This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

DETRITAL GOLD OCCURRENCES, NORTHERN NEWFOUNDLAND SHELF

GEOLOGICAL SURVEY OF CANADA OPEN FILE 2591 1992

CONTRACT REPORT PREPARED BY: CENTRE FOR COLD OCEAN RESOURCES ENGINEERING MEMORIAL UNIVERSITY OF NEWFOUNDLAND

NEWFOUNDLAND MDA 2

Contribution to Canada-Newfoundland Cooperation Agreement on Mineral Development 1990-1994, a subsidiary agreement under the Economic and Regional Development Agreement. Project funded by the Geological Survey of Canada.

DEPARTMENT OF MINES AND ENERGY GOVERNMENT OF NEWFOUNDLAND AND LABRADOR

Energy, Mines and Resources, Canada Énergie, Mines et Ressources, Canada

Canadä

Geological Survey of Canada, Open File

Detrital Gold Occurrences, Northern Newfoundland Shelf

Centre for Cold Ocean Resources Engineering, 1992

This Open File contains a contractor's report which assesses detrital gold occurrences of five inner shelf sites along the northeast coast of Newfoundland. The research was sponsored and funded by the Canada-Newfoundland Cooperation Agreement on Mineral Development 1990-1994 and was carried out by the Centre for Cold Ocean Resources Engineering under contract to the Geological Survey of Canada. The report has not been edited by the Geological Survey of Canada to establish any revisions and/or additions and therefore, statements contained herein may not necessarily reflect the views of the Government of Canada.

John Shaw, Scientific Authority

The second s	ESIC	5-C318-ADL60	CIST	1
NUMER NOT DESCRIPTION	JUL	31	1998	
and the second se	Earth Sciences Sector	Sect	eur des sciences de la Terre	

DETRITAL GOLD OCCURRENCES, NORTHERN NEWFOUNDLAND SHELF

Contract Report prepared for

Atlantic Geoscience Centre

C-CORE Contract Report 92-C6 March 1992

Centre for Cold Ocean Resources Engineering Memorial University of Newfoundland St. John's, NF, A1B 3X5, Canada Tel. (709) 737-8354 Fax. 709-737-4706 The correct citation for this report is:

Emory-Moore, M. and Davis, L. (1992) " Detrital Gold Occurrences, Northern Newfoundland Shelf". Contract Report for Atlantic Geoscience Centre, C-CORE Contract Report 92-C6.

Project Team

Margot Emory-Moore, M.Sc. Laurence Davis, M.Sc.

Group Leader, Seabed Geotechnics: Jacques Guigné, Ph.D., P.Geosc.

QUALITY CONTROL REPORT

	the second se	P America Contractor Contractor	the state of the s	
Client/Project: John Shaw, Geological	Atlancic Geosc Survey of Cana	ri ence Cent r da	8	
Contract Ref. OSC91-00291	1-(004)			
C-CORE Project No. 3-40817	_			
Document Title: Detrital Gold Occurrences, Northern Newfoundland Shelf Contract Report \$2-CC				-CC
Prepared By: M. Emory-Moore &	L. Davie	Date	: Mar oh 1 992	
Checked by Reviewers	Docum Accep	ent ted	Revi Acce	sion pted
	Date	Sign.	Date	51gn.
Technical Accuracy				
	Afrila the	Then		
Syntax	apil 6/2 .	6 With		
Layout & Presentation			april 7/102 -	lean Takin
General Evaluation	Anlay	Rhan	m	Q
Document Approved for Release:		Sign	HU4H	H.
and the second		Pres	dent & CEO	
	•		April	15/92

TABLE OF CONTENTS

SUMMARY			iv
1.0	INTRO	DUCTION	1
2.0	METHO	DDS OF SAMPLE COLLECTION AND ANALYSIS	5
3.0	RESULTS		6
	3.1	White Bay	9
	3.2	Baie Verte and Mings Bight	13
	3.3	Northeastern Baie Verte Peninsula	18
	3.4	Halls Bay Area	23
	3.5	Northeastern Newfoundland Shelf	24
4.0	DISCU	USSION	25
5.0	RECOMMENDATIONS FOR FURTHER WORK		33
6.0	ACKNOWLEDGEMENTS		33
7.0	REFERENCES		34
APPEN	DICES		

LIST OF FIGURES

PAGE

Figure	1.	Location of the Study Area	2
Figure	2.	Sample Location Map	4
Figure	3.	Distribution of Textural Classes	7
Figure	4.	Distribution of Gold in The Mud Fraction (1990 and 1991 samples)	10
Figure	5.	Distribution of Gold in the Sand Fraction (1991 samples)	11
Figure	6.	Distribution of Gold in The Whole Sample (as determined by panning; 1991 samples)	12
Figure	7.	Coastal Fetch and Mineral Occurrences in Areas with No Sediment Cover: Areas of High Primary Autochthonous Gold Potential	28
Figure	8.	Coastal Fetch and Mineral Occurrences in Areas with Sediment Cover: Areas of High Secondary Autochthonous Gold Potential	29

LIST OF APPENDICES

- Appendix A. Sample Type, Location and Water Depth
- Appendix B. Textural Data
- Appendix C. Geochemical Assays of the Mud and Sand Fraction
- Appendix D. Scatter Plots of Element Concentrations in the Mud Fraction Versus Element Concentrations in the Sand Fraction (1991 samples)
- Appendix E. Box and Whisker Plots of Elements in the Mud Fraction (1990 and 1991 data integrated)
- Appendix F. Element Distribution Maps (1990 and 1991 samples)
- Appendix G. Gold Grain Size, Abrasion and Chemistry (from whole rock panned samples)

LIST OF PLATES

Plate	1.	A relatively fresh gold grain from Deer Cove. Minor mechanical and chemical alteration, suggesting transport distances of less than 0.5 km	16
Plate	2.	A well travelled gold grain from Deer Cove with evident pitting, chemical etching and folding of grain edges	16
Plate	3.	Abraded and extensively etched gold grain from offshore La Scie area	20
Plate	4.	A gold grain from offshore La Scie which exhibits both a fresh grain surface with minor chemical etching and a more heavily abraded, pitted and etched grain surface	20
Plate	5.	Abraded, pitted and etched gold grain from offshore Tilt Cove. Note growth of secondary mineral phases within the recessed areas	22
Plate	6.	A heavily abraded gold grain from offshore Betts Cove. Note the contrast in chemical alteration between the fresh grain cast and more heavily etched left edge of the grain. A 'sandwich' texture can also be seen where two grain edges have been folded onto each other (upper left hand corner of the grain)	22
Plate	7.	A highly altered gold grain from Hamilton Sound exhibiting extensive folding of grain edges, matting of the grain surface and chemical pitting and etching	26
Plate	8.	A highly abraded and chemically altered grain from offshore New World Island	26

SUMMARY

During the 1991 field season the Geological Survey of Canada conducted two regional mapping and sampling surveys on the northern Newfoundland shelf. One of the principal objectives of the surveys was to assess the regional gold placer potential of the inner shelf zone. The textural and geochemical properties and the gold content of seventy-four surficial sediments samples collected during the surveys are reported herein.

Surficial samples were collected using van Veen and IKU grab samplers. Radar, LORAN C and GPS were used for navigation and an echosounder was used to record water depths. The percentage by weight of gravel (>2mm), sand (0.063-2mm) and mud (<0.063mm) was determined using wet sieving techniques. Gold and trace elements of the sand and the mud fraction were analysed using neutron activation. A large volume split of each sample was panned to a concentrate of 50 - 150 grains and gold grains, where present, were picked and mounted for examination using the scanning electron microscope.

Surficial seabed samples were collected in five regions: White Bay, Baie Verte and Mings Bight, the shelf zone off the northeastern Baie Verte Peninsula, the Halls Bay area and the northeastern Newfoundland shelf, extending from New World Island to Cape Freels. The geochemistry of the surficial sediments varies by region and closely reflects the lithologies of the coastal rock suites. The concentrations of most elements, including gold, were greatest in the mud fraction of the sediment.

iv

No gold was recovered from panning the samples collected in White Bay and only minor gold detected in the mud fraction of two samples around Coney Head (10 and 85 ppb). Gold grades were also low in Mings Bight and on the northeastern Newfoundland shelf.

The highest concentrations of gold were found in Deer Cove, a small coastal embayment in eastern Baie Verte and offshore La Scie, on the northeastern Baie Verte Peninsula. Thirty gold grains were recovered from the two samples in Deer Cove; gold was also detected in the mud fraction (95-121 ppb). Particulate gold was recovered from six samples collected offshore La Scie. Gold grades in the mud fraction of the sediment ranged from 7-249 ppb. Two populations of gold grains were evident in the samples from both areas; one group were relatively fresh and poorly travelled, the second, more dominant group, exhibited considerable evidence of mechanical and chemical alteration. Gold was also detected in the mud fraction of sediments offshore from Tilt Cove (up to 400 ppb) and Betts Cove (25-28 ppb).

A comparison of the observed distribution of gold in the surficial sediments of the study area with known mineral occurrences (primary source), sediment thickness (secondary source) and wave fetch (energy) suggests that Deer Cove and Dog Bay are the most likely sites for placer gold development in the study area (primary autochthonous and secondary autochthonous deposit types respectively). Future work should include detailed investigations of these sites using small boats and diver support.

v

1.0 INTRODUCTION

The Geological Survey of Canada has recently completed the second year of a three year nearshore mapping and sampling program designed, in part, to assess the regional placer gold potential of the northern Newfoundland shelf (Figure 1). The objective of the program has been to acquire baseline data for placer assessment and to develop depositional models for gold placer mineralization in this and similar geologic settings. This report presents results of sediment analyses carried out following year two of the program.

The northern Newfoundland shelf was initially chosen as a likely site for gold placer formation by Emory-Moore and Solomon (1989). The authors suggested that secondary autochthonous beach and nearshore gold deposits may occur along the northern shelf of Newfoundland and that gold placer deposits offshore Nome Alaska provide a useful analogue.

The Nome deposits were formed through marine reworking and deflation of auriferous glacigenic sediment. The highest concentrations of particulate gold off Nome occur in a thin (30 - 60 cm) layer of relict lag gravels that overlie glacial drift (Nelson and Hopkins, 1972). The amount of gold within the gravels is spatially quite variable but over 30% of samples were found to contain greater than 600 ppb gold and some as much as 2,500 ppb (Nelson and Hopkins, 1972). The site has recently been mined and the reported ore grade is 1813 ppb (Bosse, 1990). The underlying, non-reworked glacigenic sediment is characterized by an average gold content of 70 ppb, this being typically one tenth that of the overlying lag gravels. Sediment deflation on the order of 1.5 to 2.5 m can

Figure 1 Location of the Study Area

account for the increase in grade within the lag gravels (Kaufman and Hopkins, 1989).

It has also been suggested that primary autochthonous placer deposits may occur on the northern Newfoundland shelf (Emory-Moore and Solomon, 1989). These deposits form on beaches and in the nearshore zone through wave erosion of mineralized bedrock. Detrital gold occurs very close to the source and is generally entrapped in bedrock crevices and depressions.

A discussion of the depositional controls on marine gold placer formation, the geologic setting of the northern Newfoundland coastal zone, and the results of sample analysis undertaken during the first phase of the program are presented by Emory-Moore (1991). Several of the surficial sediment samples collected during the 1990 surveys were found to contain particulate gold. Sites were chosen for follow-up work, the results of which are presented in this report.

The methods of sample collection and sediment analysis are presented in Section 2. The results of this year's sample analysis are integrated with data from the 1990 surveys and presented for five geographic areas (Figure 2): White Bay (Section 3.1), Baie Verte and Mings Bight (Section 3.2), the shelf zone off northeastern Baie Verte Peninsula (Section 3.3), the Halls Bay area (Section 3.4) and the northeastern Newfoundland shelf, extending from the northwestern portion of New World Island to Cape Freels (Section 3.5). A discussion of the results and recommendations for further work is provided in Sections 4 and 5 respectively.

2.0 METHODS OF SAMPLE COLLECTION AND ANALYSIS

Surficial seabed samples analysed in the present study were collected during two Geological Survey of Canada research cruises (Shaw et al., 1992; Edwardson et al., 1992). The first survey was undertaken onboard the *CSS Dawson* where thirty-six seabed samples were collected using an IKU grab. The IKU samples are representative of the upper 1.0 m of the seabed. The *MV Navicula* was used to collect a further 38 surficial seabed samples using a van Veen grab sampler. The van Veen grab samples were approximately 0.02 m^3 in volume and are representative of the upper 5-10 cm of seabed sediment. At some sites, multiple van Veen samples were collected and combined to ensure a large enough sample volume for meaningful gold analysis. Radar, LORAN C and GPS were used for navigation on both surveys and an echosounder was used to record water depth at each sample station. Positional accuracy was approximately 10 m. Locations and water depths for the 1991 sample suite are provided in Appendix A with sample locations for the 1990 and 1991 surveys illustrated in Figure 2.

Included in the sample analysis are six samples collected from subareal coastal sediment suites. The location of two of the samples, one at the head of White Bay (91-032-013) and one at the head of Mings Bight (91-032-001), are shown on Figure 2. Samples 91-032-50 and 91-032-51 were collected from a quarry in Sops Arm. Sample 91-032-52 was collected near the mouth of Main River, at the head of Sops Arm and sample 91-032-53 was collected along the western shore of Giles Cove.

A small split of each sample was archived for future reference. The percentage by weight of gravel (>2mm), sand (0.063-2mm) and mud (<0.063mm) within a 5 kg split of each sample was determined using wet sieving techniques. A 30 gram subsample of the sand fraction and a 30 gram subsample of the mud fraction of each of the sieved samples were analyzed for gold and trace elements using Neutron Activation Analysis. Duplicate splits of seven of the gold-bearing samples were re-analysed to evaluate analytical precision and repeatability.

A third split of each sample was weighed and panned to a concentrate of 23-25 grams. The concentrate was further panned to a final concentrate of 50-150 grains. Gold grains were then picked and mounted for examination under the scanning electron microscope. The dry weight of the total panned sample was estimated by subtracting the moisture content of each sample (as determined by the difference in wet and dry weights of small sample splits) from the total wet weight of the sample.

3.0 RESULTS

Textural, geochemical and gold data are provided in Appendices B - G respectively. Autochthonous placer gold is typically found in association with a seabed armour. The textural data from the 1990 and 1991 surveys are hence classified according to the percentage by weight of gravels, here assumed to reflect the degree of seabed armouring (Figure 3). It is unlikely that relative sea level was lower than 20 m below present (the shoreward limit of most samples) in the recent past and hence it is probable that where there is a high percentage (>60-80 wt%) of gravels, they are the product of modern reworking processes.

Figure 3 Distribution of Textural Classes

However, gravel abundances do not always exhibit a direct correlation with water depth. For example, gravels within the relatively protected waters of Halls Bay can be found in water depths of up to 110 m. These gravels are the product of ice rafting and, although they result in a strongly bimodal sediment texture, they do not constitute more that 60 wt% of the sediment.

The results of geochemical analyses are listed in Appendix C. Analyses of blind duplicates suggest that the analytical precision was generally very good. The repeatability of gold assays was good for both the sand and mud fraction. Concentrations of all elements, with the exception of Cr, Rb, Sc and Na, were significantly higher in the mud fraction than in the sand fraction (Appendix D). For all but two samples, Au concentrations were highest in the mud fraction.

