
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A basin or subsurface study is required as the first step in petroleum 
resource evaluation. Types of data required for petroleum resource evaluations 
are listed as follows: 

Reservoir data - pool area, net pay, porosity, water saturation, oil or 
gas formation volume factor, in-place volume, recoverable reserves, temperature, 
pressure, density, recovery factor, gas .composition, and so on, 

Well data - general information, formation depth, lithology, drill-stem 
tests, core, gas and fluid analysis, and mechanical logs, 

Geochemical data - types of source rocks, burial history, and maturation 
history, and 

Geophysical data prospect maps. 

Well data will assist us to construct structural contour, isopach, 
lithofacies, porosity and other types of maps. Geophysical data will assist us 
to construct number-of-prospects distributions and also provide information for 
risk analysis. The number of dry holes and the reasons why they fail will provide 
information for estimating the marginal probability of each geological factor. 
Chronostratigraphic and organic maturation data will assist us in defining the 
basin's burial and thermal history. All these data will be used to identify a 
play and its geographic boundary. Furthermore, reservoir and well data retrieved 
within the geographic play boundary provide information needed to compile an 
exploration time series for evaluations of mature plays. 

In the cases where we do not have enough information to quantify every 
aspect that we need, we can apply experience gained from other basins, or compile 
all work completed by previous workers. This type of compilation or comparative 
study can provide useful information for resource evaluation. 

The steps required by the PETRIMES methods are briefly described below: 

1. Identification of a play definition and its geographic boundary. 
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A play has both geographic and stratigraphic limits and is confined to a 
basin or part of a basin, a structural unit or part of it and is also confined 
to one or more formations. 

2. Identification of geological variables 

If it is a conceptual play, what types of variables should be used in 
Equation 5-l? If it is mature play, to what extent may the discovery process 
model be applied? 

3. Collection of relevant data 

For mature plays, an exploration times series consisting of successful 
and failed exploratory wells, and discoveries and recoveries from drill-stem 
t!;!sts is constructed as the basic input for evaluations. For conceptual or 
immature plays, all relevant data and information should be compiled. Probability 
distributions used in Equation 5-l are then constructed. 

4. Data analysis and validations 

(1) For mature plays 

(i) Plot the pool size, pool area, and other variables by discovery 
sequence to graphically visualize past exploration history using DSEQ. 

(ii) Plot the pool size, pool a~ea, net pay and other variables on log 
probability paper to graphically examine, using LPLT, the assumption of log­
normality and possible mixed populations. 

(iii) Cross-plot the geological variables using XPLT to examine the 
correlation between variables and to detect abnormalities in the data set. 

(iv) Use exploratory data analysis to graphically examine whether the 
play definition is adequate using LPLT, BPLT, HPLT, SPLT, for example. 

(2) For conceptual plays 

Probability distributions are constructed from expert opinion and the 
results of comparative studies. The rules for constructing these types of 
distributions are listed in Chapter 5. These distributions will be approximated 
by the family of lognormal distributions. In order to verify the approximations, 
both raw data and approximated distributions should be plotted by CPLT on the 
same plot. 

5. Evaluations 

(1) Estimation of pool size distribution 

For mature plays, pool size distribution -can be estimated using lognormal 
(LDSCV) or nonparametric (NDSCV) discovery process models or the matching process 
(MATCH) to estimate pool size distribution. For conceptual plays, pool size 
distributions may be estimated by using Equation 5-l (PPSD). 
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(2) Estimation of number-of-pools distribution 

Number-of-pools distribution can be computed by applying the prospect 
and/or prospect level risks and the number-of-prospects distribution. For concep­
tual plays, both play and prospect level risks should be presented, while for 
mature plays only prospect level risks are presented. 

(3) Estimation of pool-size-by-rank 

(i) Pool-size-by-rank can be computed by the evaluation components, 
MATCH, or GPSRK for a fixed value of N, or by the evaluation components, or PSRK 
if N is a random variable. 

(ii) The matching process can be accomplished using either an evalua­
t~on component (MATCH) or a graphic component (RPLT). 

(iii) Individual pool sizes can be further conditioned to the given pool 
ranks using the PSDR evaluation component. 

6. Evaluations of play resource or potential distribution and others 

(1) Play resource distribution can be estimated using the PSUM 
evaluation component. A play potential distribution can be estimated by 
conditioning the play resource distribution to pool ranks by using the PPDR 
component. 

( 2) Ratios between pool sizes can be estimated using the PSRO evaluation 
component. 

(3) Reservoir parameters for each pool size can be estimated from the 
RVGN component. 

(4) Basin, geological province or country resource distributions can 
be estimated using the PSUM evaluation component. 

For each evaluation, there is a report consisting of play map, all input 
data, final estimates, figures, and other statistics as listed in Table 6-1. 

FEEDBACK MECHAHISHS 

Feedback is essential to any assessment. Figure 6-1 shows different levels 
of feedback during petroleum assessment. PETRIMES provides various feedback 
mechanisms. 

Can we predict the present situation? 

For mature plays, it is highly recommended t~at the discoveries be divided 
into two subsets for the following reasons: (1) to examine whether we can predict 
the second set from the first sample set and (2) to find the adequate predic­
tion interval. 
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The final estimates must be validated by one or more of the following 
procedures: 

1. Examination of the remaining largest pool size against geological models 
or exploration concepts. 

2. Re-estimation of the undiscovered pool sizes by ~ntering the discovery 
pool sizes and their ranks. 

3. Retrospective study (Lee and Wang, 1986) . 

Has the largest pool been discovered? 

For the Beaverhill Lake play example, where the largest pool appears to have 
been discovered, geologists may still ask, "What would the largest pool size be 
if the discovered largest pool is assumed to be the second largest in a play?" 
Our method allows us to analyze this question. 

Take the Beaverhill Lake play as an example. The result of the computation 
is that given that the largest discovered pool (290 106 m3

) is actually the 
second largest pool, th~n the prediction interval for the size of the possible 
largest pool ranges from 320 106 to 4129 106 m3

• Furthermore, the area of the 
pool required is as large as the largest pool present today. With this informa­
tion, we can address the question, "Have ~e overlooked the largest pool of this 
play?" 

This type of feedback mechanism, allows us to challenge the underlying 
geological concept or to validate our input data, and is one of the essential 
features of our evaluation system . 

Pool Size conditional to play resource 

Individual pool size and number of pools can be estimated for a given play 
resource. This technique can be used as a feedback mechanism to resolve 
discrepancies between different estimates, and to validate basic input factors 
such as exploration risk, number of pools, and pool size distribution. 

Having computed the play resource distribution, one measure of the resource 
is the mean of the distribution. However, geologists might choose a value other 
than the mean from the distribution as a point estimate of the resource. Figure 
6-2 displays the number of pools distributions which are conditional to various 
play resources such as 646 MM bbl, 2.7 B bbl, and 7.8 B bbl of oil. 
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Chapter Seven 

CONCLUDING REMARKS 

"Would you tell me please which way I ought to go 
from here?" "That depends a good deal on where you 
want to get to," said the Cat •••..• 

Lewis Carrell 

All petroleum resource estimation methods involve a learning process that 
is characterized by an interactive loop between the geological and statistical 
models, and their feedback mechanisms. Geological models represent natural 
populations and are the basic units for petroleum resource evaluation. 
Statistical models include the distributions for pool size and number-of-pools, 
and can be estimated from somewhat biased exploration data. 

