This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

GEOCHEMICAL DATA FROM ANALYSES OF SEDIMENTS AND PORE WATERS OBTAINED FROM CORES COLLECTED IN HALIFAX INLET, C.S.S. NAVICULA CRUISE 90-010

R.A. Fitzgerald, G.V. Winters, K.W.G. LeBlanc,
D.E. Buckley and R.E. Cranston.

Atlantic Geoscience Centre

Bedford Institute of Oceanography

Dartmouth, Nova Scotia. B2Y 4A2

GEOLOGICAL SURVEY OF CANADA
OPEN FILE REPORT (1991)
2449

COMMISSION GEOLOGIQUE DU CANADA

DOSSIER PUBLIC (1991)

2449

ABSTRACT

Geochemical data are compiled for sediment and pore water analyses for 2 box cores and 3 Lehigh cores collected from the seabed of Halifax inlet, Nova Scotia. These cores were collected from the C.S.S. NAVICULA (Cruise 90-010) during June 1990. Core station locations were chosen to be representative of different sedimentary and depositional environments, to supplement earlier sampling programs, and to obtain a series of cores that would provide high resolution of the upper 100 cm of sediment.

Sediment analyses included sediment texture, water content, organic carbon, $CaCO_3$ and total metals (Si, Al, Mg, K, Fe, Mn, Ca, Cu, Zn, Ni, Cr, Pb, Li, Cd and Hg). Chemical leach techniques were used to determine the potential labile metal partitioning (Fe, Mn, Ca, Cu, Zn, Ni, Cr and Pb) in these sediments and included sequential leach analyses for: (1) weak acid leachable metal, (2) easily reducible metals, (3) moderately reducible metals, and (4) residual metals. In addition, separate analyses for organically bound metals were performed using H_2O_2 as an oxidant. Metals analyzed after this treatment included Fe, Mn, Cu, Zn, Ni, Cr and Pb.

Pore water analyses included ammonium, hydrogen sulphide, silica, sulphate, total alkalinity, Na, Mg, K, Ca, Fe, Mn, pH and free electrons (p ϵ).

TABLE OF CONTENTS

Abstract	1
Table of Contents	2
Core Location Map	6
Introduction	7
Methods	
- Sampling	7
- Pore Water Analyses	8
- Sediment Analyses	9
Analytical Data Tables	
- Fe_{WA} , Fe_{HA} , Fe_{HHA} , Fe_R , Fe_{SUM} , Fe_T , Fe_{org} ,	
$ ext{Mn}_{ ext{WA}}$, $ ext{Mn}_{ ext{HA}}$, $ ext{Mn}_{ ext{R}}$, $ ext{Mn}_{ ext{SUM}}$, $ ext{Mn}_{ ext{T}}$, $ ext{Mn}_{ ext{org}}$	15
- Ca_{WA} , Ca_{HA} , Ca_{HHA} , Ca_R , Ca_{SUM} , Ca_T ,	
$\mathrm{Cu}_{\mathrm{WA}}$, $\mathrm{Cu}_{\mathrm{HA}}$, $\mathrm{Cu}_{\mathrm{HHA}}$, Cu_{R} , $\mathrm{Cu}_{\mathrm{SUM}}$, Cu_{T} , $\mathrm{Cu}_{\mathrm{org}}$	17
- Zn_{WA} , Zn_{HA} , Zn_{HHA} , Zn_{R} , Zn_{SUM} , Zn_{T} , Zn_{org} ,	
Ni _{WA} , Ni _{HA} , Ni _{HHA} , Ni _R , Ni _{SUM} , Ni _T , Ni _{org}	19
- Cr_{WA} , Cr_{HA} , Cr_{HHA} , Cr_{R} , Cr_{SUM} , Cr_{T} , Cr_{org} ,	
Pb_{WA} , Pb_{HA} , Pb_{HHA} , Pb_R , Pb_{SUM} , Pb_T , Pb_{org}	21
- Si_R , Si_T , Al_R , Al_T , Mg_R , Mg_T , K_R , K_T ,	
$ ext{Li}_{ ext{T}}$, $ ext{Cd}_{ ext{T}}$, $ ext{Hg}_{ ext{T}}$, $ ext{Residue}$, $ ext{CaCO}_3$, $ ext{C}_{ ext{org}}$, $ ext{Water}$	23
- pH_{pw} , pH_{sed} , $p\epsilon$, NH_4^+ , S^{2-} , H_2S odor, SiO_{2pw} , SO_4^{2-} ,	
${ m Alk_{pw}}$, ${ m Fe_{pw}}$, ${ m Mn_{pw}}$, ${ m Na_{pw}}$, ${ m Mg_{pw}}$, ${ m K_{pw}}$, ${ m Ca_{pw}}$	25
- Sand, Silt, Clay, Mud, Mean-grain-size,	
Kurtosis, Skewness	27
Analytical Data Plots	
- Iron, weak acid leach (Fewa)	29
- Iron, hydroxylamine leach (Fe _{HA})	30
- Iron, heated hydroxylamine leach (Fe _{HHA})	31
- Iron, leach residue (Fe _R)	32
- Iron, total (Fe _T)	33
· · · · · · · · · · · · · · · · · · ·	

Analytical Data Plots (continued) 34 - Iron, organically bound (Fe_{org}) - Manganese, weak acid leach (MnwA) 35 - Manganese, hydroxylamine leach (Mn_{HA}) 36 - Manganese, heated hydroxylamine leach (Mn_{HHA}) 37 - Manganese, leach residue (Mn_R) 38 - Manganese, total (Mn_r) 39 - Manganese, organically bound (Mn or) 40 41 - Calcium, weak acid leach (CawA) - Calcium, hydroxylamine leach (Ca_{HA}) 42 43 - Calcium, heated hydroxylamine leach (Ca_{HHA}) 44 - Calcium, leach residue (Ca_R) 45 - Calcium, total (Ca_T) 46 - Copper, weak acid leach (Cuwa) 47 - Copper, hydroxylamine leach (Cu_{HA}) 48 - Copper, heated hydroxylamine leach (Cu_{HHA}) - Copper, leach residue (Cu_R) 49 - Copper, total (Cu_T) 50 51 - Copper, organically bound (Cuorg) 52 - Zinc, weak acid leach (Zn_{WA}) - Zinc, hydroxylamine leach (Zn_{HA}) 53 - Zinc, heated hydroxylamine leach (Zn_{HHA}) 54 55 - Zinc, leach residue (Zn_R) - Zinc, total (Zn_T) 56

- Zinc, organically bound (Zn_{org})

- Nickel, weak acid leach (Niwa)

- Nickel, leach residue (Ni_R)

- Nickel, total (Ni_T)

- Nickel, hydroxylamine leach (Ni_{HA})

- Nickel, organically bound (Niorg)

- Nickel, heated hydroxylamine leach (Ni_{HHA})

57

58

59

60

61

62 63

Analytical Data Plots (continued)

-	Chromium, weak acid leach ($\mathtt{Cr}_{\mathtt{WA}}$)	64
-	Chromium, hydroxylamine leach ($\mathtt{Cr}_{\mathtt{HA}}$)	65
***	Chromium, heated hydroxylamine leach ($\mathtt{Cr}_{\mathtt{HHA}}$)	66
_	- Chromium, leach residue (Cr_R)	67
***	Chromium, total (Cr _T)	68
_	- Chromium, organically bound (Cr _{org})	69
_	- Lead, weak acid leach (${ t Pb}_{ t WA}$)	70
_	- Lead, hydroxylamine leach (Pb _{HA})	71
_	- Lead, heated hydroxylamine leach (Pb _{HHA})	72
-	- Lead, leach residue (${ t Pb}_{ t R}$)	73
_	- Lead, total ($ exttt{Pb}_{ exttt{T}}$)	74
_	- Lead, organically bound (Pb _{org})	75
_	- Silicon, total (Si _T)	76
_	- Aluminum, total $(Al_{\scriptscriptstyle m T})$	77
_	- Magnesium, total ($ exttt{Mg}_{ exttt{T}}$)	78
-	- Potassium, total (K_{T})	79
-	- Lithium, total ($ extstyle{Li}_{ extstyle{T}}$)	80
-	- Cadmium, total (Cd_T)	81
-	- Mercury, total (Hg _T)	82
-	- Residue	83
-	- Calcium carbonate (CaCO3)	84
-	- Organic carbon (C _{org})	85
_	- Water content	86
-	- pH_{pw}	87
-	- pH _{sed}	88
-	– p ϵ	89
-	- Ammonia (NH ₄)	90
-	- Silica (SiO _{2pw})	91
-	- Sulphate (SO ² -)	92
-	- Alkalinity (alk)	93

Analytical Data Plots (continued)	
- Iron, pore water (Fe _{pw})	94
- Manganese, pore water (Mn _{pw})	95
- Sodium, pore water (Na _{pw})	96
- Magnesium, pore water (Mg _{pw})	97
- Potassium, pore water (K_{pw})	98
- Calcium, pore water (Ca _{pw})	99
- silt	100
- Clay	101
- Grain size (Mean-grain-size)	102
- Skewness	103
Acknowledgements	104
Reference	105

Figure 1. Station locations in Halifax inlet for core samples. Cores 14, 16 and 18 were LeHigh gravity cores and cores 13 and 17 were Eckman-style box cores.

INTRODUCTION

Three Lehigh gravity cores and 2 Eckman-style box cores from Halifax Inlet, Nova Scotia, (Fig. 1) have been analyzed for a number of geological and geochemical parameters. Core samples were collected from the Bedford Institute of Oceanography vessels CSS Navicula (Cruise 90-010) during June 1990 (Fader and Miller, 1991). This report contains analytical results for both sediment and pore water subsamples. Core station locations were chosen to be representative of different sedimentary and depositional environments, and to obtain a series of cores that would supplement high resolution information obtained from previous cruises (Buckley et al., 1991; LeBlanc et al., 1991; and Winters et al., 1991).

METHODS

Sampling

The AGC Lehigh gravity coring system had a capacity of obtaining up to 1.5 m long, 10 cm in diameter cores from fine-grained sediments. Box coring was done using a specially designed and modified Eckman-style corer 30 cm wide. Push cores 10 cm in diameter were sub-cores taken from these box cores for geochemical testing. Cores were vertically extruded and sampled at selected 2 cm intervals for the Lehigh cores and 1 cm intervals for the sub-cores of the box cores.

Sediment pH and p ϵ analyses were conducted on the freshly exposed surfaces of the extruded cores prior to subsampling. Sediment pH was determined using a combination pH electrode that was standardized with Palitsch buffer at pH 8.2 (Whitfield, 1969). A precision of ± 0.05 pH units was achieved routinely within a 2 minute time period. A combination platinum electrode, standardized in Zobell solution, was used to determine the redox potential as p ϵ (Whitfield, 1969). Voltage was recorded for 90 s to account for electrode drift. Redox potential was calculated from the potential difference relative to the standard hydrogen electrode. Precision was estimated to be \pm 0.2 p ϵ units.

Subsamples from the cores were taken immediately after redox

measurements had been completed. Approximately 50 cm³ of mud was obtained by inserting a modified plastic syringe piston-subsampler into the sediment. This subsampling was performed in an open atmosphere. It was assumed that oxygen effects were minimal for short exposure times. Sediment subsamples were placed in 50 mL plastic centrifuge tubes, sealed and refrigerated at 4 to 10 °C until the pore water could be extracted.

Pore water was extracted from the sediment subsamples by centrifugation at 3000 rpm for 30 minutes in a Sorvall RT600B refrigerated centrifuge. Between 5 and 20 mL of pore water were obtained from most samples. After centrifugation, pore water was decanted from the centrifuge tubes and filtered through 0.4 μm Nuclepore filters. Pore water subsamples were immediately analyzed for pH, total alkalinity, ammonium, phosphate and silica. The remaining pore water was acidified (pH 2) with HCl and stored for later metal analyses for Fe and Mn. The sediment remaining in the centrifuge tube was sealed and placed in refrigerated storage for later analyses for total and extractable metals, grain size, total carbon and organic carbon. Samples were also classified by their hydrogen sulphide gas odor. A strong odor was denote as 2, a slight odor as 1 and no odor as 0.

Pore Water Analyses

Dissolved ammonia ($\mathrm{NH_4^+}$) in pore water was determined by colorimetric absorbance of the oxidized nitrogen complex in a ferrocyanide solution, as described by Solorzano (1969). Absorbance was measured at 640 nm.

Dissolved sulphide (S^2) in pore water was determined using a colorimetric method described in Cline (1969).

Dissolved silica (SiO_2) in pore water was determined by colorimetric analysis of the reduced silicomolybdate complex. This method was adapted from Strickland and Parsons (1968), as described by Mann and Gieskes (1975). A Varian model 634 light spectrometer was used to measure absorbance of this complex at a wavelength of 812nm.

Dissolved sulphate (SO_4^{2-}) in pore water was determined by an indirect atomic absorption spectrophotometry method. A 0.1 mL

aliquot of 0.3 M barium chloride was added to a 1 mL sample of pore water. This provided an excess of barium for the precipitation of sulphate as barium sulphate. This precipitate was removed from solution by centrifuging. The excess barium concentration left in determined by flame atomic absorption solution was to calculate the initial spectrophotometry and was used concentration of sulphate in the sample. The precision for dissolved sulphate concentrations was ±1 mM.

Total alkalinity (ALK_{pw}) was determined on a 1 mL pore water sample. A potentiometric titration was completed for each sample with an automatic titrator. A microelectrode was used to measure the pore water pH during titration with 0.008 N HCl in 0.6 N NaCl. Alkalinity precision was \pm 0.04 mN (Edmonds, 1970).

Total Fe_{pw} and Mn_{pw} in pore water were determined by direct flameless atomic absorption spectrophotometry. Aqueous samples (pH = 1.5-2.0) were injected directly into the atomization chamber of a Varian 975 with a GTA 95 graphite furnace. Standards were prepared in seawater containing negligible amounts of these metals compared to the concentrations in the samples. All instrumental parameters followed the manufacturers recommendations.

Sediment Analyses

Water content (WATER, as % of total wet weight) was determined by measuring weight loss of samples after drying at 60 °C for 48 hours.