The geochemical sample data were grouped geographically into five regions: White Bay, Baie Verte and Mings Bight, the shelf zone off the northeastern Baie Verte Peninsula, the Halls Bay area and the northeastern Newfoundland shelf, extending from the northwestern portion of New World Island to Cape Freels (Figure 2). A Kruskal-Wallis one-way analysis of variance was run on the geochemical assays of the mud fractions of the 1990 and 1991 samples to determine the variation in element concentration between each region. The elements Ag, As, Cs, Hg, Ir, Sn, Ta, U, W, Eu, Tb, Yb were found to exhibit insignificant (at a 99% confidence level) regional variation and were hence eliminated from further analysis. For those elements within the mud fraction which exhibited significant regional variation, box and whisker plots (Appendix E) and discrete-symbol maps of element distribution (Appendix F) are provided. The classification used in the discrete symbol plots corresponds to natural breakpoints in the cumulative

frequency curves of each element.

The texture and morphology of gold grains were examined in an attempt to interpret the transport distances of gold from the point of liberation and to assess inter- and intra-sample variation (Appendix G); the rationale and approach used is outlined in Emory-Moore (1991). The distribution of gold in the mud fraction of the 1990 and 1991 sample suites is illustrated in Figure 4. The distribution of gold in the sand fraction of the 1991 samples and within the panned 1991 samples are illustrated in Figures 5 and 6 respectively.

A brief summary of results, by region, is provided below.

3.1 White Bay

Fourteen surficial grab samples from White Bay were analysed in the present study. The samples were collected in water depths of 38-62 m in areas offshore from known gold occurrences in the coastal rock suites. Unlike most of the northern shelf region, the coastline of White Bay runs parallel to the strike of the bedrock and is hence fairly regular. The coastal relief is, however, very high with towering cliffs and steep slopes.

The inner shelf extending from Sops Arm to Coney Head is characterized by extensive bedrock exposures with a thin discontinuous veneer of sand and gravel (Edwardson et al., 1992). Thicker sequences of finer grained material occur within the coastal embayments of Sops Arm and Jacksons Arm and at the head of White Bay. The surficial samples which exhibit the highest gravel content occur

Figure 4 Distribution of Gold in the Mud Fraction (1990 and 1991 samples)

around Coney Head and along the southern perimeter of the mouth of Sops Arm (Figure 3).

The small number of samples taken in White Bay make the recognition of geochemical trends within the shelf sediments difficult. There is, however, a marked distinction in the geochemistry of the seabed sediments surrounding Coney Head where the sediments are rich in Ca, Ba, Br, Cr, Nd and Zn relative to the other samples from White Bay (Appendix F). This variation in the geochemistry reflects a change in geology of the coastal rock suites; the Coney Head Peninsula is composed of granitoid intrusions while the rest of western White Bay is underlain by sedimentary siliciclastic rock with minor volcanics (Colman-Sadd et al., 1990).

No particulate gold was recovered from panning of the samples from White Bay. The mud fraction of two samples from the Coney Head area contained anomalous gold concentrations (10 and 85 ppb) and the single sample offshore from Jacksons Arm contained minor gold in both the mud and sand fraction (21 ppb and 7 ppb respectively; Figures 4 and 5). No gold was detected in the suite of samples off Sops Arm or at the head of White Bay.

3.2 Baie Verte and Mings Bight

Baie Verte has been a focus of the work during both the 1990 and 1991 surveys. The numerous occurrences of gold in the coastal rock suite and in the till cover of some areas make Baie Verte one of the most likely sites for placer development. Baie Verte, like much of the Baie Verte Peninsula, is characterized

by an irregular coastline with steep rock cliffs bordering much of the shoreline. During the 1990 surveys 35 surficial grab samples were collected from Baie Verte (Figure 2) and 8 were found to contain particulate gold. Only two additional samples were collected during the 1991 survey, both at Deer Cove.

A review of the surficial geology of Baie Verte is provided by Shaw (1992). He divides the Bay into two zones, an inner zone extending from the mouth of the Bay to Grassy Island (near the centre of the Bay) and an outer zone extending from Grassy Island to the mouth of the Bay. The outer zone is characterized by a large northeast trending trough bordered by a narrow rocky, shelf zone. The trough is filled with up to 74 m of glacial and postglacial sediment. The inner shelf is characterized by extensive bedrock exposures with the only significant sediment cover restricted to small isolated embayments (e.g., Deer Cove) where sediment thickness rarely exceeds 10 m. Water depths decrease in the inner bay where the sediment cover is more extensive. Seabed sediments rich in gravel are found in the small coastal embayments of the outer bay and blanketing glacial diamict in some areas of the inner bay (Shaw, 1992; Figure 3).

There are marked differences in the geochemistry of the inner and outer bay sediments in Baie Verte. The outer bay sediments are rich in Sc, Th, and Ca while the inner bay sediments are rich in Na, Ba and Co. Sm and La concentrations are highest along the western side of the outer bay, particularly in Coachmans Harbour. Cr concentrations are greatest in Deer Cove and Marble Cove. The changes in geochemistry of the seabed sediments correspond with changes in the bedrock geology. The inner bay and most of the western shore of Baie Verte is underlain by mafic volcaniclastic rocks (Hibbard, 1983). Near Coachmans Harbour, the

geology changes with the occurrence of greenschist and amphibolite rock suites. In contrast the eastern shore of the outer bay is dominated by diabase dykes, gabbros and metagabbros, many of which have been subjected to calc-silicate alteration (Hibbard, 1983).

The small coastal embayments of the outer bay were found to contain the highest concentrations of gold. The most notable site for gold enrichment is Deer Cove where all of the samples collected (5 from the 1990 survey and 2 from the 1991 survey) contain anomalous gold. Gold concentrations within the mud fraction of the two samples collected this year range from 95 to 121 ppb while gold concentrations within the sand fraction are less than 6 ppb. Panning of the two samples collected this year at Deer Cove yielded thirty gold grains per sample. Examination of gold grains revealed similar characteristics to those described from samples collected during the 1990 survey in the area (Emory-Moore, 1991). Two distinct populations of gold grains were evident; a small number of fresh grains which displayed low levels of chemical and mechanical alteration (Plate 1) and a second, more dominant group which were highly abraded and extensively etched and pitted (Plate 2). The former population of grains do not appear to have travelled far from the point of liberation whereas the latter group have probably travelled distances of greater than 0.5 km. The grain size of the gold varies from 0.05 to 0.25 mm and the Ag content ranges from 0-8 wt%.

The other coastal embayments which were identified in the 1990 survey as containing anomalous gold, and for which some SEM examination of grains was undertaken, include Green Cove and Marble Cove. All of the samples in the inner bay of Baie Verte contain less than 75 ppb gold in the mud fraction and none

Plate 1. A relatively fresh gold grain from Deer Cove. Minor mechanical and chemical alteration, suggesting transport distances of less than 0.5 km

Plate 2. A well travelled gold grain from Deer Cove with evident pitting, chemical etching and folding of grain edges

contain recoverable gold in the panned concentrates.

The 1991 survey was expanded to include a survey of the previously uncharted waters of Mings Bight where 8 van Veen grab samples were collected. Mings Bight was chosen as a good target for placer formation because it is a likely repository for glacigenic sediment eroded from a prominent mineralized lineament located to the southwest of the bay.

Water depths in Mings Bight vary from 110 m near the mouth to 50 m near the head of the bay. The seabed is characterized by extensive bedrock exposures with pockets of thin sediment cover (Edwardson et al., 1992). Sediment texture varies from a silty mud in the protected head of the bay to a much more coarse sandy gravel near the mouth of the bay (Edwardson et al., 1992). Of the 8 samples analysed, 5 contain greater than 60% gravel (Figure 3).

Concentrations of Cr and Ni within the surficial sediments of Mings Bight are consistently higher than the rest of the study area (with the exception of a few samples from Baie Verte). Co concentrations are also elevated while the elements Hf, Sm and Sb are depleted. The Cr and Ni-bearing sediments are probably a derivative of the mafic and ultramafic rocks exposed along the western shore and at the head of the bay.

Gold concentrations in all samples from Mings Bight were low, ranging from 7 to 44 ppb in the mud fraction with negligible gold in the sand fraction. One gold grain was recovered from sample 91-031-006. The gold grain measured 0.070 mm in diameter and exhibited moderate to high levels of abrasion and chemical etching with a probable transport distance of greater than 0.5 km. A grab sample collected from a river bar at the head of Mings Bight was found to contain anomalous gold concentrations within the mud fraction (102 ppb); 7 grains were recovered from panning. Two sub-populations were represented, one with very fresh mechanical and chemical characteristics and the other exhibiting a moderate to high degree of abrasion and chemical etching. The grains ranged in size from 0.060 to .15 mm.

While particulate gold within both Baie Verte and Mings Bight is concentrated in the mud fraction, the gold-bearing muds are closely associated with gravel-rich samples. This is not surprising given the nature of the entrapment process which serves to concentrate placer gold.

3.3 Northeastern Baie Verte Peninsula

Two areas around the northeastern Baie Verte Peninsula were surveyed: the shelf area offshore from La Scie and the shelf area offshore from Tilt Cove and Betts Cove (Figure 1).

Two samples were collected offshore from La Scie during the 1990 survey; one was found to contain gold (684 ppb). A further 7 samples were collected during 1991. The Quaternary sediments of the shelf area have been investigated by Shaw (1991) who describes an outer zone (>90 m water depth) characterized by a thin (<10 m) but continuous cover of glaciomarine sediment and an inner zone (<90 m water depth) characterized by numerous bedrock exposures and a thin laterally extensive cover of sand and gravel. Most of the samples collected in

the present study contain less than 40 wt% gravel although two samples from the inner zone are characterized by 40-60 wt% gravel (Figure 3).

The surficial sediments offshore La Scie are rich in Cr, Ce, Sm, Th, Hf and Fe and are depleted in Na, Br, and Sb (Appendix F). The coastal rock suite varies from rhyolitic and trachytic tuffs near La Scie to pyroxene gabbro to the east of La Scie (Hibbard, 1983).

Six of the seven samples collected during the 1991 survey contain gold in the mud fraction (7 to 249 ppb; Figure 4) with only one of the samples assaying > 7 ppb in the sand fraction (Figure 5). Particulate gold was recovered from all six samples (Figure 6). Samples 91-026-26 and 91-026-27 were characterized by a bimodal population of gold grains with a large proportion of the grains being abraded and well travelled and a small number of fresh, less abraded grains (Plates 3 and 4). The other samples contained gold grains that were well travelled exhibiting strong evidence of both mechanical abrasion and chemical etching.

The shelf areas off Tilt Cove and Betts Cove were chosen as possible targets for gold placer formation due to the high coastal exposure and the presence of several gold showings, including two old mine sites. Twelve samples were collected in water depths of >100 m during one of the 1990 surveys. The highest concentration of gold (510 ppb) was found offshore Betts Cove in a muddy sample collected at a water depth of 288 m. Three samples offshore Tilt Cove had minor gold, measuring less than 60 ppb. During the 1991 survey, 9 IKU grab samples were collected in water depths ranging from 25-100 m.

Plate 3. Abraded and extensively etched gold grain from offshore La Scie area

Plate 4. A gold grain from offshore La Scie which exhibits both a fresh grain surface with minor chemical etching and a more heavily abraded, pitted and etched grain surface Like most of the Baie Verte Peninsula coast, the Tilt Cove, Betts Cove area is characterized by a rocky shelf with isolated pockets of sand and gravel (Shaw et al., 1992). Six of the samples collected off Tilt Cove have a low percentage of gravel (<40 wt%) while the two samples offshore from Betts Cove are characterized by 40-60 % gravel (Figure 3).

The surficial sediments off Tilt Cove exhibit elevated concentrations of Co, Sb, Zn and Fe. The two samples off Betts Cove are slightly rich in Cr. The geology of the coastal zone is complex and the number of samples small, making possible geochemical trends difficult to distinguish. The high Cr content of the sediments off Betts Cove is probably associated with the Betts Cove ophiolitic complex (see Hibbard, 1983) while the high Fe, Co and Zn in the Tilt Cove area may reflect sulphide mineralization within the coastal rock suites (e.g., the Tilt Cove mine site which is situated very close to the coast).

The highest concentrations of gold were found in the Tilt Cove area where the mud fraction of three samples assayed at over 400 ppb gold; the two samples offshore from Betts Cove contained 25-28 ppb gold (Figure 4). In all samples the gold grade was significantly less in the sand fraction (Figure 5). Particulate gold was recovered from two samples in the Tilt Cove area and one sample in the Betts Cove area (Figure 6). Gold grains from both samples in the Tilt Cove area exhibited moderate to high levels of abrasion, a moderate degree of chemical etching and ranged in grain size from 0.09 to .17 mm (Plate 5). Sample 91-026-24 from Tilt Cove was divided into an upper (0-0.5 m depth) and lower (0.5-1.0 m depth) split and each split was panned in an attempt to evaluate possible variations in gold concentrations with depth. The abundance and

Plate 5. Abraded, pitted and etched gold grain from offshore Tilt Cove. Note growth of secondary mineral phases within the recessed areas

Plate 6. A heavily abraded gold grain from offshore Betts Cove. Note the contrast in chemical alteration between the fresh grain cast and more heavily etched left edge of the grain. A 'sandwich' texture can also be seen where two grain edges have been folded onto each other (upper left hand corner of the grain)

character of gold grains in both splits was found to be very similar. Two of the gold grains found within the sample offshore Betts Cove were well worn and highly etched while one grain was moderately abraded with little evidence of chemical etching (Plate 6).

In contrast to Baie Verte, particulate gold within the northeastern Baie Verte Peninsula samples is closely associated with mud-rich sediments.

3.4 Halls Bay Area

Twenty-nine surficial samples were collected from the Halls Bay area during the 1990 surveys. No additional samples were collected in 1991. The area was initially chosen as a potential site for gold placer formation because of the numerous gold showings, particularly near the more exposed areas around Sunday Cove Island. Further work was not undertaken in the area because all but one of the 1990 samples contained less than 8.5 ppb gold; it was suggested that gold associated with massive sulphide deposits such as those found in the Halls Bay poor sources of placer gold (principally area may be due to the characteristically fine grain size of the gold; Emory-Moore, 1991). The results of the 1990 geochemical assays and textural analysis are illustrated in Figures 3 and 4 and in the box and whisker plots (Appendix E). A detailed review of the results can be found in Emory-Moore (1991).

3.5 Northeastern Shelf

Twenty surficial grab samples were collected from Hamilton Sound during the 1990 survey with anomalous gold concentrations found in only one sample, located southeast of East Indian Island. The survey area was expanded in 1991 to include the shelf area offshore northwestern New World Island and offshore from the Cape Freels-Musgrave Harbour area (Figure 2).