Methods for petroleum resource evaluations have bE>en developed using 
different geological perspectives. Each .of them can be applied to a specific 
case. When we consider a method to use, the following aspects should be examined: 

1. Types of estimates. What types ·of estimates does the method provide 
(aggregate estimates vs. pool size estimates)? Do the types of estimates fulfil 
our economic needs and other requirements? 

2. Assumptions required. We must study what specific assumptions must be 
made and what role they play in the process of estimation. 

3. Types of information required. Some methods can only incorporate certain 
types of information, while other methods can incorporate as much information 
as is available. 

4. Feedback mechanisms. What types of feedback mechanism does the method 
offer? 

PETRIMES is based on a probabilistic framework that uses the superpopula­
tion concept, the discovery process model, and optional use of lognormal 
distributions. The basic input is an exploration time saries. Other types of data 
are used in different stages during the evaluation process. The system can be 
applied to both mature and frontier evaluations. 



52 

REFERENCES 
Aitchison, J. and Brown, J. A. c., 1973, The lognormal distribution with 

special reference to its uses in economics: Cambridge University Press, England, 
176 p. 

Baecher, G. B., 1979, Subjective sampling approaches to resource estimation: 
in M. Grenon, ed., First IIASA Conference on methods and models for assessing 
energy resources; Pergamon Press, New York, p.l86-209. 

Barouch, E. and Kaufman, G., 1977, Estimation of undiscovered oil and gas: 
Proceedings of Symposia in Applied Mathematics, v.21, p.77-91. 

Bickel, P. J. and Doksum, K. A., 1977, Mathematical statistics: Basic ideas 
and selected topics: Holden-Day Inc., 492 p. 

Cassel, C. M., Sarndal, c. E. and Wretman, J. H., 1977, Foundations of 
inference in survey sampling: John Wiley & Sons, New York, 192 p. 

Chambers, J. M., Cleveland, w. 
Graphic methods for data analysis: 
California, p. 191-242. 

s., Kleiner, B. and Tukey, P. A., 1983, 
Wadsworth International Group, Belmon t, 

Cochran, W. G., 1939, The use of analysis of variance in enumeration by 
sampling: Journal of American Statistics~ Association, v. 34, p. 492-510. 

Drew, L. J., Schuenemeyer, J, H. and Root, D. H., 1980, Petroleum resource 
appraisal and discovery rate forecasting in partially explored region-an 
application to the Denver Basin: u.s. Geological Survey Professional Paper 
1138-A, 13 p. 

Drew, L. J., Schuenemeyer, J. H. and Bawiec, W. J., 1982, Estimation of 
the future rates of oil and gas discoveries in the Gulf of Mexico, U. S. 
Geological Survey Professional Paper 1252, 26 p. 

Energy, Mines, and Resources Canada, 1977, Oil and natural gas resource of 
Canada, 1976: Report EP 77-1, 76 p. 

Energy Resources Conservation Board, 1989, Alberta's reserves of crude oil, 
gas, natural gas liquids, and sulphur: Energy Resources Conservation Board, 
Alberta, Canada, Table 2-5. 

Gehman, H. M., Baker, R. A. and White, D. A., 1981, Assessment methodology 
- An industry viewpoint: in Assessment of Undiscovered Oil and Gas, Proceedings 
of the Seminar, United Nations ESCAP, CCOP Technical Publication 10, p. 113-121. 

Grenon, M., 1979, First IIASA Conference on methods and models for assessing 
energy resources: Pergamon Press, New York, .605 p. 

Griffin, D. L., 1965a, The Devonian Slave Point, Beaverhill Lake, and Muskwa 
Formations of northeastern British Columbia and adjacent areas: British Columbia 



53 

Department of Mines and Petroleum Resources, Bull. No. SO, 90 p., 20 plates. 

Griffin, D. L., 196Sb, The facies front of the Devonian Slave Point-Elk 
Point sequence in northeastern British Columbia and the Northwest Territories: 
J. Canadian Petroleum Technology, January-March, p. 13-22. 

Hemphill, C. R., Smith, R. I. and Szabo, F., 1968, Geology of Beaverhill 
Lake Reefs, Swan Hills area, Alberta: AAPG Memoir 14, p.' 50-90. 

Haun, J. D., 1975, Methods of estimating the volume of undiscovered oil and 
gas resources: AAPG Study in Geology, no. 1, 206 p. 

Kaufman, G. M., 1963, statistical decision and related techniques in oil 
and gas exploration: Prentice-Hall, Inc., N.J., 307 p. 

Kaufman, G. M., 1965, Statistical analysis of the size distribution of oil 
and gas fields: Symposium on Petroleum Economics and Evaluation, Society of 
Petroleum Engineers, p. 109-124. 

Kaufman, G. M., 1986, Finite Population Sampling Methods for Oil and Gas 
Resource Estimation: in AAPG Studies in Geology, no. 21, p. 43-53. 

Kaufman, G. M., Balcer, Y. and Kruyt, D., 1975, A probabilistic model of 
oil and gas discovery: in J.D. Haun, ed., Methods of Estimating the Volume of 
Undiscovered Oil and Gas Resources, AAPG_Study in Geology, no. 1, p. 113-142. 

Lee, P. J., Qin, Ruo-Zhe and Shi, Yan-Min, 1989, Conditional Probability 
Analysis of Geological Risk Factors: in F. Agterberg and G. Bonham-Carter ed., 
Statistical Applications in the Earth Sciences; GSC Paper 89-9, Ottawa Canada. 

Lee, P. J. and Wang, P.c. c., 1983a, Probabilistic formulation of a method 
for the evaluation of petroleum resources: Mathematical Geology, v. 15, no. 1, 
p. 163-181. 

Lee, P. J. and Wang, P. C. c., 1983b, Conditional analysis for petroleum 
resource evaluations: Mathematical Geology, v. 15, no. 2, p. 353-365. 

Lee, P. J. and Wang, P.c. c., 1984, PRIMES: A petroleum resources 
information management and evaluation system: Oil & Gas Journal, October 1, p. 
204-206. 

Lee, P. J. and Wang, P. c. c., 1985, Prediction of oil or gas pool sizes 
when discovery record is available: Mathematical Geology, v. 17, no. 2, p. 
95-113. 

Lee, P. J. and Wang, P. c. c., 1986, Evaluation of petroleum resources from 
pool size distribution: in Oil and Gas Assessment Methods and Applications, 
D.D.Rice (ed), Studies in Geology, no. 21, p. 33-42, AAPG publication. 

Lee, P. J., Eggen, s. s. and Vann, I. R., 1990 (in press), Use of a 
probability approach in assessing the petroleum resources of the northern North 
Sea: IUGS publication. 



54 

Lee, P. J., Nair, V. N. and Wang, P.C. c., 1988, Estimating and modeling 
the superpopulation distributions in petroleum resource evaluations: Manuscript 
in preparation. 