Sediment grain size analyses were conducted on wet samples using a 0.063 mm sieve. The sediment mass > 0.063 mm was classed as sand. Sediment < 0.063 mm was classed as silt and clay (mud). A Coulter Counter Model TAIIR was used to determine the silt and clay % fraction in the mud component using 30 and 200 μm apertures. Subsamples for Coulter Counter analyses were disaggregated in a 5 % solution of sodium metaphosphate in an ultrasonic bath. Sediment < 0.063 mm and > 0.004 mm was classed as silt and sediment < 0.004 mm was classed as clay. Gravel size particles were not included in the analyses. The mean grain size for the mud fraction (silt and clay) are reported along with the standard deviation, kurtosis, and skewness.

The sediment was freeze dried and lightly disaggregated with an agate mortar and pestle and used for analyses of total carbon, organic carbon, leachable and total metals.

Total carbon (C_T in % of dry weight) was determined from washed and dried samples using a Leco carbon analyzer.

Organic carbon (C_{org} in % of dry weight) was determined in a similar manner to total carbon except, that the inorganic carbon was removed by 1 N HCl treatment prior to determining the carbon content. The precision was ± 0.2 % for both the C_T and C_{org} .

 CaCO_3 was computed from the difference between C_T and C_{org} .

The sequential leach analyses (Fitzgerald et al, 1987) include:

- (1) Weak acid leachable metal (Fe_{WA} , Mn_{WA} , Ca_{WA} , Cu_{WA} , Zn_{WA} , Ni_{WA} , Cr_{WA} and Pb_{WA}) in 25 % acetic acid, pH 2 for 16 h, as described in Chester and Hughes (1967).
- (2) Hydroxylamine leachable metal (Fe_{HA} , Mn_{HA} , Ca_{HA} , Cu_{HA} , Zn_{HA} , Ni_{HA} , Cr_{HA} and Pb_{HA}) in 1 M $NH_2OH-HCl$ for 16 h, as described in Chester and Hughes (1967).
- (3) Heated hydroxylamine leachable metal (Fe $_{HHA}$, Mn $_{HHA}$, Ca $_{HHA}$, Cu $_{HHA}$, Zn $_{HHA}$, Ni $_{HHA}$, Cr $_{HHA}$ and Pb $_{HHA}$) in 0.04 M NH $_2$ OH-HCl, pH 2, at 80 °C for 16 h, as described in Tessier et al (1979).
- (4) Leach residue metals with concentrations computed relative to the original mass (Si_R , Al_R , Mg_R , K_R , Fe_R , Mn_R , Ca_R , Cu_R , Zn_R , Ni_R , Cr_R and Pb_R) were determined using the Buckley and Cranston (1971) HF-H₃BO₃ total decomposition method.

The leach residue dry weight is reported as "Residue" in mg remaining of the initial 1000 mg of sample. The "weight loss" due to the sequential leaching can be computed as:

Weight Loss(%) = 100 (1 - Residue / 1000).

The sequential sum (Fe_{SUM} , Mn_{SUM} , Ca_{SUM} , Cu_{SUM} , Zn_{SUM} , Ni_{SUM} , Cr_{SUM} and Pb_{SUM}) was computed as the summation of the sequential leach analyses components (ie, $Fe_{SUM} = Fe_{WA} + Fe_{HA} + Fe_{HA} + Fe_{R}$).

Metal concentrations which are leached by hydrogen peroxide are considered to be organically bound (MacIntosh et al, 1976). Disaggregated dry sediment (1 g) was leached with 10 % hydrogen peroxide (20 mL) and 25% acetic acid (pH 2) for 24 h. Finally the leachate was decanted into clean test tubes. The acetic acid was

necessary to retard the hydrolysis of the metals as they were released from the organic matter. This leach fraction also metal fraction. The contained the weak acid leachable concentrations of metals, which were specifically released from the organic matter by the hydrogen peroxide, were determined as the difference between the results for this hydrogen peroxide leach at pH 2 and the weak acid leach at pH 2. This difference is reported as Fe_{org} , Mn_{org} , Cu_{org} , Zn_{org} , Ni_{org} , Pb_{org} and Cr_{org} .

Total metal concentration (Si_T , Al_T , Mg_T , K_T , Fe_T , Mn_T , Ca_T , Cu_T , Zn_T , Ni_T , Cr_T , Pb_T , Li_T and Cd_T) was determined using the Buckley and Cranston (1971) HF-H₃BO₃ total decomposition method.

An indication of the accuracy and precision of this total elemental analysis method is demonstrated by replicate analyses of Results for the standard samples BCSS1 and MESS1 (NRC standards. Canada) and MAG1 (USGS) are compared in Table 1. exception of the analyses for Ni, and one standard result for Cu, all of the replicate analyses for the 12 elements have a coefficient of variation (CV = standard deviation / mean x 100) of The reason for the high CV for Ni has not been less than 10 %. determined, so analytical results for this metal should be used The CV of 11.1 % for Cu in the BCSS1 standard is with caution. almost certainly due to the low level of Cu in this standard, therefore analytical results below 20 ppm should be used with caution.

Estimates of the relative accuracy error were obtained by comparing our analytically determined mean value with the preferred value published for the standard. Only those results which show relative accuracy error greater than 10 % require some comment. Our analytical method appears to produce Al results that are 10.7 to 14.2 % lower than the results published for the three standards. Our results for Mg content in the MESS1 standard are 16 % lower than the published value. This appears to be caused by the moderately low Mg content and possibly to an unusual matrix effect in this standard. Our results for K in BCSS1 and MESS1 are 15 and 16.1 % low respectively. The reason for these results is not readily apparent, although it is suspected to be a matrix effect. It should be noted that all of these relative accuracy errors in

the analyses of the major elements produces an analytical result which has an absolute error of less than 1 %.

TABLE 1.

Results for replicate analyses of standard samples.

Standard	Si _T	Al_{T}	Ca _T	${\rm Mg}_{\rm T}$	\mathbf{K}_{T}	Fe_{T}	Mn _T	Cu _T	Zn_{T}	Ni _T
Sample	%	%	%	%	%	%	μgg	¹ μgg ⁻¹	µgg⁻¹	μ gg $^{ extsf{-}1}$
BCSS1										
N Mean StdDev % CV	9 29.6 0.4 1.4	5.59 0.29	0.54 0.01	1.36 0.02			246 15	8 18 2 11.1	3	8 39 9 23.1
Present¹ % Error					1.80 -15.0	3.29 -3.3	230 7.0		120 -14.2	
MESS1									_	_
N Mean StdDev % CV	9 29.6 0.5 1.7	0.31	0.44 0.02	0.73 0.03	0.10	9 2.86 0.06 2.1	8 533 20 3.8		8 172 6 3.5	8 19 10 52.6
Present ¹ % Error							510 4.5	25 -4.0		
MAG1										
N Mean StdDev % CV	9 23.2 0.4 1.7	7.73 0.53	0.91 0.02	1.73 0.14	8 2.92 0.12 4.1	9 4.71 0.10 2.1	795 19		2	40 11
Present ² % Error		8.7 -11.1		1.89 -8.5	3.09 -5.5	4.88 -3.5	770 3.2	27 0	135 -3.7	54 -26

¹ Values from Berman (1981).

The relative accuracy error of -14.2 % for analyses of Zn in the BCSS1 standard is of unknown source. The large negative errors for results of Ni analyses (-29 %) in all standards reinforces the caution in the use of these results. No evaluation of the accuracy or precision of Pb analyses could be obtained because the published concentrations of Pb in the standards were all below the analytical detection limit (20 ppm) of our method.

² Values from Manheim et al. (1976).

TABLE 2.

Error for instrumental analyses.

Metal	Detection Limit	Concentration Range	Precision	Relative Error
	μg·mL ⁻¹	$\mu extsf{g} \cdot extsf{mL}^{-1}$	μ g·mL $^{-1}$	%
Fe	10	10 - 1400 4000 - 17000 29000 - 47000	±5 ±140 ±800	2 2
Mn	0.6	0.6 - 11 9 - 100 250 - 800	±0.3 ±1 ±18	2 4
Ca	16	16 - 450 500 - 900 4000 - 9000	±8 ±20 ±150	3 3
Cu	1.2	2 - 180 30 - 180	±0.6 ±0.6	2
Zn	0.4	0.4 - 35 6 - 35 50 - 300	±0.2 ±0.4 ±6	3 5
Ni	1	1 - 25 6 - 30	±0.5 ±0.5	2
Pb	0.6	0.6 - 8 3 - 20 70 - 130	±0.3 ±0.4 ±1	5 2
Cr	0.8	1 - 25 7 - 40	±0.4 ±0.4	1
Si		23 - 30 %	±0.5 %	2
Αl		5 - 8 %	±0.4 %	6
Mg		0.7 - 1.7 %	±0.05 %	5
K		1.5 - 2.9 %	±0.1 %	5

Average precision values, for the instrumental analyses for specific metals, were determination from duplicate analyses of solutions which were prepared for the total metal and leachable metal analyses. The precision values are reported in Table 2. In the low concentration ranges the precision can be used to evaluate the analytical detection limits. Under these conditions the analytical detection limit is approximately twice the value for precision. In the higher concentration ranges the average relative

error determinations for these metals were used to evaluate the analytical results. As the detection limit is approached the relative error approaches 100 %. The relative error for a specific metal and sample was determined as the percent mean deviation relative to the sample mean. These results were then used to determine the average relative error for a specific metal and are reported in Table 2. Average precision values for the elements Si, Al, Mg and K were determined for narrow concentration ranges and we have not determined the detection limits.

In an earlier study (Buckley et al 1989) results were reported for analyses of replicate samples and subsamples. The concentrations were in the higher concentration ranges and the % coefficients of variation included variation due to repetitive sampling and sampling inhomogeneity. In the present study we report relative error which includes only the error resulting from duplicate instrumental analyses of sample solutions.

Total mercury ($\mathrm{Hg_T}$) was determined using a flameless cold-vapour atomic absorption spectrometry method adapted from Brandenberg and Bader (1967) and MacIntosh et al (1976). The average precision varied significantly with concentration range: ± 0.005 ppm for range 0.01 to 0.1 ppm, ± 0.04 ppm for range 0.1 to 1 ppm, ± 0.1 ppm for range 1 to 5 ppm, and ± 0.7 ppm for range 5 to 11 ppm. In all concentration ranges the relative error varied from 6 % to 11 %.

Core	Depth	Fe _{WA}	Fe _{HA}	Fe _{HHA}	Fe _R	Fe _{sum}	Fe⊤	Fe _{ORG}	MnwA	Mn _{HA}	Mn _{HHA}	Mn _R	Mn _{sum}	Mn _T	Mn _{org}	ID
	cm	μgg ⁻¹		μgg ⁻¹			1 μgg ⁻¹				μgg^{-1}	μgg ⁻¹	μgg^{-1}	μgg^{-1}	μgg^{-1}	
																71100
13	0	8010	2368		33624				26	6.6	36	26	94	261	84	74480 74481
		12940	3123		32680				27	7.4	36 74	39	110	310	104 135	74481
	-	12900		11640					27	4.8	31 34	59 33	122 101	365 288	133	74483
	_	10060		11380					29 26	4.7 4.9	34 37	33 19	87	251	142	74484
	כ	11790	3123	9490	32102	כטכסכ	76300	3/410	20	4.7	31	17	U,	221	172	14404
14	0	1220	343	2000	17366	20929	34800	4480	13	9.9	43	15	81	702	42	74401
	2	570	183	1990	15725	18468	29400	3630	12	7.9	41	20	81	766	13	74402
	4	650	159	1990	14710	17509	30300	4350	16	7.9	42	65	131	650	0	74403
	6	620	188	2200	16452	19460	31900	4780	19	9.7	48	32	109	796	0	74404
	8	960	215	2200	18705	22080	29000	5540	16	8.9	45	27	97	572	0	74405
	10	880	217	2390	16040	19527	34000	5120	15	9.1	51	57	132	753	0	74406
	12	780	220		20406			5820	17	11.1	50	44	122	617	0	74407
	14	680	186		16891			6320	15	7.3	46	51	119	733	0	74408
	16	720	182		17419			5880	15	8.3	42	66	131	762	33	74409
	18	840	159		16661			6360	15	7.9	41	52	116	748	54	74410
	20	480	182		18394			7320	15	8.6	45	43	111	783	59	74411
	22	400	149		16871			6800	15	7.8	43	40	106	776	60	74412
	24	820	148		15807			7280	19	8.0	44	66	137	796	72	74413
	26	750	102		13427			5650	17	6.4	38	40	101	782	52	74414
	28	1170	196		15916			9530	14	7.7	41	17	80	665	56	74415
	30	1190	196		17366			7010	19	10.0	48	48	125	852	56 52	74416 74417
	32	680	131		13550			5820	15	7.2	39	77	138	933		74417
	34	560	133		13456			4940	13	7.2	39	44	103	887 704	45 60	74419
	36	920	238		15314			5880	19	10.4	44	15 45	88 89	719	54	74419
	38	440	143		12078			5160	26	9.4	39	15 3	75	824	64	74421
	40	470	165		36783			5230	20	10.0	42 39	24	د <i>ا</i> 95	925	66	74422
	42	710	152		13553 13598			5590 6750	23 23	8.8 10.0	41	34	108	958	74	74423
	44	650	142 169		16178			7300	23 21	9.7	43	58	131	934	61	74424
	46	600	109	2240	10170	19107	24400	7300	21	7.1	43	20	131	754	0.	
16	0	4880	1995	5630	13439	25944	65800	18620	40	12.2	39	32	123	606	75	74425
	2	3690	1889	7000	30248	42827	64600	14710	35	11.0	36	16	98	580	62	74426
	4	4630	2241	5470	29529	41870	59600	22570	38	12.5	38	3	92	489	84	74427
	6	5540	2549	5720	26457	40266	67900	20460	27	11.3	36	22	97	559	88	74428
	8	4120	2022	4750	22264	33156	64400	17480	24	6.4	36	1	67	551	81	74429
	10	2970	1636		24391				27	8.4	40	4	80	514	78	74430
	12	2630	1466	3800	28653	36549	57900	18570	26	10.2	43	3	82	569	84	74431
	14	2180	1491		26714				21	8.3	42	12	84	550	76	74432
	16	2080	1629	3670	29185	36564	58400	18420	25	11.7	44	38	119	678	95	74433
	18	2000	1637		24888				27	9.9	42	42	121	653	126	74434
	20	3200	1759		16307				26	8.0	39	18	91	648	94	74435
	22	2770	1840		18819				26	8.2	41	1	77	603	83	74436
	24	3060	1886		26003				28	12.1	49	7	96	563	88	74437
	26	3210	2112		23520				25	10.6	47	3	85	530	67	74438
	28	3310	2157		21784				24	9.9	44	5	83	416	59	74439
	30	2610	1823	4270	19181	27884	55100	12790	19	6.9	41	5	72	492	56	74440