Offshore the Musgrave Harbour-Cape Freels area extensive bedrock exposures characterize the inner shelf while the outer shelf region is blanketed by glacial and glacialmarine deposits (Shaw et al., 1992). The gravel content of the shelf sediments decreases from > 65 % gravel on the inner shelf to < 40 % gravels in the offshore (Figure 3). The Hamilton Sound area is characterized by a thin discontinuous cover of Quaternary sediments (Shaw and Russell, in prep). Well sorted sands occur within bedrock depressions and a coarse gravel mantles glacial diamict in many areas. The seabed around the north end of New World Island is very irregular and is covered by 5 to 10 m of Quaternary sediment with some bedrock knolls exposed (Edwardson et al., 1992). The surficial sediment generally contains a high percentage of gravel (Figure 3).

The geochemistry of the surficial sediments in the northeastern Newfoundland shelf region differ significantly from the rest of the study area. The sediments are rich in Hf, Nd, Sm and Th with the highest concentrations occurring in deep waters off the Musgrave Harbour-Cape Freels coast. The Musgrave Harbour-Cape Freels coastline is underlain by a large granitic intrusion which may account, in part, for the unique element suite. Br concentrations are

elevated off the mouth of the Gander River and northwest of New World Island; both areas are underlain by sedimentary rock suites.

The concentration of gold in samples from this area were all low, both in the mud and sand fractions (Figure 5 and 6). Two samples located east of East Indian Island contained minor concentrations of gold in the sand and mud fraction (<33 ppb). Particulate gold was also recovered from these samples. The gold was quite coarse-grained, ranging in size from 0.1 to 0.15 mm. In sample 91-026-036, the gold grains were worn and etched (Plate 7), while in sample 91-026-037 the grains appeared less travelled. Gold was also detected in the sand fraction in two of the samples offshore from northwestern New World Island. One grain from each sample was recovered. The grains were heavily abraded and etched (Plate 8).

4.0 DISCUSSION

Factors such as mineral occurrences (primary source), sediment thickness (secondary source) and wave fetch (energy) provide useful constraints for regional target discrimination in placer exploration. For example, primary autochthonous deposits form under conditions of high wave energy where mineralized bedrock is exposed on the seabed or in coastal cliffs. Alternatively, secondary autochthonous deposits form in high energy areas where there is a cover of glacigenic sediment that has been derived from, and is within a few kilometres down-ice of, a mineralized source rock. In an attempt to relate coastal wave energy, sediment thickness and primary mineral occurrences to the observed distribution of gold within the northern Newfoundland shelf sediments, a Geographic Information System (GIS) was used to create and overlay thematic

Plate 7. A highly altered gold grain from Hamilton Sound exhibiting extensive folding of grain edges, matting of the grain surface and chemical pitting and etching

Plate 8. A highly abraded and chemically altered grain from offshore New World Island
layers of each.

Gold occurrence data was provided by the Newfoundland Department of Mines and classified as volcanogenic and epigenetic types. Preliminary studies of the present study area (Shaw et al. 1992; Edwardson et al., 1992; Shaw, 1992) suggest that sediment thickness on the inner shelf closely reflects the sediment cover within the coastal zone and hence a simplification of the surficial geology map of Newfoundland (Liverman and Taylor, 1990) was used to approximate sediment thickness. The coastal sediment suites were broadly grouped into areas characterized by extensive bedrock exposures with thin discontinuous sediment cover, and areas characterized by a moderate to thick sediment cover.

As a first approximation of wave energy, mean fetch was calculated by determining the minimum distance from a point on the coast to all points that intersect the coastline seaward of it (seaward is defined here as the area delineated by vectors drawn from the point of interest to adjacent points). Where no intersection points are found, a maximum fetch of 500 km was assigned. The mean of all the seaward intersections was calculated and used as an estimate of mean fetch.

The likelihood of primary autochthonous gold formation was evaluated by calculating the mean coastal fetch for those areas dominated by little or no sediment cover, and then superimposing known mineral occurrences (Figure 7). An assessment of secondary autochthonous gold potential was provided by calculating the mean coastal fetch for those areas characterized by a moderate to thick sediment cover and then superimposing known mineral occurrences (Figure 8).

Figure 7 Coastal Fetch and Mineral Occurrences in Areas with No Sediment Cover: Areas of High Primary Autochthonous Gold Potential

Figure 8 Coastal Fetch and Mineral Occurrences in Areas with Sediment Cover: Areas of High Secondary Autochthonous Gold Potential In comparing the GIS generated maps with the distribution of gold identified within the shelf sediments of northern Newfoundland, several interesting, albeit equivocal, relationships emerge. Firstly, the Baie Verte Peninsula, White Bay and most of the Halls Bay area (except the head of Halls Bay) are characterized by a very thin discontinuous cover of sediment and hence placers that do form in these areas will likely be primary autochthonous deposits or perhaps, small, localized secondary deposits. The Hamilton Sound, Cape Freels-Musgrave Harbour area is characterized by a fairly continuous sediment cover and is hence the most likely site in the present study area to host secondary autochthonous deposits.

Not surprisingly, proximity to source appears to be the most important control on primary autochthonous placer formation. In the samples collected in White Bay, gold was found in sediments offshore the northeast tip of Coney Head, within 1.3 km of a known gold occurrence and where the fetch is greater than 100 km. The samples collected offshore from Sops Arm and Jacksons Arm were collected at distances of more than 7 km from known sources and despite being in areas of comparable fetch, the samples were barren. Unfortunately, the low energies of the inner bay regions, which lie within 1-4 km of the rich hinterland sources, may preclude placer formation. In Baie Verte, the highest concentrations of gold were found in Deer Cove, within 1 km from a known source, in a moderate energy environment. Similarly, the two gold-bearing samples offshore the north coast of New World Island were collected in a high energy setting, within 1 km of a known source. The richest samples offshore Tilt Cove were 1.5, 3 and 6.5 km from known onland sources.

While primary mineral occurrences are clearly an important control, caution must be taken in eliminating areas on this basis alone. For example, the numerous gold-bearing samples collected offshore La Scie are not associated with known occurrences of primary mineralization. The samples were, however, collected in a high energy environment and in an area with a geologic setting conducive to gold mineralization. The richest samples fall more than 1.5 km from the coast, suggesting possible mineralization within exposed bedrock on the seafloor. The fresh character of some of the gold grains from the area also suggests a proximal and perhaps as yet unknown source.

Very little gold was found in the Hamilton Sound and Musgrave Harbour-Cape Freels region. Again, proximity to source appears to be an important factor. All the samples collected in Hamilton Sound are greater than 13 km away from the main zone of mineralization in the area (a mineralized lineament extending southeast from Dog Bay). The barren samples collected offshore Musgrave Harbour-Cape Freels, while collected in a high energy environment, are greater than 20 km from any known source. The only gold-bearing sediment identified in the area occurred east of East Indian Island, approximately 5 km from a known source of gold mineralization on the island. Given the constraint of proximity to source, Dog Bay would seem a likely placer target. The mouth of Dog Bay is, however, a low energy setting with a mean fetch of under 10 km and hence may not be a suitable environment for sediment reworking.

In summary, the lack of a glacigenic sediment cover on the inner shelf regions of White Bay and the Baie Verte Peninsula preclude extensive secondary autochthonous placer development. The small pockets of sand and gravel on the inner shelf regions may hold some potential for small secondary or primary autochthonous deposits, but they are constrained by close proximity to sources of gold mineralization. Clearly the most attractive site for placer development of this kind is Deer Cove where anomalous gold concentrations were identified in all seabed samples.

In Deer Cove, particulate gold is concentrated in the mud fraction of the surficial sediments. The gold grade of the muds averages 462 ppb. Using the percentage by weight of mud in the total sample, the samples at Deer Cove yield an estimated average whole rock grade of 5 ppb, a value clearly below mining grades. What is not known is the variability of gold with depth. Particulate gold would generally be expected to reach maximum concentrations 30-60 cm below the seabed; samples collected to date are representative of the upper 10 cm of the seabed. In any case, if deposits of this type are present, they will likely be low-volume deposits which, at best, may sustain small-scale operations.

Secondary autochthonous deposits are constrained by the presence of glacigenic sediment cover and proximity to source. Secondary autochthonous placer deposits, such as the Nome deposit, can hold substantial economic promise for gold. Based on current evidence, it is unlikely that a large secondary deposit exists in the current study area. Dog Bay represents what is perhaps the most likely site for secondary autochthonous placer development although the low energy setting of the Bay may have precluded extensive gold enrichment. No surveys have been run in the Dog Bay to date.

5.0 RECOMMENDATIONS FOR FURTHER WORK

It is recommended that the next phase of the northern Newfoundland marine placer study include detailed, site-specific investigations using small boat operations with diver support. Side-scan sonar mapping of the seabed should be undertaken to map the areas where seabed armouring is present. Systematic sampling and mapping of the surficial and subseabed sediments by divers could be undertaken in water depths of up to 20 m. A diver-operated suction dredge would be a very useful tool to obtain large volume samples and could easily be connected to a sluice at the surface. Indeed, if any of these occurrences were to be mined, it would most probably be a small scale operation and would possibly involve similar extraction techniques. A detailed sampling program would also benefit from the use of the hydraulically-actuated bucket sampler developed by Scott et al. (1991) which can penetrate hard gravelly seabeds and can be deployed off a small vessel.

The areas recommended for detailed work are Deer Cove and Dog Bay. These represent what are perhaps the most likely sites for primary and secondary autochthonous placer development (see section 4.0). It is important that results of the next phase of study provide some measure of the tonnages and grades of gold that might be expected to occur in these types of deposits and hence the likelihood that they represent a mineable resource.

6.0 ACKNOWLEDGEMENTS

The advice and assistance of John Shaw, Kimberly Edwardson and Don Forbes of the Atlantic Geoscience Centre are very much appreciated.

7.0 REFERENCES

- Bosse, P.J., 1990. Development of innovative underwater mining techniques. Presented at the 21st Annual Meeting of the Underwater Mining Institute, Victoria, British Columbia, September, 1990.
- Colman-Sadd, S., Hayes, J., and Knight, I., 1990. Geology of the Island of Newfoundland. Geological Survey Branch, Newfoundland Department of Mines and Energy, Government of Newfoundland and Labrador, Map 90-01, scale 1:1,000,000.
- Edwardson, K.A., Shaw, J., Wile, B., and Prime, W., 1992. C.S.S. Navicula operations in northeastern Newfoundland coastal waters: Ming's Bight, White bay, Moreton's harbour, Bay of Exploits and Twillingate Harbour. Geological Survey of Canada, Open File 2492.
- Emory-Moore, M., 1991. Gold placer potential of the northern Newfoundland shelf. geological Survey of Canada, Open File 2417, 91 p.
- Emory-Moore, M. and Solomon, S., 1989. Placer gold potential offshore Newfoundland: A Preliminary Assessment. In: Current Research, Newfoundland Department of Mines, Report 89-1, pp. 229-236.
- Hibbard, J., 1983. Geology of the Baie Verte Peninsula, Newfoundland. Newfoundland Department of Mines and Energy, Mineral Development Division, Memoir 2, 279 p.
- Kaufman,D.S. and Hopkins, D.M., 1989. Late Cenozoic controls on placer-gold distribution in the Nome nearshore area. U.S. Geological Survey Bulletin 1903, pp. 26-45.
- Liverman, D. and Taylor, D., 1990. Surficial Geology of Insular Newfoundland: Preliminary Version . Geological Survey Branch, Department of Mines and Energy, Government of Newfoundland and Labrador, Map 90-08, scale 1:500,000.
- Nelson, C.H. and Hopkins, D.M., 1972. Sedimentary processes and the distribution of particulate gold in the northern Bering Sea. U.S. Geological Survey Professional Paper 689, 27 p.
- Scott, W.J., Poorooshasb, F. and Kanzig, M., 1991. Hydraulically actuated dualbucket sampler for compacted or coarse-grained bottoms. Alluvial Mining International Conference Proceedings, November 1991, London, England.
- Shaw, J., 1990. Surveys in White Bay, Baie Verte, Green Bay and Halls Bay, northeast Newfoundland, Report on final phase of Cruise 90-013, C.S.S. Hudson. Geological Survey of Canada, Open File 2311.
- Shaw, J., 1991. Quaternary sediments and seabed conditions offshore from La Scie, Newfoundland. Geological Survey of Canada, Open File 2385.

- Shaw, J, 1992. Surficial sediments of Baie Verte, Newfoundland. Geological Survey of Canada, Open File 2457.
- Shaw, J., Russell, H., Sherin, A., and Atkinson, T., 1992. C.S.S. Dawson operations in Newfoundland coastal waters: La Poile Bay to Bay D'Espoir, Notre Dame Bay, and Bay of Exploits. Geological Survey of Canada, Open File 2482.
- Shaw, J and Russell, H., in prep. Surficial sediments of a wave-dominated, inner shelf embayment: Hamilton Sound, Newfoundland.

Appendix A

Sample Type, Location and Water Depth

SAMPLE LOCATIONS: DAWSON 91-026 AND NAVICULA 91-031

Sample	Latitude	Longitude	Water	Sample
Number			Depth	туре
	10 07666		(m)	howd week
91-031-001	49.97666	56.04566	0.5	nang grab
91-031-002	49.98333	56.03317	40	van veen
91-031-003	49.99217	56.02467	48	van veen
91-031-004	49.99317	56.01067	51	van veen
91-031-005	49.98567	56.02867	62	van veen
91-031-006	49.99967	56.00850	//	van veen
91-031-007	50.00500	56.00217	35	van veen
91-031-008	50.01533	56.00883	46	van veen
91-031-009	50.02200	55.99550	110	van Veen
91-031-011	50.01867	56.05500	29	van Veen
91-031-012	50.02367	56.05333	47	van Veen
91-031-013	49.54083	56.87183	0	scoop
91-031-014	49.94333	56.72617	31	van Veen
91-031-016	49.95100	56.72100	33	van Veen
91-031-020	49.95467	56.69883	50	van Veen
91-031-024	49.96650	56.74400	50	van Veen
91-031-026	49.96800	56.75700	120	van Veen
91-031-028	49.96867	56.73950	53	van Veen
91-031-034	49.85850	56.75183	87	van Veen
91-031-036	49.75483	56.81267	66	van Veen
91-031-038	49.77067	56.78083	45	van Veen
91-031-040	49.55117	56.86017	38	van Veen
91-031-042	49.56483	56.85417	62	van Veen
91-031-046	49.72617	56.78750	51	van Veen
91-031-048	49.74000	56.80417	47	van Veen
91-031-050	49.77633	57.92117	0	scoop
91-031-051	49.77517	57.92167	0	scoop
91-031-052	49.76817	57.93200	0	scoop
91-031-053	49.75500	57.90500	0	scoop
91-031-054	49.60683	54.90783	110	van Veen
91-031-056	49.60133	54.86633	80	van Veen
91-031-058	49.60217	54.84717	59	van Veen
91-031-060	49.61233	54.83033	55	van Veen
91-031-062	49.60733	54.82900	50	van Veen
91-031-064	49.60367	54.82867	55	van Veen
91-031-066	49.60250	54.82733	54	van Veen
91-031-068	49,60183	54.81767	43	van Veen
91-031-070	49.55500	54.89783	55	van Veen
91-031-072	49,56083	54.89767	40	van Veen
91-031-076	49.59750	54,91983	49	van Veen
91 001 070	19 09 700	01101000		
91-026-011	49.98817	55.60250	77	IKU
91-026-012	49.87600	55.53800	42	IKU
91-026-013	49.86817	55.53680	77	IKU
91-026-014	49.80067	55.77117	65.8	IKU
91-026-016	49.80683	55.77117	65.8	IKU
91-026-019	49.86833	55.58117	79	IKU