Lee, P. J. and Wang, P. C. c., 1990 (in press), Petroleum resource 
evaluation concepts: IUGS Publication. 

Masters, c. D., 1985, Petroleum resource assessment: International Union 
of Geological Sciences, Publication no. 17, 157 p, Ottawa Canada. 

Meisner, J. and Demirmen, F., 1981, The creaming method: A Bayesian 
procedure to forecast future oil and gas discoveries in mature exploration 
provinces: Journal of Royal Statistical Society, Series A, v. 144, part 1, p. 
1-13. 

Nair, V. N., 1984, On the behaviour of some estimators from probability 
plots: Journal American Statistical Association, v. 79, p. 823-836. 

Neyrnan, J. and Scott, E. L., 1971, Outlier proneness of phenomena and of 
related distributions: Optimizing Methods in Statistics, Academic Press, Inc., 
New York and London, p. 413-430. 

Rice, D. D., 1986, Oil and gas assessment- Methods and applications: AAPG 
Studies in Geology n. 21, 267 p. 

Roy, K. J., 1979, Hydrocarbon assessment using subjective probability and 
Monte Carlo methods: in M. Grenon, Ed., "First IIASA Conference on methods and 
models for assessing energy resources; Pergamon Press, New York, p. 279-290. 

Schuenemeyer, J. H. and Drew, L. i., 1983, A procedure to estimate the 
parent population of the size of oil and gas fields as revealed by a study of 
economic truncation: Mathematical Geology, vol. 15, no. 1, p. 145-161. 

Velleman, P. F. and Hoaglin, D. c., 1981, Applications, basic, and computing 
of exploratory data analysis: Duxbury Press, A Division of Wadsworth, Inc. 354p. 

Wang, P. c. c. and Nair, V. N., 1988, Statistical analysis of oil and gas 
discovery data: in Quantitative Analysis of Mineral and Energy Resources, F. 
Chung, (ed), p. 199-214. 

White, D. A. and Gehman, H. M., 1979, Methods of estimating oil and gas 
resources: AAPG Bull. v. 63, no. 12, p. 2183-2192. 

White, D. A., 1980, Assessing oil and gas plays in facies-cycles wedge: AAPG 
Bull., v. 64, no. 8, p. 1158-1178. 

Willams, G. K., 1984, Some musings on the Devonian Elk- Point basin, 
Western Canada: Bull. Canadian Petroleum Geologists, v. 32, n. 2, p. 216-232. 

Wilson, J. L. and Jordan, c., 1983, Middle shelf environment: in Scholle, 
P.A., Bebout, D. G., and Moore, c. H., ed. Carbonate Depositional Environments: 
AAPG Memoir 33, Figure 64, p. 335. 



55 

Figure 2-1. Examples of geological models (After Wilson and Jordan, 1983). Each 
model may be defined as a basic unit for evaluation. 
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Figure 2-2. Examples of play definitions! Leduc reefs (left), Middle Devonian 
reefs (right) from the Western Canada Basin • 
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Figure 2-3. Examples of probability distributionsz discrete distribution (top), 
continuous distribution (bottom). 
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Figure 2-4. An example of histogram for the variable of porosity, the Mannville 
Formation (top), an example of LESS than cumulative probability 
distribution (lower left), and an example of GREATER than cumulative 

probability distribution (lower right). 
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Figure 2-5. Concepts in discovery process as a sampling process. 
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Figure 2-6. Statistical concepts employed by PETRIMES. 
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Figure 3-1 . Facias map for the Beaverhill Lake play • 
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Figure 3-2. Exploration time series for the Beaverhill Lake play. 
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Figure 3-3. The boxplots for the in-place pool size of several plays in the 
Western Canada Basin. 
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Figure 3-4. Log-linear associations showing: the negative correlation between 
the pool area and average net pay variables of the Zama reef play 
(left), and the positive correlation between the pool area and 
average net pay of the Beaverhill Lake play (right) from the Western 
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Figure 3-5. Log probability plot for the Keg River reefs from the Black Creek 
basin (left) and log probability plot for the Keg River reefs of the 

Rainbow subbasin of the Black Creek basin (right). 
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Figure 3-6. Examples of the shapes of lognormal distributions. 
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Figure 3-7. Lognormal approximation of: net pay for the Devonian clastics (top), 
porosity of the Lower Mannville play (lower left), and the Cardium 
marine sandstone play (lower right) from the Western Canada Basin. 
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Figure 3-8. A tree showing the probabilities for different discovery sequences. 
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Table 3-1. Estimates derived by the lognormal discovery process 
model for the simulated population given ~ = -4, 

cr 2 = 20, N = 200 and~ = 0.3 for different values of N. 

n N 

40 50 0.01 -1.47, -0.16, 1.15; 
75 0.18 -2.91, -1.39, 0.13; 

lOO 
125 
150 
175 
200 
225 

80 100 
125 
150 
175 
200 
225 
250 

150 160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
300 
350 

0.23 
0.26 
0.28 
0 . 29 
0.31 
0.32 

0.22 
0.26 
0.29 
0.30 
0.32 
0.33 
0.34 

0.22 
0.24 
0.26 
0.27 
0.28 
0.29 
0.29 
0.30 
0.31 
0.32 
0.34 
0.36 

-4.02, -2.26, -0.49; 
-4.89, -2.89, -0.90; 
-5.60, -3.40, -1.19 
-6.20, -3.81, -1.42; 
-6.72, -4.16, -1.61; 
-7 . 17, -4.47, -1.77; 

-2.46, -1.55, -0.64; 
-3.39, -2.37, -1 . 36; 
-4.12, -3.00, -1.87; 
-4.75, -3.50, -2.25; 
-5.30, -3.93, -2.56; 
-5.78, -4.29, -2.81; 
-6.20, -4.61, -3.02; 

-2.73, -2.12, -2.73; 
-3.01, -2.39, -1.78; 
-3.27, -2.64, -2.01, 
-3.51, -2.86, -2.21; 
-3.73, -3.07, -2.41; 
-3.94, -3.26, -2.58; 
-4.14, -3.44, -2.75; 
-4.33, -3.62, -2.90; 
-4.51, -3.78, -3.04; 
-4.69, -3.93, -3.18; 
-5.46, -4.60, -3.75; 
-6.11, -5.15, -4.19; 

Log L 

9.95, 17.03, 25.99; -202.21 
10.33, 18.91, 30.08; -201.81 
10.46, 20.08, 32.80; -201.60 
10.50, 20.85, 34.74; -201.46 
10.49, 21.42, 36.20; -201.36 
10.47, 21.86, 37.39; -201.28 
10.45, 22.22, 38.38; -201.22 
10.43, 22.53, 39.23; -201.17 

11.13, 16.60, 23.15; -363.38 
11.81, 18.30, 26.20; -363.41 
12.18, 19.42, 28.34; -363.49 
12.41, 20.24, 29.99; -363.58 
12.57, 20.91, 31.35; -363.67 
12.68, 21.45, 32.50; -363.75 
12.76, 21.89, 33.49; -363.82 

10.72, 13.92, 17.52; -578.76 
11.24, 14.74, 18.71; -577.88 
11.65, 15.41, 19.69; -577.46 
11.99, 15.99, 20.56; -577.23 
12.29, 16.50, 21.33; -577.12 
12.56, 16.97, 22.04; -577.08 
12.79, 17.39, 22.69; -577.08 
13.00, 17.77, 23.29; -577.11 
13.20, 18.14, 23.86; -577.15 
13.37, 18.47, 24.39; -577.21 
14.07, 19.83, 26.63; -577.57 
14.57, 20.93, 28.44; -577.96 

Note: The symbols, ~A, ~A, and cr2A indicate the estimated values 
of their population values. 