Core	Depth	Fewa	Fe _{HA}	Fe _{HHA}	Fe _R	Fe _{SUM}	Fe⊤	Fe _{org}	Mn _{wA}	Mn _{HA}	Mn _{HHA}	Mn _R	Mn _{sum}	Mn _⊤	Mn _{org}	ID
	cm							μgg ⁻¹	μ gg ⁻¹		μgg^{-1}			μgg^{-1}	μ gg $^{-1}$	
							,									
16	32	2240	1485	3350	16003	23078	54100	10160	16	7.2	38	2	63	521	60	74441
	34	2990	1861	4200	20320	29371	56200	12710	22	8.5	39	35	105	535	72	74442
	36	3020	1868	4830	20940	30658	52100	11880	24	10.8	43	36	113	463	70	74443
	38	2510	1634	3870	21778	29792	55700	10790	24	9.6	42	26	102	540	70	74444
	40	2680	1984	4370	20039	29073	53500	13620	25	10.6	48	27	111	514	80	74445
	42	2880	1772	3980	19440	28072	55700	11020	28	10.5	44	27	110	555	68	74446
	44	2640	1836	5140	26104	35720	52700	14160	35	13.4	51	34	134	518	83	74447
	46	2280	1577			26744			32	9.6	40	24	105	518	64	74448
	48	2590	1606			27930			39	13.1	44	32	128	587	91	74449
	50	1950	1462			28417			51	15.5	50	23	140	638	98	74450
	52	1090	1392			28832			55	19.8	55	5	135	288	127	74451
	54	1070	1248			27948			52	17.1	53	0	122	303	127	74452
	56	980	1286	4410	25792	32468	41700	13420	57	20.6	58	13	148	304	137	74453
17	0	7900	2554	7300	34560	52314	70800	24500	26	5.2	42	32	105	224	69	74485
	1	6050	2130			49600			25	5.8	44	14	89	186	72	74486
	3	6680	2361	6920	34966	50927	60400	24720	23	7.7	44	15	90	68	68	74487
	5	6110	2354	6070	36319	50853	59200	24390	34	7.7	45	19	106	135	85	74488
	7	4980	1807	4980	33466	45233	55500	17520	25	6.8	45	25	102	216	75	74489
18	0	3950	2106	6450	28067	40573	53300	14350	41	8.9	39	0	89	147	68	74454
	2	3510	2046	6320	28103	39979	50500	13290	50	11.2	39	0	100	172	79	74455
	4	2490	1676	4970	24948	34084	47400	10910	39	11.7	35	9	95	35	80	74456
	6	1740	1064	3830	23941	30575	37900	9960	22	12.7	43	19	96	0	46	74457
	8	2550	1494	5120	27584	36748	51100	11450	36	8.6	41	17	103	96	67	74458
	10	2460	1397			38536		14540	58	41.3	53	25	177	1129	341	74459
	12	1940	790			31448		6260	58	14.9	38	10	121	15	322	74460
	14	3710	1542			37231			47	13.2	45	24	130	60	138	74461
	16	1600	1281			36299			34	10.8	47	18	110	197	119	74462
	18	1090	1116			34212			28	7.4	47	25	107	239	111	74463
	20	1180	1147			35883			23	8.0	47	10	88	285	136 137	74464 74465
	22	1370	1300			37004			34	9.1	48	18	109	284	110	74466
	24	1330	1271			30948			28	6.8	49 53	15	99 88	240 205	106	74467
	26	1490	1622			37686			21	8.1 5.5	55 47	6 8	84	186	93	74468
	28	1470	1414			31077			23 25	9.5	47 45	4	84	185	103	74469
	30	1690	1415			32173 33002			19	7.8	46	0	73	187	103	74470
	32	1430	1520			33319			25	9.8	40 47	0	82	199	112	74471
	34	1290	1424						27	9.7	48	16	101	210	123	74472
	36	1500	1500 1464			33685 37947			27 25	10.5	56	6	97	254	140	74473
	38 40	1550 2520	1958			37028			26	8.6	54	12	101	243	122	74474
	40 42	2520 2250	1892			32308			28	10.1	47	16	101	233	120	74475
	42 44	1900	1802			30414			30	9.9	49	11	100	247	123	74476
	44	1800	1741			31169			34	10.1	52	9	106	266	125	74477
	48	2010	1789			36956			42	16.1	62	4	124	289	152	74478
	50	1950	1846			36754			42	17.1	62	27	148	310	152	74479
	50	,,,,,	.540	2020		20,24	,_,,,				-					

Core	Depth	Ca _{WA}	Ca _{HA}	Ca _{HHA}	Ca _R	Ca _{SUM}	Ca _⊤	Cu _{wa}	Cu _{HA}	Cu _{HHA}	Cu _R	Cu _{sum}	Cu _T	Cu _{org}	ID
	cm	μgg^{-1}	μgg^{-1}	μgg^{-1}	μ gg $^{-1}$	μ gg $^{-1}$	μ gg $^{-1}$	μgg ⁻¹	μ gg $^{-1}$	μgg ⁻¹	μgg ⁻	¹ μgg ⁻¹	μgg ⁻	1 μgg^{-1}	
13	0	2010	1045	280	1139	4474	6000	10.2	0.9	4.7	108	124		104.1	74480
	1	2190	1163	280	1280	4913	5400	9.8	0.2	4.7	111	126		105.4	74481
	2	1560	1843	500	1214	5117	8300	9.6	0.5	3.2	116	130		106.3	74482
	3	1330	1914	610	1038	4892	9600	8.5	0.6	3.8	118	131		103.7	74483
	5	1640	1665	390	998	4693	6200	8.1	8.0	3.8	113	126	135	107.4	74484
14	0	640	367	310	731	2048	5600	0.5	0.0	0.9	13	14	16	16.8	74401
	2	390	310	200	740	1640	6400	0.0	0.1	0.7	5	5	13	11.4	74402
	4	470	279	220	652	1621	6700	0.1	0.1	0.6	6	6	17	12.6	74403
	6	700	329	240	823	2092	5800	0.0	0.0	0.5	7	8	18	11.0	74404
	8	960	406	260	908	2534	6200	0.0	0.0	0.9	9	10	18	14.2	74405
	10	620	330	260	160	1370	5300	0.0	0.0	1.1	12	13	19	14.3	74406
	12	1270	436	260	182	2148	7000	0.0	0.0	0.9	12	13	20	13.9	74407
	14	690	308	250	185	1433	8400	0.0	0.0	0.9	8	9	16	16.1	74408
	16	670	318	230	274	1492	6800	0.0	0.0	0.6	11	12	17	10.9	74409
	18	650	305	120	374	1449	4900	0.2	0.3	8.0	11	13	21	13.7	74410
	20	500	312	60	465	1337	7500	0.7	0.0	0.5	10	11	18	12.1	74411
	22	490	303	70	464	1327	6000	0.1	0.0	0.0	8	8	10	10.3	74412
	24	1250	356	60	460	2126	8100	0.2	0.0	0.1	6	6	14	11.7	74413
	26	1080	258	50	463	1851	8900	0.0	0.2	0.0	5	5	17	7.7	74414
	28	1570	366	60	92	2088	4100	0.3	0.0	0.0	6	7	11	13.5	74415
	30	1670	386	80	183	2319	4900	0.0	0.0	0.0	7	7	13	9.8	74416
	32	680	297	60	94	1131	7400	0.1	0.0	0.0	3	3	10	6.2	74417
	34	630	280	60	186	1156	3800	0.0	0.0	0.0	4	4	6	5.5	74418
	36	1370	494	210	92	2166	8600	0.0	0.2	0.1	6	6	10	8.9	74419
	38	3250	524	170	92	4036	8900	0.6	0.2	0.3	4	5	4	6.4	74420
	40	2100	539	150	92	2881	6400	0.0	0.0	0.0	98	98	11	6.7	74421
	42	1710	472	150	92	2424	9500	0.0	0.0	0.0	2	2	8	7.5	74422
	44	2230	600	170	0	3000	8100	0.0	0.0	0.0	5	5	9	8.3	74423
	46	1280	496	160	183	2119	8000	0.0	0.0	0.0	6	6	7	6.7	74424
16	0	2080	921	240	171	3412	8000	8.7	0.8	3.3	5	18	120	81.9	74425
	2	1720	1401	340	0	3461	6200	6.2	0.5	4.0	87	97	106	75.1	74426
	4	2000	1439	390	81	3910	6200	3.2	0.0	0.9	39	43	67	49.0	74427
	6	1730	1403	410	0	3543	6700	4.6	0.5	1.7	43	50	43	45.3	74428
	8	1700	1440	370	0	3510	6200	4.6	0.2	1.5	33	39	36	36.2	74429
	10	1580	1684	410	0	3674	7600	2.8	0.0	0.7	19	23	29	27.9	74430
	12	1760	1423	380	79	3642	6200	3.2	0.0	0.4	17	21	32	26.9	74431
	14	1340	1289	340	72	3041	7400	2.1	0.1	0.1	16	18	23	22.2	74432
	16	1740	1211	300	229	3480	7200	1.9	0.0	0.0	13	15	17	20.6	74433
	18	2220	1574	400	146	4340	6700	1.8	0.0	0.0	12	14	20	19.9	74434
	20	1790	1810	400	64	4064	8000	1.5	0.0	0.0	9	10	15	15.6	74435
	22	2570	1395	370	132	4467	8300	1.3	0.0	0.0	9	11	15	15.9	74436
	24	3820	1095	490	169	5574	9400	1.3	0.0	0.3	14	15	16	18.8	74437
	26	3400	880	330	169	4779	7600	1.2	0.0	0.0	12	13	20	17.4	74438
	28	2280	854	340	233	3707	5600	0.9	0.0	0.0	11	12	19	16.8	74439
	30	1260	828	310	135	2533	5300	0.8	0.0	0.0	9	10	13	11.8	74440

Core	Depth	Ca _{WA}	Ca _{HA}	Ca _{HHA}	Ca _R	Ca _{SUM}	\mathbf{Ca}_{T}	Cu _{wa}	Cu _{HA}	Cu _{HHA}	Cu _R	Cu _{sum}	$\mathbf{Cu_T}$	$\mathrm{Cu}_{\mathrm{ORG}}$	ID
	cm	μgg^{-1}	μgg^{-1}	μgg^{-1}	μgg^{-1}	μ gg $^{-1}$	μgg^{-1}	μ gg $^{-1}$	μ gg $^{-1}$	μ gg $^{-1}$	μgg ¨	1 μ gg $^{-1}$	μgg ⁻	¹ μgg ⁻¹	
16	32	1070	679	270	54	2073	5800	0.2	0.0	0.0	5	6	9	9.2	74441
	34	1720	800	280	128	2928	5800	0.6	0.0	0.0	8	9	15	11.5	74442
	36	1900	1198	370	140	3608	6300	0.2	0.0	0.0	10	11	13	13.5	74443
	38	2500	1328	430	133	4391	7900	0.3	0.0	0.0	8	8	14	11.7	74444
	40	2740	1252	480	131	4603	7200	0.3	0.0	0.0	9	9	13	12.8	74445
	42	2920	1418	560	130	5028	8300	0.5	0.4	0.3	10	11	9	10.6	74446
	44	3690	1178	500	167	5535	8200	0.3	0.0	0.2	11	11	16	13.1	74447
	46	2710	1008	360	126	4204	7500	0.4	0.0	0.1	6	6	10	9.9	74448
	48	2960	1214	410	132	4716	9600	0.5	0.0	0.2	9	9	17	11.6	74449
	50	2650	1256	440	134	4480	8100	0.6	0.5	0.0	7	8	12	12.4	74450
	52	3260	1090	470	1571	6391	9800	1.4	0.1	0.4	22	24	11	11.7	74451
	54	3310	864	250	1716	6140	9500	1.0	0.0	0.2	19	21	9	12.0	74452
	56	2820	972	300	1854	5946	9400	1.1	0.0	0.4	21	22	11	13.5	74453
17	0	1760	1096	290	922	4068	6400	11.6	0.5	4.2	127	143	130	97.7	74485
	1	1370	1096	320	1009	3795	4400	8.9	0.7	3.5	120	133	128	96.1	74486
	3	1340	1088	390	941	3759	3300	8.3	1.1	4.2	108	122	125	108.8	74487
	5	1570	849	280	1063	3762	3800	8.7	0.9	3.6	105	118	126	107.1	74488
	7	1550	621	230	1647	4048	9600	9.2	0.6	3.7	96	110	122	99.9	74489
18	0	1510	710	110	1882	4212	6400	8.2	0.8	4.0	105	118	112	94.2	74454
	2	1360	755	130	1990	4235	6200	5.9	0.3	4.4	104	114	97	94.1	74455
	4	1110	578	80	1008	2776	4200	5.1	0.0	4.1	97	106	79	68.8	74456
	6	820	479	220	1157	2676	4500	4.2	0.0	2.9	72	79	52	44.9	74457
	8	1120	473	140	1196	2929	6500	4.4	0.0	2.8	77	84	55	55.0	74458
	10	1480	581	230	1454	3745	11600	3.3	0.0	1.8	65	70	62	44.3	74459
	12	1330	493	510	2365	4698	4500	1.8	0.0	2.6	48	53	20	118.6	74460
	14	2020	647	320	1305	4292	5300	2.0	0.4	1.3	51	55	34	43.7	74461
	16	1940	810	340	1193	4283	5400	1.4	0.0	1.2	47	49	26	32.4	74462
	18	1560	1099	410	1089	4158	6900	2.3	0.0	1.4	44	47	26	33.6	74463
	20	3040	693	290	1165	5188	6900	0.9	0.0	0.6	41	42	22	28.4	74464
	22	3020	1394	430	1089	5933	7000	0.6	0.0	0.3	37	37	18	23.9	74465
	24	2310	1044	510	1005	4869	7100	0.6	0.0	0.8	33	34	15	18.1	74466
	26	2630	1061	490	1061	5242	6500	0.5	0.0	0.4	30	31	18	18.3	74467
	28	1590	1457	610	918	4575	6500	0.2	0.0	0.4	24	25	12	13.8	74468
	30	1760	1579	750	1080	5169	6400	0.6	0.2	0.2	27	28	10	14.5	74469
	32	1040	1182	450	1139	3811	5000	0.7	0.0	0.1	25	26	12	14.5	74470
	34	2080	1904	640	1122	5746	6100	0.3	0.1	0.5	28	29	12	14.1	74471
	36	2350	1835	730	1267	6182	7900	0.5	0.0	0.1	27	27	14	14.8	74472
	38	3590	1074	510	1173	6347	8200	0.1	0.0	0.0	25	25	12	15.7	74473
	40	3520	1020	500	1394	6434	7800	0.5	0.1	0.0	26	27	14	15.2	74474
	42	2070	1710	670	1314	5764	7800	0.4	0.0	0.0	22	22	11	14.8	74475
	44	2320	1871	620	1351	6162	6200	0.2	0.0	0.3	18	18	11	14.8	74476
	46	3070	1532	610	1241	6453	7200	0.1	0.0	0.0	1	2	13	14.9	74477
	48	3490	1074	590	1431	6585	6200	1.1	0.0	0.2	1	2	13	15.2	74478
	50	3340	909	410	1244	5903	6500	0.6	0.0	0.3	22	23	14	14.9	74479