91-026-020	49.87083	55.61750	44	IKU
91-026-021	49.87950	55.59483	47	IKU
91-026-023	49.85833	55.62933	62	IKU
91-026-024	49.89117	55.57667	61.4	IKU
91-026-025	49.86900	55.59817	68	IKU
91-026-026	49.97667	55.62117	66	IKU
91-026-027	49.99067	55.60583	76	IKU
91-026-029	49.99233	55.59933	75	IKU
91-026-030	49.99183	55.60050	73	IKU
91-026-031	49.98650	55.61017	76.8	IKU
91-026-033	50.00167	55.60300	108	IKU
91-026-034	50.01050	55.60783	117	IKU
91-026-035	49.90483	55.37367	228	IKU
91-026-036	49.52417	54.19217	20	IKU
91-026-037	49.52200	54.19183	25.6	IKU
91-026-038	49.50933	54.15167	55	IKU
91-026-039	49.52467	54.12733	40	IKU
91-026-040	49.52467	54.12767	40	IKU
91-026-043	49.53400	54.11217	51	IKU
91-026-044	49.49850	53.44883	293	IKU
91-026-045	49.49800	53.59100	62.2	IKU
91-026-046	49.49933	53.59317	62.2	IKU
91-026-047	49.42333	53.70567	38.4	IKU
91-026-048	49.42667	53.47383	108	IKU
91-026-049	49.37500	53.46133	90	IKU
91-026-050	49.31833	53.51167	51	IKU
91-026-051	49.32750	53.53567	49	IKU
91-026-052	49.33883	53.56500	49	IKU

Appendix B

Textural Data

GRAIN SIZE DATA (weight percent)

Sample	>2mm	2	063mm	<0.063mm
Number				
91-026-011S	0.05		52.41	47.54
91-026-011B	0.06		45.58	54.36
91-026-012S	0.00		20.47	79.53
91-026-012M	0.00		9.02	90.98
91-026-013	0.30		49.79	49.91
91-026-014	46.76		46.04	7.20
91-026-016	55.60		40.24	4.15
91-026-019	41.73		54.56	3.71
91-026-020	31.03		67.04	1.94
91-026-021	37.89		58.96	3.15
91-026-023	38.89		56.28	4.83
91-026-024S	24.40		72.33	3.27
91-026-024B	45.82		51.09	3.09
91-026-025S	47.52		48.79	3.70
91-026-025B	44.64		53.04	2.32
91-026-026	47.67		50.20	2.14
91-026-027	0.62		98.04	1.34
91-026-029	50.48		46.21	3.32
91-026-030	48.38		50.33	1.29
91-026-031	4.04		95.18	0.78
91-026-033	0.00		91.70	8.30
91-026-034	0.78		83.64	15.58
91-026-035	35.80		58.48	5.72
91-026-036	34.35		64.30	1.35
91-026-037	21.87		76.66	1.47
91-026-038S	0.40		80.07	19.53
91-026-038B	1.01		60.55	38.44
91-026-039	33.74		60.75	5.51
91-026-040	56.21		42.23	1.56
91-026-043	2.94		80.57	16.50
91-026-044	24.88		74.79	0.33
91-026-045	0.68		99.32	0.00
91-026-046	70.24		29.61	0.16
91-026-047	63.61		36.08	0.31
91-026-048	0.89		97.88	1.23
91-026-049	26.86		72.64	0.50
91-026-050	80.47		19.37	0.16
91-026-051	/5.0/		24.81	0.12
91-026-052	63.95		35.90	0.15
91-031-001	41.89		56,71	1.40
91-031-002	73.98		16.36	9.66
91-031-003	84,69		10.18	5.13
91-031-004	61.93		28,55	9.52
91-031-005	0.10		43,15	56.75
91-031-006	0.86		57.01	42.13
91-031-007	61.88		29.75	8.37
21 001 007	0 T • 0 0			0.07

91-031-008	20.87	75.25	3.87
91-031-009	62.36	33.21	4.42
91-031-011	57.98	39.80	2.22
91-031-012	21.31	75.82	2.86
91-031-013	26.22	72.27	1.50
91-031-014	43.89	55.48	0.63
91-031-016	82.17	17.81	0.02
91-031-020	62.43	35.36	2.21
91-031-024	90.77	9.12	0.11
91-031-026	0.07	49.67	50.25
91-031-028	42.13	54.28	3.60
91-031-034	0.19	95.44	4.37
91-031-036	20.62	71.97	7.41
91-031-038	34.78	58.54	6.69
91-031-040	22.01	48.93	29.06
91-031-042	79.94	11.52	8.54
91-031-046	58.61	38.96	2.44
91-031-048	58.71	37.54	3.75
91-031-050	11.42	87.94	0.63
91-031-051	17.31	81.42	1.27
91-031-052	36.45	63.39	0.15
91-031-053	60.24	37.39	2.37
91-031-054	33.54	62.11	4.35
91-031-056	38.78	57.07	4.15
91-031-058	60.30	38.44	1.25
91-031-060	43.96	53.62	2.43
91-031-062	67.22	31.34	1.44
91-031-064	13.23	86.25	0.52
91-031-066	32.27	66.53	1.20
91-031-068	55.27	44.07	0.66
91-031-070	54.29	42.87	2.84
91-031-072	93.07	6.42	0.51
91-031-076	95.38	4.19	0.43

S - Surface

M - Middle

B - Bottom

Appendix C

Geochemical Assays of the Mud and Sand Fraction

θu	θġ	θΩ	л Н Ц	ЧШ П	ë;	000	J D D	20 20 20	ац Ц	ΗĘ	Бу Н	L L L L L	Ω	n Z C	N1 N2	92 P	5 5 5 5	
ո ւ տ	ະ ມີທີ່	540			× -	ຊ ມູນ ມີ		– Ы-1- С	× 00	5 1 1 1	51 1 1	ກ 1. ທ	ຍ ກັນ ກັ				- 24 2 2 2	
102	רם (ו	11	-100		+ (N) 5 4	3000	i Ni I	5.98 9	• ന	•• i	កា (ា ភ្នា	150	740 740	9 9 9		; ~
ហ	ហ	r~	230	140	ហ	90	1100	Ņ	9.90	m		ភ្	5 11	200	300	0E	4.0	13
Ξ	ن ا	Β	230	180	Ś	м М	770	Ņ	3.52	t)	-	ហ	-5 1	400	270	06-	с. 4	17
~	មា រ	10	280	150	4	с N	880	N 1	8.69	ষ	-1	ភ	-5 11	006	250	-30	о. С	16
თ	មា ក	ø	270	130	m	24	950	Ņ	3. 71	(7)		ы	-5 12	2700	270	-30	4.0	18
ប	ហ	~	250	110	m	24	830	Ņ	3.75	4	-1	ហ	ញ_ ភ្	8500	180	66	ດ. ເບ	20
5	ហ	ഗ	180	100	~	20	87Ū	eu 1	3.34	Ð	-1	ហ	-5 10	0060	190	- 1 1 1 1	4.0	19
44	ហ	m	160	88	œ	n N	2000	N I	4.51	~	ļ	ហ	ы П	9030	190	-30	0.7	ন্দ N
ማ	ហ	ጥ	240	150	শ	16	480	N I	9.13	ហ	-	נז) ا] មុ	600	150	06-	4.0	10
121	цр	Q	170	សិ	ሙ	51 17	940	Ņ	9. 00	n		ហ	ម្ព ភ្	0000	130	0e-	-1	N N
95 95	ភ្ន រ	Q	-100	200	10	16	460	N	9.1≥	ហ	≓ i	لی ۱	្ម ភ្ន	006	130	-30	د. ص	N N
~	ம 1	4	380	17	N	20	100	ന	4.40	16	-1	رم ۱	ញ្ញ ហ្វ	5200	-50	65 6	4.0	00 100
95	ц Г	14	500	250	16	12	4 13	N I	9.87	r.	-1	ភ	ц ц	9000	-50	90	0.6	ч Т
-19	ហ្គ	90 8	680	910	18	14	220	21	4.9	ە	Ņ	-0	-8 17	000	- 20	-30	N	12
ហ	ហុ	~	440	190	ω	ŋ	57	γ	2.67	B		ហ្	5 15	1200	50	41	0.4 .4	ΙŪ
10	ភ	2	710	300	12	13	96	4	4.28	ω	- +	ហ រ	-5 18	3700	 	63	0.6	18
19	ហុ	~	420	140	ഹ	œ	ហ ហ	N I	2.62	σ	, i	ហ	-1 17	200	-50	60 0	т С	11
ហ	ហ	œ	390	140	ω	თ	5 Ú	N	2.97	lŨ		ហ	-10	6600	-5D	4 0	0. 0	<u>0</u>
21	ц	m	450	С 4	মা	œ	ល ហ	N I	4.07	36		ហ	ш П П	5500	-50	-30	с. Э	91
ŝ	ம i	m	390	61	IJ	თ	00 寸	N	9.34	€ 4		ហ	-5 17	400	-50	с С	с. О	11
ហុ	កុ	11	310	160	11	œ	9 1 1	Ņ	2.43	10		ហ	0-1 10-1	0063	05-	88	0.0	ŋ
ဟ ၂	ភា	თ	270	110	m	17	96	, N	4.43	8		ဟ ၊	-5 10	5400	50	89 60 60	0.0	<u>т</u>
ហ្	ហ្	~	450	66	m	16	120	⊲	t.35	12		ហ	-12	008,	-50	56	д. 4	20
ហ រ	ហ	ហ	410	87	4	11	92	Ņ	3.96	59		ហ	-1 1 1 1 1 1	3100	-50	37	с. Э	<u>0</u>
ы Г	មា រ	Q	370	140	4	11	27	Ņ	45	37		ហ	-2 13	200	-50	40	0. 4	2
4	ம 1	19	510	Ū	Ē	4 0	71	J.	9.69	따 각	-i	កា	-12	200	-50	44	0.4 .4	20
Φ	ហ	ŋ	02 7	i	m	5	71	Ņ	. 4 0	ে। শ	 -	لم ا	-9 2C	0000	- 20	। ന च	0. N	2
10	ភា ដ	12	650	96	ហ	N D	120	ហ	9.47	4		رتا ۱	2	400	00	т С	0.	₹ N
1	ربا درا	410	570	ব	Ţ	8	71	чD	×.08	16	₁	ហ រ	50	14100	0 10 10	88	1.C	22
ы Г	ы I	œ	056	4	4	12	150		9.76	თ		ۍ ۱	-U	1200	05	0 m	1. 4	4 (1)
E1	ហ	11	240	শ	ഗ	07	190	Ņ	t. 16	30		لت) أ	-5 -	0080	000	08-	1. U	ৰ মে
ហ	ហ	18	290	130	N	12	130	ុ	9.49	ц,		ហ	-5 18	8800	-20	-30	1.2	
15	ហ្	11	240	180	12	13	130	NI I	9.35	IJ	- I	ហ រ	-12	,50Ŭ		06-	ь. С	~1
ហ	цр I	4	240	220	12	10	150	N I	9.94	ষ		ហ	-5 16	5200	-20	0.6-	-	9 1
ហ	ы Г	15	260	م 0	U I	100	730	N N	5.81	38 S		ហ	-5 20	0090	05-	-30	7	2
رتا را	ហ	Ð	210	99 59	თ	17	810	N N	0. 50 10	ЭС УС	,_∎ ∔	ហ	S S S S	0066	05-	-30	1	08
មា ។	ហ	~	290	ВŊ	N 1	1Ē	420	יי רא ו	4.46	16	1 	ហ រ	-0 1 2	0000	- 20	- 06	, .	n N
មា រ	ហ	4	400	ហ្វ	9	10	260	N 1	3.07	0E	 	ហ រ	-5 17	600	05-	-30	4,1	<u>0</u>
თ	ហ រ	13	380	310	13	10	120	ក្	2.72	12		មា រ	۲ - CD	9008	-50	30	1.1	2
က !	ហ	52	350	500	18	11	51	Q.	2.55	Ч	- 1 i	ن ا	ណ្ដ	1300	-50	38	0.0	N .0
190	۲Ĵ	160	110	16	CJ	230	340	~ ^	l6.6	۲J	- 1	ហ រ	ю Ю	3410	200	66-	N.	ខ្ល
251	ហ្គ	210	-100	8		320	410	2	23	4	- - 	ы 1	יא עו	580	170	- 30	Ξ	32
240	ம I	220	-100	39	-	330	410	NI i	23.2	m		មា	ក្	620	210	42	œ	8

