COMMISSION GÉOLOGIQUE DU CANADA DOSSIER PUBLIC 1918

GÉOCHIMIE DES MINÉRAUX LOURDS, RÉGION DE L'ESTRIE-BEAUCE, QUÉBEC

(SNRC 21L/4, 5, 6, 7)

par

Yvon T. Maurice

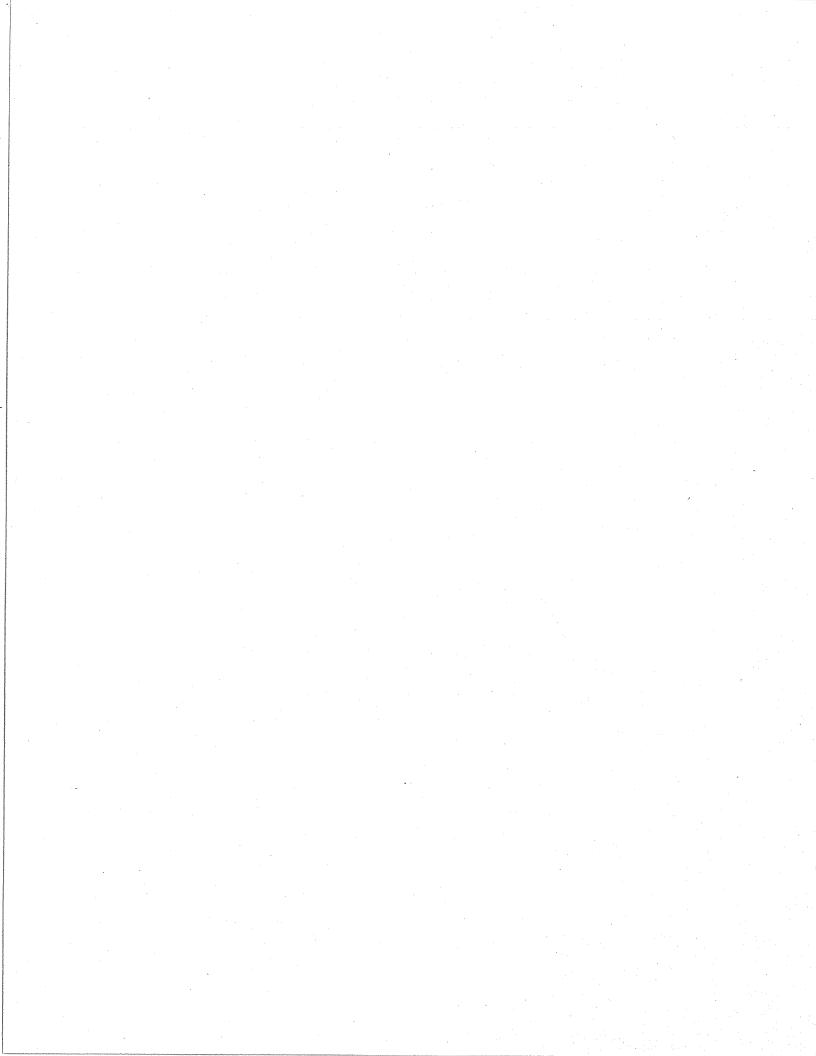
This document was produced by scanning the original publication.

Ce document a été produit par numérisation de la publication originale.

Canadä

1989

COMMISSION GÉOLOGIQUE DU CANADA DOSSIER PUBLIC 1918


GÉOCHIMIE DES MINÉRAUX LOURDS, RÉGION DE L'ESTRIE-BEAUCE, QUÉBEC

(SNRC 21L/4, 5, 6, 7)

par

Yvon T. Maurice

Ottawa 1989

TABLE DES MATIERES

Sommaire	
Summary	,

1)	Introd	uction	1
2)		des d'échantillonnage et d'analyse	1
3)	Résult	ats analytiques et statistiques	3
4)		ur la nomenclature géologique et géographique	4
5)	Interpr	étation des résultats	4
	5.1)	Aperçu général	4
	5.2)	Association Cr, Co, Ni t, Zn t	<u>7</u>
	5.3)	Distribution des éléments du groupe du platine (Pd, Pt, Ir)	8
	5.4)	Association Au, Ag	9
	5.5)	Association terres-rares, Ba, Sr, U, Th	<u>10</u>
	5.6)	Association Ti, Nb, Ta	12
	5.7)	Association Zr, Hf	<u>13</u>
	5.8)	Distribution de la magnétite	13
	5.9)	Association des éléments chalcophiles (S, Zn p, Ni p, Cu, Pb, As, Fe p)	<u>13</u>
	5.10)	Autres éléments: Mo, Sb, W, Hg, Sn	<u> 16</u>
6)	Remer	ciements	16
7)	Référe	nces	<u>17</u>

APPENDICES

Appendice A -	Répartition des numéros d'échantillons par coupure SNRC au 1/50 000
Appendice B -	Fiches de laboratoire
Appendice C -	Tableau des résultats analytiques (sauf pour Pd, Pt et Ir)
Appendice D -	Tableau des résultats analytiques de Pd, Pt et Ir
Appendice E -	Tableau statistique
Appendice F -	Histogrammes des valeurs analytiques
Appendice G -	Tableau des corrélations

ANNEXES

Cartes de distribution d'éléments (1/250 000)

Arsenic	Lanthane	Or	Strontium
Baryum	Magnétite	Palladium	Thorium
Chrome	Mercure	Plomb	Titane
Cuivre	Nickel (total)	Soufre	Zinc (partiel)

Carte de localisation des échantillons (1/250 000)

SOMMAIRE

On présente les résultats d'analyse et l'interprétation d'un levé géochimique des minéraux lourds effectué en 1987 sur une superficie d'environ 2750 km², recouvrant une partie de la bande des monts Sutton/Notre-Dame et les terrains adjacents entre Victoriaville et la municipalité de Lac Etchemin. Ce travail correspond à une extension vers le nord d'un levé semblable effectué en 1985.

Parmi les résultats les plus intéressants, on note une zone de valeurs fortement anomales en palladium le long d'une traînée de chrome qui semble émaner de la branche est du dyke de Pennington. Ces patrons sont orientés vers le nord et pourraient avoir été causés soit par un écoulement tardif de la glace dans cette direction ou encore par les eaux de fonte lors de la déglaciation.

Une série d'anomalies d'or a été localisée entre Thetford Mines et Plessisville dans la bande des monts Sutton/Notre-Dame. Plusieurs des sites anomaux sont situés dans des vallées remplies de graviers proglaciaires déposés par les eaux de fonte lors du dernier retrait des glaces; ce sont ces graviers qui semblent fournir l'or aux alluvions actuelles. La position des anomalies indique que les roches de la Formation de Tibbit Hill pourraient être la source de l'or dans cette région.

Les concentrés de minéraux lourds de la région de Plessisville sont caractérisés par des concentrations de terres-rares légères très élevées. Ces anomalies sont causées par de la monazite que l'on croit s'être formée par métamorphisme régional des schistes de la Formation de West Sutton du Groupe de Oak Hill. Cette monazite renferme des teneurs d'europium, de samarium et de gadolinium qui sont sensiblement plus élevées que celles que l'on retrouve dans la moyenne des monazites commerciales provenant de divers endroits dans le monde. Les anomalies de terres-rares sont accompagnés d'enrichissement en baryum, strontium, cuivre et molybdène.

Enfin, on retrouve quelques anomalies de nickel, d'arsenic, de plomb, de cuivre, de zinc et de mercure qui pourraient signaler la présence de minéralisations.

SUMMARY

This report presents results and interpretation of a heavy mineral geochemical survey, carried out in 1987 in a 2750 km² area between Victoriaville and the municipality of Lac Etchemin. The survey covers part of the Sutton/Notre-Dame belt and adjacent terrain and corresponds to the northern extension of a similar survey carried out in 1985.

The most interesting results include strong palladium anomalies along a weak northward-oriented chromium dispersal train that appear to originate from the east branch of the Pennington dyke. This pattern may be the result of late glacial northward moving ice or dispersal by meltwater during deglaciation.

Several gold anomalies were outlined between Thetford Mines and Plessisville within the Sutton/Notre-Dame belt. Many of the anomalous sites are located in valleys filled with proglacial gravels deposited by meltwater during the last glacial retreat. These gravels are believed to have supplied the gold to the recent alluvial deposits. The location of the anomalies suggests that the Tibbit Hill Formation may be a source of gold in this region.

The heavy mineral concentrates in the Plessisville area are characterized by elevated concentrations of the light rare earths. These anomalies are caused by monazite that is believed to have formed as a result of regional metamorphism of the West Sutton schists of the Oak Hill Group. This monazite contains significantly more europium, samarium and

gadolinium compared to the average commercial monazites from various parts of the world. The rare earth anomalies are accompanied by enhanced barium, strontium, copper and molybdenum.

Finally, there are several nickel, arsenic, lead, copper, zinc, and mercury anomalies that may signal the presence of mineralization.

1) INTRODUCTION

Ce rapport est le troisième d'une série sur la géochimie des minéraux lourds dans la région de l'Estrie-Beauce. Il se rapporte à un secteur d'environ 2750 km² localisé entre Victoriaville et la municipalité de Lac Etchemin. Il comprend la coupure SNRC (1:50 000) 21L/7 au complet et les parties de 21L/4, 5, et 6 situées à une altitude supérieure à 170 m (figure 1). Cette élévation correspond approximativement au niveau maximum atteint par les eaux de la mer de Champlain il y a environ 11 000 ans.

Les travaux sur le terrain se sont déroulés au cours de l'été 1987. Le territoire échantillonné est adjacent au nord à la région couverte en 1985, dont les résultats figurent dans le Dossier Public 1332 de la Commission géologique du Canada (Maurice, 1986a). Au sud-ouest de la région couverte en 1985 se trouve la région couverte en 1984; les résultats de cette campagne ont été publiés dans le Dossier Public 1145 (Maurice et Mercier, 1985a) (figure 1).

2) MÉTHODES D'ÉCHANTILLONNAGE ET D'ANALYSE

Au total, 273 échantillons sur autant de sites ont été prélevés dans les cours d'eau de la région, produisant une densité d'échantillonnage moyenne de un échantillon par 10 km². Les sites d'échantillonnage sont généralement choisis près des intersections des routes et des cours d'eau à faibles débits. L'échantillon est prélevé à plusieurs dizaines de mètres en amont de l'intersection afin d'éviter la contamination associée à l'emplacement de la route. À chaque site, on obtient d'abord un préconcentré de minéraux lourds en traitant environ 250 kg d'alluvions au moyen d'une drague à sluice portative. Cet appareil fonctionne par succion ce qui permet d'échantillonner les couches profondes de sédiments du lit des cours d'eau. On prépare ensuite, en laboratoire, les concentrés de minéraux lourds finals au moyen d'un séparateur à spirales. Le concentré produit est très pur; la majorité des grains se situe entre 100 et 400 µm et leur densité est ≥3,6 g/cm³. On retrouve très peu de minéraux légers dans le concentré, de sorte que, pour des analyses chimiques routinières, il est généralement inutile de le traiter davantage au moyen de tables à secousses ou de liquides lourds.