Table 3-2. Estimates derived by the lognormal discovery process 
model for the simulated population given p = -4, 

a 2 = 20, N = 200 and p = 0.6 for different values of n. 

n N 

20 25 0.40 
50 0.40 
75 0.46 

lOO 0.49 
125 0.52 
150 0.53 
175 0.55 
200 0.56 
225 0.57 
250 0.58 

40 50 0.40 
75 0.47 

100 0.51 
125 0.54 
150 0.56 
175 0.57 
200 0.58 

0.05, 1.32, 
-1.89, -0.12, 
-3 . 18, -0. 9 2, 
-4.12, -1.47, 
-4.86, -1.87, 
-5.47, -2.20, 
-5.98, -2.46, 
-6.43 -2.69, 
-6.83, -2.88, 
-7.19, -3.06, 

2.59; 
1.90; 
1. 33; 
1.19; 
1.11; 
1.08; 
1.06; 
1.06; 
1.06; 
1.07; 

-1.01 -0.07, 0.87; 
-2.46, -1.27, -0.09; 
-3.54, -2.09, -0.64; 
-4.42, -2.71, -1.00; 
-5.15, -3.21, -1.27; 
-5.79, -3.64, -1.49; 
-6.34, -4.00, -1.66; 

3.61, 8.41, 15.22; 
3.40, 9.86, 19.70; 
3.22, 10.56, 22.14; 
3.06, 11.00, 23.85; 
2.93, 11.31, 25.15; 
2.82, 11.55, 26.20; 
2.71, 11.73, 27.08; 
2.63, 11.89, 27.83; 
2.55, 12.02, 28.50; 
2.48, 12.13, 29.08; 

5.11, 9.21, 14.50; 
5.61, 11.30, 18.96; 
5.83, 12.59, 21.94; 
5.94, 13.55, 24.25; 
6.0i, 14.31, 26.16; 
6.06, 14.95, 27.80; 
6.10, 15.51, 29.24; 

Log L 

-111.99 
-110.42 
-110.32 
-110.29 
-110.28 
-110.27 
-110.28 
-110.20 
-110.29 
-110.31 

-192.17 
-191.78 
-191.80 
-191.86 
-191.93 
-192.00 
-192.06 

225 0.59 -6.84, -4.33, -1.81; 6.13, 16.00, 30.53; -192.11 
250 0.60 -7.30, -4.62, -1.94; 6.16, 16.44, 31.69; -192.17 

80 100 0.53 
125 0.58 
150 0.61 
175 0.63 
200 0.64 
225 0.65 
250 0.66 

150 160 
170 
180 
190 
200 
210 
220 
230 
240 
250 

0.54 
0.56 
0.57 
0.58 
0.59 
0.60 
0.61 
0.61 
0.62 
0.62 

-2.42, -1.73, -1.05; 6.74, 10.06, 14.03; 
-3.37, -2.58, -1.80; 7.84, 12.17, 17.46; 
-4.16, -3.27, -2.39; 8.65, 13.83, 20.22; 
-4.85, -3.86, -2.86; 9.32, 15.22, 22.57; 
-5.46, -4.37, -3.27; 9.89, 16.45, 24.66; 
-6.02, -4.82, -3.62; 10.40, 17.53, 26.52, 
-6.52, -5.23, -3.93; 10.86, 18.52, 28.21; 

-4.25, -3.63, -3.00; 11.71, 15.17, 19.08; 
-4.66, -4.01, -3.36; 12.96, 16.95, 21.48; 
-5.03, -4.36, -3.69; 14.03, 18.51, 23.61; 
-5.39, -4.69, -3.99; 15.01, 19.94, 25.57; 
-5.72, -5.00, -4.28; 15.90, 21.26, 27.40; 
-6.04, -5.30, -4.56; 16.73, 22.50, 29.12; 
-6.34, -5.58, -4.82; 17.50, 23.66, 30.76; 
-6.63, -5.85, -5.06; 18.22, 24.77, 32.30; 
-6.92, -6.11, -5.30; 18.92, 25.81, 33.78; 
-7.19, -6.36, -5.52; 19.58, 26.82, 35.20; 

-299.94 
-299.62 
-299.77 
-300.00 
-300.22 
-300.43 
-300.62 

-300.24 
-299.29 
-299.05 
-299.09 
-299.25 
-299.45 
-299.69 
-299.92 
-300.16 
-300.39 
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Table 3-3. Estimates derived by the lognormal discovery process 
model for the simulated population given p = -4, 

ol = 20, N = 200, and ~ = 1 for different values of n. 

n 

20 

40 

N 

25 1.2 
50 1.1 
75 1.3 

100 1. 3 
125 1.3 
150 1. 3 
175 1.3 
200 1.3 
225 1. 3 
250 1.3 

50 1.1 
75 1.0 

100 1.0 
125 1.0 
150 1.1 
175 1.1 
200 1.1 
225 1. 1 
250 1. 1 

80 100 1.0 
125 1.1 
150 1.1 
175 1.1 
200 1.1 
225 1.1 
250 1. 1 

150 160 1.0 
180 1.1 
200 1.1 
225 1.1 
250 1.1 

2.09, 3.00, 3.92; 
-0.32, 1.14, 2.60; 
-1.92, 0.02, 
-3.13, -0.97, 
-4.13, -1.46, 
-4.92, -1.99, 
-5.62, -2.46, 
-6.32, -2.89, 
-6.93, -3.28, 
-7.41, -3.59, 

1. 97; 
1. 54; 
1. 23; 
0.94; 
0.70; 
0.52; 
0.38; 
0.22; 

0.31, 1.13, 1.96; 
-1.26, -0.26, 0.74; 
-2.43, -1.25, -0.07; 
-3.37, -2.02, -0.67; 
-4.16, -2.65, -1.15; 
-4.83, -3.19, -1.55; 
-5.44, -3.67, -1.89; 
-6.00, -4.09, -2.18; 
-6.47, -4.46, -2.45; 

-1.30, -0.65, -0.01; 
-2.29, -1.57, -0.84; 
-3.13, -2.32, -1.51; 
-3.83, -2.95, -2.05; 
-4.51, -3.52, -3.52; 
-5.06, -4.00, -2.94; 
-5.57, -4.43, -3.29; 

-3.26, -2.65, -2.03; 
-4.09, -3.43, -2.77; 
-4.87, -4.16, -3.44; 
-4.88, -5.70, -4.05; 
-6.43, -5.67, -4.92; 