Se Sn S PPM X X	۲.	₩L Mad	HT H Here	∩ dd	чü	n Zn PPM	비원 기업	рры Рры	PN dd	ų g V	рри Рри	р Б Д	а Ма	ррм Ррм
5 0.01 0.05 1 0.5 0.	1 0.5 0.	0.5	0	ហ	ন ন	20		m	נע : יע	0.1		 	0.05	0.03
-5 -0.01 0.05 -1 1.4 -0.	1 1.4 -0.	1.4 -0.	0.	ហ	म ।	មា ល	2	14	σ	1.6	0.6	.0.S	1.36	0.28
-5 -0.01 -0.05 -1 3.8 1.	-1 3.8 1.	3.8 1.		~	ম ।	100	18	36	15	ი ი	0.8	0. S	N	0.31
-5 -0.01 -0.05 1 4.5 1.6	1 4.5	4.5 1.1	-	0	4	<u>0</u> 6	01	38	2	e Ni	- 1 ,	ច ក្	1.9	0.36
		4 - 	, , ,	N c	ণ 			(च (μ	- (1)		- - -	ас Лого Nor	т С. С.
-5-0,01 -0.03 -1 4.3 1. -5 -0 01 -0 05 -1 4.5 1.	יים. איניים ויי	י חות דיף		הע	ተ ፣	4 C	 	0 - K	<u>, c</u>	n n a	n -	0 U 0 C	9 0 	0 0 0 0 0 0 0
-5 -0.01 -0.05 -1 4.1 1.	-1 4.1	+	,	ათ	r v	2 4	18	i đ	- 4	ı مارين	- 0. 0			0.35
-5 -0.01 0.06 -1 3.3 1.	-1 -0.0			·	ষ	113	с П	90 N	œ	,	0.6	0 -	2.17	0.39
-5 -0.01 -0.05 1 4.8 1.	1 4.8 1.	4.8		ſ~-	4	122	N	4 С	15	0. 10	7	-0.5	2.01	0.34
-5 -0.01 -0.05 -1 2 0.	-1 2 0.	2 0.	0	3	IJ	60 0	ഗ	20	~	1.8	0.6	0.0-	2.07	0.31
-5 -0.02 -0.05 -1 3.8 -0.	-1 3.8 -0.	3.8 -0.	ġ.	ស	ቱ 	3 6	18	(U) 44	15	0.0 0.0	0.9	.0 .0	2.23	0.35
-5 -0.01 -0.05 -1 7.9 4.	-1 7.9 4.	7.9 4.	4	1	र् च {	113	с С	70	31	ە	1.9	1.2	4 4	0.68
-5 -0.01 0.08 -1 5.8 -0.	-1 5.8 -0.	5.8 -0.	ò	ហ	4	110	20	20	N N	ហ	1.6	0.0	п. П	0.51
-5 -0.04 -0.05 -1 6.8 3.	-1 6.8 3.	6.8 J.	ന്	<u>~</u>	ъ Ъ	1400	27	69	ករ ល	4,6	1.1	0.0	र त	0.47
-5 -0.01 -0.05 -1 7.1 2.	-1 7.1 2.	7.1 2.	N		4	20	36	с С	60	ហ	1.3	с. О	2.79	Ú.48
-5 -0.03 -0.05 -1 8 -0.	-1 8 -0.	00 0	Ģ	ß	4	180	4 (1)	88	6 E	6.8	1.7	. D. S	9.65	0.71
-5 -0.01 -0.05 -1 6.5 2.	-1 6.5 2.	6.5 2.	Q,	ন	ব !	74	Е С	65	4 N	4 00.	1.2	с. О	9 .4 6	0.53
-5 -0.01 -0.05 -1 7.2 2.	-1 7.2 2.	7.2 2.	N	n	4	87	9E	27	24	ი ი.	1.3	с. 8	0,49	Ŭ.58
-5 -0.01 -0.05 -1 11 3.	-1 11 3.	11 3.	m.	Ð	4	60	25	100	4 4	4.	1.9	1.4	6.09	0.99
-5 -0.01 0.05 -1 7 2.	-1 72.	7 2.	e,	~	ম 	69	36	75	8 00	ი. ე	1.5	1.3	5.14	0.79
-5-0.01 0.1 -1 6.9 3.	-1 6.9 9.	ю. 9. 9.	က်		4	86	94 9	66	n N	4.8	1.3	0.0	3.08	0.52
-5 -0.01 -0.05 -1 6.2 1.	-1 6.2 1.	1 1	i	œ	4	128	90 28	62	n N	თ. +	1.6	~-4	0.41 0	0.5
-5-0.01-0.05 1 7.3 2.	1 7.3 2	N M N	N	۴	দ !	56	0 0	68	ហ ស	9.0	1.7	1	9.96	0.64
-5-0.01 0.06 1 8.7 3.	1 8.7 3.	в. 7 Э.	m	сų	4	63	ტ (1)	62	មា កា	6.4	1.7	с. Т	5.55	0.89
-5 -0.01 -0.05 -1 7.9 3.	-1 7.9 3.	7.9 9.	က်	σ	4	68	98 30	82	₽S	6.4	1.6	г. Г	5.82	0.93
-5 -0.01 -0.05 2 16 1	2 16 1	16	-	Ċ.	4	245 1045	68	160	0 0	18	4 (-)	m	10.9	1.73
-5 -0.01 -0.05 1 14 4.	1 14 4.	14 4.	4	ব	য !	130	ហ	140	រ]	10	ന പ	N	8.96	1.31
-5 -0.03 -0.05 -1 10 7.	-1 10 7.	10 7.	r~	C)	4	262	53	130	90 00	11	ю. П	1. C	7.91	1.24
-5 -0.01 0.1 2 11 2.	2 11 2.	11 2.	e.	ц,	4-	479	58 28	150	22	Ū	2.7	1.8	6.62	1.02
-5 -0.01 -0.05 -1 4.5 1.	-1 4.5 1.	4.5 1.	,	G	4-	10 4	24	48	16	4.1	1.6	-0.	2.91	0.48
-5 -0.01 -0.05 1 5.6 2.	1 5.6 2.	5.6 ≥.	e,	न्त	ৰ ¦	9 2	2B 2	56	4	ত ক	1.7	1	r. m	0.63
-5 -0.01 -0.05 -1 3.9 1.	-1 3.9 1.	3.9 1.	-	4	4	105	N N	10 17	18	ი ი	1.9	ມ ເມ	.9 ₽	0.41
-5 -0.01 0.09 -1 4.2 2.	-1 4.2 2.	4.2 2.	c,	ŝ	4	82	59	46	17	ю. Ю	1.4	0.8	23 73	0.41
-5 -0.01 -0.05 -1 4 -0.	-1 4 -0.	4 -0.	é	ഗ	4	125	22	ন ব	16	а. С	1.12	0.0	2.16	0.36
-5 -0.01 -0.05 -1 16 4.	-1 16 4.	16 4.	4	m	Ц И	140	с С	100	8 0	~	N.1		5.01	0.04
-5 -0.01 -0.05 -1 11 3.	-1 11 3.	11 3.	m	ŝ	4	119	4 1	68	m m	6.2	20	1.1	۲- م	0.78
-5 -0.01 0.11 -1 7	-1 7	2		C)	4	100	ъ N	57	с С	4.7	1.5	в. 0	9,48 0	0.51
-5 -0.01 -0.05 1 8.1 2.	1 8.1 2.	<u>8.1</u> 2.	\sim	G	4	B1	EE E	62	5 Cl	ে- য	1.5	ი. ე-	4.38	0.76
		- 1 - 1 - 1	- 1	<u>م</u> (q 	1EZ	۳ ۲		۲. ۲.	4	N -		2 8 9	0.44 44
		່ດ ການ ການ	; ç	ហ	4		15	44	12					n. 27
			; c	្រ	- J		1	- u -	י ע ו) u r)ប) c	ם (כ	 -	
			jo	טכ) -		5 0) U 4 F	0 0) - - () u) c		
<u>u- / 1 1- cu.u- zu.u- 11</u>			j,	n,			л (ם ו ק	ומ		+ i ⊃ (ם נ ס ל	i a v c	+n.)
14 -0.02 -0.05 -1 1.8 -0	-1 1.3 -0	1.0	-	വ 	50	686	π	L L	π	2.1	ת ⊡	-0.5	R2	с, С

Element	ΡILI	Ĥq	НS	Ba	Β-	с С	S	ں د	۵ ت	Д Ц	Ηf	Ч	ľr	Мo	् Z	N J	ЧЧ Ч	95	1 <u>0</u>
Units	Bdd	РРМ	Mdd	Mdd	Mdd	×	Melet	Ыdd	Ыдд	х	Melei	ppMdd	9dd	Mad	FipH	Mdd	Mdd	Mdd	Hdd
Oetection Limit	ហ៊	U)	U)	100		1	บวิ	10	e)	0.02	1	1	പ	ഗ	500	SD	- CEC	0.2 (J. 1
91-026-0118 MUD	420	ن ۱	220	-100	4	CI	380 3	280	∩; T	20.9	1	1	ц) '	с U	910	150	-30	12	53
91-026-0118-2 MUD	495	ពុ	300	-100	19	[,	490	310	N I	26.9	 1	1	ហ	10 2	320	240	-30	16	N N
91-026-0118-3 MUD	480	ហ ់	290	-100		1:	480	310	(7)) 1	26.1	ŝ		ر ت	ιu Γ	350	170	- <u>9</u> 0	16	5
91-026-0125 MUD	340	ניס ו	220	190	ω.	,	410	310	-1 (1	20.8	,		ហ	5 U	600	20	- 90	со г	ŝ
91-UZ6-U125-Z MUU	4 ∏ 4	ភ្នា រ	280	-100	ית	 ;	521	320		26.7			ų	10	800	200	N N	11	S
91-U26-U125-3 MUU	417 000	؛ درا	280	-100	01	N I	510	090	Ņ	52. G	2		υ) I	ហុ	810	2 30	- <u>3</u> Ū	11	сл т
91-U26-U12M MUU	4 7 7 7 7 7	ו תו ו	DEZ	-100	n ·	N i	DEE.	410		20.2	i i	-	رت ۱	- -	220	320	DE-	œ	~~ (~)
91-UZ6-U1ZM-Z MUD	R S S S S S S S S S S S S S S S S S S S	י מ ו	240	-100		N (350		ן ני <u>ר</u> י	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	į		ហ	ភ្	400	-20	-	9.7	с С
91-026-012M-3 MUD	402	ហ	250	-100	শ	Ω.	350	420	N '	20. 20.			ن ا	ភ្	400	310	06-	н. Б	00 00
91-026-013 MUD	4 10 10	ហ	200	-100	99 79	-1	400	270	Ņ	20.1	N	. 1	ហ	B	0663	170	DE	11	2
91-026-013-2 MUD	536	មា រ	270	-100	36	-1	520	290	N i	36	ᡪᡰ	N	ப ப	11	010	110	DE	15	(F
91-026-013-3 MUD	500	ហ	260	-100	र ्ग (7)	īυ	490	280	Ņ	5 7	m	-	и ว 1	10	1830	06	- 30	14	22
91-026-014 MUD	52	ហ រ	ហ	300	9.6 6	4	14	360	è.	9.63	с Г	-	ហ	5- 1 3	500	4	06-	0.6	13
91-026-016 MUD	28	ហ	Ð	290	.₽	4	16	400	N 1	0.04 0.0	4 (-1-	цр !	មា ភ្	600	70	31	7.7	13
91~026-019 MUD	က မာ	ហ	თ	340	С С	ন	13	250	∩ ¦	4.14	16		ហ	5 <u>-</u> 5-	600	- 50	- Эр	0.8	13
91-026-020 MUD	246	ហ	110	-100	<u>к</u> б	শ	220	250	, Ci	13.4	4	i	ц) ¦	ന	810	-50	31	ហ	18
91-026-020-2 MUD	36.7	រោ រ	160	-100	140	r~	310	320	Ŷ	18.8	σ	1	ហ	μ	1420	200	0E-	0. 0	58
91-026-021 MUD	រា ភ	រ រ	40	330	130	IJ	72	210	2	7.58	6	[-	មា រ	ក្ ភ	100	67	30	ന പ	Ч Ч
91-026-023 MUD	140 1	រ រ	67	220	06	(1)	100	220	N i	9. 63 0	9	i	لت ا	ណ្ដ	129D	05	Ę	σ ι ς	1
91-026-0245 MUD	81	UT 1	с С	068	120	u.	ų	190	i Č	6.6		• .	1 LT.	-) [] []) U D	5	. L
91-026-024B MUD	76	107. 1		028	100) UT	- LC - 1	200	10		; 2	•		- - -	000) 000 1) F	ια 	n r
91-026-0255 MUD) UI) (r. i) 1		170) ដា	- 1	180	10	10 10	i N	•	ם נ ו	ייי ייי	200) ⊂ 0 0) u F (T) ^	ט נ ר
91-026-025R MUD) (T) Lî				ប	0	010	10		- 2	• -)ប់ រ	ן הי) u) a) n) n	- n 	
		ע כ ו	1 1			יז כ	35	0 1 1 1 1 1 1	រព		9 C 7 F		JU			0 0 0 U	n n	- 6 - 6	2 :
		וכ	• 0		001	- (2:		u e	0 (0 (. (n - 1	- 4 -	ה נ ו		0000		す (わ (ი: -	न (
AL-UZD-UZ/ MUU	74 (1 1	ករ	ተነ		ے م	י כו	त (50U	N (i	2U.J	₹ (\	- 1 .	រារ	ភ្នុ ភ្ន	0660	۲ ק		, . 	<u>m</u>
	ມີ (ກຸ	រារ	ı ۵	400	7. 5	ים		140	nu i I	4.	N	1	۲ ۱	- 1 1	nnn	22,		4.	5
91-UZ6-U3U MUD	4	ות	ņ	DEE	50	ı ت	Ξ	200	N 1 1	6.66	22	-	ربا ۱	19 10 1	100	20	O m i	0.S	5
91-026-031 MUD	20	μ	U)	270	- f	ন	10	270	Ni '	9 9 0	œ	-	ព្	1 1 1 1	600	61	-30	0.6	<u>6</u> .
91-026-033 MUD	11	נט ו	c)	330	11	না	10	700	N I	5.16	₹ N	-	ហ	្អ	800	06	-30	0.4	1.7
91-026-034 MUD	ഗ	ក	n	330	12	т,	œ	400	N 1	3. 78	1.7		ا ت	- 2 -	[10]]	က ဟ	N 07	0.4	m T
91-026-035 MUD	ſ~-	ហ្	œ	430	66	m	ē	170	N	9 8 7	8		ហ	5 10	0001	00 00	ີ ເມ	ດ. ບ	с. С
91-026-036 MUD	n n	لا ا	ഗ	250	140	G	LD I	180	ŝ	1.56	<u>1</u> 4		ហ	ц ц	3700	00	- E E	ю 0	n,
91-026-037 MUD	IJ) İ	'n	σ	230	67	ব	ഫ	300	N 1	н. Ф	52		ហ	1 1 1 1 1	100	05-	31	0.6	Ţ
91-026-0385 MUD	ហ	ហ	ە	250	100	m	ഗ	200	N 1	1.79	22	7	ы 1	-12 -12	000	-50	ЭР С	0.6	9.8
91-026-0388 MUD	ហ	ររ ប	Ŋ	300	8 4	m	Ð,	180	N 1	1.8	18	- i	ហ្	-1 1 1 1 1	5100	-50	E E E E	- 0	т. В.
91-026~039 MUD	က ၊	i U	11	290	220	٢	ഗ	120	C)	1.77	10		ဟ ၊	-10 -1-0	400	-20	(F)	` ^' 0	5
91-026-040 MUD	មា រ	ហ	10	310	150	Ú)	ģ	130	ې ۱	1.68	11	-1-	ហ	91 91	300	-50	m m	ں۔ م	ç.3
91-026-043 MUD	ភា ក	ហ	σ	260	150	ហ	ഗ	160	N 1	1.71	14	-1	ம I	-5 1	1600	-50	06-	0	7.8
91-026-044 MUD	1 1	ហ	13	510	170	N	8	110	N	2.96	е л		ហ	-512	700	-50	4 4	0.7	σ
91026046 MUD	ភ រ	ស់	19	520	220	ω	ß	110	N I	Э. 9 2	37	,	ریا ز	97 107 1	6400	09- 1-	85 85	0.5	œ
91026-047 MUD	11	ហ	16	310	270	14	S	87	2	1.41	10	- 1 i	ស់	ំ ភ្	006	-50	Эб	0.U	4, D
91-026-048 MUD	10	ព	ە	440	22	c)	ហ	130	Ņ	3.38	26	1	ព	91 19	000%	-50	н С-	0.0	
91-026-049 MUD	ۍ ۱	က္ ၊ ၊	9	450	4	N :	η	130	2	9.83 93	100	i	ហ	∰ Ω	900	05- 10-	N N	0.4	÷.
91-026-050 MUO	ю I	ו תו	ন (380	061	4	ഹ	92	ςı Γ	1.6	ِ ف	- 1	ו קו י		0023	0 2 2	л С	0.E	
91-026-051 MUD	տ։ I	ن ما ا	n.	460	8	2	יםי	4 0		1.36	<u>, n</u>	- -	י כיו	ំ ភូមិ ម	1300	<u>C</u>	មា មា	0. S	с. Э
91-UZ6-U5Z MUU	1 I	n '	4	250	120	m	n	110	2	1.58	10	, ;	ы Г	ភ្	006	09-	亡 寸		