Les méthodes d'échantillonnage à la drague à sluice et de concentration au moyen du séparateur à spirales, ont été décrites en détails par Maurice et Mercier (1985a, 1985b et 1986) et on invite les intéressés à consulter ces textes pour plus d'informations. Pour les lecteurs non spécialistes, la procédure dans son ensemble, y compris un survol des méthodes d'interprétation des résultats, a été vulgarisée dans un texte par Maurice (1987).

Après avoir obtenu le concentré, on le tamise à 0,85 mm et on sépare la magnétite au moyen d'un aimant manuel. On divise ensuite la partie non-magnétique en deux portions, une destinée aux analyses chimiques et l'autre, aux études minéralogiques. On présente à l'appendice B, les fiches de laboratoire sur lesquelles sont inscrites pour chaque échantillon, la masse de la magnétite enlevée (MAGNÉTITE), les masses des deux portions non-magnétiques (RÉCIP. No 1 et No 2), la masse des grains retenus au tamisage (+0,85 mm) et, pour les concentrés qui excèdent la capacité des deux récipients 1 et 2 (environ 80 g chacun), la masse de la portion excédante (EXCES). On peut reconstituer la masse totale de minéraux lourds extraite à chaque site en additionnant ces fractions. La somme obtenue sera toutefois inférieure à la quantité réelle de minéraux lourds dans le volume d'alluvions traité à la drague à sluice à cause des pertes de minéraux lourds encourues, tant au niveau du prélèvement dans le cours d'eau qu'au niveau de la préparation des concentrés en laboratoire. Mercier et Maurice (1986) ont évalué l'importance de ces pertes qui varient en fonction de la granulométrie et de la minéralogie de la fraction lourde des alluvions.

Les fiches de laboratoire (appendice B) signalent également la présence de particules métalliques (pollutions) et d'or visible aperçues dans les concentrés durant leur préparation, et

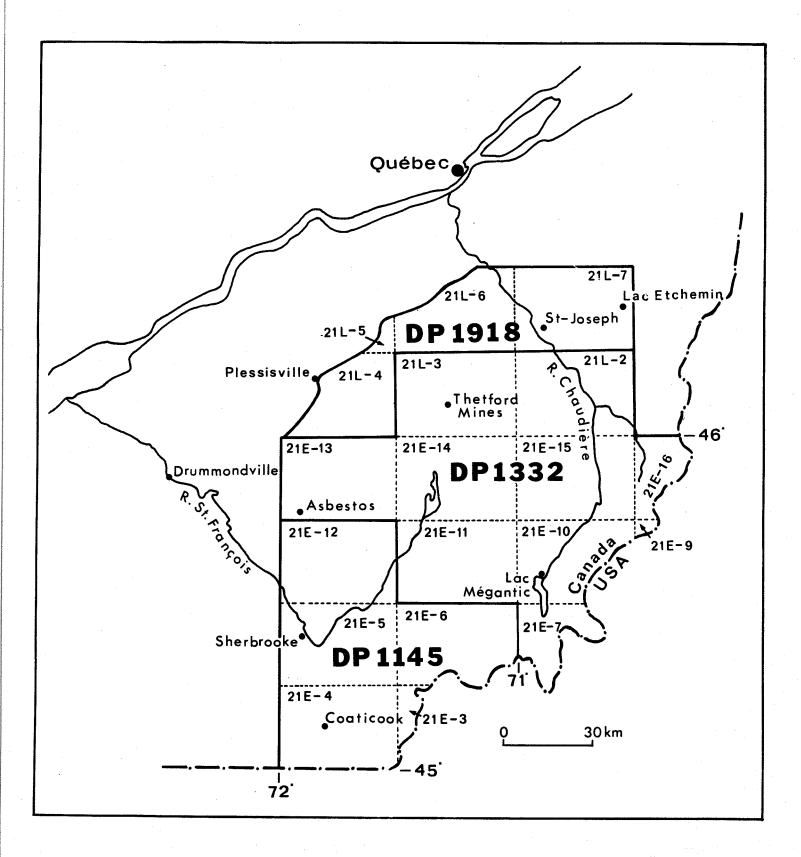


FIGURE 1 Carte générale de localisation

identifient les échantillons contrôles et les duplicata qui ont servi à vérifier la qualité des analyses.

La partie des concentrés destinée aux analyses chimiques (RÉCIP. No 1, appendice B) a été préparée pour l'analyse selon une méthode spécialement conçue pour l'analyse de l'or dans des échantillons qui contiennent de l'or grossier. La technique consiste à broyer l'échantillon au complet dans un broyeur rotatif à anneau et palet et à le tamiser à \pm 106 μ m (150 mailles du système Tyler). Environ 50% de la fraction fine (-106 μ m) est analysée directement pour l'or et une douzaine d'autres éléments par activation neutronique. La fraction grossière (+106 μ m) en entier, qui contient les particules d'or grossier aplaties, est traitée par pyroanalyse suivie d'un dosage par absorption atomique. Le résultat final est calculé à partir des teneurs en or des fractions fines et grossières redistribuées sur la masse totale de concentré initial.

Les autres éléments dosés par activation neutronique sont: Cr, Fe, Co, Ni, Zn, Mo, Sb, La, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Ir, Th, et U. Cette méthode d'analyse donne les concentrations totales de ces éléments dans les concentrés de minéraux lourds. Les résultats sont donc plus élevés que ceux qu'on obtiendrait pour les mêmes éléments en utilisant l'absorption atomique après une décomposition de l'échantillon aux acides nitrique et chlorhydrique. Cette dernière méthode donne des concentrations partielles, reliée aux minéraux solubles dans ces acides tels que les sulfures, les oxydes hydratés et certains minéraux secondaires. Nous avons employé cette méthode d'analyse partielle pour le Cu, le Ni, le Zn, le Fe, l'Ag, et le Pb. Le Ni, le Zn et le Fe ont donc été analysés par les deux méthodes.

On a employé une méthode d'analyse totale par fluorescence X (méthode des poudres comprimées) pour le dosage du Ti, du Nb, du Sn, du Sr, du Zr, du Ba et de l'Y. L'As et le W ont été obtenus par méthodes colorimétriques en utilisant une décomposition aux acides nitrique et perchlorique et par frittage au carbonate respectivement. Le Hg a été analysé par absorption atomique aux vapeurs froides en utilisant une décomposition aux acides nitrique, sulfurique et chlorhydrique avec permanganate de potassium. Le Pt et le Pd ont été obtenus par pyroanalyse à l'oxyde de plomb avec dissolution dans l'aqua régia et détermination au plasma à courant continu. On a employé une méthode gravimétrique pour le S.

3) RÉSULTATS ANALYTIQUES ET STATISTIQUES

Les résultats analytiques pour tous les éléments analysés, sauf les trois éléments du groupe du platine (Pt, Pd et Ir), sont présentés sous forme de tableau à l'appendice C. Les résultats pour Pt, Pd et Ir sont présentés à l'appendice D. À l'appendice C, on distingue les résultats des analyses totales de Fe, de Zn et de Ni par activation neutronique, des résultats des analyses partielles de ces mêmes éléments par absorption atomique, par les lettres "t" et "p" inscrites après l'élément en tête de page. Notez que les résultats des analyses partielles sont généralement très différents des résultats des analyses totales. Ceci reflète des différences marquées dans la nature, la composition et l'abondance des minéraux sur lesquels portent chacun de ces deux types d'analyses et démontre jusqu'à quel point il est important de tenir compte de la sorte d'analyse pratiquée lors de l'interprétation des résultats.

Les cartes de distribution avec contours isoteneur pour quinze éléments (As, Cr, Cu, La, Ni(t), Au, Pb, S, Th, Ti, Zn(p), Hg, Ba, Sr, et Pd) ainsi que pour la magnétite sont annexées à ce rapport. Les éléments qui ne sont pas représentés sur carte ont une distribution semblable à celles d'autres éléments qui le sont, ou ils présentent un nombre restreint d'anomalies et pourront être discutés sans l'aide de cartes. Pour faciliter l'usage simultané des tableaux des résultats analytiques et des cartes, une liste des numéros d'échantillons par coupure SNRC au 1:50 000 est présentée à l'appendice A. Le lecteur peut utiliser cette liste

conjointement avec la figure 1 et la carte de localisation des échantillons en annexe pour localiser rapidement les échantillons sur les cartes géochimiques.

L'appendice E présente les statistiques de base pour chacun des éléments analysés sous forme de tableau, et on trouvera les histogrammes correspondants à l'appendice F. L'appendice G donne les coefficients de corrélation entre les éléments.

4) NOTE SUR LA NOMENCLATURE GÉOLOGIQUE ET GÉOGRAPHIQUE

Les cartes géochimiques en annexe son présentées sur un fond géologique d'après la carte no 2030 du Ministère de l'Énergie et des Ressources du Québec (1987) intitulée «Compilation géologique de la région de l'Estrie-Beauce, géologie par Pierre St-Julien et Anne Slivitzky, 1985». Cette carte est plus détaillée et utilise une nomenclature différente de celle de la compilation de Gerald A. Harron (1973, carte du MER no 1866) intitulée, «Carte métallogénique des gisements de sulfures, Cantons de l'est, Québec». Cette dernière à servi de fond pour les cartes géochimiques accompagnant les Dossiers Publics 1145 et 1332. Afin de permettre de faire le lien entre ces deux sources de données géologiques, la géologie d'après Harron (1973) est présentée à la figure 2. Le texte du présent rapport fait surtout référence aux unités telles que définies par St-Julien et Slivitzky (Ministère de l'Énergie et des Ressources du Québec, 1987), mais à l'occasion nous utilisons les unités de Harron (1973) pour identifier certaines unités dans un contexte régional, dans des passages qui invitent la consultation de nos travaux publiés antérieurement.

Les principaux points géographiques auxquels on fait référence dans le texte sont inscrits sur le fond des cartes géochimiques. Pour les points secondaires, le lecteur devra consulter la carte de localisation des échantillons en annexe, laquelle est imprimée sur le fond topographique régulier de la coupure 21L du Système national de référence cartographique (SNRC), du Ministère de l'Énergie, des Mines et des Ressources, Ottawa.