Log L 

1.87 4.60, 8.55; -126.46 
2.42, 7.82, 16.31; -126.92 
2.71, 9.72, 21.07; -127.09 
2.98, 11.14, 24.50; -127.20 
3.11, 12.36, 27.74; -127.27 
3.33, 13.26, 29.79; -127.34 
3.58, 14.15, 31.60; -127.38 
3.67, 15.01, 34.04; -127.42 
3.65, 15.79, 36.47; -128.45 
3.69, 16.34, 38.00; -128.48 

4.36, 7.6.1, 11.74; -221.60 
5.69, 10.65, 17.15; -219.47 
6.56, 12.70, 20.84; -218.96 
7.25, 14.28, 23.69; -218.94 
7.75, 15.61, 26.20; -218.61 
8.24, 16.66, 28.01; -218.54 
8.70, 17.62, 29.66; -218.48 
9.03, 18.59, 31.55; -218.42 
9.26, 19.42, 33.31; -218.40 

6.23, 9.19, 12.72; -351.24 
7.70, 11.72, 16.59; -350.60 
8.84, 13.74, 19.72; -350.52 
9.77, 15.38, 22.27; -350.59 

10.60, 16.88, 24.62; -350.63 
11.29, 18.25, 26.89; -350.70 
11.88, 19.26, 28.41; -350.83 

11.53, 14.91, 18.72; -376.19 
14.36, 18.81, 23.86; -375.16 
16.71, 22.17, 28.41; -375.44 
19.20, 25.58, 32.86; -376.15 
21.69, 29.30, 38.05; -376.51 



Table 3-4. The lognormal discovery process model estimates of p, 
al and f3 for the Beaverhill Lake play. 

N {3" p" al" Log L 

100 0.2 -5.67, -4.66, -3.65; 16.19; 23.19, 31. 4S; -129.65 
125 0.3 -6.92, -5.82, -4.72; 18.13, 26.81, 37.18; -126.06 
150 0.3 -7.93, -6.73, -5.54; 19.45, 29.38, 41.35; -124.39 
175 0.3 -8.79, -7.49, -6.19; 20.48, 31.42, 44.70; -123.38 
200 0.4 -9.54, -8.14, -6.73; 21.33, 33.12, 47.50; -122.70 
225 0.4 -10.20, -8.07, -7.20; 22.04, 34.59, 49.94; -122.21 
250 0.4 -10.80, -9.20, -7.60; 22.68, 35.87, 52.06; -121.84 

Table 3-5. Group distributions derived from the lognormal discovery 
process model for the Beaverhill Lake play. 

Class Interval Number of Pools 
106 m3 Discovered Undiscovered 

N = 152 N = 154 

< 0.000000001 1 0 0 
0.000000001 - 0.00000001 0 1 1 
0.00000001 - 0.0000001 0 4 4 
0.0000001 - 0.000001 0 8 8 
0.000001 - 0.00001 2 12 12 
0.00001 - 0.0001 5 15 16 
0.0001 - 0.001 10 14 15 
0.001 - 0.01 20 4 5 
0.01 - 0.1 19 2 2 
0.1 - 1 13 2 2 
1 - 10 7 1 1 
10 - lOO 7 0 0 

> 100 3 0 1 

87 65 67 

73 
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Figure 3-10. Pool size distributions estimated by the discovery process model 
(A) and the assumption of random sampling (B). 
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Figure 3-11. The Q-Q plots showing: the ends of the plot curve upward on the 
right and downward on the left (upper); the data is symmetric 
but the hypothesized distribution is not (lower left), and the 
plateaus resulting from mixed populations (lower right). 
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Table 3-6. Estimates derived by the nonparametric discovery 
process model for the simulated population given 

iJ = -4, ol = 20, (3 = 0.3, and N =200. 

n N (3A IJA o2A Log L 

20 25 0.0 -0.25, 1. 58, 3.42~ 7.16, 15.83, 24.50~ -102.25 
50 0.0 -0.30, 1.58, 3.47~ 7.11, 15.83, 24.54~ -102.25 

lOO 0.2 -3.94, -1.33, 1. 28~ 6.09, 16.62, 27.18~ -102.23 
150 0.3 -5.66, -2.69, 0.27~ 5.28, 13.89, 22.54~ -102.13 
200 0.3 -5.79, -2.83, 0.14~ 5.00, 13.34, 21.68~ -102.11 
250 0.4 -6.94, -3.71, -0.14~ 4.37, 10.48, 16.58~ -102.04 

40 50 0.1 -1.52, -0.19, 1.13~ 9.94, 17.45, 24.96; -257.22 
lOO 0.2 -4.09, -2.12, -0.15; 6.52, 19.72, 32.93; -256.75 
150 0.3 -6.34, -3.56, -0.78; 4. 61, 19.90, 35.19~ -256.50 
200 0.3 -6.98, -4.05, -1. 13; 5.55, 19.63, 33.70; -256.39 
250 0.3 -7.39, -4.34, -1.28; 5.89, 19.28, 32.68~ -256.44 

80 100 0.2 -2.41, -1.48, -0.54; 10.07, 15.94, 21.81; -616.02 
150 0.3 -4.08, -2.84, -1.61; 8.82, 17.30, 25.75; -615.79 
200 0.3 -4.91, -3.48, -2.06~ 8.21, 16.90, 25.59~ -615.95 
250 0.3 -5.38, -3.87, -2.36; 8.12, 16.41, 24.70~ -616.50 

150 160 0.2 -2.70, -2.09, -1.48; 10.28, 13.58, 16.88~ -1334.75 
180 0.3 -3.22, -2.60, -1.98; 10.97, 14.80, 18.63; -1334.67 
200 0.3 -3.64, -2.97, -2.29; 10.84, 15.27, 19.70; -1333.41 
250 0.3 -4.36, -3.61, -2.86; 10.62, 15.51, 20.41; -1333.18 
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Table 3-7. Estimates derived by the nonparametric discovery 
process model for the simulated population given 

11 = -4, o2 = 10, f3 = 0.6, and N = 200. 

n N f3A IJ.A o2 A Log L 

20 so 0.4 -4.15, -1.84' 0.46; 0.88, 8.22, 16.66; -101.81 
lOO 0.6 -6.13, -3.05, 0.03; 1.27, 7.61, 13.94; -101.71 
150 0.6 -6.92, -3.49, -0.06; 1.65, 7.07, 12.50; -101.48 
200 0.6 -7.24' -3.73, -0.21; 1. 75' 6.68, 11.60; -101.43 
250 0.6 -7.42, -3.87, -0.31; 1. 84, 6.40, 10.96; -101.45 

40 so 0.2 -1.32, -0.55, 0.21; 1.37, 4.81, 8.24; -257.68 
lOO 0.4 -3.02, -1.58' -0.14; 1.38, 5.70, 12.13; -257.13 
150 0.4 -3.49, -1.84, -0.19; 1.45, 5.65, 12.17; -257.08 
200 0.6 -4.74, -2.56, -0.38; 1.22. 5. 78' 11.66; -256.90 
250 0.6 -5.07, -2.76 , -0.46; 0.16, 5.79, 11.41; -256.71 