ement str	Se Sn Sr DDM - Sr	Та Тh U вом сом вем	N Zn Dow Dow	т т П	a de Porte		មិន ស្ត្រី ស្ត្រី	ц Ц Ц Ц Ц	41 1	д н Х-	LU DDM
τυ 1.1+1.05 - 1934				_ _ _ _	- - -	- 	1		2 U 1 C		
226-0118 MUD	19 -0.01 -0.05	-1 -0.5 -0.5	4 6 1830	- -	٦Ņ	ריי ריי ו	- 0-	. n . n	ງ ເມື	1.48	
J26-0118-2 NUD	28 -0.02 -0.05	-1 0.9 -0.5	9 2220	- ח	Ŋ	~	4.	0.4	-0.5	2.5	U. 35
J26-0118-3 MUD	26 -0.02 -0.05	1 - 0.5 - 0.5	9 2150	ហ	\simeq	G	4.	0.5	-0.5	2.11	0.3
026-0125 MUD		-1-0.5	-4 2260	م ۰	ഗ	ហ្វុ	е С	ი. ი.	ທີ່ ດີ	1, 79 1	0.22
JZ6-U125-Z MUU	13 -U.U2 -U.U5	-1 0.4 -0.5	6 2800 7000	ר די	2 \	ים		N C D C	ມ ເ	N (U.36
JZB-UIZS-3 MUU 1961019M MUD	11 -0.02 -0.05	ם - ה- ה- ה- ה- ה- ה- ה		व ह	م م	ם יי וי ס	ו אס אר	ч с	ກ ແ ວ ດ		р. С. С.
126-012M-2 MUD				U 0	r ir	ים כ ווו		, n 2 C		10 10	
126-012M-2 MUL			0 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ה ה	- U	ים כ ו		, n 1 2	יים סיכ	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
126-019 MID	15 -0 01 -0 05		000	- - -	οg) vî	- U				
126-013-2 MUD	23 -0.02 -0.05	-1 1.5 -0.5	9 3430	0	29	~ ~	ו היים	1 7 1 0 7 1	າທ ວິດ	5.5 5.7 7.7	0.44
126-013-3 MUD	22 -0.02 -0.05	-1 1.1 -0.5	7 3300		<u> </u>	~	1.6	0.2	-0.5	2.19	0.28
026-014 MUD	5 -0.01 -0.05	-1 6.6 2.6	4 94	0 23	22	S	4.7	1.4	1	3.87	0.65
026-016 MUD	-5 -0.01 -0.05	1 6.7 2.6	-4 133	00 00 00	e c	N	ь. 4	1.4	1.1	4.02	0.66
026-019 MUD	-5 -0.01 -0.05	1 7.9 4	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500	ų V	n N	N. 10	1.6	1.1	4.00	0.75
026-020 MUD	5 - 0.01 - 0.05	-1 2.6 1.9	5 1330	0 0	00 20	Ω	ה. מי	0.7	Ū.6	2.15	0.42
126-020-2 MUD	13 -0.02 -0.05	-1 4.4 -0.5	4 1810	20	ស្ត	Ξ.	н. С	1	-0.S	9.24 44	0.56
126-021 MUD	-5 -0.01 -0.05	-1 5.5 2.5	· 4 년 1	50 10 10	रू LC	91	다. - -	1.4	с. С	с С	0.56
026-023 MUD	-5 -0.01 -0.05	1 4 1.1	5 708	 51	2	N	4.0	4	-0. 2	2.73 73	0.43
026-0245 MUD	-5 -0.01 -0.05	-1 6.1 2.7	4 383	9 02	21	22	т. Ф	1.4	1	9.78 78	0.67
1260248 MUD	-5 -0.01 -0.05	2 6.5 2.3	4 269	30 E	S.	N	ი ი	1.6	1	4.27	0.69
J26-0255 MUD	-5 -0.01 -0.05	-1 6 1.6	-4 282	26	寸	N N	т П	1.2	0.~	0.90 09	0.47
J26-0258 MUD	-5 -0.01 -0.05	1 6.3 2.4	-4 298	9 60	寸 LD	M N	4. U	1.4	1	0) - 4 0)	0.6
026-026 MUD	-5 -0.01 -0.05	2 6.7 2.9	5 ₽ 1	5 S C	5	N M	 	2.1	1.5	ы С И И	0.04
026-027 MUD	-5 -0.01 - 0.05	ា ភ្	5 116	4	Ч П	ы СП	0. 	1. 0	다 -	9.36	1.57
J26-029 MUD	-5-0.01-0.05	-1 6.7 2.7		च ()	1	Ē		N		4	0.69
126-030 MUD		1 7.9 2.5	4 76	ហ្គូ	<u>ر</u> ک	00 (00 (5.	1.1	5.21	0.85
126-031 MUD		ດ ເດີຍ ເດີຍ ເດີຍ ເດີຍ	4 4 00 1 00 1	লে। বি (2	5 (6) (9.	с. 01	1.26
126-U33 MUD	-5 -0.01 -0.05	2 7.4 2.6	ក្រ លំពី ក្	ມ ທີ່ເ	21			2.1	4 (-	5. 19 19	0.36
126-U34 MUU	-5 -0.01 -0.05 7 0 01 0 01	ייי היי היי		ה (ה נו	۵,		 	р.	N (- (र प र	2.0
ULATUJA MUU Dirende Mun		ם יים סוי ערי דו	0 4 4 7 7 7 7	n Nu Du	សួច	9.5	00 +0	V - 	ית סכ	ກີ ກີ ກີ	
JZB-U3B MUD		יי הי וי	1 C U D U 1 T	ur D⊐ No	35	, v ⊣ v V č	ה ת ה וו		- 0 5 0	U 	חם. סיי ביי
126-0385 MUN				ະແ ເດັ	- 5			। च 		л с 0 С т ч	
126-0388 MUD	-5 -0.01 -0.05		- 4 - 50) თ) თ		4	100 100	- m			0.6
126-039 MUD	-5 -0.01 -0.05		- 4 - 5 4	22	1	. 2	1			2.62	144
026-040 MUD	-5 -0.01 0.06	-1 6.2 1.9	. 4	. ມາ ເ			4	1 . 1		2.83	0.44
026-043 MUD	-5 -0.01 -0.05	1 7 2.7	-4 55		92	M	4 ى	1.1	0.9	0 0	0.54
026-044 MUD	-5 -0.01 -0.05	2 19 4.5	22 17	51 12	23	46	6.7	1.8	1.4	6.24	1.04
126-0 4 6 MUB	-5 -0.02 -0.05	35 9	110	68 16	5	ក ហ	а. С	N	1.0	5, 77	0.89
126-047 MUD	-5 -0.01 0.13	-1 8 1.6	-4 135	0 N N	2	27	4. U	Ţ	-0.S	4	0.43
126-048 MUD	50.010.05	9 91 2.7	50 00	67 16	03	61	11	C)	1. J	су 15 С	
026-049 MUD	-5 -0.01 -0.05	2 36 10	-4 -50	20	2	Ω.	с П	2.0	N N	11.1	1.73
026-050 MUD	-5 -0.01 0.07	0.1 1.1 1.1	4 4		5	8	ហ ។	1.1	0.7	5. 20 20	0.34
026-051 MUD	-5 -0.01 0.09	2 0 2 0 2 2 2 4 0 2	4 110	BS (4		ម ក្រុ	·	с : -	ភ្នំ សុំខ្	0. 42
026-U52 MUU	-5 -0.01 0.09	-1 8.5 -0.5	-4 109	<u> I</u> I I	4	9	J	1,1	п. и	Z. 85	11.37

i emert	FL F	U U	E N	ر, ص	å	ர ப	0	Ļ	Č	1 L	ц Т	י ב	ŗ	U X	r Z	7	01.	ц U) ע
的主義	Bdd	Б П	Хаа а	친데	Medel	N	Mad	N d d		, 	Σ Ω Ω		. 4 1 1 1						
Jebection Limit	ហ	ហ	(V)	100	ľ	7	ហ	10	ĩ	0.02	. –	.) נע	. ມ. . ທ					-
JI-031-1 SAND	ហេ ;	ហ	ហ៊	110	ĉη	(V)	B	2100	Ņ	4.07			ា រ	, u.				, 10 10	• <u>.</u>
31-031-2 SAND	ល រ	ហ	ŵ	170	л М	N	19	1300	Ņ	0. T	- N	·	رم (۱			- 		າດ	<u>, </u>
31-031-3 SAND	ហ	ហ	m	110	ക ന	ധ	00	660	N	Э. ОТ	Ч	, i	رتا ا ا	-5 166) m	1 v.
31~031~4 SAND	رنا را	ល	10	170	18	Ω	00	1400	NI 1	u. ∖9	N		цл I	- CO - CO - LO	₽	- 020	, e) ന '
91-031-5 SAND	ц	ហ	ហ	250	भ (ग)	N	ю N	840	€N 1	m	N	-	נו) ו	-5 118	000	- 00		4.	с 1
91031-6 SAND	ເກ ເ	ហ រ	ৰ (200 000 000		হা (1	6.80	N) I	N 80 10	N	- 	ហ	-5 142	000	023	BE	о. Э	16
	ה (ו ו	រ រ	ە م	121	מק		ю N	760	() 	র ন	m	- !	ហ	-5 181	00	260) EE	J.6	20
HI-UGI-B SHNU	רא מי	ກເ ເ			ω)	υĒ I	(1) (1)	1000	Ni -	з. 06	-i	-	ц) I	-01 03-	00	- 06	DE:	0.6	0 0
UNHS ZHBHIDI 1	រ ព	ភ រ	ו תר	180	J. (ייק	N M	1200	ru I	4 ۲	ญ	-	لں ا	-5 167	00	- 0+3	DE:	0.8	40
41-U31-8-3 SHNU	n۱	ក	21 1		ית	30 (N :	1200	N I	ম	4	-	ក្រ	-5 151	00	- 013) DE	0.8	сл СЛ
UNHS 1-19 19	י ת ו	ו ת ו	ە ھ		<u>م</u> _	(T) :	4	480	CVI 1	ი თ		, 1	ریا ا	-5 212	00	1 023	De	р. Э	18
UNHS II-IED-IF	ມເ	ا ما ا	m i	100	11	úΣ	00	690	ະ ເນ	л. Л	Ļ.	- 	ល	-5 171	00	50	- DE	ъ. С	сл СЛ
DNHS ZI-IED-IE	ה ו	л I	í N	-100	ማ	សា	1) 	320	Ņ	0.00 0.00			ហ	-519	- 00	- L	D C E	2.7	ন থে
31-031-13 SAND	цр	ល	m	380	(T)	1	Ð	41	ي. ا	₩ m N	4		មា រំ	-5 182	- 001	50	- 23	0. N	в.
31-031-14 SAND	ហ	ம 1	N	500	00	শ	Ð	12	Ņ	9.26 9.26	ষ	i	ហ	-5 236	- 00	50	31	4.0	2
31-031-16 SAND	ហ	ហុ	m	280	N	4	10	-10	N I	ಕ	ហ		ហ	-6.750	- 00	- 02-			. 02
31-031-20 SAND	ហ	ن ا	N	260	10	~	دی ۱	с С	N 1	1.42	ന	-	ហ	-5 180				ਾ) ਹ	, m
31-031-24 SAND	ហ	رما ا	m	230	N	۳)	r~	69 0	Ņ	4 1- 0	2		ព្រ	- 13 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15		، تار		n n) <u>m</u>
91-031-26 SHND	ហ រ	ىت ا	(N	370	90 0	4	ū,	CJ CJ	ŝ	er C		۱ ا) (J.	10 10 10 10) []	ា ប្រ ព្រ) () 	20
91-031-28 SHND	ហ រ	ۍ ۱	ന	270	Φ	দ	L)	l ul m		0.07) (ក	۱ ۱) ([10 10 10	88	0 C 0 C	ון קינ קינ	10 10	10
31-031-34 SAND	∽	لت) ا	N	370	۰.	Ċ,	ان :	L L			ម	-، ، ا) [[) 1 1 1 1 1 1 1 1			- 4 - 4 - 6	ງ ເ ງ ເ ວິດ	
31-D31-36 SAND	تك 1	1 1	١٨	420	.σ	10) ហ	4	1 () i	ια - α	n c	 	រប	2 U U		20	ה כ ח נ	n o n o	00
) LT) Lī i	រក	1 C	5	1 U	ט ג ו	ר - קינ	4 C		- (1	-1	ЪЦ	רי ק ער ר			ם מ 0 (ກ (n (
	ט כ ו	נו כ ו	ט נו		ù i	n c V	ר ה ה	(\」Γ	V (л г 	ï) י	4 . 1	ה ו	יובי		ן קר ו			
	ט כו ו	ם ו	DO		-1 - V V	NI (n.	V C	N (ব	-	J) I I	-5 196		, 10 10	20	m O	4
41-1041-47 VHNU	ກເ ເ	ភេរ	οι		ז ה ב	ומד	ı م	100	N I		JO 1		ا ری ا	ល ក ហ	. 00	-50	2	0.0	~
JI-USI-46 SHNU	ונו	រា	נת	IN E	~	(T)	~	N D	(N 	0 7	ഹ	,⊣ i	ហ	515 15	00	ю Ф	0 0 0	сл -	ω
01-031-48 SHND	ហ រ	רט ו	N m	460	-1	N	ŋ	51	N I	2. 79	Ŋ		ហ	-522	- 00	-50 0	61	0.4 6	ю. Ю
31-031-50 SAND	ហ	ا	m	310	თ	m	Ū	4	CJ I	2,20	ഹ		ហ	-5 207	. 00	-50 0	т П	1- 10	4
31-031-51 SAND	ហ	ņ	φ	420	-	m	N	су Ю	N I	9. 29	ហ		ы Г	-5 231	00	ŪĢ,	T N D D	J. N	ന
01-031-52 SAND	ហ	ហ	ς Έ	440	N	N	σ	C) (T)	ុ	0 0 0	4	-	ហ	900 10 10 10 10 10	000	ů Ú Ú	T De	0. N	c
31-031-53 SAND	ហ	ریا ا	0e	460		Ω.	œ	20	NI 1	0.69	ហ	- i	ហ រ	-5 224	001	-50	E E U	0.9	~ ~
31-031-54 SAND	ம I	ស	ω	280	œ	4	11	70	Ņ	0. 4 U	ī	- i	ហ	-5 274	001	- 09	Ο¢	1.6	ტ 1
31-031-56 SAND	ហ	ហ្	ወ	290	თ	শ	10	69	N I	9.61	শ		ن ۱	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 002	-50	θe	0.1	0N O
91-031-58 SAND	ဟ ၊	ហ	ഗ	160	m H	10	1	27	N	3.76	(~I	-	ហ	10	001	- 0 0 0		о. В.	18
91-031-60 SAND	ហ	ц	ຕ	120	٢.	σ	17	100	N	4.18	N	-1	មា រ	-0 14	. 001	- 00 -	- OĘ	4	30
31-031-62 SAND	ហ	ப i	ഹ	160	сл —	10	N F	110	N I	വ ന്	N	-1	ព	-D -D	.00	-50	06	0.6	4 -
91-031-64 SAND	ហ រ	ហ រ	ব	230	শ	ហ	10	160	N 1	9.67	m	- 1 -	ហ	10 10 10	.00	-50	Ē		00 7
31-031-66 SAND	ហ	ហ	m	190	Ū	Q	1 ()	97	N	44.7	C)	-1	ហ	-5 308	00	1	0	о. С	18
31-031-68 BROKEN	ഗ	ហ	w	260	ω	~	lέ	130	NI 1	4 ∾	(1)		ហ	N N N N N N	. 003	- 09	00	0.5	20
91-031-68 SAND	رن ا	ហ	(7)	170	e	۰.	16	110	្រុ	4.24	ເກ	-	ល	940 10-	00	-050	30	n n	т Сл
31-031-70 SAND	ហ	មា រ	N	290	~	CI	თ	60 0	N	2. 20 20	শ	1 }	נח ו	-1 1 1 1 1 1 1 1 1 1 1 1	. 00	-50	OE.		m
31-031-72 SAND	СО I	رما ۱	m	510	27	ហ	î~	Ð	N I	2.17	ហ	-	تا ا	-5 284	- 00,	0 0 0	रू द	1.1	10
91-031-76 SHND	ព្រ	ា ខ	و م	170	20	Ē	m	с С	N I	2.91	¢.		لں ا	-96 - 96	00	, 00	000	с. С	- -
91-026-0115 SAND	22	ហ រ	m i N i	320	ក (ស ((N I N	100		98. •	U) I	T	ហ	-5 172	.00,	50	ក	4.	1
31-UZ6-UIIS-Z SHNU 21 224 211-2 5000	10 U N (ן חנו	1 1 10 (0 0 0 0 0 0 7 0 0	n c N (N -	00 (N (120	ຸ ເບີ (ភូរ ភូរ	r∼ i	, ;	មារ រ	មា ក្នុ	.00	ា ភ្ល	÷	ი	<u>``</u>
UNDE 20110-020-16	n V	D i	n D	430	љ N		T)	120	NI 1		~	-	D I	ы М Ч	- 60	00	5	0	~