5) INTERPRÉTATION DES RÉSULTATS

5.1) Aperçu général

Les résultats des campagnes de 1984 et 1985 ont démontré clairement que la répartition régionale des minéraux lourds, telle que cartographiée au moyen des méthodes décrites dans ce rapport, reflète surtout de la dispersion glaciaire. La dispersion alluvionnaire ou fluviatile des minéraux lourds n'est généralement pas perceptible à l'échelle de nos travaux (Maurice, 1988a&b). Nous avons conclu que les minéraux lourds que nous récoltons dans les cours d'eau proviennent essentiellement des dépôts glaciaires au voisinage des sites d'échantillonnage. De plus, plusieurs tests ont démontré que les différentes espèces minéralogiques se trouvent dans les sédiments des cours d'eau à peu près dans les mêmes proportions qu'on les trouve dans les dépôts glaciaires non-oxydés (Mercier et Maurice, 1986).

La région de l'Estrie-Beauce a subi plusieurs épisodes glaciaires au cours de son histoire géologique. Les travaux de McDonald et Shilts (1971), Gadd, McDonald et Shilts (1972), Shilts (1973a, 1978), et Lamarche (1971, 1974) ont identifié des dépôts et d'autres vestiges associés aux trois dernières avancées glaciaires ainsi qu'à l'écoulement tardiglaciaire vers le nord, relié au retrait de la dernière nappe de glace à recouvrir la région. Sur le plan de la dispersion géochimique, il a été démontré (Shilts, 1981; Maurice, 1986a, 1988a&b) que la dernière avancée de la glace laurentidienne, connue sous le nom de Lennoxville, est la principale responsable des patrons de dispersion actuels que l'on détecte en échantillonnant les dépôts meubles de la région. Ces patrons sont orientés vers le sud-est et peuvent s'étendre sur des distances de plus de 100 km de leurs sources. Maurice (1988a) a aussi reconnu quelques patrons attribuables à la glaciation Chaudière qui a précédé l'épisode Lennoxville. Les dispersions reliées à cette glaciation sont orientés vers le sud-ouest, par

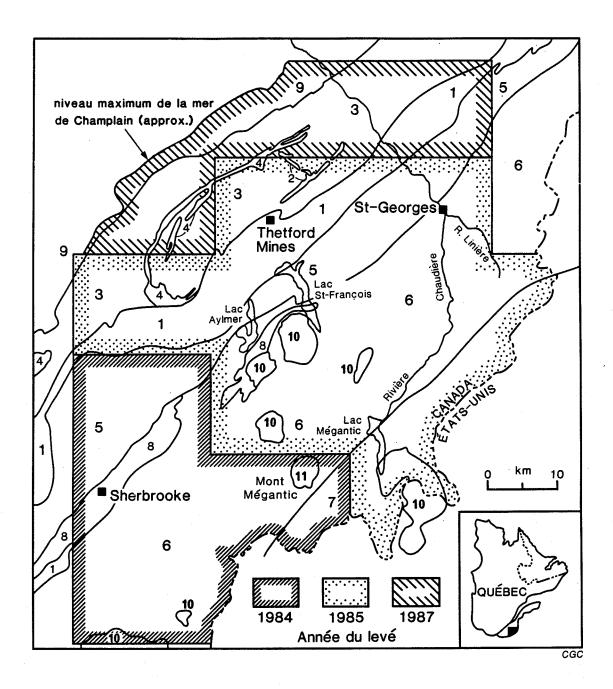


Figure 2: Géologie régionale et localisation des travaux de 1984, 1985 et 1987. Géologie selon Harron (1976): 1: bande de Serpentine; 2: dyke de Pennington; 3: bande des monts Sutton/Notre-Dame; 4: volcaniques de Tibbit Hill; 5: synclinorium de Saint-Victor; 6: synclinorium de Gaspé- Connecticut Valley; 7: anticlinorium de Boundary Mountain; 8: bande des monts Stoke; 9: bande Flyschoïde; 10: granites Dévoniens; 11: intrusion alcaline montérégienne.

rapport à un centre qui se situait probablement dans les Appalaches, à l'est de la région de l'Estrie-Beauce. Les dispersions qui correspondent à cette épisode sont rares et beaucoup plus difficiles à distinguer en raison de l'enfouissement des dépôts de cet âge et/ou à leur remaniement subséquent par la glace Lennoxville.

Jusqu'à l'obtention des résultats du présent levé, il existait peu d'évidence de dispersion géochimique attribuable à l'écoulement tardiglaciaire vers le nord, malgré l'abondance de phénomènes d'érosion reliés à ce mouvement (Lamarche, 1971, 1974). En effet, les résultats de la campagne de 1985 (Maurice, 1986a, 1988a&b) et les travaux antérieurs de Shilts (1973b) ont démontré l'absence quasi totale de dispersion vers le nord de matériaux du complexe ultrabasique de Thetford Mines. Ce même complexe a pourtant été la source d'une dispersion remarquable vers le sud-est par le glacier Lennoxville et l'aurait sans doute aussi été pour l'écoulement tardiglaciaire si les conditions avaient été propices à une telle dispersion. Nous verrons plus bas que la dispersion vers le nord devient perceptible plus à l'est.

L'échantillonnage des minéraux lourds alluvionnaires, comme technique pour identifier des cibles d'exploration minière, possède un certain nombre d'avantages sur les autres méthodes d'exploration géochimiques. D'abord, le fait de concentrer les métaux recherchés dans 1/1000 à 1/10 000 du volume original de sédiments, équivaut à accroître d'un facteur semblable la sensibilité analytique pour ces métaux. Ceci permet d'une part, de déceler des anomalies de certains métaux aux endroits où ceux-ci sont présents en concentrations trop basses pour qu'on puisse les détecter dans les sédiments originaux, et d'autre part, d'augmenter substantiellement le nombre d'échantillons au dessus du seuil de détection de façon à produire des patrons ou des traînées mieux définies et plus facilement interprétables.

En analysant des concentrés de minéraux lourds, qui sont composés essentiellement de grains clastiques d'espèces minérales bien définies, on élimine les enrichissements dus aux processus hydromorphiques (précipitation de métaux transportés en solution dans l'eau). Les concentrations hydromorphiques sont en grande partie associées à la fraction argileuse et organique des sédiments des ruisseaux et sont influencées par de la dispersion géochimique reliée au mouvement des eaux souterraines et/ou de surface. Lorsqu'on combine des dispersions clastiques et hydromorphiques sur une même carte, ce qui est le cas des levés de sédiments de ruisseaux traditionnels, l'interprétation devient compliquée car il est difficile de séparer les composantes des patrons reliées à l'un ou à l'autre de ces deux types de processus de dispersion géochimique. Il va sans dire que si on ne connait pas le processus de dispersion, il sera plutôt difficile d'en arriver à la source des métaux.

Un autre avantage des levés de minéraux lourds par rapport aux autres types de levés géochimiques, c'est qu'il est souvent possible d'isoler le minéral qui contient l'élément en concentration anomale dans l'échantillon. Ceci permet non seulement d'identifier le minéral en question, mais également d'effectuer des tests minéralogiques, crystallographiques, ou de chimie minérale, à la microsonde ou au microscope électronique.

La procédure utilisée en Estrie-Beauce, spécifiquement en ce qui a trait aux volumes de gravier traités et à l'usage de la succion permettant d'échantillonner les niveaux profonds de la couche de sédiments de ruisseaux, offre un autre avantage particulièrement important pour l'or. Ce métal existe dans les dépôts glaciaires et dans les sédiments des cours d'eau surtout sous la forme de particules métalliques, peu abondantes mais relativement grosses. Donc, en traitant un gros volume de gravier, on augmente les chances de détecter des particules d'or et d'autres métaux natifs, ou des minéraux rares tels que les platinoïdes, des minéraux d'étain, d'antimoine, d'argent, de mercure, de tantale et de niobium, etc, si ceux-ci sont présents. On a également démontré (Maurice, 1986b) que la couche active des

sédiments de ruisseaux ne retient pas les particules d'or natif, lesquelles ont tendance à s'enfouir vers les couches de gravier plus profondes et plus stables. Pour ces raisons, des échantillons de taille ordinaire, pris dans la couche active des sédiments de ruisseaux, sont peu représentatifs lorsqu'on s'intéresse à l'or, aux platinoïdes ou aux autres minéraux très denses ou peu abondants.

Il est important de se rappeler que les glaciers, qui ont été le principal agent de dispersion géochimique en Estrie-Beauce, provenaient des Laurentides. Donc, une partie non-négligeable des dépôts glaciaires et alluvionnaires en Estrie-Beauce, y compris une partie des minéraux lourds dans ces dépôts, provient sans aucun doute du bouclier canadien, plus particulièrement de la province géologique du Grenville. On interprète, par exemple, les éléments ayant leurs concentrations les plus élevées uniformément réparties le long des anciens rivages de la mer de Champlain (e.g. le long de la limite nord-ouest du levé, sur les coupures SNRC 21L/4, 5 et 6 des cartes de distribution en annexe), comme provenant surtout, mais pas nécessairement exclusivement, de sources grenvilliennes. Ainsi, la majeure partie du titane, du niobium, du zirconium et du hafnium dans nos échantillons serait reliée à de l'ilménite et du zircon provenant des roches du Grenville. Une bonne partie du grenat dans les concentrés serait aussi d'origine grenvillienne. Le grenat est présent dans tous les concentrés de minéraux lourds et représente jusqu'à 30 et même 40% des minéraux lourds dans certains cas.

Sur les pages qui suivent, on tente d'expliquer les principaux patrons de dispersion géochimique régionale et quelques anomalies ponctuelles qui ressortent des cartes de distribution d'éléments. Les patrons régionaux sont souvent beaucoup plus clairs lorsqu'on sort des limites du territoire relativement restreint du présent levé et qu'on examine les données sur l'ensemble de la région. C'est pourquoi nous ferons, à quelques reprises, référence aux résultats des levés de 1984 et de 1985 déjà publiés. Pour simplifier la discussion, on a regroupé en association les éléments montrant des tendances similaires.

5.2) Association Cr, Co, Ni t, Zn t

Ce groupe d'éléments forme une association très forte qui est reliée à la chromite présente dans les roches du complexe ophiolitique de la bande de Serpentine. Les résultats du levé de 1985 montrent une remarquable traînée en ces éléments qui s'étend sur une distance de plus de 80 km vers le sud-est à partir du massif ophiolitique de Thetford Mines. Une seconde traînée, parallèle à la première, avait été délimitée au sud-est de Saint-Joseph-de-Beauce. Cette dernière était tronquée par la bordure nord de la région échantillonnée. Les deux traînées sont le résultat d'une dispersion de l'épisode glaciaire Lennoxville.