Core	Depth	Zn _{wa}	Zn _{HA}	Zn _{HHA}	Zn _R	Zn _{sum}	Zn _T	Zn _{org}	Niwa	Ni _{HA}	Ni _{HHA}	Ni _R	Ni _{sum}	Ni _T	Niorg	ID
	cm	μgg ⁻¹			μgg^{-1}	μgg ⁻¹	μgg^{-1}	μ gg $^{-1}$	μ gg $^{-1}$	μ gg $^{-1}$	μgg^{-1}	μ gg $^{-1}$	μgg^{-1}	μgg^{-1}	μgg ⁻¹	
13		167.6	32.3	46.2	96	342		149.4	6.6	1.1	8.3	22	38	10	14.3	74480
		147.8	30.5	44.4	96	319		148.2	5.8	1.1	7.1	37	51	22	15.7	74481
		133.3	26.2	42.9	90	292		167.7	5.4	0.0	6.5	27	39	3	14.1	74482
		127.5	25.4	41.5	93	288		149.5	5.4	0.6	7.0	46	59	31 77	13.4	74483
	5	127.7	28.8	44.5	177	378	455	175.3	5.8	0.0	7.7	48	61	33	15.6	74484
14	0	9.3	9.0	21.6	53	93	64	27.7	2.1	0.3	1.4	8	12	0	6.5	74401
	2	11.3	5.1	15.1	50	81	49	31.7	1.7	0.0	1.9	12	16	2	4.3	74402
	4	10.8	4.3	13.0	41	69	31	20.2	1.1	0.0	1.1	8	11	4	6.4	74403
	6	11.4	3.5	12.6	51	79	33	20.6	1.2	0.0	2.6	8	12	0	7.2	74404
	8	9.6	7.5	18.8	49	85	51	32.4	1.7	0.5	3.4	14	19	13	7.0	74405
	10	9.8	6.9	19.2	32	68	88	41.2	2.8	1.4	4.0	14	22	34	5.0	74406
	12	8.0	7.4	16.2	54	85	72	20.0	1.6	0.8	2.3	18	23	21	4.8	74407
	14	10.8	6.2	15.2	42	74	104	42.2	2.7	0.0	4.1	15	22	20	6.6	74408
	16	10.1	5.2	15.7	46	77	78	20.9	2.6	0.1	3.5	17	24	21	4.6	74409
	18	9.2	5.7	14.4	39	69	84	33.8	0.4	0.3	3.9	2	6	16	5.0	74410
	20	10.1	5.4	11.4	41	68	80	23.9	1.3	0.0	4.3	17	22	24	5.9	74411
	22	7.6	3.0	9.2	42	62	65	12.4	1.0	0.0	1.0	9	11	6	6.4	74412
	24	5.1	4.2	14.6	40	64	82	18.9	1.5	0.0	1.0	17	19	28	3.6	74413
	26	4.8	3.7	14.9	35	59	70	22.2	0.5	0.0	0.0	11	12	25	2.9	74414
	28	3.5	5.2	20.2	40	68	82	20.5	1.2	1.0	0.0	12	14	18	6.0	74415
	30	4.9	6.5	19.8	38	70	94	16.1	1.4	0.1	0.0	19	21	8	3.1	74416
	32	3.4	3.6	10.4	44	62	63	29.6	0.0	2.6	0.0	8	11	13	2.8	74417 74418
	34	3.4	2.1	8.7	34	49	93	14.6	0.3	3.2	0.0	5	8	4	5.2 4.7	74410
	36	4.5	1.6	8.9	36	51	92	18.5	1.9	0.0	4.0	6	12 10	4 - 0	5.7	74420
	38	1.8	0.0	5.6	23	30	77	0.2	0.9	0.0	2.9 1.9	6 40	42	5	4.8	74421
	40	2.7	0.9	8.2	116	128	48	2.3	0.3 1.1	0.0 1.0	2.9	5	10	2	4.5	74422
	42	2.5	1.3	8.5 9.9	22 28	34 41	44 59	16.5 11.5	0.5	0.2	1.8	10	13	6	6.9	74423
	44 46	1.5 2.1	1.8 0.7	8.5	37	48	58	4.9	0.5	0.6	2.4	16	20	10	6.4	74424
16	0	130.8	33.2	48.9	32	245	429	161.2	3.0	1.8	5.1	9	19	60	18.6	74425
	2	113.8	29.3	39.6	107	290	412	123.2	1.4	1.0	6.7	17	26	49	15.9	74426
	4	59.7	14.0	25.8	99	198	321	87.3	0.0	0.5	5.4	14	20	39	15.3	74427
	6	62.8	17.2	27.3	103	211	298	63.2	1.0	2.4	3.3	14	21	31	10.0	74428
	8	47.0	7.9	20.7	71	146	237	73.0	2.0	0.3	3.8	8	15	35	10.2	74429
	10	26.6	5.4	19.0	77	128	198	42.4	0.0	0.4	4.9	15	20	33	12.3	74430
	12	22.2	4.4	20.3	80	127	207		0.0	0.9	4.2	13	18	36	14.7	74431
	14	11.3	3.3	16.9	72	104	172	29.7	0.0	0.2	3.8	7	11	39	13.0	74432
	16	9.8	4.2	16.6	67	98	97		0.0	0.0	5.2	21	26	30	13.2	74433
	18	7.2	3.1	17.1	63	90	123	37.8	0.0	1.4	4.6	20	26	36	12.5	74434
	20	5.9	2.3	16.9	51	76	119		0.0	0.0	4.0	15	19	32	10.3	74435
	22	6.7	2.4	15.7	52	77	135	37.3	0.0	1.2	3.1	19	23	23	11.0	74436
	24	9.2	9.3	14.5	81	114	132	10.8	6.1	0.7	5.9	25	38	31	6.0	74437
	26	6.6	8.3	11.2	67	94	142	2.4	2.2	0.1	4.0	26	32	36 70	10.4	74438
	28	6.5	9.2	9.4	65	90	121	0.0	0.0	8.0	4.0	19	23 45	40 71	10.1	74439 74440
	30	4.0	8.9	6.2	59	78	108	0.0	0.0	0.2	3.7	11	15	31	8.5	14440

Core	Depth	Zn _{wA}	Zn _{HA}	Zn _{HHA}	Zn_R	Zn _{svM}	Zn⊤	Zn _{org}	Niwa	Ni _{HA}	Ni _{HHA}		Ni _{sum}	Nit		ID
	cm	μgg^{-1}					μgg ⁻	¹ μgg ⁻¹	μ gg $^{-1}$	μgg^{-1}	μgg^{-1}	μgg^{-1}	μgg^{-1}	μgg^{-1}	μ gg $^{-1}$	
16	32	2.7	5.4	5.0	45	58	104	9.3	0.0	0.0	3.6	12	15	28	7.7	74441
	34	4.1	0.0	6.7	56	67	79	13.9	0.0	1.0	2.1	20	23	33	8.6	74442
	36	4.1	0.4	5.6	54	65	55	6.9	0.0	1.5	3.3	21	26	27	10.5	74443
	38	4.9	0.6	5.4	54	65	87	0.0	0.0	0.0	2.7	15	18	24	9.9	74444
	40	4.0	0.0	7.7	50	62	95	11.0	0.0	0.9	4.7	22	28	49	12.1	74445
	42	5.2	2.5	11.8	53	73	74	22.8	2.2	2.0	4.9	27	36	44	6.1	74446
	44	6.1	2.2	13.3	68	90	93	10.9	1.9	1.5	6.0	34	44	44	9.3	74447
	46	4.8	0.0	12.6	55	73	14	24.2	2.0	2.9	3.2	20	28	34	6.7	74448
	48	4.8	0.0	10.4	56	71	0	11.2	2.6	1.4	4.9	21	30	29	9.3	74449
	50	4.4	0.0	11.4	59	75	0	30.6	1.3	2.2	5.5	20	29	39	6.3	74450
	52	5.1	2.7	12.4	49	69	131	17.9	3.4	0.3	5.3	32	41	0	8.3	74451
	54	5.5	2.0	11.5	59	78	139	17.5	3.1	1.1	4.6	33	42	0	9.1	74452
	56	6.3	3.3	11.2	52	73	145	15.7	3.0	0.6	4.6	31	39	1	10.1	74453
17	0	146.8	26.8	42.8	171	388	475	144.2	5.3	0.7	8.2	32	46	50	16.5	74485
		124.5	30.1	44.6	120	319		165.5	4.6	0.7	7.6	42	55	46	16.8	74486
		107.3	34.0	42.5	120	304	378	258.7	5.1	1.5	6.2	56	68	53	16.7	74487
	5	109.8	26.1	38.8	117	292	397	243.2	5.3	1.8	7.6	25	39	59	15.3	74488
	7	108.7	29.8	41.0	109	289	415	231.3	4.4	1.6	6.2	16	28	79	16.1	74489
40	•	407.0		7 , ,	440	207	757	47/ 0	2.0	1 /	5.7	25	35	21	12.6	74454
18		126.8	22.2	34.6	110	293		134.2	2.9	1.4 1.3	5.4	6	14	0	12.5	74455
	2	96.7	20.5	32.2	112	261 214		149.3 111.3	1.9 4.6	0.2	5.3	90	100	52	10.8	74456
	4	58.7 46.4	13.8 11.3	21.9	119 108	186	213		3.8	0.9	4.2	79	88	44	11.1	74457
	6	40.4 55.4	11.6	24.7	112	204		106.6	3.7	0.3	6.2	90	100	37	9.9	74458
	8 10	36.9	13.9	27.1	74	152	343	98.1	4.3	1.0	5.8	74	85	36	8.8	74459
	12	32.0	6.3	17.2	62	118	124	64.0	3.6	2.3	8.0	69	83	33	9.6	74460
	14	32.2	9.7	24.2	55	121	175	75.8	3.4	1.4	6.2	78	89	42	9.9	74461
	16	20.1	4.8	18.2	54	97	167		3.8	2.0	5.7	73	85	39	9.7	74462
	18	13.2	3.2	14.8	72	103	124	38.8	2.2	0.3	5.3	66	74	30	12.4	74463
	20	9.3	3.4	14.8	77	105	116	30.7	3.2	2.5	5.0	68	79	32	11.5	74464
	22	8.4	2.4	14.3	69	94	97		3.6	1.8	5.8	0	11	48	10.0	74465
	24	6.5	1.3	13.3	59	80	103	20.5	2.9	1.5	5.1	6	15	26	10.0	74466
	26	7.1	0.9	13.5	43	65	114	23.9	3.1	0.0	4.0	0	7	40	11.5	74467
	28	5.7	1.3	13.8	41	62	92		2.0	0.0	4.5	8	14	35	10.1	74468
	30	4.4	2.3	13.3	45	65	98	22.6	1.0	0.6	5.4	0	7	42	11.4	74469
	32	4.4	1.9	13.0	53	73	81	24.6	1.6	0.6	5.8	0	8	50	11.4	74470
	34	4.3	2.1	13.5	49	69	78		1.0	1.4	5.4	11	19	46	11.3	74471
	36	5.5	2.5	12.9	61	82	91		2.0	1.3	5.7	14	23	59	10.5	74472
	38	4.2	2.4	15.6	65	87	148		1.3	1.1	6.1	3	11	49	11.5	74473
	40	4.3	1.7	14.0	68	88	59		1.7	1.5	6.4	32	42	25	10.3	74474
	42	5.2	1.6	14.3	50	71	30		0.7	2.6	6.6	23	33	2	11.0	74475
	44	4.9	2.3	14.2	58	79	62		1.6	1.8	5.8	16	26	9	10.2	74476
	46	3.3	2.9	14.0	82	102	10	24.7	1.0	0.5	5.3	20	27	7	10.3	74477
	48	4.2	1.4	16.3	76	98	41	30.8	1.0	0.3	8.9	29	39	11	13.6	74478
	50	3.6	1.5	16.1	60	81	38	24.4	0.5	0.0	6.1	15	22	15	13.9	74479