Lu	Ыдд	n. 05	0.15 0.15	0.14 21	0.16	0.19	0.19	0.25	0.17	0.23	0.25	0.21	0.17	0.22	0.31	0.42	0.32	0.26	0.32	0.35	0.34	0.38	0.49	0.23	0.34	0.35	0.37	0.4	0.43	0.43	0.31	0.42	0.35	0.25	0.29	с. О	0.23	0.33	⊡. ⊒t	0.36	0.4	0.35	0.46	0.23	0.0 1	0. 2 2
Υb	Ыdid	0.05	90 1. 00		0.0 194	1.2	1.25	1.51	0.96	1.15	1.27	1.12	1. IÙ	1.29	2.02	5. 2	1.93	1.66	1.91	ം.11 പ	2.06	ា ភ្ល	3. 03	ч. Т	2.15	3.05	2. 2	2.75	. ∖ N	0 0	1.91	2. G	2.24	N. 50	1.99	1.83	1.76	5 10	ы. СЭ	0. 4	2.32	1.94	2 .5 3	1.41	с. 15 15	4 - (1 4 (1
τb	Mdd	0.5	ທີ່ ບໍ່	ז ה ס ב ו ו		-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	0. 0	-0.9	0-2	0.5	0.6	0.6	-0.5	.0 .0	0.6	0.5	-0. 5	0.6	0.0	0.5	-0.5	0.6	0.7	0.7	0.8	0.0 -0	0.7	-0.2		ດ. ເ		ים ים	0.5	0.6	-0 -0	-0.2	0.5	0.6	-0-2	ი. ი.	יז ע היק
Eu	hod	0.2	- - -	ກທ ວິດ) 4 . 0	0.6	0.6	0.6	0.3	0.4	0.4	0.4	с. О	с. Э	0.9	1.4	о. 9	0.7	0.7	0.8	0.7	1	Ļ	0.6		1.3	1	1.2	0.9	٦. ت	1.1	1.1	1.3	1.2	1.1		I ,		1. J	1. 1	1.3	1.1	1	0.8	↔ (,	N 0
ъ Б	Maa	0.1	⊷ (,		 	1.7	1.7	1.9	0.7	1	0.9	1.1	0. 0	-1	N.	с. С	2	е. М	1.9	m	ი ∿	ເກ ເກ	9.7	S N	n	4.0	а.2	4.0	ю. Э	4	ы N	4. 0	m	ດ ຕ	е С	പ പ	4 (1	m	сл С	m	m	2.7	m	2.1	ი ი	ם ט ד
D Z	Mad	ŋ	י מ	рű	ت ن	8	σ	12	ហ	ŝ	ហ	വ	μ	ம ¦	14	17	11	13	00	16	I.3	17	1-7	14	SI	19	16	15	17	21	13	18	14	10	13	10		N I	11	18	თ	13	17	10	16	
е С	Maa	m	9;	а н и	- - -	21	S2	E2	ω	10	10	n 1	∿-	11	36	(î) 4	50	ŝ	ß	(\) স্ব	1 0	4 0	4 0	31	88	56	44	50	4	(1) 17	27	4	ЧЗ	BB	с N	50		ৰ (1)	л N	ŝ	Ē	θB	40	52	41	ת ע ע ע
Ū.	Na d	Ч	4	ມິ	ŝ	11	11	14	4	IJ	UD)	U)	თ	ŝ	18	N N	15	19	11	N N	18	ເກ ເປ	4	18	19	ЭŪ	23	40	21	S€	14	0 4	16	19	4	12	រ រ	17	1 1	16	17	17	23	13	61	2 V 7 V
Zn	hpn	50	ο Κ	9 2	205-	63	61	ប ប	ស ស	8 <u>8</u>	85 6	ហ	67 19	05	64 4	-50	66 0	50	6 4	-50	с С	-50	53	-50	100	-50	6G	143	61	00 00	57	122	60) 0	 ភូមិ	61	-20	71	5 CV	66	-20	67	-50	80	មូល	135	170
I	Mdri	ব	च :	दे ची । ।	प	4	寸 1	4	4	य ।	ব (र्घ i	4	ব :	4	4	च ।	4	4-	4	च i	4	4	4	4	শ	4	4	√ i	4	4 i	4	ব ¦	4	4	च ।	ধ ।	च ।	र्म ।	4 1	ম ।	4	4	4	4.	ৰা হ ং া
	Mdd	0.5	ທູເ ດຸດ	n - 5	0.8	1.3	0.5	1.8	ú.5	0.7	0. 0	ກ ດ	ດ ເບ	с. С	4 1	1.7	-1	1.1	Г	1.2	1	1.1	1.6	1.4	1.6	2.1	1.9	N	1.9	с. Э	0. 0	۲. ۱	0.7	5.	ں. م	С	1.1	с. О	0.7	0. U	0	1.1	5. 5	0.9	++ ((N d N -
ЧI	Ыdd	U.5	! 	ະ ກຸທ 		2.1	2.3 -	m	0.7 -	Ū.9	6.0	1. 00	ר. ט	1 +	4.∨	т. М	9. Z	4. U	2.6 2	Э. В	3.7	ດ.	ហ		4	6.6	с. 	4.0	5.7	1.7	1.7 -	4,4	2.9	ч. Т	1 (1)		19 10	'n	 	4 4	2.5	4	5.1	с. С.	∧. ທີ່ເ	o o N n
۳	Mdd	1	1 7 	1 -	•• 	-1		-1	-	-	1	7			7			• 1		1	, i	- i		-	-	2	-			-i	-1	-	1		-	-	-i -		-	-		-	-1	-1-	- (N -
ъ,	х	0.05	-0.02	0 0 0 0 0 0 0	-0.00	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	0.05	-0.05	-0.05	-0.05	0.05	-0.05	-0.05	-0.05	0.13	0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	0.05	-0.05	0.06	-0.05	0.05	-0.05	-0.05	-0.05	-0.05	0.09	-0.05	0.02 - 0.02
ς Γ	х	0.01			50.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	01.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	6. 61	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	5. 0.0
ц С	Mdd	_ ហ	ក ហ្ព	ក្រ ភ្ល រ	T م د ا	٦ ري ا	٦ س ۱	រ ភ្	۲ آ	٦ ب	ក ហ្	ក ហ្គ	٦ س	۲ ب	۲ س	٦ ا	۳ ۲	٦ ۲	٦ س	٦ ب	٦ ال	Т Ю	٦ ۳	٦ س	T س	- الح	ក ភូ	T د ا	T ហ្វ	។ ហ	ក ហ្គ	٦ ب	T G	ក ភ្	٦ ۱	٦ ۲	T ا دا ا	٦ م	ា ហ	T س	T س	ר ני ו	۲ ۲	٦ آ	T اب	י ה ה
		imit	SAND		SAND	SAND	SAND	SAND	SAND	SAND	SAND	CHND	CHND	SHND	SHND	SAND	SAND	GUND	SAND	SAND	SHND	SHND	SAND	SAND	SAND	SAND	SHND	SAND	SAND	GHND	SHND	SAND	SAND	SAND	SHND	SHND	CHND	SAND	SAND	BROKEN	SAND	SRND	SAND	SAND	SAND	UNHS Z-S
nent	ts	action L	031-1	731 - 12 131 - 12 131 - 12	131-4	<u> 331-5</u>	<u> 131-6</u>	7-1EC	031-B	031-8-2	031-8-3	131-9	11-1EC	<u> 131-12</u>	J31-13	031-14	031-16	031-20	031-24	J31-26	031-28	J31-34	J31-36	<u> 131-38</u>	031-40	031-42	031-46	031-48	031-50	031-51	031-52	031-53	031-54	031-56	031-58	031-60	031-62	031~64	031-66	031-68	031-68	031-70	031-72	031-76	026-0115	2110-920 2110-200
Eler	Unit	Det.	- - - -	ה ה היה היה	10	91-16	91-1	9116	91[91-1	91-	i-16	91[1-16	91-1	91-1	91-1	91-1	91-1	-15	91-1	91-16	91-1	10	1-16	91-i	91-1	91-1	91-1	1-15	<u>-1</u> 6	91-1	91-1	i D	10	10	5	ī I J	- 1 Б	91 -	91-	91	91-	-16	5	i i 150

Element	Ĥ	Ĥ	Ψ N	Ē	ŭ	ů	ç	5	° C	ڻ بن	4H	Ч	ŗ	Q	ц Х	i z	à	f V	Ű
Units	Вdd	Ъ Б С	Mdd	Mdd	Mad	2	Mad	No. d	Mdd		bpM		500	Naa	Maa	HCid	MOO	NOO	
Detection Limit	ហ	ហ	0	100	1	1	v	10	ŝ	0.02		1	ഗ	сл :	500		08	1.2	_
91-026-011B SAND	21	မာ ၊	5	340	11	N	ខ្ល	90	Ņ	9.97	ມ	i	uī i	ា ភ្លាំ ភ្លាំ	200	1) (<u>r</u> .		2
91-026-0118-2 SAND	е Ю	ហ	91	350	υ Γ	2	32	100	¢J	4.97	Φ		ы Г	ि सि	300	03-	2	0	9
91-026-0118-3 SAND	24	ហ្	19	440	15	[;	31	97	N	4.99	00		تن ا	50 25	200 -	-50	5 25	N	16
91-026-0125 SAND	с Б	ហ	60	100	28	N	68	310	Ņ	13.4	1	1 i	٩	n) A	940	86	06-	3.1	S S U
91-026-01252 SAND	100	ហ	26	100	ж Н	m	110	350	ini İ	17.2	U)	1	ណ	မ ကို	350	- 061	DE	t.2	32
91-026-0125-3 SAND	112	ហរ រ	n, B	-100	g i	m i	120	360	ຸ ເ	18	N	- i	си Г	ы S	560 -	-20	0E	4. N	æ
91-U26-U12M SHNU		ភ្នា ក	61		~ (,	N (6	040	2	12.7	, 1	-1	ហ	ស ហ	460 -	50	D m	н. Э. Э	36
91-UZ6-UIZM-Z SHNU	117	ក្រ	06 0		N (ന	130	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NI (18.6		-	រក រ	רד רע	880	180	D D D	в. †	40
91-UZ5-UIZM-3 SHNU	U C C C C C	ក រ រ	A C	~1UU	י <u>רו</u>	NI (130	44 100000000000000000000000000000000000		19.1	N I	1 · i	ו כנו ו	നെ	620	210	- G	თ. -	41
91-UZ5-UI3 5HNU 01-006-010-0 504D		រ រ	י ת קיי	170 170	ব (বি ক	N (N (4. 12	י מו		ן כח ו	با 18	200	0 9 1	4 0 1	~	2
41-070-010-0 UMAU	4 (⊃ (ភរ រ	ך ע קיין (ית קיד	η (NI (4. Cld	~ 1	1 ,	ı در	ក្តា ស្ត្រ	600	-20	ហ	ന	19
VI-UZ6-UI3-3 XANU 01 007 011 7000	рL	ກ ເ 1	V (V	4 0 0 0 0	ית	י רו	□ (4 •	120	Ņ	4.41 ()	~ 0		ن تن ۱	אַ 10 ניי	- 006	20	61		17
41-026+014 UHNU	ក L	n L	ות		~ (4 (- (T		Ņ (2.67	, רד	1 ,	ភា រ	ים ים י	300	n U	ন ল	т П	4
31-UZ5-UI5 2HNU	រព	ה ו ו	ភព		ים	ו הד	ቁ (1	DBC 0		36	ורה	- - 1	נס ו ז	ញ្ញ ភ្ន	000	67	- 	Э	9
91-UZ6-UI9 SHNU	រ រ	រា	~ 1	175	ِ م	רר.	D	50		2. 10. 10.	CL	1 i	цр I	ς Γ	300	-50	44	6.	2
91-U26-U2U SHND	រ រ	רם ו	\sim	130	11	17	10	160	2	ю. Ю	N	- i	ហ	т Б П	800 -	- 0 0	N E E	2	10
91-026-021 SHND	n I	ت ۱	~	320		ω	r	ហ	¢	1.96	ষ	- - 1 1	មា រ	5	006	- 10 10	Б С	-1	σ
91-026-023 SAND	u7 I	ហ	~	250	σ	ហ	Ē	84	N	10 00	4	÷	រា រ	-5 10	400	- 05- 05-	-30	0.7	16
91-026-0245 SAND	ഗ	ហ	Ū	350	თ	IJ	~	72	N	2.48	ഗ		ភ រ	- 16	- 003	-50 -	40		4
91-026-0248 SAND	ហ	цл Ч	G	390	თ	G	ە	84 43	NI I	5 4 .7	ហ		မာ ၊	5	500	50	42	\sim	ហ
91-026-0255 SAND	រា ព	ហ	ы	230	ß	4	12	82 82	N I	Э.26	ហ	-	រា រ	- 10 - 10	9000	100	40	-	15
91-026-0258 SAND	ហ	دں ا	כח	220	~	শ	12	78	N I	3.16	4	-	ப 	-5 20	000	50	4	. 1	ហ
91-026-026 SAND	ហ	ហ	ιT)	230	œ	~	و	36	ې ۲	2.6	IJ		ហ	18 18	000	0.0	i en	- C	
91-026-027 SAND	ហ	ហ	N	160	भ	4	σ	14Ū	~ ~	6.E9	IJ	i	רט ו ו	- - - -	000) ភ្	1
91-026-029 SAND	ហ	ம் 1	m	280	~	G	11	180			i m	1	1 1) 	400) -) ທ 	; -
91-026-030 SAND	ហ	ហ	N I	240	o.	IJ	10	140		9.76) 역	۰ <u>۰</u>	ា រ		600	چې	, – , ⊢) 4	20
91-026-031 SAND	ហ	ᄓ	2	240		C)	ហ	4 ប		65.1	4	-) LT 	20 20 20 20	- UU6) () ()) च	4	
91-026-033 SAND	ىر ا	ភេ	4	DEE	ഗ	I CV	8	490		26.1	4	•) ហោ រ) 4 1 4 1 4	500	20	2 🛱	rσ ic	- 0
91-026-034 SAND	ហ	ហ	Ð	30D	n or			430	1	60.0	- m	۰ ۱) LT 1		2002) (j	30	יים הות הות	1
91-026-035 SAND	ហ្	ហ្វ	N i	<u>930</u>	r~-	2	r-	200		1.84) (T)	-	ា រ) U 	400	94) n	~
91-026-036 SAND	50	ហ្គ	m	530	10	4	G	24	Ņ	2.	10		ម ព	10 10	. 000	US-		i m	. <u>a</u>
91-026-037 SAND	۱ ن۲	ហ	ری ۲	220	വ	N	9	120	2	1.9	C)	-1	ហ	-01 -01	001	-50	50	4	n n
91-026-0385 SAND	ហ	ហ	4	270	130	ر ن	ហ្	86	N I	1.04	ហ		ц) I	-0-12	100	50	50	່ມ ເມື	0
91-026-0388 SAND	ហ	ហ្	N I	260	48	N	ភ	67	N I	1.38	m		ഗ്	-0 10	- 006	50	46	J. 5	ģ
91-026-039 SAND	ا ن	ហ	4	210	^-	ហ	~	96	N N	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	N		ហ	-5 12	500 -	50	। रू रू	0.4 8	9.1
91-026-040 SAND	Ю	ល	~	270	თ	4	œ	100	N	2.62	m	- i	ហ រ	-5 12	500	-50	- 40 4		ъ. ч
91-026-043 SAND	ហ	ហ	m	280	сл СЛ	∼-	ю	100	N I	1.66	n	- 1	ហ រ	-0 14	- 002	-50	80	<u>ј</u> . Э	~
91-026-044 SAND	ហ្	ហ	N i	390	m	1	ហ្វ	26	2 1	0.77	ហ		ហ	513	000	-50 -	_ 25	2.0	ৰ ন
91-026-045 SAND	ហ្គ	רט ז	N 1	470	N	- i	ហ	16	цл Г	J. 75	īN	- -	មា រ	-G 19	000	-50	20 -1	0.12	4
91-026-046 SHND	ហ	ហ	2	470	N	C)	ប៉	4	_ ∾	J. 83	m		មា រ	92 97	- 000	50	10 -(°. ℃	<u>ں</u>
91-026-047 SAND	ဟ၊ ၊	ו הו ו	N I	410	n	m	μ	50	N I	J. 75	1	-	ហ	-0 18	800	-50)- D6	2.2	<u>ں</u>
91-026-048 SHND	រ រ	ហ រ	N 1	410	ব	1	۲ دی	16	۔ ۲	0.37	m	1 :	ហ	-5 18	300	-50	87(2.0	
91-U26-U49 SHNU	ກເ ເ	រា	NI (420	N (- 1	ារ រ	10,		0 1 1 1 1 1 1	ব (រក រ	ស៊ី ហ៊ុំ	100	i D D	- 96	2	~
41~UZ8-U3U SHNU 01 000-061 CQND	ភ	ם ה ו	чr	4 V 7 V 7 V	NC	n v	ņı	л (Ν.	- 1 ,	ה נ ו	ម្ពុ ស្រុ	200	ធូរ		N 1	m i
UNHC 100-020-16	ר ע ו ו	កម ៅ	у с 1 - Г	0 1 0 4 0	יז תו	הם	ې ب	א ת קיד		มม ภับ			ភ្ន	ν. Π Γ	- 002	B :			\sim
הגווטה סרה-הסרדג	Ĵ	D	1	200	V	ņ	ņ	Ŋ	v	ר. הט	7	-	D I	ט 1	1001	Ľ L	R	2	N Si