Sur la carte du chrome en annexe, on remarque dans la partie sud-est de la région échantillonnée, une série d'échantillons dont la concentration en chrome est supérieure à 5% Cr (jusqu'à 24%). Ces échantillons correspondent à la tête tronquée de la traînée de Saint-Joseph et leur teneur en chrome provient des roches ultramafiques dans ce secteur. On remarque également que plusieurs valeurs supérieures à 1% Cr forment une traînée vers le nord à partir de ces mêmes roches. Il s'agit sans doute d'une dispersion reliée au mouvement tardiglaciaire vers le nord et représente vraisemblablement la preuve la plus concluante obtenue à date dans la région de l'Estrie-Beauce, d'un déplacement substantiel de matériaux par un mouvement de la glace dans cette direction. Étant donné qu'on a pas détecté cette dispersion vers le nord dans les régions de Thetford Mines et d'Asbestos, on peut conclure que ce mouvement tardiglaciaire a été plus compétent dans la partie est de la région que dans sa partie centrale. Ceci pourrait être dû à un écoulement de la glace plus rapide et/ou de plus longue durée dans le secteur est. W. W. Shilts (communication personnelle, 1989) est d'avis que le fait que les masses de roches ultrabasiques de la région de Saint-Joseph se situent plus loin de la ligne de partage des glaces (Quebec Ice Divide) que celles des régions de Thetford Mines et d'Asbestos, pourrait être la principale cause de cette compétence accrue. Vers la fin

de la dernière glaciation, avec l'isolement d'une calotte au dessus des Appalaches, la glace s'est mise à s'écouler de part et d'autre de cette ligne de partage. On estime que la vélocité de la glace était de zéro au dessus de la ligne et augmentait à mesure qu'on s'en éloignait.

Au nord de la branche nord-est du dyke de Pennington, on remarque une traînée en chrome (Cr > 1%) de plus de 15 km de long, orientée NNO. Il est possible qu'une langue de glace ait glissé vers le nord le long du cours supérieur de la vallée de la rivière Beaurivage et de quelques vallées adjacentes, pour engendrer cette dispersion. Cependant, vu que l'anomalie coïncide assez bien avec le bassin hydrologique de la rivière Beaurivage, il semble plus probable que le patron actuel résulte d'une dispersion proglaciaire par les eaux de fonte lors de la déglaciation. Cette question ne pourra être résolue que par une étude géochimique et morphologique des dépôts de surface le long de la vallée. Quelque soit la nature de cette dispersion ou le mode de mise en place des dépôts meubles chromifères, il y a peu de doute que la source de la chromite se trouve quelque part le long de la branche nord-est du dyke de Pennington. Cette constatation pourrait avoir d'importantes implications à l'égard des éléments du groupe du platine, tel qu'indiqué plus bas.

Pour les autres éléments de cette association, notamment le Co, le Ni(t) et le Zn(t), ils montrent tous une dispersion orientée vers le nord à l'est de la rivière Chaudière et, dans les cas du Co et du Zn(t), on note même un léger enrichissement au nord de la branche nord-est du dyke de Pennington. Ces éléments se trouvent en grande partie dans la chromite même.

On constate que le long de la bordure nord-ouest du levé, près des anciens rivages de la mer de Champlain, les concentrations de chrome et des éléments associés sont relativement basses (e.g. < 0,1% Cr). Ceci démontre que les roches du domaine des nappes externes (Ministère de l'Énergie et des Ressources du Québec, 1987) sont pauvres en chromite et que les matériaux originant du Grenville et transportés par la glace laurentidienne, le sont également.

5.3) Distribution des éléments du groupe du platine (Pd, Pt, Ir)

Le levé de 1985 avait signalé la présence de quantités détectables d'éléments du groupe du platine (EGP), surtout de Pd, associées aux traînées de chrome de Thetford Mines et de Saint-Joseph. On avait également constaté que le rapport Pd/Cr de la traînée de Saint-Joseph était trois fois plus élevé que celui de la traînée de Thetford Mines et nous avions suggéré que ceci pourrait avoir des conséquences pour l'exploration de ces métaux dans la région. Les plus hautes concentrations d'EGP que nous avions signalées en 1985 étaient associées à une traînée au sud-ouest du mont Saint-Sébastien. Nous avions détecté le long de cette traînée jusqu'à 431 ppb de Pd, 438 ppb de Pt et 820 ppb de Ir (Maurice, 1988c).

Les résultats du présent levé montrent des teneurs de Pd et des rapports Pd/Cr associés à la tête de la traînée de chrome de Saint-Joseph qui sont comparables aux valeurs obtenues dans les échantillons de 1985 à l'est de la rivière Chaudière. On obtient même quelques valeurs en Pd et en Pt le long de la traînée orientée vers le nord à partir des roches ultramafiques au sud de Saint-Joseph.

Les résultats d'EGP les plus spectaculaires du présent levé sont les valeurs très élevées en Pd associées à la traînée de chrome qui s'étend au nord du dyke de Pennington et au nord de celle-ci, le long de son prolongement. Plusieurs échantillons montrent des teneurs de Pd de quelques ppm et à un site sur la rivière Fourchette, un affluent de la rivière Beaurivage, nous avons détecté plus de 10 ppm Pd (10 000 ppb).

Il est intéressant de constater que les teneurs de Pt ne sont pas comparables aux valeurs de Pd dans ces échantillons. En effet, certains des échantillons très riches en Pd ne contiennent pas de Pt détectable et le maximum de Pt enregistré dans ce secteur est 148 ppb.

Il est également remarquable que certains des échantillons très riches en Pd le long du prolongement vers le nord de la traînée de chrome, sont déficients en Cr. Ceci porte à croire que l'anomalie est causée par des particules de métaux natifs libres (pépites?) plutôt que par de la chromite enrichie en EGP, comme c'est souvent le cas lorsque nous sommes en présence de roches ophiolitiques. Il est possible que des particules de palladium natif se soient formées par lessivage en surface des roches ultrabasiques et qu'il existe une gamme plus complète d'EGP dans les roches du dyke de Pennington. On rappelle que le Pd est beaucoup plus mobile (soluble) que le Pt et les autres EGP, et qu'un processus de lessivage aurait favoriser l'extraction et la précipitation du Pd plutôt que des autres EGP. Un examen très rapide à la loupe binoculaire des échantillons riches en Pd n'a pas révélé de grain suspect. D'autres tests en utilisant des moyens plus puissants seront effectués sur ces échantillons mais, même à 10 ppm, il est peu probable que nous puissions isoler le minéral porteur de Pd.

Quant à la possibilité qu'il existe des concentrations intéressantes d'EGP dans le dyke de Pennington, nous soulignons que le processus de lessivage des roches ultramafiques, qui pourrait être à l'origine des anomalies de Pd, a pu agir sur des roches ayant des teneurs à peu près normales en ces métaux. Nous croyons néanmoins qu'une prospection du dyke, possiblement par lithogéochimie, pourrait révéler des choses intéressantes et serait pleinement justifiée.

On note quelques valeurs élevées en Pd et en Pt à l'ouest de Thetford Mines, dans la bande des monts Sutton/Notre-Dame. Trois de ces échantillons (#244, #280 et #290) contiennent respectivement 2,2, 5,5 et 8,5 ppm Pd; les concentrations de Pt ne dépassent pas les 40 ppb. On avait déjà remarqué, lors du levé de 1985, quelques échantillons anomaux en Pt et en Ir dans ce même secteur, un peu plus à l'est. Nous avions tenté de relier ces anomalies au dyke de Pennington ou aux roches ultramafiques de la région de Saint-Joseph par un mouvement glaciaire vers l'ouest (Chaudière?). Ceci expliquait également la présence dans ce secteur de nombreux blocs erratiques de roches ultrabasiques dont on ignore la provenance (Bouchard et al, 1987, figure 48). À la lumière des données présentées ici, cette interprétation demeure plausible mais elle doit être considérée très ténue.

5.4) Association Au, Ag

Environ 57% des échantillons récoltés en 1987 contiennent une teneur d'or détectable (Au > 10 ppb) et 15% en contiennent plus de 1 ppm. Ces chiffres indiquent que l'or est moins abondant dans les dépôts de surface de la partie du territoire échantillonnée en 1987 comparé à la région au sud. En effet, sur l'ensemble du territoire échantillonné en 1984 et en 1985, 86% des échantillons contenaient plus de 10 ppb d'or et 47% en contenaient plus de 1 ppm.

La large zone aurifère qui suit le cours supérieur de la rivière Chaudière (voir Maurice, 1986a) ne semble pas se poursuivre vers le nord dans la bande des monts Sutton/Notredame. Même la région de la rivière Des Plante, reconnue depuis longtemps pour ses graviers aurifères, n'a produit que quelques anomalies restreintes et peu intenses comparé aux anomalies plus au sud. Une seule valeur au dessus de 10 ppm Au a été enregistrée dans tout le secteur est du présent levé; il s'agit d'un échantillon cueilli sur la rivière Des Fleurs dans la bande de Serpentine, à environ 5 km au sud-est de Saint-Léon-de-Standon.

Plus à l'ouest, entre Thetford Mines et Plessisville, plusieurs sites ont produit des concentrations d'or assez élevées, atteignant 50 ppm à un endroit. La majorité d'entre eux se situe à proximité des volcaniques de la Formation de Tibbit Hill; ces roches représentent une source possible de l'or alluvionnaire dans la région.

La région de Saint-Pierre-Baptiste, à l'est de Plessisville, a été examinée lors d'une campagne sur le terrain, dans le but d'expliquer une série d'anomalies formant un patron

orienté est-ouest sur une distance d'environ 20 km. Les échantillons anomaux se répartissent de part et d'autre du méridien 71°30' qui sépare les coupures 21L/3 (échantillonnée en 1985) et 21L/4. L'orientation est-ouest du patron n'étant pas l'orientation habituelle des traînées de dispersion dans la région, nous voulions d'abord savoir quel processus avait donner lieu à ces anomalies et ensuite, tenter de les relier à une formation géologique.

Nos observations indiquent que ces anomalies se situent dans une large plaine alluvionnaire qui contient d'énormes quantités de graviers proglaciaires aurifères, déposés par l'eau de fonte d'un glacier. La vallée se déverse vers l'ouest. Les échantillons anomaux les plus en amont se situent près de Saint-Jean-de-Bréboeuf (21L/3) où l'on retrouve du till. Le trajet du glacier qui aurait déposé ce till (Lennoxville) et qui aurait fourni les graviers proglaciaires aurifères, intersecte non loin de là, la Formation de Tibbit Hill. Nous croyons que cette partie de Formation de Tibbit Hill constitue une cible d'exploration pour l'or de premier choix.