Core	Depth	CrwA	Cr _{HA}	Cr _{HHA}	Cr _R	Cr _{sum}	Cr _T	Cr _{ORG}	Pbwa	Pb _{HA}	Pb _{HHA}	Pb_R	Pb _{sum}		Pb_{ORG}	ID
										μgg^{-1}	μ gg $^{-1}$	μgg^{-1}	μ gg $^{-1}$	μgg ¯	1 μgg^{-1}	
13	0	0.1	2.0	4.7	73	80	84	32.9	50.5		97.8	91	243		108.5	74480
	1	2.3	0.7	6.4	75	85	77	31.7	56.4		104.3	76	245	306	78.6	74481
	2	1.1	2.2	6.8	68	78	85	32.9	46.7		116.6	94	268	340	57.3	74482
	3	0.2	1.5	7.6	51	61	71	34.8	52.7		124.0	62	256	334	54.3	74483
	5	2.7	0.3	5.6	61	69	63	40.3	58.3	16.8	110.2	55	241	334	58.7	74484
14	0	3.2	1.2	4.4	66	75	79	6.8	4.6	0.9	13.1	0	19	8	19.4	74401
	2	5.7	0.9	4.3	47	58	104	1.3	7.1	1.3	7.4	0	16	0	10.9	74402
	4	5.0	1.2	3.8	52	62	71	3.0	2.3	2.1	7.3	0	12	2	15.7	74403
	6	4.5	2.4	5.3	79	91	73	5.5	1.4	4.6	8.2	0	14	0	16.6	74404
	8	3.6	2.6	5.2	69	80	94	7.4	4.7	5.1	15.8	0	26	0	15.3	74405
	10	5.0	1.0	4.6	26	36	10	6.0	0.2	2.3	4.1	0	7	31	19.8	74406
	12	6.3	1.4	6.4	21	35	6	5.7	2.5	4.6	4.7	0	12	29	20.5	74407
	14	5.7	1.5	5.0	21	33	0	7.3	8.6	6.9	2.2	0	18	33	16.4	74408
	16	6.3	2.2	4.0	25	37	0	5.7	8.6	3.5	9.8	0	22	28	14.4	74409
	18	1.6	0.7	4.1	28	34	19	7.4	6.7	5.3	12.7	0	25	28	25.3	74410
	20	2.5	0.9	5.3	17	25	9	7.5	6.4	2.8	8.8	0	18	7	15.6	74411
	22	2.6	0.8	4.4	32	40	0	6.4	5.4	3.5	6.3	0	15	20	11.6	74412
	24	1.8	1.1	3.7	34	41	24	9.2	5.6	2.9	15.2	0	24	34	23.4	74413
	26	1.7	0.3	1.6	19	23	6	5.3	7.0	5.8	29.8	9	52	93	84.0	74414 74415
	28	2.4	1.0	2.6	63	69	47	9.6	1.2	1.8	20.1	13	36	64	48.8 39.3	74415
	30	3.3	1.0	1.5	20	26	21	4.7	2.7	2.4	17.4	0	23 10	125 33	19.5	74417
	32	3.8	1.9	2.9	6	14	0	6.2	2.5 1.3	0.2	7.4 3.7	0	5	93	13.7	74417
	34	3.1	1.7	2.4	10	17	25	7.9	1.0	1.6	4.3	0	7	15	18.0	74419
	36 70	0.0	1.8	2.5	50	55 / 4	18	9.0 8.0	1.1	0.6	0.3	0	2	0	11.9	74420
	38	0.0	0.3	2.1 4.1	44 73	46 77	0 13	7.0	0.0	2.9	3.7	79	85	25	15.0	74421
	40 42	0.0	0.0 2.5	3.0	40	45	14	10.0	0.3	1.6	0.0	Ó	2	32	15.7	74422
	44	0.0	1.3	5.4	67	73	30	12.0	0.6	1.5	0.2	0	2	15	15.4	74423
	46	0.0	2.1	3.7	52	58	30	13.0	2.5	1.2	0.0	9	13	0	0.0	74424
																~
16	0	2.1	2.3	7.7	28	40	118	32.9	73.6	20.1	81.6	9	185	341	91.4	74425
	2	0.4	2.4	7.5	72	83	102	29.6	26.8	10.4	62.4	104	204	273	93.2	74426
	4	0.5	2.2	8.3	80	91	125	28.5	54.8	20.9	58.7	54	189	270	87.2	74427
	6	1.7	1.5	5.3	68	77	151	14.3	84.0		102.0	62	286		106.0	74428
	8	0.8	1.0	4.8	64	71	106	15.2	72.8	25.6	55.6	43	197		104.2	74429
	10	0.3	1.6	6.3	76	85	89	14.7			39.3	32	123		74.5	74430
	12	0.0	0.6	8.3	92	101	86	17.0	33.1	11.7		36	118	171	71.9	74431 74432
	14	0.0	2.3	7.9	82	92	109	20.0	15.7	5.5	22.0	20	63 40	73 75	46.3 31.8	74432
	16	0.0	2.0	9.1	37	49	30 / E	20.0	11.2	4.1	14.3 11.0	11 7	40 28	35 16	20.8	74433 74434
	18	0.0	1.6	4.0	59 20	64	45 70	18.0	10.2	0.5 2.3	8.1	12	20 29	7		74434
	20	0.0	2.6	2.8	20	25 70	38 41	15.0	6.9 5 1			9	22	8	7.9	74436
	22	0.0	2.3	3.8	33	39 40	61 05	17.0 19.0	5.1 2.8	1.1	6.3 8.4	13	25	0	22.2	74437
	24	0.0	1.7	6.2	42 51	49 54	95 00	18.0	1.4	0.0		19	27	24	18.6	74438
	26	0.0	0.2	3.6	51 33	54 39	99 92	18.0	0.2	0.0		1	11	15	20.8	74439
	28	0.0	1.3	4.6	33 22	26	92 49	16.0	0.0	0.0		5	11	13		74440
	30	0.0	0.0	4.8	22	20	47	10.0	0.0	0.0	ر. ر	,	"	1.5	10.0	

Core	Depth	CrwA	Cr _{HA}	Cr _{HHA}	Cr _R	Cr _{sum}	Cr _T	Cr _{ORG}	Pb_{WA}	Pb_{HA}	Pb_{HHA}		Pb_{SUM}	Pb_T	Pb_{ORG}	ID
	cm			μ gg $^{-1}$			μgg^{-1}	μgg^{-1}	μgg^{-1}	μgg^{-1}	μ gg $^{-1}$	μgg ⁻¹	μgg ¹	μgg ⁻	¹ μgg ⁻¹	
16	32	0.0	1.7	3.3	0	5	76	13.0	0.0	0.0	3.6	3	6	13	9.0	74441
	34	8.0	1.2	3.9	73	79	73	12.2	0.0	0.0	4.9	6	11	0	11.0	74442
	36	0.6	0.3	4.1	41	46	68	15.4	0.0	0.0	6.1	4	10	15	12.0	74443
	38	0.0	2.0	2.0	69	73	65	19.0	0.0	0.0	2.5	3	6	0	11.0	74444
	40	0.0	2.6	2.9	45	50	79	20.0	0.0	0.0	1.5	4	5	16	5.0	74445
	42	2.4	1.6	4.3	57	65	59	3.6	0.7	1.4	2.2	0	4	0	4.3	74446
	44	1.7	0.0	4.9	79	86	79	7.3	1.0	0.0	1.2	0	2	13	6.0	74447
	46	0.0	0.0	1.8	51	53	42	7.0	2.2	1.0	0.0	0	3	9	2.8	74448
	48	0.0	0.6	3.4	73	77	69	8.0	0.0	0.0	0.0	3	3	31	5.0	74449
	50	2.0	1.4	3.3	42	49	60	5.0	0.0	0.0	0.0	0	0	0	6.0	74450
	52	5.0	0.0	4.4	64	74	66	31.0	1.8	0.0	3.7	0	6	0	7.2	74451
	54	5.5	0.0	3.3	69	78	66	13.5	0.5	0.0	4.2	0	5	0	6.5	74452
	56	7.1	0.6	4.9	80	92	109	14.9	3.2	0.0	5.5	0	9	0	4.8	74453
17	0	0.9	1.2	4.7	57	64	84	36.1	76.1	21.5	100.3	50	248	333	98.9	74485
	1	0.1	1.5	5.9	46	53	95	36.9	85.7	22.6	105.2	71	285	341	70.3	74486
	3	3.7	2.7	6.2	54	67	81	30.3	69.0	23.0	112.1	47	251	342	85.0	74487
	5	3.4	1.9	5.3	52	63	64	31.6	79.7	27.3	108.5	51	266	362	91.3	74488
	7	3.0	2.7	6.0	51	63	55	25.0	73.8	21.1	97.6	51	244	277	116.2	74489
													551	700	4/7.5	7//5/
18	0	6.9	1.2	6.0	73	87	85	21.1	51.5	16.4	93.5	63	224		147.5	74454
	2	7.6	8.0	5.7	82	96	91	17.4	31.0	9.3	66.4	105	212		104.0	74455
	4	7.6	1.0	5.2	66	79	66	12.4	29.4	8.0	55.3	78	171	364	87.6	74456
	6	6.9	0.2	6.0	66	79	59	8.1	24.7	6.9	40.1	25	97	144	56.3	74457
	8	9.1	0.0	6.2	67	83	61	10.9	32.9	11.0	57.0	39	140	173	89.1	74458
	10	9.8	0.0	4.9	68	82	99	19.2	42.9	12.3	58.0	7	120		100.1	74459
	12	0.3	1.1	4.9	74	80	72	12.7	54.0	20.3	76.4	14	165		243.0	74460
	14	1.0	0.3	3.9	55	60	53	11.0	29.4	13.6	40.8	19	103	104	70.6	74461 74462
	16	0.9	1.3	4.6	67	74	72	19.1	21.0	11.1	33.3	2	67 53	89	65.0	74462 74463
	18	1.2	1.9	4.4	59	67	. 54	20.8	14.7	8.9	23.0	5	52 41	64 41	54.3 40.8	74464
	20	2.8	0.4	4.6	70 70	78 00	32	17.2	15.2 8.1	7.4 5.8	18.7 13.5	0 0	27	19	26.9	74465
	22	2.3	3.8	4.4	79	90	83 57	14.7 18.0	2.3	5.0	8.2	19	34	21	22.7	74466
	24	0.0	3.8	3.5	60 7/	68 87	57 77	17.7	2.1	4.8	7.4	7	22	13	19.9	74467
	26	1.3	5.0	3.6 3.1	74 66	84 74	53	15.0	1.9	4.9	0.1	0	7	12	11.1	74468
	28	1.0	4.4	5.2	72	80	56	18.0	3.5	0.0	4.7	0	8	14	7.5	74469
	30	3.0	0.0 0.1	4.3	63	70	53	22.2	0.0	0.0	6.3	0	6	0	13.0	74470
	32	1.8		4.0	62	69	74	16.5		0.1	5.4	0	7	0		74471
	34	2.5	0.0	4.9	59	65	74	18.3	0.5	0.3		0	6	0	7.5	74472
	36	1.7	0.0	4.7	44	49	90	19.3	1.6	0.0	3.5	0	5	0	6.4	74473
	38	0.7	0.0	4.7	65	49 69	86	22.0	0.5	0.4	0.0	0	1	0	6.5	74474
	40 43	0.0		4.2 5.7	61	67	61	19.2	1.3	0.0	0.0	20	22	12	4.7	74475
	42	0.8 0.7	0.0	5.0	63	69	68	22.3	1.1	0.0	7.6	16	25	0	3.9	74476
	44	0.7	0.0	4.2	51	55	56	18.0	0.0	0.2		31	38	0	5.0	74477
	46 48	0.0	0.1	2.3	66	68	77	22.0	1.1	0.0		1	4	0	5.9	74478
	48 50	0.0	0.7	4.1	65	69	82	23.0	0.0	0.0		7	10	0		74479
	טכ	0.0	0.7	7.1	ر ن	0,	OL.		5.5	3.0		•		•		