Element	ν Ω Ω	ŗ	ا ت ا	Тh		z	с И	رت 	С Ф	IJ Z	ម ហ	С	ЦР Ц	Υb	1.41
Urits	X Wdd	N	Mada	ррм	Mdd	Mdd	Mad	Mdd	Mdd	х Ц Ц	Ц Ц Ц	Ndd d	Hda	Ц Ц	ыd
Oetection Limit	5 0.01	0.05	1	s.	. S	ষ	50	1	m,	ហ	0.1	0.2	ດ. ຕ	0.05	0.05
91-026-011B SAND	-2 -0.01 -	0.05	ນ 1	.6	ი :	4	0 0 0	21 21	ব ব		00. 00.	1.1	0.8	9. 23	0.52
91-026-0118-2 SAND	-10.01	0.05	[- 	Q.	⊳ : ai :	ব ।	n N N	а N	ດ) ເມ	Ē	œ : ∵	1.	а. С	۳ 100	0. Z9
91-026-0118-3 SAND	- 10.0 - 0.0	00.00	∼ (ια ι ις	αι	म् - ।		2	រោព ហេក	~ \ →	ω. 	n. 	0. 0.	ល ភេមិ ក្រុ	0. 20 0
91-UZ6-ULZ5 SMNU 01-006-0106-0 SDND		ם ב ס ם ב	 	 р.с	n o	ተ ሀ i	0 0 0 0 0 0	ተሀ		ים	មម	ກ ທ ລັດ	ກ ບ ລຸດ	ית המ - ר	л с С
91-026-0125-3 5AND		0.00		10 10	າທ :	5 CC		ה כ	- 07 -	- 17				ο ο ν κ	
91-026-012M SAND	11 -0.01 -	0.05	1	م	0 10) च ।	4 00	N	~1~	сл (e E	с. С. 5	0.0 -	1.38	0.26
91-026-012M-2 5AND	- 20.02 -	0.05	-1		0.5	1	4 7 (J	য	~	00	1.3	Ю.Э	ະ 10-0-	2. 28 28	0.43
91-026-012M-3 5AND	-5 -0.02 -	0.05	:1	с Г С		4	4 0.0 0.0	ন	10	ហ	1. 4	с. С	ທີ່ ດີ-	2.06	0.39
91-026-013 SAND		0.05	.⊣	1	e	भ i	50 0 0	л Г	4 ()	18	9. N	1.1	0.8	Э. ОЭ	0.52
91-026-013-2 SAND	-10.0- 2-	0.05	1 -	сi	N	भ !	200	រង ស	ন ম	10	र्च रा	1.2	ਾ. ਹ	а. 28 Ю	0.52
91-026-013-3 SAND	-2 -0.01 -	0,05	-1	n,	N Si	4	306	រា ស	ល	1 4	য়ে ম	1. ⊳	.0 -0	ົດ. ຕ	0.65
91-026-014 SAND	-20.01	0.05	ю Г:			र्च !	00	n 1	ы И	10	N N	0.7	ന -	1.91	0.31
91-026-016 SAND	-5-0.01	0.05	ית. קית	س	თ. ი	1 4	i L L L L L	4	E ((N) (N I	0.1		1.90 00	0.29
91-026-019 SAND	-2 -0.01 -	0.05		רי נו	m	4	0 10		ורת הרכו	57 I	ທີ່ ຕໍ່	1.	0	о. ТВ	0 0
91-026-020 SAND	-5 -0.01	0.12	ري 1	m.	m !	4	5	12	n N	თ	т. Т.	C. 7	0 0	1.72	0.27
91-026-0 21 SAND	-2-0.01 -	0.05	0 1		N) Si	ন ।	17 10	17	9 m	11	с С	с. О	0	មា ក	0.38
91-026-023 SAND	-2 -0.01 -	0.05	თ 	٦ ب	ლ :	4	97	16	с П	រប	а . 1	1.1	с. С	2.71	0.4 1
91-026-0245 SAND	-5 -0.01	0.05	נט רו	~	8	4	ர ப	N N	4 6	20	е. П	1.1	0.0	9. SN	0.0
91-026-024B SAND	-5 -0.01	0.06	ດ -	ص	æ.	4	78	N N	4	ц.	л. Ч	1. 2	с. Ө	Э. 16	0.48
91-026-0255 SAND	-5 -0.01 -	0.05	4 1		Ξ.	ব 	78	17	97 9	16	ი ი	1.1		ი ი ი	0.55
91-026-0258 SAND	-5 -0.01 -	0.05	ന 1	- -	n i	म ।	78	ហ	N N N	ប	ы. М	1.1	ი ი	Э . 1 9	0.48
91-026-026 SAND	-2 -0.01 -	0.05	₩ 	N.	ഗ	4	8 0 0	N N	4 IJ	20	ব	1.3	о. О	Э. 1 3	0.40
91-026-027 SAND	-2-0.01 -	0.05	-i i	m	. 1	4	с О	16 1	36	16	ю. 7		0.7	2.69	0.41
91-026-029 SAND	-2 -0.01 -	0.05	-1	m	N :	4-	90 20	4	N M	2	0. N	-1	ມ. ເມ	2.09	0.36
91-026-030 SAND	-2 -0.01 -	0.05	1	œ.	N :	থ i	գ Մ	14	10 10	E T	m	1.1	ი ი	ы С	0.37
91-026-031 SAND	-2 -0.01 -	0.05	(1) 	.1	9.C	ম ।	5 1 1	16 1	(T)	14	(TT)	1.2	ດ. ດ	2 0 0 0	Ω. Ω
91-026-033 SAND	-5 -0.01 -	0.05		, m	л. С	र्म :	-50	1 1	Ē	13	ي. ان	-	0	5. 1	0.32
91-026-034 SAND	-2 -0.01 -	0.05	்) []	сı.	4	च ।	- 50	4	сл СЛ	12	m N	о. в	0. S	1.68	0.28
91-026-035 SAND	-5 -0.01 -	0.05	ന 	ੇ ਪ	თ. 	र्ग !	-50	1 1	0E	10	۳. ص	0.7	ທ ບ	1.44	0.21
91-026-036 SAND	-2 -0.01 -	0.05	-1	4	(1) 	ব ।	-50	Dm	СC СС	1 1	র ম	1.12	, 1	0 0 0	0.47
91-026-037 SAND	-5 -0.01 -	0.05	ю Г	9.	ന :	ব ¦	- 20	16	ហ ៣	12	র থ	С. 8	0. 0	1 1 1 1	0.24
91-026-0385 SAND	-5 -0.01 -	0.05	-1	N.	N	বু í	ភូ	D N	40	17	m	0.9	0.	N. 19	0.39
91-026-0388 SAND	-2 -0.01 -	0.05	ന 	ю.	N.	ৰ ¦	-50	[^	N M	12	വ പ	С. в	0. -	1.62	0.27
91-026-039 SAND	-5 -0.01	0.05	-1 4	νΩ.	<u>م</u>	च ।	23	18	ម ភូមិ	1 0	വ	<u>с</u> .	0.6	1.76	0.26
91-026-040 SAND	-2 -0.01 -	0.05		۔ س		ব '	58	20	ъ Ю	n 1	ы С.	с.9	0. 0	1.76	0.28
91-026-043 SAND	-5 -0.01	0.07	7	र्च	-1	ব i	20	ц П	B	ហ	с, С	С. Э	0.6	1.76	0.27
91-026-044 SAND	-5 -0.01 -	0.05	-1-0	۔ س	со	ম i	- 20	0 N	0 CD	N N	4	1,1	0.6	2.07	0.92
91-026-045 SAND	-5 -0.01 -	0.05	٦	ഹ		ম !	-50	22	61 1	ы М	(7) •	1.⊳	с. О	1	0.29
91-026-046 SAND	-2 -0.01 -	0.05	0) -	0	N.	র ।	-20	4 ()	0	20	ი ი	-1	0. -	1.57	0.25
91-026-047 SAND	-5 -0.01 -	0.05	1 4	- 	N	ন্দ ়	00	20	20	21	0.	1.1	0. 0	1.90	0.25
91-026-048 SAND	-5 -0.01 -	0.05	4	ں ب	л 	4	- 20 -	10 1	មា ក	17	(1)	с. Э	ດ. ວ	1.57	0.21
91-026-049 5AND	- 2 - 0 - 01 -	0.05	ເມີນ 	n,		শ	ច្បី	ហ ៧	56	сц Г	ວ ຕິ	1.1	0 0	+ (0 -	0.27
91-UZB-USU SHNU	10.01 0.01		י ה ו	ים. יים	N C	ታ ፣	ភ្ល	n e N (10 T		ה כ אוכ	- ¢ 0	ດ ເ ວັດ	ית 	р. та
91-UZB-USI SHNU		00.0 0.0	ज • 	 	лс 	4 -		D r	4 (4 (\ \ 	ים אונ	ກ ເ ວັດ	ກ ຍ ກ່ອ	ο 1	л ц с с
91-UZ6-U5Z SHNU		U.U5	+ - T	-	Ţ.	ণ !	0 0 0	Ţ,	Ω Ω	4 4	N N	л П	- -	С. 48 С. 48	1.10

Appendix D

Scatter Plots of Element Concentrations in the Mud Fraction Versus Element Concentrations in the Sand Fraction

Appendix E

Box and Whisker Plots of Elements in the Mud Fraction (1990 and 1991 data integrated)

A: White Bay B: Baie Verte/Mings Bight C: La Scie/Tilt Cove area D: Halls Bay E: northeast shelf

.

Appendix F

Element Distribution Maps (1990 and 1991 samples)

,02.65

-

20.00

-

02.6

54.30

IO km

01-61

Appendix G

Gold Grain Size, Abrasion and Chemistry (from whole rock panned samples)

GOLD GRAIN SIZE AND WEATHERING

(The abrasion scale ranges from 1 to 4 with 1 being the freshest and 4 the most abraded. The chemical etching scale also ranges from 1 to 4 with 4 being the most weathered. In some cases two populations were recognized in a given sample so two rankings are given.)

Sample Number	<pre># of gold grains</pre>	size (microns)	est. dry) weight (kg)	abrasion	chemical etching	silver content
91-031-001	7	60-150	5.41	1-2 3	1 3	0-5 wt%
91-031-006	l	70	2.07	3	3	
91-031-011	30	50-250	15.02	2 3-4	1 3	1-8 wt%
91-031-012	30	60-120	15.5	1-2 3-4	1-2 3	0-5 wt%
91-031-068	l	75	2.87	3	4	0 wt%
91-031-070	1	75	2.16	3	4	23 wt%
91-026-016	3	60-80	22.39	3 3	1 3-4	10 wt%
91-026-021B	1	170	27.75	2	2	0 wt%
91-026-024S	3	70-150	15.38	3	2	1-6 wt%
91-026-024B	2	90-110	5.94	3	2-3	0-2 wt%
91-026-026	9	90-220	22.13	3-4 2	3-4 1	0-7wt%
91-026-027	23	70-150	16.84	3-4 2	3-4 1-2	0-13 wt%
91-026-029	2	60-100	10.09	3	3	7 wt%
91-026-030	2	80	6.85	3	3	2 wt %
91-026-031	8	70-140	25.77	3-4	3	0-9wt%
91-026-033	3	50-170	5.23	3-4	3-4	0-12wt%
91-026-036	6	100-150	27.7	3-4	2	1-4 wt%
91-026-037	3	110	11.19	2	1	9 wt%