L'argent présente très peu d'anomalies. La seule valeur digne d'une mention (1,7 ppm) se situe au même site où l'on a enregistré la plus haute valeur en or, c'est à dire près de la rive ouest du lac Joseph.

5.5) Association Terres-rares, Ba, Sr, U et Th

Les résultats d'analyse de lanthane et de thorium de 1985 montraient deux larges traînées de dispersion orientées vers le sud-est. Une se situait à l'est d'Asbestos et recouvrait une bonne partie du feuillet 21E/13. L'autre était localisée entre Thetford Mines et la vallée de la rivière Chaudière. Les deux étaient causées par de la monazite qui semblait provenir de sources situées au nord de la région échantillonnée, dans les roches de la bande des monts Sutton/Notre-dame. On avait suggéré que la source pouvait être des paléoplacers dans la Formation Pinnacle.

Le présent levé a fourni les données qui complètent l'image de la partie nord des traînées de dispersion de lanthane. En plus du lanthane, nous avons obtenu des résultats d'analyse d'autres terres-rares, notamment le Ce, le Sm, l'Eu, et le Tb, parmi les terres-rares légères, et l'Yb et le Lu, parmi les lourdes. Ces autres terres-rares n'avaient pas été analysées lors des levés précédents.

Les cartes du La et du Th montrent à la tête de la traînée d'Asbestos, une anomalie bien définie, circulaire et très intense située dans les collines à l'ouest du village de Fréchette, à une quinzaine de kilomètres au sud-est de Plessisville. Les roches de cette région font partie de la Formation de West Sutton du Groupe de Oak Hill. Pour ce qui est de la traînée à l'est de Thetford Mines, sa tête semble déplacée par rapport à sa source, mais celle-ci se situerait quelque part au nord-est de Saint-Pierre-de-Broughton, probablement aussi dans le Groupe d'Oak Hill. La carte géologique montre une étroite zone de Pinnacle dans ce secteur.

On note que toutes les terres-rares légères que nous avons analysées sont enrichies le long des deux traînées. On note également un enrichissement prononcé en Ba et en Sr et un léger accroissement des valeurs d'Y dans l'anomalie au sud-est de Plessisville. Par contre, les terres-rares lourdes et l'U ne sont pas enrichies dans l'une ou l'autre des traînées. Les terres-rares lourdes, l'U et l'Y sont reliés entre eux, comme on peut le voir au tableau des corrélations (appendice G), mais ne forment aucune anomalie notable sur le territoire échantillonné.

L'examen des concentrés de minéraux lourds au microscope binoculaire révèle que les échantillons les plus riches en terres-rares contiennent jusqu'à 10 % de monazite en cristaux prismatiques dont la couleur varie d'un gris-brun à jaune miel. A la microsonde, on a déterminé la composition moyenne de ces cristaux que l'on compare au tableau 1 à la

composition de monazites exploitées à divers endroits dans le monde. On note que les monazites de l'Estrie sont remarquablement plus riches en Sm, Gd, et Eu que la moyenne des monazites commerciales.

Le coeur de l'anomalie au sud-est de Plessisville (défini sur la carte de distribution du lanthane par La > 10 000 ppm) se situe probablement très près des roches porteuses de monazite. Nous croyons que cette monazite s'est formée par métamorphisme régional de roches sédimentaires argileuses et que les grains récoltés dans nos échantillons ont été libérés directement de ces roches plutôt que d'un paléoplacer, par exemple. Les analyses de monazite à la microsonde ont révélé des teneurs relativement basses en thorium (< 1% $^{\circ}$ ThO₂) ce qui est compatible avec une origine métamorphique plutôt que magmatique (Overstreet, 1967). De plus, la forme très cristalline des grains dans les concentrés de minéraux lourds suggère qu'ils n'ont pas subi le cycle de transport et de déposition qu'on associe aux processus de formation des placers.

Lors d'une courte campagne de vérification sur le terrain, on a constaté la présence de monazite disséminée dans les schistes de la Formation de West Sutton, près du coeur de l'anomalie au sud-est de Plessisville. Cette observation a été faite à partir de quelques lames minces et séparations gravimétriques des composantes minéralogiques des schistes. Certains échantillons contenaient également de la molybdénite et de la chalcopyrite disséminées. On doit ajouter que les affleurements sont peu abondants dans ce secteur et que nous ignorons jusqu'à quel point ceux que nous avons visité sont représentatifs de l'ensemble de la formation.

Tableau 1- Composition des monazites de la région de Plessisville et d'autres endroits dans le monde (Hedrick, 1985) en pourcentage d'oxydes de terres-rares.

La2O3 Ce O2 Pr6O11 Nd2O3 Sm2O3 Eu2O3 Gd2O3 Tb4O7 Dy2O3 Ho2O3 Er2O3 Tm2O3 Yb2O3 Lu2O3	Estrie 17.78 42.17 5.43 17.50 7.96 2.57 5.81 n.d. 0.53 n.d. 0.11 n.d. n.d.	Australie (est) 20.20 45.30 5.40 18.30 4.60 0.10 2.00 0.20 1.15 0.05 0.40 tr 0.20 tr	Australie (ouest) 23.90 46.03 5.05 17.38 2.53 0.05 1.49 0.04 0.69 0.05 0.21 0.01 0.12 0.04	17.47 43.73 4.98 17.47 4.87 0.16 6.56 0.26 0.90 0.11 0.04 0.03 0.21 0.03	Inde 23.00 46.00 5.50 20.00 4.00	Chine 23.35 45.69 4.16 15.74 3.05 0.10 2.03 0.10 1.02 0.01 0.51 0.51 0.51 0.51 0.50
Y ₂ O ₃ Total	<u>0.14</u> 100.00	2.10 100.00	2.41 100.00	3.18 100.00	100.00	3. <u>05</u> 100.00

n.d. - indéterminé

tr - trace

À l'analyse à l'activation neutronique, certains échantillons de schiste choisis parmi les plus riches en monazite, contenaient seulement de 100 à 200 ppm de terres-rares

combinées. Ces mêmes échantillons contenaient jusqu'à 80 ppm de Mo, 250 ppm de Zn et 700 ppm de Ba.

Sachant que les schiste de la Formation de West Sutton contiennent un peu de monazite et que la zone porteuse de monazite occupe probablement une grande superficie, on doit se demander si les concentrations obtenues par l'analyse des échantillons de schiste sont suffisantes pour expliquer les anomalies de terres-rares observées. L'intensité des anomalies et leur étendue sur les cartes de distribution suggèrent une source de monazite plus riche que ce que révèle l'analyse des quelques échantillons de la Formation de West Sutton décrits plus haut. Une explication plausible serait qu'au cours de la longue période d'altération qui a précédé l'ère glaciaire, il se serait formé un épais résidu riche en monazite à partir des roches de la Formation de West Sutton, et que l'érosion glaciaire de ce résidu aurait par la suite engendré les anomalies et les traînées observées.

Nous ne devrions pas, cependant, ignorer la possibilité qu'il pourrait exister certains faciès de la Formation de West Sutton, ou d'autres formations avoisinantes, qui contiendraient des concentrations de monazite plus importantes que celles que l'on a observées. Aussi, la Formation de West Sutton a pu agir comme source de monazite à des formations sédimentaires plus jeunes, lesquelles auraient pu concentrer cette monazite en gîtes plus intéressants. Il y a aussi la possibilité qu'une partie du résidu préglaciaire, que l'on soupçonne être à l'origine des concentrations anomales dans les alluvions récentes, soit conservée sous les dépôts Quaternaires de la région.

5.6) Association Ti, Nb, Ta

Ce groupe de métaux est contrôlé par l'ilménite, un des minéraux les plus abondants dans la plupart de nos échantillons. Leurs concentrations vont en augmentant à mesure que l'on s'aproche de la limite nord-ouest de la région échantillonnée, c'est à dire le long des anciens rivages de la mer de Champlain. Le long de cette bordure, la majorité des échantillons contiennent entre 18 et 22% Ti.

Cette augmentation des teneurs le long de la limite marine porte à croire que la majeure partie de l'ilménite que nous retrouvons dans les concentrés de minéraux lourds provient du Grenville et a été transportée en Estrie-Beauce par les glaciers. Ni les roches sous-jacentes du Domaine des Nappes Externes, ni les formations sédimentaires des Basses-Terres du Saint-Laurent qui se situent en amont glaciaire, peuvent avoir fourni la quantité d'ilménite que nous retrouvons dans les dépôts de surface de cette région. D'ailleurs, on remarque une augmentation parallèle de la quantité de grenat dans les échantillons. Ce minéral, qui représente entre 20 et 40 % des grains dans les concentrés qui proviennent de ce secteur (estimé visuel), a indéniablement sa source dans le Grenville.

Cette interprétation diffère de celle que nous avions émise à la suite du levé de 1985, alors qu'il nous semblait probable que les fortes concentrations d'ilménite de la partie nordouest de ce levé, eussent pu provenir de la bande des monts Sutton/Notre-Dame, en particulier de la Formation Pinnacle qui est reconnue pour ses paléoplacers riches en ilménite et rutile (Gauthier, 1985, p. 25). Mais le levé de 1985 ne se rendait pas au delà de la bande des monts Sutton/Notre-Dame de sorte que cette augmentation des concentrations de titane en s'approchant de la limite marine n'était pas évidente. S'il existe des sources de titane dans la bande des monts Sutton/Notre-Dame à l'intérieur de la région couverte par nos travaux, les dispersions qui pourraient leur être associées sont masquées par la grande abondance d'ilménite grenvillienne et ne sont pas évidentes sur les cartes géochimiques.

Les patrons du Nb et du Ta sont très semblables à ceux du Ti et les corrélations entre ces métaux sont très fortes (voir appendice G). Ceci provient du fait que le Nb et le Ta sont présents dans l'ilménite. Lors de l'interprétation du levé de 1985, nous avions estimé les

teneurs de Nb et de Ta dans ces ilménites à environ 765 ppm et 85 ppm respectivement (Maurice, 1986a).

5.7) Association Zr, Hf

Le Hf étant toujours associé au Zr dans la nature, il n'est pas surprenant que ces éléments sont très fortement corrélés dans nos concentrés de minéraux lourds (voir appendice G). Tout comme c'était le cas pour les éléments de l'association Ti-Nb-Ta, les concentrations de Zr et de Hf augmentent vers la limite marine. Nous croyons que ceci indique que le zircon provient en grande partie du Grenville, tout comme l'ilménite et le grenat. Nos échantillons contiennent en moyenne environ 1% de zircon.