Core	Depth	SiR	Si _T	Al_R	Αlτ	Mg _R	Mg _⊤	K _R	K _T	Li _T	\mathbf{Cd}_{T}	Hg _⊤ R	esidue	CaCO ₃	Corg	Water	ID
	cm	%	%	%	%	%	%	%	%	%	μ gg $^{-1}$	μgg^{-1}	mg	%	%	%	
13	0	15.51	21.08	3.67	5.16	0.01	0.92	2.64	7.67	62	0.73	1.40	759	4.33	5.48	72.7	74480
	1	15.02	18.64	4.36	5.17	0.03	0.96	3.04	2.96	62	0.67	1.19	753	4.17	5.13	74.4	74481
	2	14.79	17.95	3.85	5.18	0.00	0.95	3.05	2.35	59	0.64	1.52	714	2.00	5.34	77.7	74482
	3	17.74	16.10	3.76	4.96	0.01	0.91		3.18	65	0.59	1.77	692	3.00	5.44	79.2	74483
	5	17.64	18.65	4.75	4.86	0.04	0.97	2.48	2.71	68	0.62	1.72	768	1.50	5.42	77.9	74484
14	0	22.30	31.85	3.19	6.03	0.00	0.73	2 24	2.33	35	0.16	2.76	914	0.42	1.40	59.2	74401
14	2	25.28	34.50	3.38	5.33	0.00	0.56	2.18	2.94	31	0.10	1.26	925	0.25	1.06	42.2	74402
	4	16.30	34.30	3.25	5.86	0.00	0.56	2.17	2.70	34	0.08	1.46	931	0.17	0.97	35.3	74403
	6	19.07	33.83	3.09	5.64	0.00	0.60	2.40	2.39	36	0.15	1.63	914	0.00	1.29	39.5	74404
	8	21.63	34.06	3.01	5.71	0.00	0.66	2.32	2.71	37	0.17	2.44	908	0.25	1.28	38.6	74405
	10	17.17	32.72	3.65	5.92	0.01	0.59	3.22	2.99	40	0.13	2.32	798	0.83	1.35	38.2	74406
	12	21.54	33.18	4.16	5.75	0.02	0.60	2.63	2.74	42	0.10	2.56	911	2.50	1.35	37.9	74407
	14	19.50	33.13	3.43	5.72	0.01	0.54	2.53	2.95	38	0.06	1.84	923	0.00	1.30	34.0	74408
	16	16.89	36.09		5.34	0.01	0.47	2.75	2.36	34	0.02	2.52	912	0.00	1.19	33.2	74409
	18	21.01	36.26	3.14	5.32	0.01	0.42	2.00	2.71	32	0.05	1.50	936	1.25	1.11	33.4	74410
	20	15.37	35.91	3.44	6.81	0.01	0.68	2.35	2.58	42	0.07	1.89	929	0.00	0.97	32.3	74411
	22	17.19	36.08	3.27	5.75	0.01	0.50	2.73	2.62	39	0.06	1.60	927	0.33	1.30	37.6	74412
	24	16.57	34.93	3.12	5.26	0.01	0.44	2.83	2.49	39	0.05	1.31	919	0.00	1.09	36.2	74413
	26	19.00	36.55	2.59	4.74	0.00	0.23	2.51	2.91	27	0.02	1.07	926	0.00	1.99	37.1	74414
	28	19.99	34.45	3.47	3.98	0.03	0.28	1.70	3.39	32	0.04	2.23	920	1.25	1.65	40.4	74415
	30	21.47	34.65	3.50	3.98	0.02	0.26	1.87	3.11	32	0.01	4.66	914	5.33	4.83	37.6	74416
	32	22.01	37.85	3.33	4.84	0.02	0.20	1.72	3.86	30	0.01	0.10	941	0.75	1.11	36.7	74417
	34	22.12	34.46	3.42	3.79	0.02	0.22	1.73	3.35	30	0.01	0.56	928	0.00	0.69	29.0	74418
	36	20.34	35.10	3.53	4.79	0.04	0.23	1.75	3.24	22	0.03	2.38	917	1.83	0.77	30.7	74419
	38	20.97	34.59	2.96	3.93	0.03	0.15	1.69	3.51	22	0.07	1.34	915	1.25	0.59	27.6	74420
	40	16.60	33. 57	5.31	4.48	0.07	0.11	1.36	2.94	25	0.09	0.64	915	1.50	0.76	29.9	74421
	42	18.51	34.14	3.24	4.85	0.04	0.22	1.75	3.42	27	0.10	1.50	922	0.00	1.14	32.0	74422
	44	16.51	33.54	3.11	5.02	0.03	0.29	1.77	3.70	28	0.04	1.76	925	0.42	1.15	33.0	74423
	46	21.87	34.68	3.81	4.60	0.02	0.27	1.66	3.50	38	0.06	1.58	914	0.75	1.19	33.9	74424
16	0	21.01	26.78	3.42	7.79	0.03	0.99	1.61	3.39	66	1.01	1.40	856	2.42	5.78	68.2	74425
	2	16.79	25.50	4.90	7.20	0.04	0.83	1.65	3.73	56	0.87	1.15	796	1.67	5.43	71.4	74426
	4	16.89	23.05	4.93	6.82	0.06	0.80	1.35	4.31	66	0.61	1.58	809	0.00	4.61	64.3	74427
	6	13.59	22.63	4.69	7.52	0.06	1.01	1.20	4.23	52	0.35	1.97	717	3.50	5.83	75.0	74428
	8	11.45	22.95	4.05	7.69	0.04	1.07	1.30	3.04	52	0.31	1.51	605	0.17	5.82	72.7	74429
	10	13.58	24.66	4.48	6.86	0.05	0.94		3.21		0.20	0.86	689		3.81	61.3	74430
	12	14.79	24.25	5.31	7.48	0.05					0.18		785		4.91		74431
	14	11.41	23.63	4.71	7.73	0.06					0.21					69.6	74432
	16	8.95			9.53	0.03	1.17			59	0.20		764		4.30	71.8	74433
	18	15.88	22.57	4.55			1.21	1.25			0.20	0.19	732		4.30	72.5	74434
	20	11.44	22.98		8.55		1.22	1.36				0.20	637		4.42	71.4	74435
	22	12.11	23.13	3.86	8.80		1.25	1.09							4.27	73.9	74436
	24	13.61	23.96			0.04		1.36				0.22			4.32	73.1	74437
	26	16.30			9.04	0.03	1.36				0.14	0.15	843		4.20	71.1	74438
	28	13.93		4.45	7.97	0.03	1.03				0.16				4.32		74439
	30	11.71	23.66	3.78	9.76	0.03	1.22	1.16	3.72	45	0.15	0.09	6/3	2.75	4.26	71.5	74440

Core	Depth	Sia	Si _T	Αl _R	Al	Mg _R	Mg _T	K _R	K_T	Li _T	Cd_{T}	Hg _⊤ R	es i du	CaCO	Corg	Water	ID
	cm	%	%	%	%	%	%	%	%	%	μgg^{-1}	μgg^{-1}	mg	%	%	%	
16	32	7.71	22.36	2.99	8.77	0.02	1.22	1.03	2.94	36	0.11	0.13	537	1.83	4.25	71.4	74441
	34	11.46	23.54	3.62	8.15	0.00	1.21	1.99	3.23	51	0.13	0.07	639	1.83	4.25	71.2	74442
	36	14.61	26.25	4.07	8.15	0.01	1.26	2.38	3.85	52	0.16	0.04	698	3.33	4.30	70.8	74443
	38	15.14	27.00	4.10	8.29	0.01	1.28	2.42	2.66	48	0.13	0.04	666	3.33	4.36	70.3	74444
	40	13.79	26.91	3.72	8.22	0.01	1.25	2.49	3.46	53	0.14	0.02	657	3.33	4.29	70.6	74445
	42	13.21	27.81	3.75	8.41	0.01	1.33	2.51	3.81	45	0.18	0.03	648	3.00	4.40	70.8	74446
	44	15.65	26.73	4.58	7.91	0.00	1.37	2.95	3.30	59	0.18	0.05	834	3.67	4.42	70.9	74447
	46	10.73	25.92	3.50	7.58	0.01	1.21	2.10	3.54	48	0.15	0.02	628	3.83	4.38	71.3	74448
	48	11.92	27.42	3.68	8.00	0.01	1.35	2.21	3.35	48	0.11	0.03	658	2.67	4.44	70.9	74449
	50	13.48	26.33	3.79	7.72	0.01	1.33	2.15	3.77	46	0.11	0.05	668	3.17	4.38	71.3	74450
	52	9.12	24.15	4.29	6.19	0.07	1.44	1.81	2.08	49	0.05	0.02	714	3.33	4.35	71.3	74451
	54	12.54	24.65	4.63	6.17	0.07	1.52	1.70	2.11	52	0.09	0.02	715	2.83	4.38	70.4	74452
	56	14.44	24.88	5.04	6.39	0.09	1.45	1.89	2.14	54	0.04	0.02	806	3.00	4.34	69.6	74453
								- 4-				4 77	7/0	2 50	F 77	75 1	7//05
17	0	17.18	19.43	4.51	6.11	0.02	1.18			71	0.46	1.37	768	2.58	5.33	75.1	74485
	1	14.95	20.82	4.29	5.76	0.03	1.01	2.11	2.84	71	0.40	1.72	776 707	4.00	5.44	70.8	74486
	3	14.60	20.00	4.68	5.84	0.02	1.05	2.74	3.10	71	0.46	1.75	784	0.92	4.85	70.2	74487
	5	11.60	20.02	4.78	5.46	0.00	0.99	2.81	3.19	74	0.51	1.94	818	2.08	5.01 5.30	70.7	74488 74489
	7	15.36	24.33	4.69	5.28	0.00	1.36	2.87	3.23	69	0.48	1.46	867	3.25	5.30	72.4	14409
18	0	11.91	20.53	5.05	6.54	0.06	1.16	2.17	1.70	66	0.55	1.79	784	0.00	9.60	66.5	74454
	2	12.82	21.26	4.86	6.07	0.06	1.11	2.00	2.30	70	0.45	1.34	829	0.00	16.15	56.0	74455
	4	12.10	20.66	4.34	5.40	0.00	0.77	2.48	1.77	84	0.34	0.83	840	0.00	14.70	56.3	74456
	6	17.27	27.06	4.08	4.92	0.00	0.47	1.87	2.12	73	0.45	0.73	890	0.00	14.20	52.9	74457
	8	15.53	28.54	4.42	5.78	0.00	0.89	2.24	2.15	60	0.28	1.18	854	5.00	11.10	51.0	74458
	10	17.23	23.73	4.81	5.96	0.00	1.09	2.04	1.61	67	0.25	1.23	855	0.00	5.33	60.3	74459
	12	24.91	35.05	3.62	1.66	0.00	0.48	2.91	2.27	41	0.23	0.54	946	2.75	2.96	48.6	74460
	14	15.44	31.33	2.96	3.43	0.00	0.54	1.96	1.94	50	0.45	0.82	870	0.00	3.73	52.0	74461
	16	15.88	24.77	4.26	5.91	0.00	1.08	1.84	1.78	67	0.13	0.54	852	6.08	2.81	52.0	74462
	18	17.48	22.74	4.51	6.26	0.00	1.21	1.84	2.04	61	0.15	0.40	778	2.92	4.49	66.3	74463
	20	20.03	23.14	4.69	6.59	0.00	1.22	2.02	1.80	69	0.08	0.29	832	2.83	4.28	69.3	74464
	22	14.66	21.93	4.40	5.67	0.00	1.14	1.75	2.36	60	0.11	0.22	778	3.33	4.33	67.7	74465
	24	14.60	22.56	3.86	5.69	0.00	1.19	1.43	2.54	58	0.08	0.13	718	4.25	4.07	69.8	74466
	26	17.00	22.05	4.17	5.82	0.00	1.72	1.61	2.03	64	0.15	0.15	816	4.17	3.97	68.6	74467
	28	13.84	22.31	4.05	5.60	0.00	1.10	1.74	2.00	52	0.06	0.06	706	3.83	4.11	69.1	74468
	30	15.36	22.52	4.20	5.84	0.00	1.16	1.50	2.20	59	0.06	0.12	720	5.42	3.98	69.4	74469
	32	12.44	21.91	4.16	5.31	0.00	1.08	1.66	2.50	64	0.04	0.10	712		4.19	69.2	74470
	34	13.95	19.51	4.32	5.19	0.00	1.06	1.65	1.71	58	0.06	0.19	748	4.25	4.12	69.6	74471
	36	16.16	18.99	4.08	5.13	0.00			1.84		0.08	0.21	745		4.16		74472
	38	15.04	19.44	4.22	5.53	0.01		2.15			0.08		838		4.22		74473
	40	15.17	24.86	4.59	5.44		1.23				0.15	0.14	820	4.00	4.20		74474
	42	14.22	22.08	3.82	4.99	0.00	1.07		1.99		0.06	0.08	730	10.50			74475
	44	17.55	22.84	3.80	4.83	0.01	1.00		2.35		0.05	0.15	711	4.08		68.8	74476
	46	16.32	23.43	3.72	4.94	0.00		1.77			0.03	0.05	730		4.26	68.8	74477
	48	19.22		4.43	4.71	0.00		3.03			0.05	0.07			4.44		74478
	50	22.81	23.12	4.29	4.79	0.01	1.02	2.50	2.74	59	0.03	0.06	829	4.83	4.12	69.9	74479