80 100 0.4 -3.10, -2.22, -1.34; 2.69, 8.74, 14.80; -610.79 
150 0.6 -5.21, -3.55, -1.89; 1.95, 11.11, 20.27; -611.48 
200 0.6 -6.45, -4.32, -2.19; 2.12, 11.65, 21.17; -611.27 
250 0.6 -7.12, -4.85, -2.59; 2.96, 11.62, 20.27; -611.43 

150 160 0.6 -3.60, -3.12, -2.64; 5.74, 8.07, 10.41; -1296.86 
180 0.6 -4.18, -3.64, -3 .11; 6.50, 9.66, 12.81; -1293.76 
200 0.6 -4.73, -4 .09, -3.44; 6.63, 10.82, 15.01; -1293.19 
250 0.6 -5.83, -4.99, -4.16; 7.31, 12.60, 17.88; -1311.59 
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Table 3-8. Estimates derived by the nonparametric discovery 
process model for the simulated population given 

p = -4, o 2 = 10, ~ = 1, and N = 200. 

n N 

20 so 
100 
1SO 
200 
2SO 

40 so 
100 
1SO 
200 
2SO 

80 100 
1SO 
200 
2SO 

1SO 160 
180 
200 
2SO 

0.6 -3.68, -1.70, 0.28; 2.01, 7.14, 12.28f 
0.8 -S.20, -2.67, -0.14; 1.66, S.22, 8.79; 
0.8 -s.so, -3.03, -O.S6; 
0.8 -S.61, -3.21, -0.82; 
0.8 -S.S7, -3.33, -1.09; 

0.6 -1.34, -O.S4, 0.26; 
0.8 -3.17, -1.86, -O.S6; 
1.0 -3.93, -2.38, -0.83; 
1.0 -4.31, -2.S8, -1.01; 
1.0 -4.SO, -2.84, -1.18; 

1.68, 4.22, 6.76; 
1.42, 3.62, S.81; 
1.36, 3.23, S.09; 

1.39, 4.6S, 7.91; 
1.26, 4.98, 8.70; 
1.2S, 4.28, 
1.28, 3.64, 
1.28, 3.46, 

7.30; 
6.34; 
S.64; 

0.8 -2.28, -1.6S, -1.03; 1.S4, 4.62, 
1.0 -3.60, -2.S2, -1.44; 0.89, S.18, 
1.0 -4.4S, -3.06, -1.64; 0.63, S.20, 
1.0 -4.98, -3.41, -1.8S; 0.7S, s.oo, 

7.69; 
9.48; 
9.76; 
9.2S; 

1.0 -3.45, -2.69, -2.5S; 
1.0 -4.03, -3.48, -2.94; 
1.0 -4.S1, -3.88, -3.25; 
1.0 -S.39, -4.63, -3.8S; 

5.07, S.92, 8.9S; 
s.l2, 8.22, 11.32; 
S.18, 8.94, 12.70; 
5.26, 9.64, 13.99; 

Log L 

-99.61 
-99.67 
-99.39 
-99.36 
-99.42 

-250.01 
-249.23 
-249.S1 
-249.27 
-249.24 

-S93.09 
-S92.89 
-S93.2S 
-S93.85 

-1238.86 
-1240.6S 
-1241.70 
-1244.10 



Table 3-9. The Nonparametric maximum likelihood estimates of p, 
al, and f3 for the Beaverhill Lake play. 

N f3A /lA alA Log L 

lOO 0.3 -5.50, -4.60, -3.71; 17.55, 22.07, 27.79; -682.49 
125 0.3 -6.62, -5.70, -4.78; 20.19, 25.92, 31.65; -677.38 
150 0.3 -7.54, -6.58, -5.62; 23.00, 28.97, 34.94; -675.76 
175 0.3 -8.35, -7.35, -6.35; 25.79, 31.61, 37.43; -675.18 
200 0.4 -8.49, -7.45, -6.42; 21.17, 26.88, 32.58; -674.87 
225 0.4 -9.00, -7.93, -6.86; 22.21, 27.80, 33.39; -673.89 
250 0.4 -9.44, -8.37, -7.29; 23.33, 27.68, 34.04; -673.38 

Table 3-10. Group distributions derived from the nonparametric 
discovery process model for the Beaverhill Lake play. 

Class Interval 
106

m
3 

< 
0.0000001-

0.0000001 
0.000001 
0.00001 0.000001 -

0.00001 
0.0001 
0.001 
0.01 
0.1 
1 

10 

0.0001 
0.001 
0.01 
0.1 
1 

10 
- lOO 
> 100 

Number of Pools 
Discovered Undiscovered 

N = 150 N = 175 

0 13 23 
0 0 0 
2 9 12 
5 13 17 

10 13 16 
20 13 14 
19 4 5 
13 0 1 

7 0 0 
7 0 0 
3 0 0 

87 63 88 

79 
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Figure 3-12. The empirical pool size distribution estimated using the non­
parametric discovery process model (discrete distribution) and 
lognormal approximation (continuous distribution) for the Beaverhill 

Lake play. 
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Figure 3-13. The Q-Q plots for the Beaverhill Lake play: (A) normal quantiles; 
(B) gamma quantiles with shape parameter= 5.0; (C) Weibull 
quantiles; (D) uniform quantiles; (E) one parameter exponential 
quantiles; (F) two parameter exponential quantiles; (G) power 
normal quantiles with power = 0.5; (H) shifted Pareto quantiles; 
(I) truncated shifted Pareto quantiles with shape factor= 0.1; 
(J) truncated shifted Pareto quantiles with shape = 0.9; (K) 
lognormal quantiles; and (L) power normal quantiles with power = 
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Figure 4-1. Pool size distribution (top A) and the distributions of the largest 
pool size distributions for N = lOO (top B) and N = 152 (top C) for 
the Beaverhill Lake play; and the pool size distribution (lower) 
and the largest two pool size distributions when N = 152, ~A = -
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Figure 4-2. Left: individual pool-size-by-rank with a 2 = 2 and a 2 = 7 and where 
~ = 0.25 and N = 60. Right: the pool-size-by-rank for the Beaverhill 
Lake play (dots) with ~A = 0.25, a2A = 6.6, and N =60; the Bashaw 
play (crosses) with ~A = -0.91, a2A = 3.0, and N = 80; and the Zama 

play (triangles) with ~A = -1.5, a 2 A = 1.0, and N =160. 
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Figure 4-3. Examples of selected upper percentiles. 
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Table 4-1. Pool-size-by-rank for N = 152, llA = -6.80, cr2 A = 29.56 

OBSERVED ESTIMATED POPULATION 

RANK POOL SIZE RANK 99% 95% 50% 5% 1% 

1 290.0 1 31.13 83.18 1605. 118600 1180000 
2 134.8 2 12.71 28.80 284.1 5297 22780 
3 130.0 3 6.90 14.38 105.2 1163 3677 
4 98.71 4 4.27 8.43 51.45 425.5 1141 

_5 75.40 5 2.85 5.42 29.17 199.5 482.2 
6 57.72 6 2.01 3.70 18.15 108.3 243.3 
7 44.00 7 1.47 2.65 12.04 64.72 137.7 
8 41.30 8* 1.11 1. 95 8.37 41.43 84.5 
9 31.10 9* 0.85 1.48 6.03 27.95 54.96 