5.8) Distribution de la magnétite

Les concentrations les plus élevées en magnétite recouvrent les schistes de Sutton-Bennett et les roches du Groupe de Rosaire situés au sud-est (i.e. en aval glaciaire) des roches volcaniques de la Formation de Tibbit Hill. Nous croyons que la magnétite dans les dépôts de surface de cette région provient essentiellement de l'érosion glaciaire de ces volcaniques et des sédiments qui leurs sont associés.

Au nord-ouest de la bande de volcaniques, les concentrations de magnétite s'abaissent graduellement et il se pourrait que ce patron résulte en partie de l'écoulement tardiglaciaire vers le nord. Ceci semble s'appliquer particulièrement à la partie est de la bande de volcaniques, à l'est du village de Saint-Sylvestre, près de la zone où se trouve une traînée de chrome orientée vers le nord (voir section 5.2). Le relief aéromagnétique au nord de la bande de volcaniques indique qu'il y a des roches riches en magnétite dans ce secteur, mais celles ci se trouvent à une certaine profondeur.

5.9) Association des éléments chalcophiles (S, Zn p, Ni p, Cu, Pb, As, Fe p)

La pyrite contient habituellement des teneurs élevées de métaux chalcophiles comparé aux concentrations de ces métaux dans la plupart des autres minéraux lourds des concentrés. Même la pyrite authigène renferme plusieurs de ces métaux en quantités souvent supérieures aux seuils anomaliques du levé (voir tableaux 1&2 dans Maurice 1986a pour des données sur la composition des pyrites de l'Estrie-Beauce). Pour cette raison, on doit tenir compte de la quantité de pyrite dans les échantillons lorsqu'on interprète les résultats des éléments chalcophiles. Les fortes corrélations positives entre les métaux chalcophiles et le soufre à l'appendice G, démontrent que ces métaux sont associés à la pyrite dans nos concentrés de minéraux lourds.

La carte du soufre montre la répartition des concentrés contenant de la pyrite. Ceux-ci proviennent surtout des dépôts qui recouvrent les schistes de Sutton-Bennett et le Groupe de Rosaire. Les zones pyriteuses se trouvent sur le prolongement de celles identifiées lors du levé de 1985.

Nous avons cherché à identifier des sites où les éléments chalcophiles pouvait être présents en concentrations vraiment anomales, c'est à dire en concentrations supérieures à celles qui peuvent être expliquées par la pyrite présente dans l'échantillon. La figure 3 montre des diagrammes X-Y entre le soufre et ces éléments. Les fortes corrélations entre les métaux chalcophiles et le souffre se traduisent par des relations linéaires sur ces diagrammes. Certains échantillons, cependant, tombent en dehors de la zone linéaire. On considère ces échantillons possiblement anomaux 1.

¹ possiblement mais pas nécessairement puisque la pyrite, lorsqu'elle s'oxyde, peut perdre son soufre sans pour autant perdre les métaux chalcophiles qui sont retenus dans la goethite.

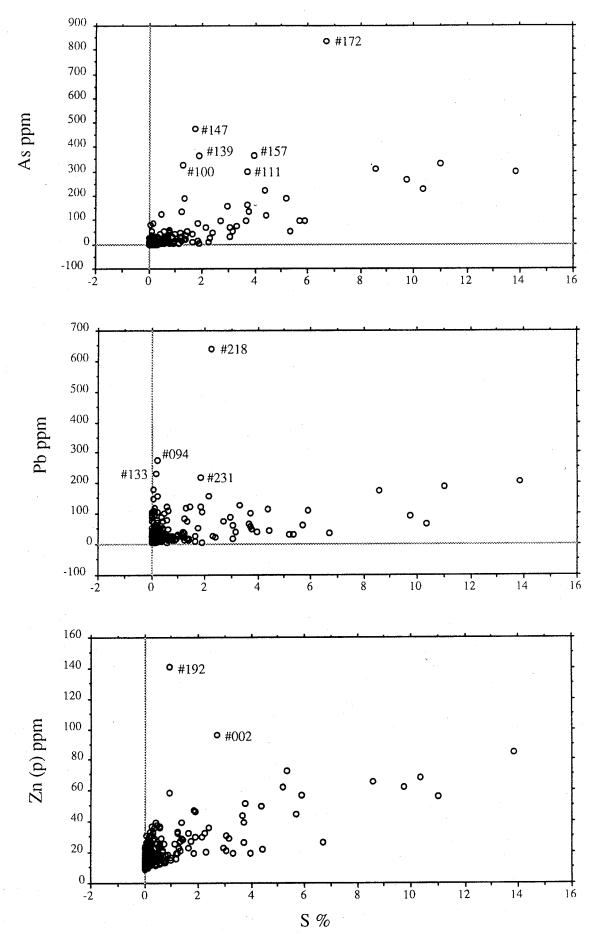


Figure 3: Diagrammes X-Y montrant les relations entre le soufre et les éléments chalcophiles

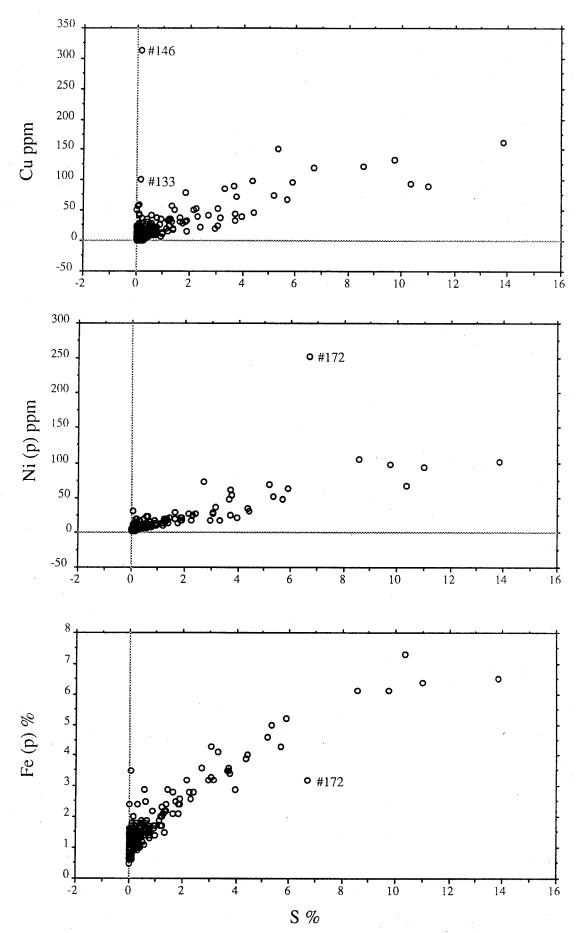


Figure 3: Diagrammes X-Y montrant les relations entre le soufre et les éléments chalcophiles

L'échantillon #172 est intéressant puisqu'il est relativement riche en As et en Ni et pauvre en S et en Fe(p). Ceci pourrait indiquer la présence d'arsénopyrite ou d'un sulfure d'As-Ni (gersdorfitte?). Ces minéraux sont souvent des indicateurs d'or. L'échantillon #172 est localisé à quelques kilomètres au sud de Bernierville dans les schistes de Sutton-Bennett. La carte de l'or indique plusieurs anomalies dans ce secteur.

Parmi les autres échantillons qui montrent des rapports élevés entre les métaux chalcophiles et le soufre, plusieurs sont localisés le long d'une bande orientée NO-SE qui intersecte les groupes de Rosaire et d'Oak Hill près des extrémités est du dyke de Pennington et de la Formation de Tibbit Hill. On remarque également une forte anomalie en mercure à l'extrémité est de la Formation de Tibbit Hill. Cette zone se situe à peu près au même endroit que la traînée de chrome et de palladium associée à la branche est du dyke de Pennington (voir sections 5.2 et 5.3 plus haut). Malheureusement, cette partie de la région semble avoir été sujette à de multiples épisodes de transport glaciaire de sorte qu'il sera plus difficile de relier les anomalies à des sources possibles de métaux dans les roches. Nous attirons quand même l'attention sur l'échantillon #133 qui contient passablement de cuivre et de plomb tout en étant très pauvre en soufre. Ceci pourrait être causé par la présence de minéraux secondaires.

L'échantillon #218 a été cueilli sur le ruisseau Laurendeau, à moins d'un kilomètre au nord de Plessisville. Il est fortement enrichi en plomb et en baryum, et contient des concentrations anomales de soufre, de mercure, de cuivre, de zinc, de strontium et d'antimoine. Cette association suggère qu'il ne s'agit pas ici d'une contamination.

5.10) Autres éléments: Mo, Sb, W, Hg, Sn

À l'exception du mercure, ces éléments ne présentent pas d'anomalies intenses sur le territoire couvert en 1987. Comme nous l'avons déjà signalé, le mercure est fortement anomal dans un échantillon (#176) cueilli près de l'extrémité est de la bande de roches volcaniques de Tibbit Hill. Ce même échantillon est légèrement enrichi en antimoine. Deux des échantillons qui lui sont adjacents (#163 et #177) sont aussi enrichis en mercure, formant une anomalie allongée en direction est-ouest. Nous considérons cette anomalie très intéressante car elle pourrait signaler la présence de gîte épithermaux dans le secteur. De plus, la présence de mercure au voisinage d'indices d'or nous a été signalée à plusieurs reprises par des compagnies d'exploration qui opèrent dans le secteur ².

D'après le tableau des corrélations (appendice G), le molybdène et l'étain semblent associés aux minéraux lourds provenant du bouclier canadien. Il est quelque peu surprenant que nous n'ayons pas obtenu d'anomalies de Mo au voisinage de l'anomalie de terres-rares au sud-est de Plessisville, vu que nous avons observé de la molybdénite dans les roches de la Formation West Sutton à cet endroit. Il est vrai que nous ne connaissons pas l'étendue des roches porteuses de molybdénite dans ce secteur, mais notre expérience du présent levé et des levés précédents nous indique que la molybdénite tend à ne pas être retenue dans les concentrés de minéraux lourds. Ceci est probablement dû à la morphologie des grains de ce minéral qui ne favoriserait pas leur rétention dans la drague à sluice.

6) REMERCIEMENTS

Le levé dont il est question dans ce rapport a été effectué suite à une demande du Comité de promotion des ressources minérales de l'Assemblée de concertation et de développement de l'Estrie (A.C.D.E.) adressée au ministre Marcel Masse, le 27 mars 1987. Nous remercions les membres du Comité pour l'intérêt qu'ils portent aux travaux de la

² Rapports non confirmés

Commission géologique en Estrie-Beauce. Nous remercions également Serge Lachance, géologue résident à Sherbrooke pour le Ministère de l'Énergie et des Ressources, pour son appui au projet de géochimie des minéraux lourds.