Core	Depth	рН _{оw}	рН _{sed}	p€ _{pw}	NH +	S ²⁻	H ₂ S	SiO _{2PW}	SO ₄ -	Alk _{pw}	Fepw	Mn _{pw}	Na _{pw}	Mg _{pw}	K_{pw}	Ca _{pw}	ID
		-lg N		-lg M	mM	μ M	odor	μМ	mM	mN	μМ	μ M	mM	mM	mM	mM	
13	0	7.56	6.94	3.97	0.3	0.01	0	110	25	4.6	12.8	2.1	453	53.8	9.4	13.6	74480
13	1	7.51	6.84	1.25	0.1	0.01	0	83	26	3.8	7.1	1.7	456	60.4		15.5	74481
	2	7.84	7.05	0.69	0.2	0.01	1	97	26	4.9	8.6	1.2	355	59.4		13.9	74482
	3	7.62	7.26	0.08	0.1	0.01	1	83	25	3.8	6.6	2.1	453	60.5	10.0	15.2	74483
	5	7.73	7.23	-1.98	0.2	0.01	0	100	27	4.0	8.2	1.4	503	59.6	10.1	16.4	74484
14	0	7.00	6.32	1.71	0.4	0.01	0	355	23	4.8	66.0	5.3	468	45.5	10 6	10.5	74401
14	0 2	7.23	6.26	2.70	0.4	0.01	0	420	26	5.0	31.7	3.4	470	25.9		4.7	74402
	4	7.68	6.61	2.01	0.5	0.01	0	442	26	6.7	11.9	2.0	439	24.3		5.1	74403
	6	7.62	6.64	3.58	0.6	0.01	Ō	420	26	7.4	6.3	0.5	448	38.5	7.3	9.4	74404
	8	7.73	6.84	1.05	0.8	0.01	0	382	25	9.3	5.2	0.1	485	39.0		9.4	74405
	10	7.79	6.98	0.95	0.9	0.01	0	415	25	10.5	6.1	0.3	472	29.9	9.5	5.3	74406
	12	7.79	7.13	0.02	0.9	0.01	2	567	24	12.2	3.8	0.0	464	34.0	8.2	7.0	74407
	14	7.84	7.16	-0.02	1.1	0.01	2	589	21	15.2	3.9	0.6	448	22.4	8.0	3.9	74408
	16	7.84	7.18	-0.54	1.2	0.01	2	464	21	16.6	3.7	0.1	455	32.2	9.9	4.8	74409
	18	7.96	7.22	-0.29	1.3	0.01	2	644	19	17.5	11.9	2.0	493	36.6	12.4	6.9	74410
	20	8.01	7.23	-0.61	1.4	0.01	2	622	19	18.9	7.8	1.2	535	41.9	11.9	9.5	74411
	22	7.96	7.18	-0.35	1.4	0.14	2	698	20	20.9	7.4	1.5	519	39.7	9.7	9.1	74412
	24	7.90	7.31	-0.68	1.5	0.46	2	762	19	24.4	5.1	1.7	505	34.2		6.9	74413
	26	8.24	7.24	-0.85	1.8	0.01	2	635	19	25.2	5.8	1.0	535	30.8		7.1	74414
	28	8.01	7.20	-0.69	1.6	0.50	2	735	16	28.6	11.4	1.6	505	32.3		8.4	74415
	30	8.01	7.26	-1.03	1.7	0.01	2	753	15	28.8	16.3	1.3	511	33.3		8.8	74416
	32	7.96	7.21	-1.89	1.8	0.39	2	720	16	30.2	11.8	1.3	487	42.5			74417
	34	8.41	7.18	-1.59	1.8	0.18	2	545	17	30.8	11.9	1.3	528	45.5			74418
	36	8.13	7.18	-0.74	2.0	0.01	2	753	16	32.2			528	45.9			74419
	38	8.24	7.23	-0.85	2.1	0.07	2	698	9	32.2			515	44.3			74420
	40	8.07	7.22	-1.34	2.1	0.01	2	513	13	32.2			477	43.6			74421
	42	7.96	6.90	-1.42	1.9	0.01	2	742		32.4			496	31.5			74422
	44	8.01	7.09	-1.49	1.9	0.32	2	753	12	34.4	22.3	0.7	415	44.3			74423
	46	8.07	7.21	-1.01	2.0	0.18	2	731	12	34.2	,22.9	0.4	487	45.3	9.6	11.8	74424
16	0	7.68	6.98	2.47	0.4	0.01	0	221	25	7.5	15.3	1.8	520	50.4			74425
	2	7.56	7.17	1.42	0.3	0.01	0	288	26	7.1	27.2	2.0	487	54.3			74426
	4	7.84	7.24	1.06	0.6	0.25	2	292	23	12.6	14.5	0.7	499	52.6			74427
	6	8.18	7.35	-0.59	0.7	0.01	2	284	23	13.0	18.1	1.3	502	35.4			74428
	8	8.01	7.34	-0.98	0.7	0.14	2	320	22	14.2	6.7	0.8	530	55.5			74429
	10	8.07	7.29	-1.10	0.8	0.39	2	336	19	21.0	7.6	0.8	488	52.8	7.9	10.5	74430
	12	8.07	7.41	-1.37	1.0	0.32	2	372	6	26.9	1.7	0.8	522	50.6			74431
	14	8.13	7.43	-1.32	1.2	0.16	2	360	1	32.8	5.6	0.9	496	51.1			74432
	16	8.13	7.51	-1.86	0.9	0.29	2	392	0	40.1	8.8	1.6	451	41.7			74433
	18	8.13	7.42	-1.32	0.9	0.39	2	486	0	44.9	2.7	1.0	479	43.2			74434
	20	8.18	7.40	-2.18	1.2	0.27	2	712	0	46.4	3.5	1.2	451	44.9			74435
	22		7.45	-1.05	1.3	0.32	2	760	0	46.4	5.0	1.0	477	48.1			74436
	24	8.13	7.42	-1.49	1.8	0.04	2	670	0	44.2	13.5	1.1	478	44.2			74437
	26		7.49	-1.37	1.6	0.32	2	780	0	47.3	10.0	0.9	454	47.2			74438
	28			-1.83	2.0	0.14	2	710	0	47.1	8.2	0.4	471 445	38.4			74439 74440
	30	8.24	7.55	-1.77	2.1	0.14	2	760	0	49.5	9.5	0.4	465	49.5	y.4	9.7	74440

Core	Depth	рН _{рw}	pH _{sed}	$p\epsilon_{pw}$	NH +	S ²⁻	H ₂ S	SiO _{2PW}	SO ₄ -	Alk _{pw}	, Fe _{pw}	Mnpw	Na _{pw}	Mg _{pw}	K _{pw} (Ca _{pw}	ID
		-lg N		-lg M	mM	μМ	odor	μ M	mM	mN	μΜ	μМ	mM	mM	mM	mΜ	
							_							-4 -	7.4.4	~ 4	7///4
16	32		7.52	-1.86	1.9	0.29	2	810	0	52.0	7.4	0.6	553	51.3	7.1 1		74441
	34	8.18	7.56	-1.55	2.1	0.11	2	710	0	52.0	8.1	0.7	486	44.5		8.8	74442
	36		7.58	-1.84	2.3	0.21	2	670	0	54.0	8.4	0.6	518	50.0	9.1 1		74443
	38	8.01	7.53	-1.83	2.5	0.25	2	780	0	55.4	5.6	0.3	538	52.0	9.2 1		74444 74445
	40	8.07	7.61	-1.47	2.7	0.01	2	760	0	55.8	8.2	1.0	461		8.6 1		74445 74446
	42	8.07	7.69	-1.89	3.0	0.01	2	780	0	56.4	13.1	1.6	504		11.4		
	44	8.07	7.60	-1.64	3.3	0.01	2	760	0	58.4	12.0	0.9	547		11.1 1		74447 74448
	46	8.18	7.61	-1.61	3.6	0.01	2	900	0	60.6	9.0	0.8	442	35.9			74449
	48	8.18	7.59	-1.35	3.9	0.01	2	850	0	60.4	9.2	0.6	527		10.6 1		
	50	8.13	7.58	-0.90	4.2	0.01	2	670	0	61.8	13.8	0.5	541		11.7 1		74450
	52	8.01	7.70	-0.81	4.5	0.01	2	760	0	64.8	16.6	2.4	479		8.6		74451
	54	8.07	7.57	-0.52	4.7	0.01	2	780	0	67.3	12.0	1.1	438	55.2		9.5	74452
	56	8.07	7.55	-0.64	5.0	0.01	2	760	0	66.5	10.5	1.2	445	51.0	8.8	7.9	74453
17	0	7.39	6.48	2.06	0.2	0.01	1	90	26	4.3	11.6	1.7	348	53.4	9.0 1	2.8	74485
	1	7.34	6.98	0.07	0.2	0.01	1	83	26	4.4	11.7	2.6	390	56.7	7.1 1	3.8	74486
	3	7.39	6.96	0.79	0.2	0.01	1	100	26	4.4	14.5	2.0	457	56.6	8.4 1	2.5	74487
	5	7.51	6.92	0.34	0.3	0.01	0	110	26	4.3	16.0	2.4	321	53.1	8.5 1	1.0	74488
	7	7.51	7.11	-0.44	0.2	0.01	0	90	26	4.4	13.3	2.9	440	53.6	8.7 1	2.2	74489
10		7 20	4 00	2 45	0.0	0.01	0	150	27	3.6	77.3	3.0	495	53 1	9.2 1	2.3	74454
18	0	7.20	6.98 7.01	2.65 0.91	0.0	0.01	0	150	27	2.9	66.8	2.9	465		10.3 1		74455
	2	7.11				0.01	0	140	27	2.9	68.5	3.3	426		9.3 1		74456
	4	7.11	7.00	-0.25	0.0 0.0	0.01	0	180	27		104.0	3.4	366		10.3 1		74457
	6	7.17	7.13	0.19		0.01	0	150	27		100.5	3.9	483		10.1 1		74458
	8	7.23	6.98 6.97	-1.12	0.0 0.0	0.01	0	120	27	2.9	78.4	4.6	397		8.9 1		74459
	10	7.17		0.12		0.01	0	190	26	3.7	45.6	6.7	493		10.3 1		74460
	12	7.23	6.89	1.12	0.1 0.3	0.01	0	270	24	6.5	10.8	6.6	496		9.6 1		74461
	14	7.62	6.82	0.07	0.6	0.01	1	340	23	10.7	7.9	5.0	508		9.5 1		74462
	16	7.79	7.02	0.29		0.01	1	350	22	10.8	6.0	4.4	427	46.0	8.6 1		74463
	18	7.84	7.19 7.38	0.57	0.7 0.8	0.01	2	490	20	17.3	5.9	2.1	472	51.7			74464
	20	7.90		-0.20		0.01	2	570	16	23.1	8.8	1.3	371	54.6	8.6 1		74465
	22	8.07	7.35	-0.83	1.1	0.01	2	680	13	29.0	8.7	0.0	377		8.8 1		74466
	24	8.01	7.44	-1.39	1.2	0.01	2	740	5	35.2	8.6	0.1	332	53.4	9.2 1		74467
	26	8.13 8.13	7.45	-0.25	1.6	0.01	2	770	5	39.8	12.6	0.5	408	51.7			74468
	28		7.49	-1.34	1.6		2	770 790	2	41.8	9.2	0.9	384	50.3	8.9 1		74469
	30	8.07	7.53	-1.66	1.6	0.01	2	900	0	46.4	7.1	0.7	465		7.7 1		74470
	32	8.13	7.60	-2.03	1.7	0.01	_		_			0.3	355		10.5 1		74471
	34	8.13	7.60	-1.96	1.9	0.01	2	790	0	45.1	12.0				10.0 1		74472
	36	8.13	7.45	-1.89	2.0	0.01	2	840	0	46.8	8.8	0.4	361		7.9 1		74473
	38	8.07	7.57	-1.89	2.3	0.01	2	820	0	47.5	12.0	0.4	351				
	40	8.13	7.51	-1.64	2.4	0.01	2	840	0	48.4	8.7	0.0	496		9.4 1		74474 74475
	42	8.18	7.54	-1.34	2.6	0.01	2	770	0	49.4	7.5	0.4	379		8.9 1		74475 74476
	44	8.18	7.51	-1.59	2.7	0.01	2	790	0	50.0	6.4	0.0	336		8.6 1		74476 74477
	46	8.18	7.53	-1.57	2.7	0.01	2	900	0	53.2	6.2	0.4	481		9.3 1		74477
	48	8.29	7.60	-1.40	3.0	0.01	2	900	0	53.3	10.1	1.1	329		9.3		74478
	50	8.13	7.49	-1.12	3.2	0.01	2	820	0	53.8	9.7	0.2	413	22.8	8.0 1	11.5	74479

Core	Depth	Sand	Silt	Clay	Mud	Mean-	-grain-size	Kurt	Skew	ID
	cm	%	%	%	%	μ m	ph i	-osis	-ness	
13	0	0.46	62.84	36.70	99.54	5.60	7.48 ±1.58	2.43	0.07	74480
	1	0.14	58.71	41.15	99.86	4.74	7.72 ±1.52	2.41	0.10	74481
	2	0.15	56.50	43.35	99.85	4.61	7.76 ±1.54	2.41	0.01	74482
	3	0.49	62.99	36.52	99.51	5.52	7.50 ±1.53	2.54	0.08	74483
	5	1.05	60.20	38.75	98.95	5.34	7.55 ±1.56	2.54	-0.01	74484
14	0	0.95	72.07	26.98	99.05	8.26	6.92 ±1.82	2.45	0.58	74401
	2	3.02	79.68	17.30	96.98	12.34	6.34 ±1.67	2.93	0.78	74402
	4	1.67	79.81	18.53	98.33	10.90	6.52 ±1.67	2.97	0.81	74403
	6	5.32	81.65	13.03	94.68	15.73	5.99 ±1.64	3.20	0.90	74404
	8	0.16	67.76	32.09	99.84	7.04	7.15 ±1.74	2.16	0.31	74405
	10	0.41	76.45	23.14	99.59	9.04	6.79 ±1.67	2.55	0.49	74406
	12	0.47	77.48	22.05	99.53	9.29	6.75 ±1.63	2.62	0.59	74407
	14	0.28	77.14	22.58	99.72	8.67	6.85 ±1.56	2.70	0.62	74408
	16	0.69	78.40	20.92	99.31	9.62	6.70 ±1.59	2.73	0.61	74409
	18	0.27	73.26	26.47	99.73	7.44	7.07 ±1.58	2.57	0.49	74410
	20	2.98	79.34	17.67	97.02	12.01	6.38 ±1.64	2.73	0.62	74411
	22	2.22	83.51	14.28	97.78	13.05	6.26 ±1.54	3.17	0.80	74412
	24	1.06	83.40	15.54	98.94	12.60	6.31 ±1.54	3.11	0.85	74413
	26	1.36	84.38	14.25	98.64	14.48	6.11 ±1.56	3.36	1.02	74414
	28	2.17	85.73	12.09	97.83	15.63	6.00 ±1.50	3.66	1.07	74415
	30	0.93	85.90	13.17	99.07	14.08	6.15 ±1.50	3.51	1.01	74416
	32	3.66	83.17	13.18	96.34	16.86	5.89 ±1.62	3.48	1.09	74417
	34	3.86	89.34	6.80	96.14	21.64	5.53 ±1.33	5.62	1.57	74418
	36	1.86	89.99	8.16	98.14	19.10	5.71 ±1.35	5.18	1.49	74419
	38	2.23	91.23	6.54	97.77	20.19	5.63 ±1.26	6.34	1.69	74420
	40	3.30	87.66	9.04	96.70	17.95	5.80 ±1.41	4.55	1.28	74421
	42	5.50	83.55	10.95	94.50	19.10	5.71 ±1.58	4.05	1.27	74422
	44	1.26	82.99	15.75	98.74	13.42	6.22 ±1.61	3.23	0.97	74423
	46	1.64	82.30	16.05	98.36	11.84	6.40 ±1.56	3.12	0.77	74424
16	0	0.19	65.25	34.57	99.81	5.80	7.43 ±1.53	2.53	0.17	74425
	2	1.84	62.99	35.17	98.16	6.30	7.31 ±1.72	2.36	-0.03	74426
	4	1.90	58.71	39.39	98.10	6.17	7.34 ±1.86	2.02	-0.06	74427
	6	1.90	54.48	43.62	98.10	5.15	7.60 ±1.74	2.41	-0.27	74428
	8	4.46	67.36	28.17	95.54	8.73	6.84 ±1.86	2.09	0.09	74429
	10	3.46	66.69	29.85	96.54	7.76	7.01 ±1.78	2.27	0.01	74430
	12	1.55		40.27			7.44 ±1.80	2.22	-0.18	74431
	14	2.08	66.63	31.29	97.92	6.99	7.16 ±1.69	2.43	0.03	74432
	16	6.50	71.43	22.07	93.50	11.84	6.40 ±1.89	2.08	0.39	74433
	18	4.37	71.86	23.77	95.63	10.17		2.17	0.29	74434
	20	0.21	63.34	36.45	99.79	5.26	7.57 ±1.44	2.67	0.14	74435
	22	2.21	69.04	28.75	97.79	7.98	6.97 ±1.74	2.27	0.09	74436
	24	1.93	58.96	39.11	98.07	6.48	7.27 ±1.90	1.95	-0.08	74437
	26	0.73	52.28	46.98	99.27	4.46	7.81 ±1.60	2.61	-0.28	74438
	28	1.10	63.76	35.14	98.90	6.30	7.31 ±1.69	2.33	0.00	74439
	30	2.82	62.91	34.27	97.18	6.80	7.20 ±1.81	2.21	-0.05	74440
	30		0	5-11-7		-100	,			