10 21.04 10* 0.67 1.15 4.47 19.55 37.43 
11 5.93 11 0.47 0.90 3.40 14.14 26.42 
12 1. 70 12 0.38 0.72 2.63 10.49 19.23 
13 1.67 13 0.32 0.58 2.07 7.95 14.30 
14 1.50 14 0.26 0.46 1.65 6.14 10.86 
15 1. 29 15 0.22 0.38 1.33 4.81 8.40 
16 1.28 16 0.19 0.32 1.08 3.82 6.59 
17 1.27 17 0.16 0.27 0.89 3.07 5.24 

18 0.13 0.22 0.74 2.50 4.21 
18 0.489 19 0.12 0.19 0.62 2.05 3.42 
19 0.477 20 0.10 0.16 0.52 1.69 2.80 
20 0.368 21 0.09 0.14 0.45 1.41 2.31 
21 0.283 22 0.08 0.12 0.38 1.18 1.93 
22 0.275 23 0.07 0 .11 0 .33 1.00 1.61 
23 0.245 24 0.06 0.09 0.28 0.84 1.36 
24 0.216 25 0.05 o.o8 0.24 0.72 1.15 
25 0.167 26 0.04 0.07 0.21 0.62 0.98 
26 0.106 27 0.04 0.06 0.18 0.53 0.84 
27 0.130 28 0.03 0.05 0.16 0.45 0.72 
28 0.119 29 0.03 0.05 0.14 0.39 0.62 
29 0.106 30 0.03 0.04 0.12 0.34 0.54 
30 0.101 31 0.02 0.04 0.11 0.29 0.44 

32 0.02 0.03 0.09 0.26 0.38 
33 0.02 0.03 0.08 0.23 0.35 
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Figure 4-4. Cross-plot showing the relationship between the pool area and the 
pool size for the Beaverhill Lake play. 
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Figure 4-5. Left: Pool-size-by-rank for the Beaverhill Lake play with 95-5% 
prediction interval. Right: Pool-size-by-rank conditional to the 

pool ranks for the Beaverhill Lake play. 
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Figure 4-6. Play resource distribution (A) and the play potential distribution 
(B) for the Beaverhill Lake play. 
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Table 5-1. Lognormal parameters and correlations of geological variables for the 
Beaverhill Lake play. 

Variable 

Pool area 

Average 
net pay 

Sample Mean 

7.860 

2.211 

Variance 

0' 2 A 

2.721 

0.422 

Correlations & Covariances 

Pool A:'erage Average 
area net pay porosity 

1.000 

0.682 1.000 
(0.731) 

Average 
porosity -2.674 0.068 0.641 0.452 1.000 

(0.275) (0.077) 

Constant = 0.681, 

Scale factor = 0.001 

2 I: I: O'lj = 2 • 16 4 
i<j 

o 2
A = 3.211 + 2.164 = 5.375 

Figure 5-1. Cross plots showing: the log-linear relationship between the 
variables of porosity and water saturation for the Cardium marine 
sandstone play (left) and the Bashaw play (right) from the Western 

Canada Basin • 
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Table 5-2. Format for entry of probability distributions. 

Geological 
variable 

Area of 
closure/pool 

Net pay/no of 
pay zones 

Reservoir/ 
formation 
thickness 

Porosity 

Trap fill 

Fav0urable 
facies 

Water 
saturation 

Oil/gas 
saturation 

Shrinkage 
factor 

Formation 
volume factor 

Reservoir 
temperature 

Reservoir 
pressure 

Unit of 
measurement 

m / ft / no 

m / ft 

decimal fraction 

decimal fraction 

decimal fraction 

decimal fraction 

decimal fraction 

decimal fraction 

decimal fraction 

Celsius/ 
Fahrenheit 

kPafpsi 

Recovery factor decimal fraction 

Probability in upper percentiles 
1.0 0.5 0.02/0.1 0.0 

95 
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Table 5-3. Format for entry of geological risk factors and 
their marginal probability. 

Geological factors 

Presence of closure 

Presence of reservoir 
facies 

Presence of porosity 

Adequate seal 

Adequate timing 

Adequate source 

Adequate maturation 

Adequate preservation 

Adequate recovery 

Adequate play conditions 

Marginal 
probability 

Level 
Play Prospect 

Adequate prospect conditions 

Table 5-4. Format for entry of number of prospects and pools. 

Geological variable Probability in upper percentiles 
0.99 0.5 o.o 

No of prospects 

No of pools 



Figure 5-2. Types of facias-cycle wedge (After White, 1980). 
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Table 5-S. Examples for play level risks for various geological models 

Play type 

Edge 

Top 

Base 

Subunconformity 

Example 

Eocene to Miocene 
Cook Inlet, Alaska 
* Jean Marie 

Belly River 
Mission Canyon 

Mannville 
Beaverhill Lake 

Jurassic 
Mississippian 

Exploration risk 
Sandstone Carbonate 

0.15 
0.15 

0.15 
0.44 

0.60 
0.35 

0.45 
0.30 

Note: * added by the present authors. 
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Figure 5-3. Top : An example of probability distribution for a variable of source 
rock maturation. Lower: An example of probability distribution for 

the amount of total organic matter. 
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Figure S-4. Facies map for the Es 1 Formation of the Huang-hua Basin, Eastern 
China (After Lee, Qin and Shi, 1989). 

Table S-6. 

Closure 

1 
0 
1 
1 

Es 1 FACIES MAP 

HUANG-HUA BASIN 

km 
0 25 

I 

~Carbonate 

~ Fine-grained 
~sandstone 

Example of data set 

Reservoir facies 

0 
1 
1 
1 

A 

~ .. 

B B' 

r~ 
l>;::j Conglomerate 

@ S Mudstone 

for exploration 

Migration 

1 
1 
0 
1 

r:::::l Coarse-grained 
~sandstone 

UNo deposition 

risk analysis. 

Source 

1 
1 
1 
1 

99 



100 

Figure S-S. Distributions of area of closure, reservoir thickness, porosity and 
trap fill for the conceptual play. The solid line indicates the 
distributions perceived by geologist and the dots indicate the result 

of lognormal approximation (After Lee and Wang, 1983a). 
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Figure 5-6. Pool size distribution derived by the result of Monte Carlo 
simulation (solid line) and lognormal approximation (circles) 

(After Lee and Wang, 1983b). 
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Table 5-7. Exploration risk for the conceptual play. 

Geological factor Marginal Case 
probability I II 

Presence of closure 0.95 prospect prospect 
Presence of facies 0.90 prospect prospect 
Adequate timing 0.95 play play 
Adequate seal 0.80 prospect prospect 
Adequate source 0.75 prospect play 
Adequate preservation 0.80 prospect play 

Overall play level risk 0. 95 " 0 . 57 
overall prospect level risk 0.41 0.68 

Exploration risk 0.39 0.39 

Figure 5-7. Number-of-prospects distribution for the conceptual play 
(After Lee and Wang, 1983a). 
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Table 5-8. Number-of-pools distribution for the two cases. 

Upper percentile Number of pools 
Case I Case II 

0.95 0 0 
0.90 33 0 
0.75 37 0 
0.57 42 0 
0.50 42 62 
0.25 46 71 
0.10 50 78 
0.00 80 102 

Table 5-9. Play potential distributions for the two cases. 