L'échantillonnage et la préparation des concentrés de minéraux lourds ont été effectués par Le Groupe Conseil GÉOREX de Sherbrooke sous la direction de Michel Mercier. La firme Bondar-Clegg and Company Ltd. d'Ottawa a analysé les échantillons. Pierre Bédard a compilé les résultats analytiques et a produit les tableaux et les histogrammes que l'on retrouve aux appendices C, D, E, F, et G. Robert Bélanger à lu le manuscrit et à fait plusieurs suggestions utiles.

7) RÉFÉRENCES

Bouchard, M.A., Lortie, G., Turcotte, P., and Chauvin, L.

1987: The Thetford Mines-Asbestos area; dans M. Lamothe (Ed.), Pleistocene Stratigraphy in the St-Lawrence Lowland and the Appalachians of Southern Quebec: A Field Guide; v. 4, Collection Environment et Géologie, sous la direction de Delisle, C.E. et Bouchard, M.A., Université de Montréal, p. 140-159.

Gadd, N.R., McDonald, B.C., and Shilts, W.W.

1972: Deglaciation of southern Quebec; Geological Survey of Canada, Paper 71-47, 19 p.

Gauthier, M.

1985: Synthèse métallogénique de l'Estrie et de la Beauce (secteur sud); Ministère de l'Energie et des Ressources du Québec, MB85-20, 186 p.

Harron, G.H.

1976: Métallogénèse des gîtes de sulfures des Cantons de l'est; Ministère des Richesses Naturelles du Québec, report ES-27, 42 p.

Hedrick, J.B.

1985: Rare-earth elements and yttrium; *dans* Mineral, Facts and Problems, U.S. Bureau of Mines, bulletin 675, 17 p

Lamarche, R.Y.

1971: Northward moving ice in the Thetford Mines area of southern Quebec; American Journal of Sciences, v. 271, p. 383-388.

1974: Southeastward, northward, and westward ice movement in the Asbestos area of southern Québec; Geological Society of America Bulletin, v. 85, p. 465-470.

Maurice, Y.T.

Résultats et interprétation d'un levé géochimique de minéraux lourds, régions de l'Estrie et de la Beauce, Québec (21E/7, 9, 10, 11, 12, 13, 14, 15, 16; 21L/2, 3); Commission géologique du Canada, dossier public 1332.

1986b: Distribution and origin of alluvial gold in southwest Gaspésie, Quebec; *dans* Current Research, Part B, Geological Survey of Canada, Paper 86-1B, p. 785-795.

1987: On redécouvre les placers d'or de l'Estrie-Beauce; GEOS, vol. 16, no 4, p. 6-10.

1988a: Regional alluvial heavy mineral geochemistry as a prospecting method in glaciated Appalachian terrain: a case history from the southern Quebec placer-gold belt; *dans*

D.R. MacDonald and K.A. Mills (editors) Prospecting in Areas of Glaciated Terrain 1988, Canadian Institute of Mining and Metallurgy, p. 185-203.

1988b: La géochimie des minéraux lourds: une aide à l'exploration minière en Estrie-Beauce; dans Cahier des conférences, ICM - 6e réunion du district no 2, p.1-15.

1988c: Répartition du Cr, Pt, Pd, et Ir dans les dépôts du surface de l'Estrie-Beauce, Québec; *dans* Recherches en cours, Commission géologique du Canada, Etude 88-1, p.1-8.

Maurice, Y.T. and Mercier, M.

1985a: Méthode d'échantillonnage et résultats d'un levé géochimique de minéraux lourds en Estrie, Québec (21E/3, 4, 5, 6, 12); Commission géologique du Canada, Dossier Public 1145.

1985b: Procédures d'échantillonnage des minéraux lourds alluvionnaires au moyen de concentrateurs mécaniques; Ministère de l'Energie et des Ressources, DV 85-11, p. 151-158.

1986: A new approach to sampling heavy minerals for regional geochemical exploration; dans Current Research, Part A, Geological Survey of Canada, Paper 86-1A, p. 301-305.

McDonald, B.C. et Shilts, W.W.

1971: Quaternary stratigraphy and events in southeastern Quebec; Geological Society of America Bulletin, v. 82, p. 683-698.

Mercier, M. et Maurice, Y.T.

Étude de l'efficacité relative de différentes méthodes de concentration des minéraux lourds; Ministère de l'Énergie et des Ressources du Québec, rapport non-publié, 252 p.

Ministère de l'Énergie et des Ressources du Québec

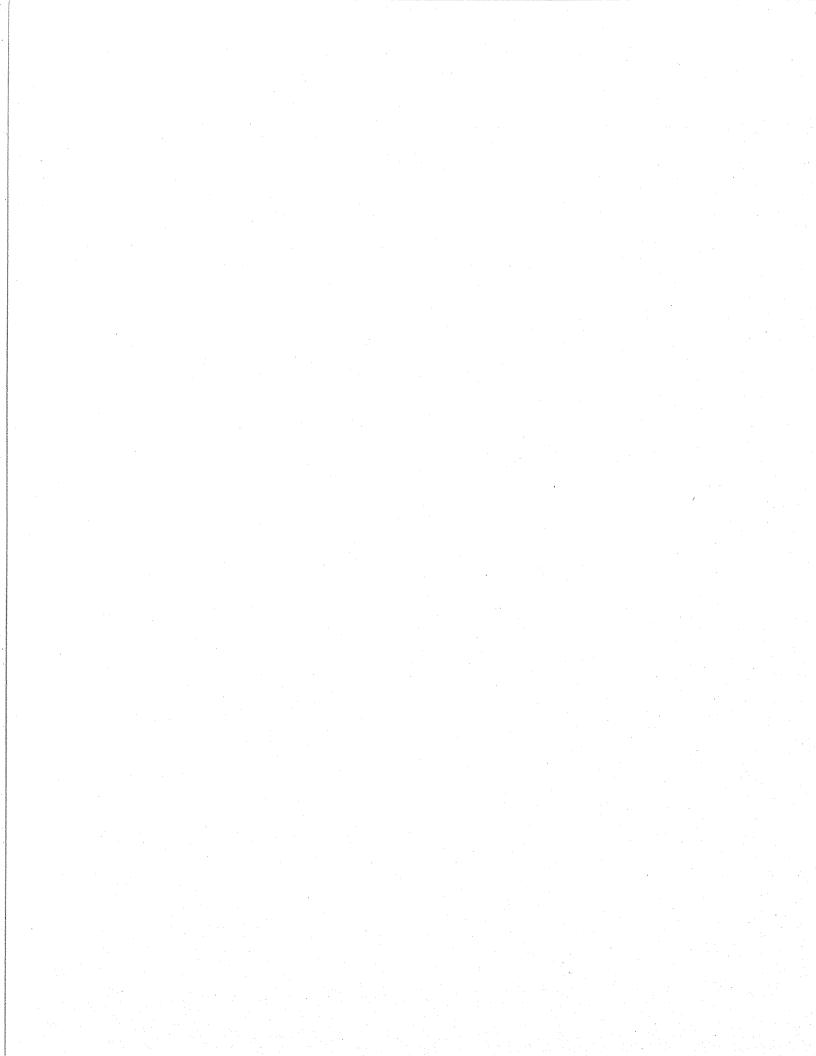
1987: Compilation géologique de la région de l'Estrie-Beauce; Carte no 2030 du rapport MM 85-04, géologie par Pierre St-Julien et Anne Slivitzky 1985.

Overstreet, W.C.

1967: The geologic occurrence of monazite; U.S.G.S. Professional Paper 530, 327p.

Shilts, W.W.

1973a: Glacial dispersal of rocks, minerals and trace elements in Wisconsinan till, southeastern Quebec, Canada; Geological Society of America, Memoir 136, p. 189-219.

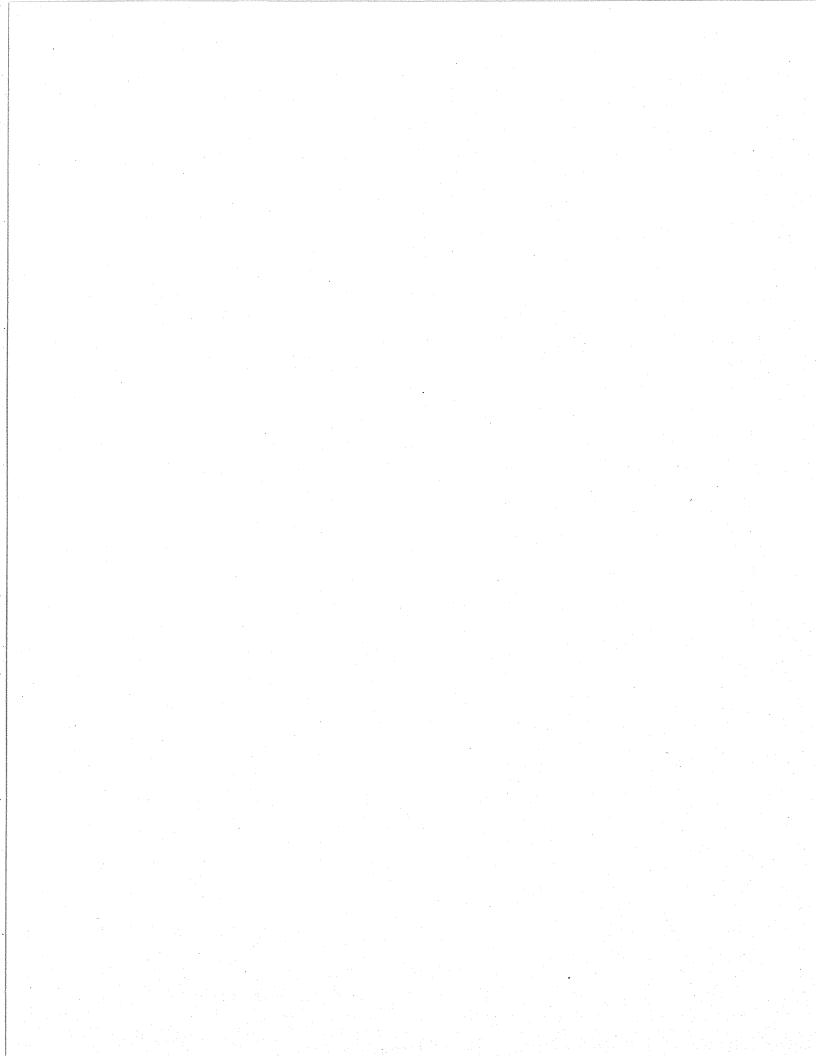

1973b: Till indicator train formed by glacial transport of nickel and other ultrabasic components: a model for drift prospecting; in Report of Activities, Part A, Geological Survey of Canada, Paper 73-1A, p. 213-218.