Core	Depth	Sand	Silt	Clay	Mud	Mean-	grain-size	Kurt	Skew	ID
	cm	%	%	%	%	μ m	phi	-osis	-ness	
16	32	3.01	75.43	21.56	96.99	10.38	6.59 ±1.73	2.32	0.32	74441
	34	2.22	71.20	26.58	97.78	8.20	6.93 ±1.70	2.36	0.16	74442
	36	2.58	71.64	25.78	97.42	8.67	6.85 ±1.72	2.30	0.16	74443
	38	1.26	70.05	28.69	98.74	7.14	7.13 ±1.64	2.50	0.10	74444
	40	1.35	71.60	27.05	98.65	8.14	6.94 ±1.69	2.29	0.13	74445
	42	1.20	72.91	25.89	98.80	8.14	6.94 ±1.63	2.41	0.19	74446
	44	2.50	56.52	40.98	97.50	6.43	7.28 ±1.94	1.90	-0.15	74447
	46	0.51	62.14	37.36	99.49	5.15	7.60 ±1.43	2.81	0.07	74448
	48	0.18	57.97	41.84	99.82	4.55	7.78 ±1.38	2.73	0.09	74449
	50	2.09	71.07	26.84	97.91	7.98	6.97 ±1.66	2.42	0.12	74450
	52	1.51	71.09	27.40	98.49	7.65	7.03 ±1.62	2.47	0.11	74451
	54	0.17	64.18	35.65	99.83	5.49	7.51 ±1.46	2.63	0.12	74452
	56	0.15	61.99	37.86	99.85	5.26	7.57 ±1.49	2,53	0.09	74453
17	0	0.14	57.54	42.32	99.86	4.81	7.70 ±1.50	2.46	-0.01	74485
	1	0.75	62.55	36.69	99.25	5.52	7.50 ±1.53	2.54	0.08	74486
	3	0.85	54.66	44.49	99.15	4.91	7.67 ±1.65	2.37		74487
	5	0.45	59.79	39.75	99.55	5.23	7.58 ±1.57	2.46	-0.03	74488
	7	0.84	59.01	40.15	99.16	5.34	7.55 ±1.62	2.41	-0.10	74489
18	0	0.43	58.20	41.36	99.57	5.23	7.58 ±1.63	2.29	-0.06	74454
10	2	2.33	62.76	34.91	97.67	6.75	7.21 ±1.81	2.14	0.01	74455
	4	1.18	58.63	40.18	98.82	5.72	7.45 ±1.75	2.16	-0.07	74456
	6	0.79	58.27	40.94	99.21	5.41	7.53 ±1.72	2.19	-0.06	74457
	8	1.70	60.91	37.39	98.30	6.52	7.26 ±1.80	2.07	-0.05	74458
	10	0.76	55.51	43.74	99.24	4.98	7.65 ±1.69	2.31	-0.18	74459
	12	0.75	54.30	44.94	99.25	4.58	7.77 ±1.58	2.47	-0.16	74460
	14	0.49	49.98	49.53	99.51	4.16	7.91 ±1.59	2.48	-0.24	74461
	16	0.49	49.26	50.61	99.87	3.93	7.99 ±1.54	2.41	-0.17	74462
					99.86	4.33	7.85 ±1.47	2.58	-0.09	74463
	18	0.14	54.15	45.70		4.78	7.71 ±1.41	2.75	0.12	74464
	20	0.16	59.93	39.91	99.84	4.70	7.83 ±1.54	2.74	-0.21	74465
	22	0.55	53.29	46.16 48.14	99.45 99.86	4.16	7.03 ±1.54 7.91 ±1.51	2.69	-0.23	74466
	24	0.14	51.71			4.46	7.81 ±1.58	2.53	-0.12	74467
	26	0.51	53.62	45.88	99.49	4.40	7.01 ±1.30	2.55	-0.12	74468
	28		47.00	E4 00	00.07	7 (1	0 40 .4 //	2 52	0.1/	74469
	30	0.13	47.98	51.88	99.87	3.64	8.10 ±1.44			74469
	32	0.77	60.21	39.02	99.23	5.30	7.56 ±1.58	2.64	-0.12	
	34	0.86	67.17	31.98	99.14	5.96			0.14	74471
	36	1.25	74.09	24.66	98.75	7.70	7.02 ±1.53	2.77	0.24	74472
	38	1.10	66.71	32.19	98.90	6.22	7.33 ±1.62	2.61	0.12	74473
	40	0.77	66.29	32.94	99.23	6.05	7.37 ±1.56	2.61	0.09	74474
	42	0.02	72.13	27.85	99.98	6.75	7.21 ±1.46	2.69	0.32	74475
	44	0.17	72.55	27.28	99.83	6.85	7.19 ±1.46	2.76	0.32	74476
	46	1.27	67.47	31.26	98.73	6.17	7.34 ±1.48	2.86	0.09	74477
	48	0.45	70.24	29.30	99.55	7.04	7.15 ±1.60	2.50	0.10	74478
	50	2.55	73.98	23.47	97.45	8.67	6.85 ±1.63	2.54	0.20	74479

IRON (μg·g ⁻¹) (hydroxylamine leach)

IRON (μg·g⁻¹) (heated hydroxylamine leach)

IRON (μg·g ⁻¹) (total)

IRON (μg·g ⁻¹) (organically bound)

MANGANESE (μg·g ⁻¹) (weak acid leach)

MANGANESE (μg·g ⁻¹) (hydroxylamine leach)

MANGANESE (μg·g ⁻¹) (heated hydroxylamine leach)

$\begin{array}{c} \text{MANGANESE} \ (\mu g \cdot g^{-1}) \\ \text{(residual)} \end{array}$

$\begin{array}{c} \text{MANGANESE} \ (\mu g \cdot g^{-1}) \\ \text{(total)} \end{array}$

MANGANESE (μg·g ⁻¹) (organically bound)

Core 13 Core 17 McNab's Island (West) Bedford Basin (East Central) 200 400 600 800 1000 200 400 600 800 1000 Core 14 Core 16 Core 18 Bedford Basin Bedford Basin McNab's Island (West Central) (West) (East Central) 200 400 600 800 1000 0 10 10 20 30 30 40 40 50 L 50

CALCIUM (µg·g⁻¹) (weak acid leach)

CALCIUM (μg·g⁻¹) (hydroxylamine leach)

CALCIUM ($\mu g \cdot g^{-1}$) (heated hydroxylamine leach)

CALCIUM (µg·g⁻¹) (residual)

CALCIUM (μg·g⁻¹) (total)

COPPER (µg·g ⁻¹) (weak acid leach)

COPPER (μg·g ⁻¹) (hydroxylamine leach)

COPPER ($\mu g \cdot g^{-1}$) (heated hydroxylamine leach)

COPPER (μg·g ⁻¹) (residual)

COPPER (ppm) (total)

COPPER (µg·g -1) (organically bound)

ZINC (μg·g⁻¹) (weak acid leach)

ZINC (μg·g ⁻¹) (heated hydroxylamine leach)

ZINC (μg·g ⁻¹) (total)

ZINC (μg·g ⁻¹) (organically bound)

NICKEL (μg·g ⁻¹) (weak acid leach)

NICKEL (μg·g⁻¹) (hydroxylamine leach)

NICKEL ($\mu g \cdot g^{-1}$) (heated hydroxylamine leach)

NICKEL (μg·g ⁻¹) (residual)

60

50 Ł

50 Ł

NICKEL (μg·g ⁻¹) (total)

NICKEL (μg·g ⁻¹) (organically bound)

CHROMIUM (μg·g⁻¹) (weak acid leach)

CHROMIUM (μg·g⁻¹) (hydroxylamine leach)

50

60

50 **b**

50 L

CHROMIUM (μg·g ⁻¹) (heated hydroxylamine leach)

CHROMIUM (μg·g ⁻¹) (residual)

CHROMIUM (ppm) (total)

CHROMIUM (μg·g ⁻¹) (organically bound)

LEAD (μg·g ⁻¹) (weak acid leach)

LEAD (μg·g⁻¹) (hydroxylamine leach)

LEAD (μg·g⁻¹) (heated hydroxylamine leach)

LEAD (μg·g⁻¹) (residual)

60

LEAD (μg·g⁻¹) (total)

LEAD (μg·g⁻¹) (organically bound)

SILICON (%) (total)

ALUMINUM (%) (total)

MAGNESIUM (%) (total)

POTASSIUM (%) (total)

LITHIUM (ppm) (total)

CADMIUM (ppm) (total)

RESIDUE (mg)

CALCIUM CARBONATE (%)

ORGANIC CARBON (%)

WATER CONTENT (%)

pH (- $log [H^+]$)
(water)

pH (- log [H⁺]) (sediment)

pε (-log [e⁻])

AMMONIA (NH₄) (mM)

DISSOLVED SILICA (SiO $_2$) (pore water) (μ M)

SULFATE (SO₄) (pore water) (mM)

ALKALINITY (mN) (pore water)

IRON (µM) pore water

MANGANESE (μM) (pore water)

SODIUM (mM) (pore water)

MAGNESIUM (mM) (pore water)

POTASSIUM (mM) (pore water)

CALCIUM (mM) (pore water)

SILT (%)

CLAY (%)

MEAN GRAIN SIZE (μm)

SKEWNESS (dimensionless)

Core 17

Bedford Basin
(East Central)

ACKNOWLEDGEMENTS

The collection of the samples and analytical results published here required the cooperation and dedication of many of our colleagues at the Bedford Institute of Oceanography. We are very grateful for the efforts of R. Miller, G. Fader, A. Atkinson, D. Beaver and the captain and the crew of the CSS. Navicula. Most of the analytical determinations of mercury were performed by M. Gardiner and we thank her for assistance in other laboratory analyses. We thank J. Dalziel and K. Robertson for their critical review of this manuscript.

REFERENCES

- Berman, S.S. 1981. Marine sediment reference materials, trace metals and inorganic constituents; Geostandards Newsletter, 5: 218.
- Buckley, D.E., and R.E. Cranston. 1971. Atomic absorption analyses of 18 elements from a single decomposition of aluminosilicates. Chem. Geol., 7: 273-284.
- Buckley, D.E., B.T. Hargrave, and P. Mudroch. 1989. Geochemical data from analyses of surface sediments obtained from Halifax Inlet. Geological Survey of Canada, Open File Report No. 2042, 24 pp.
- Buckley, D.E., R.A. Fitzgerald, G.V. Winters, K.W.G. LeBlanc and R.E. Cranston. 1991. Geochemical data from analyses of sediment and pore waters obtained from cores collected in Halifax Inlet, M.V. Frederick Creed Cruise 90 and Hudson Cruise 89-039('90). Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, Canada (K1A 0E8), Open File Report 2410. 116 pp.
- Brandenberg, H., and H. Bader. 1967. The determination of

- nanogram levels of Hg in solution by flameless atomic absorption technique. Atomic Absorption Newsletter, 6: 101.
- Chester, R., and M.J. Hughes. 1967. A chemical technique for the separation of ferro-manganese minerals, carbonates minerals and adsorbed trace elements from pelagic sediment. Chem. Geol., 2: 249-262.
- Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr., 14: 454-458.
- Edmonds, J.M. 1970. High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration. Deep Sea Res. 17: 737-750.
- Fader, G.B.J., and R.O. Miller. 1991.Cruise report Navicula 1990-010, Halifax Harbour May 22 - June 8, 1990. Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, Canada (K1A 0E8), Open File Report, in press.
- Fitzgerald, R.A., G.V. Winters and D.E. Buckley. 1987. Evaluation of a sequential leach procedure for the determination of metal partitioning in deep sea sediments. Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, Canada (K1A 0E8), Open File Report 1701. 21 pp.
- LeBlanc, K.W.G., R.A. Fitzgerald, G.V. Winters, D.E. Buckley and R.E. Cranston. 1991. Geochemical data from analyses of sediment and pore waters obtained from cores collected in Halifax Inlet, F.R.V. Navicula Cruise 89-009. Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, Canada (K1A 0E8), Open File Report 2345. 116 pp.
- MacIntosh, M., J.D. Willey and C. Courneya. 1976. A compendium of the sampling and analytical techniques used by the Environmental Marine Geology Subdivision, Atlantic Geoscience Centre, Bedford Institute of Oceanography, Dartmouth, Nova

- Scotia. Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, Canada (K1A 0E8), Open File Report 397. 66 pp.
- Manheim, F.T., J.C. Hathaway, F.L. Flanigan and J.D. Fletcher. 1976. Marine mud MAG-1 from the Gulf of Maine; United States Geological Survey Professional Paper 840, 25-28.
- Mann, R., and J.M. Gieskes. 1975. Interstitial water studies, Leg 28. Unpublished report. *In* Hayes, D.E., and L.A. Frakes, et al., Init. Repts. DSDP, 28: Washington (U.S. Govt. Printing Office), 805-814.
- Solorzano, L. 1969. Determination of ammonia in natural waters by phenolhypochlorite method. Limnol. Oceanogr., 14: 799-801.
- Strickland J.D.H. and T.R. Parsons. 1968. A practical handbook of seawater analyses. Fisheries Research Board of Canada. 310 pp.
- Tessier, A., P. Campbell and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844-850.
- Whitfield, M. 1969. Eh as an operational parameter in estuarine studies. Limnol. Oceanogr. 14: 547-558.
- Winters, G.V., D.E. Buckley, R.A. Fitzgerald and K.W.G. LeBlanc. 1991. Inorganic geochemical data for surface sediment from Halifax Inlet. Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, Canada (K1A 0E8), Open File Report 2389. 64 pp.