Upper percentiles Play potential (B bbl) 
Case I Case II 

0.90 1. 22 0.00 
0.80 1.57 0.00 
0. 70 1. 82 o.oo 
0.60 2.05 o.oo 
0.55 2.29 2.29 
0.50 2.28 2.80 
0.40 2.55 3.42 
0.30 2.86 3.96 
0.20 3.30 4.61 
0.10 4.05 5.59 

Mean 2.50 2.50 
standard deviation 1487 2568 



Rank 

1 
2 
3 
4 
5 
6 

7 

~ 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Pr 

0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0.95 
0 . 95 
0.95 
0.95 
0.94 
0.94 
0.93 
0.92 
0.90 
0.88 
0.86 
0.82 
0.78 
0.74 
0.68 
0.63 
0.57 
0.51 

Table 5-10. Pool-size-by-rank for Case I. 

Mean 

782 
349 
231 
171 
136 
112 

95 
81 
71 
62 
55 
49 
44 
39 
35 
32 
29 
26 
24 
21.7 
19.8 
18.1 
16.5 
15.0 
13.6 
12 . ~ 

11.3 
10.2 
9.3 
8.4 
7.7 
6.9 
6.3 
5.7 
5.2 
4.7 
4.3 
3.9 
3.6 
3.3 
3.1 
2.9 

S. D. 

1008 
244 
129 

85 
62 
49 
40 
33 
28 
24 
21 
19 
17 
15 
14 
12 
11 
10 
10 
8.9 
8.2 
7.7 
7.1 
6.7 
6.2 
5 . ) 
5.5 
5.2 
4.9 
4.6 
4.5 
4.0 
3.8 
3.5 
3.3 
3.1 
2.9 
2.7 
2.5 
2.4 
2.2 
2.1 

95 

183 
122 

93 
75 
62 
53 
45 
39 
35 
30 
27 
24 
21 
19 
17 
15 
14 
12 
11 
9.7 
8.6 
7.6 
6.7 
5.8 
5.1 
4 . ~ 

3.8 
3.2 
2.7 
2.3 
1.9 
1.6 
1.3 
1.1 
1.0 
0.8 
0.7 
0.6 
0.6 
0.5 
0.5 
0.4 

Upper percentile 
75 50 25 

329 
199 
145 
114 

93 
78 
67 
58 
51 
45 
40 
35 
32 
28 
26 
23 
21 
19 
17" 
15.4 
13.9 
12.6 
11.3 
10.2 
9.2 
8 .2 
7.3 
6.5 
5.8 
5.1 
4.5 
4.0 
3.5 
3.1 
2.7 
2.4 
2.1 
1.9 
1.7 
1.6 
1.4 
1.4 

522 
286 
200 
154 
124 
103 

87 
75 
66 
58 
51 
46 
41 
37 
33 
30 
27 
25 
23 
20.5 
18.7 
17.0 
15.4 
14.1 
12.7 
11. u 

10.5 
9.5 
8.6 
7.8 
7.0 
6.3 
5.7 
5.1 
4.6 
4.2 
3.8 
3.4 
3.1 
2.8 
2.6 
2.4 

883 
422 
280 
209 
165 
136 
114 

98 
85 
74 
66 
59 
53 
47 
43 
39 
35 
32 
29 
26.7 
24.5 
22.3 
20.5 
18.8 
17.2 
15 . 7 
14.4 
13.1 
12.1 
11.0 
10.1 
9.2 
8.4 
7.7 
7.0 
6.4 
5.9 
5.4 
5.0 
4.6 
4.2 
3.9 

Note: Pr : Probability for having r pools. 

5 

2157 
782 
469 
331 
253 
203 
168 
142 
123 
107 

94 
83 
75 
67 
61 
55 
50 
46 
42 
38.1 
35.0 
32.2 
29.6 
27.3 
25.2 
23.2 
21.4 
19.8 
18.3 
16.9 
15.6 
14.4 
13.3 
12.3 
11.4 
10.6 
9.8 
9 .1 
8.5 
7.9 
7.3 
6.9 
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Table 5-11. Pool-size-by-rank for Case II. 

Rank Pr Mean S.D. Upper percentile 
95 75 50 25 5 

1 0.57 1030 1219 273 464 713 1170 2738 
2 0.57 488 311 191 294 409 585 . 1043 
3 0.57 334 168 150 222 296 401 646 
4 0.57 257 113 125 179 233 307 468 
5 0.57 209 84 107 150 193 249 366 
6 0.57 176 66 93 130 164 209 300 
7 0.57 152 54 82 113 142 179 253 
8 0.57 133 46 74 101 125 157 218 

-9 0.57 118 39 66 90 112 139 191 
10 0.57 106 34 60 81 101 124 169 

Note: Pr : Probability for having r pools. 
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Figure 6-1. Diagram showing different levels of feedback in the process of a 
petroleum resource evaluation. 
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Table 6-1. Petroleum resource assessment record sheet 

I. General Information 

Country : Geological province: ________ _ 
Basin: Play: 
Geologists: Assessors: 
Date of assessment: ___ ! ___ ! __ __ 
Date of completion of the sheet: ____ ! ___ ! __ __ 

II. Basic Information Availability 

A. Maps 
Structural 
Isopach 
Facies 
Oil & gas pools location 
Geophysical 
Cross-section 
Logs 
Others 

B. Comments on information availability 

C. Level of knowledge concerning this play 
No drilling and no seismic 
No drilling but with seismic __ _ 
Early stage--immaturely explored ____ _ 

Source 

Intermediate stage--fairly well explored 
Late stage- -maturely explored 
Completely explo~ed 

D. Stratigraphy of each formation or pay 

Formation names 
Age 
Thickness 
Sedimentary environment 
Heat flow 
Oil window 
Pressure: Normal 
Other comments 

Lithology 
Organic type 

Temperature gradient 
Gas window 

Abnormal 

Indications of oil and/or gas 



III. Statistics of the Play 

A. Play area mile2 or Jcm2 

Play area explored 
Play producing 

Play volume 
Play volume explored 
Play volume producing 

B. Reservoir data 

Pool area 
Net Pay 
Porosity 
Water 

saturation 

ha 
m 

Depth m 
Recovery factor 

M in 

C. Hydrocarbon volume 

In-place oil volume 
In-place gas volume 

Primary oil reserve 
Primary gas reserve 

Enhanced oil reserve 
Enhanced gas reserve 

Oil 
Average 

Cumulative oil production 
Cumulative gas production 

D. Drilling history 

Max 

Number of wells penetrating the play 
Number of exploratory wells 
Number of exploratory 

interpreted as true test wells 
Number of development wells 

The mean recurrence time for dry well 
The mean recurrence time for oil well 
The mean recurrence time for gas well 
The mean recurrence time for oil & gas 

Exploration risk 
Ratio of producing area I play area 

Gas 
Min Average Max 

106 m3 or MM bbl 
106 m3 or Bcf or Tcf 

well 
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Figure 6-2. Unconditional and conditional distributions of the number-of-pools 
for different play resources (after Lee and Wang, 1983b) . 
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