1978: Detailed sedimentological study of till sheets in stratigraphic section, Samson River, Quebec; Geological Survey of Canada, Bulletin 285, 30 p.

1981: Surficial geology of the Lac Mégantic area, Quebec; Geological Survey of Canada, Memoir 397, 102 p.

APPENDICE A

Répartition des numéros d'échantillons par coupure SNRC au 1/50 000



Répartition des numéros d'échantillons par coupure SNRC au 1/50 000

No. d'échantillon	<u>SNRC</u>	No. d'échantillon SNI	<u>RC</u>
001 à 112 113 à 117	21 L/7 21 L/6	213 à 215 211 216 à 217 211	•
118 à 119	21 L/3 21 L/7	218 21 1	•
120 à 161	21 L/6	219 à 226 21 l	L/5
162	21 L/7	227 à 232 21 l	L/4
.163 à 169	21 L/6	233 à 234 21 l	L/5
170 à 175	21 L/4	235 à 300 21 I	L/4
176 à 209	21 L/6	301 à 305 21 I	L/7
210 à 212	21 L/5		

APPENDICE B

Fiches de laboratoire

	MASS	SES DES DIFFÉRE	NIES FRACTIONS	DE MINÉRAUX LO	OURDS	
ÉCHANITILLON N°	MAGNÉTITE	récip. N°1	récip. n°2	+ 0,850 mm	EXCÈS	REMARQUES
001		39,5	·			***006
002	72,6	31,6	37,6	13,4		
003	6,5	16,7	17,4	15,9		
004	17,2	34,5	36,7	6,8		
005	7,9	21,2	23,0	7,6		
006	11,6	41,3	86,7	5,6	140,6	
007	8,4	52,6	60,2	14,2		
008	5,6	17,3	18,9	10,8		
009	5,9	44,9	40,6	12,9		
010	0,3	10,9	11,0	3,3		:
011	0,8	25,9	23,9	5,3		
012		11,0				C.R. (GS)
013	13,3	40,6	39,6	12,5		
014	0,4	5,0	0,3	5,3		·
015	9,6	23,0	21,2	11,8		
016	4,4	34,8	33,6	15,3		
017	16,0	70,1	64,7	16,2		
018	15,4	61,4	57,9	9,3		
019	3,9	13,8	13,6	15,8		
020	10,9	83,6	86,7	5,7	99,0	
021		35,8				***023
022	1,0	3,7	0,6	0,2		
023	2,2	35,8	61,6	5,9		·
024	0,9	62,5	53,5	5,7		-
025	1,6	11,5	9,4	7,8		
026	21,1	12,9	16,3	22,3		
027	3,9	11,0	10,3	15,4		
028	0,6	25,6	25,4	9,4		
029		11,7		·		C.R. (GS)
030	3,0	27,0	25,1	7,5		
031	1,9	30,0	27,4	12,3		

*** : DUPLICATAS

: PARTICULES MÉTALLIQUES

C.R. : CONTROL REFERENCE

OR : PARTICULES D'OR OBSERVÉES

MASSES DES DIFFÉRENTES FRACTIONS DE MINÉRAUX LOURDS						
ÉCHANTILLON N°	MAGNÉTITE	RÉCIP. N°1	récip. n°2	+ 0,850 mm	EXCÈS	REMARQUES
063	19,6	51,5	50,0	20,4		
064	0,1	0,3	0,1	0,1		
065	5,9	48,7	49,5	13,8		
066	23,7	45,2	79,5	30,7	78,6	
067	0,4	61,6	57,7	2.1		
068	34,8	42,4	43,3	5,9		
069	23,3	54,4	50,9	4,8		
070	9,2	14,1	12,3	2,0		
071	1,7	10,1	5,2	1,3		
072	7,2	13,3	11,7	3,0		
073	16,4	60,2	61,0	2,5		
074	17,1	39,9	43,8	13,2		
075		12,1				C.R. (GS)
076	19,1	46,4	50,3	7,4		
077	8,3	51,5	50,0	6,1		
078	17,6	22,8	24,0	17,9		
079	9,1	3,6	0,5	1,4		
080	2,7	22,5	19,5	4,8		
081		18,0				***085
082	13,5	32,4	27,1	5,8		
083	2,5	10,2	3,2	1,5		
084	1,7	10,1	10,5	3,0		
085	13,1	19,4	32,4	3,7		·
086		8,5				C.R. (GS)
087	12,0	35,2	35,4	1,5		
088	2,6	10,7	8,3	4,3		
089	7,0	33,7	30,8	1,9		
090	2,0	8,3	1,2	0,5		
091	22,1	34,5	29,7	4,3		
092	1,3	3,4	0,6	0,4		
093	5,0	12,5	11,1	3,9		

*** : DUPLICATAS ### : PARTICULES MÉTALLIQUES
C.R. : CONTROL REFERENCE OR : PARTICULES D'OR OBSERVÉES

·	MAS	SES DES DIFFÉRE	NIES FRACTIONS	DE MINÉRAUX L	OURDS	
ECHANTILLON N°	MAGNÉTITE	RÉCIP. N°1	RÉCIP. N°2	+ 0,850 mm	EXCÈS	REMARQUES
032	12,0	25,9	25,6	13,2		
033	9,0	13,2	12,8	17,1		
034	1,4	5,9	5,6	8,6		
035	20,0	44,7	44,9	18,4		
036	1,1	4,2	1,1	1,8		
037	15,7	27,5	26,1	11,4		
038	0,5	10,1	3,9	0,1		
039	1,8	33,2	31,8	5,5		
040	8,8	30,0	30,7	19,2		-
041		36,6				***052
042	3,7	16,3	15,5	8,0		
043	31,0	32,0	31,6	21,9		
044	10,7	25,1	24,5	13,4		
045	29,8	35,2	33,7	25,8		
046	56,4	57,1	53,0	20,0		
047		12,7		·	-	C.R. (GS)
048	14,7	18,4	17,8	5,3		
049	46,8	42,3	41,4	21,8		
050	45,7	88,6	86,6	26,2		
051	21,3	20,9	21,6	15,0		
052	1,2	36,8	77,8	4,8	103,6	
053	16,7	37,1	40,7	14,6	,	
054	11,5	20,7	19,9	10,2		·
055	48,5	79,8	79,0	20,2		
056	20,3	35,6	38,7	12,7		
057	78,7	60,5	56,1	26,6		
058	67,3	78,4	84,3	14,0	80,4	
059	4,9	14,8	13,8	5,8		
060	0,6	12,3	11,8	7,2		
061		41,5				***066
062	13,2	40,2	44,4	11,1		

*** : DUPLICATAS

: PARTICULES MÉTALLIQUES

C.R. : CONTROL REFERENCE

OR : PARTICULES D'OR OBSERVÉES

	MAS	SES DES DIFFÉRE	NIES FRACTIONS	DE MINÉRAUX LO	URDS	
ECHANITILION N°	MAGNÉTITE	récip. N°1	récip. n°2	+ 0,850 mm	EXCÈS	REMARQUES
094	5,8	19,9	22,4	2,5		·
095	3,4	10,8	4,4	2,5		
096	7,2	16,5	14,6	2,1		
097	16,3	29,1	31,7	11,8		
098	8,6	29,7	28,1	6.2		
099	16,7	27,0	30,3	6,6		
100	17,6	21,9	22,0	6,6		
101		42,9				***113
102		9,8				C.R. (GS)
103	28,5	38,5	35,7	5,0		
104	2,8	11,3	4,3	1,7		
105	5,0	15,0	16,6	2,7		
106	6,2	11,2	12,6	2,9		
107	4,8	10,3	9,2	3,3		
108	4,7	10,4	5,6	8,8		·
109	3,9	10,6	4,7	0,8		,
110	27,8	34,8	33,3	4,5		
111	22,2	29,5	32,2	6,3		
112	10,7	28,1	31,4	3,4		
113	42,9	52,1	84,7	1,3	38,2	
114	34,8	56,4	59,2	21,7		
115	44,1	68,2	65,7	7,8		
116	31,9	31,4	29,4	7,4		
117	10,2	24,0	22,2	10,7		
118	10,7	21,1	20,1	5,4		
119	22,4	45,4	49,3	3,8		
120	23.7	64,0	53,8	0,9		
121		45,6		\$		***122
122	58,9	47,2	81,9	2,2		
123	10,2	48,2	55,5	4,8		
124	5,1	14,6	15,8	3,5		

*** : DUPLICATAS

: PARTICULES MÉTALLIQUES

C.R. : CONTROL REFERENCE

OR : PARTICULES D'OR OBSERVÉES

	MAS	SES DES DIFFÉRE	NIES FRACTIONS	DE MINÉRALIX LO	URDS	
ECHANITILION N°	MAGNÉTITE	RÉCIP. N°1	récip. n°2	+ 0,850 mm	EXCÈS	REMARQUES
125		8,6				C.R. (GS)
126	11,9	16,8	18,3	3,6		
127	11,4	20,3	18,6	6,0		
128	0,4	27,2	23,5	0.8		
129	21,6	49,5	53,4	1,1		
130	9,7	21,7	23,2	2,1		
131	11,7	17,7	19,4			
132	1,3	10,1	9,6	1,1		
133	5,4	18,4	16,5	4,4		
134	10,5	27.4	24,1	3,4		
135	2,1	10,4	2,5	1,7		
136	11,6	25,1	29,5	1,1		
137	39,3	16,9	19,7	38,2		
138	19,3	61,4	56,0	1,5		
139	17,4	19,7	19,7	8,8		,
140	3,1	10,5	6,8	5,9		
141		27,5				***147
142	17,4	21,1	24,1	6,9		
143	24,8	22,7	26,3	11,1		
144	1,3	10,2	0,4	5,3		
145	28,3	44,8	50,2	13,0		
146	10,8	29,4	34,1	8,6		
147	45,0	26,3	57,5	4,7		
148	10,0	27,3	26,3	5,9		
149	33,8	41,3	41,6	5,2		
150	93,3	26,7	27,8	41,2		
151	29,8	54,3	48,6	13,8		
152		10,8				C.R. (GS)
153	14,6	18,3	16,9	12,4		
154	52,7	64,9	68,5	29,0		
155	4,4	37,4	33,2	8,5		

*** : DUPLICATAS

: PARTICULES MÉTALLIQUES

C.R. : CONTROL REFERENCE

OR : PARTICULES D'OR OBSERVÉES

	MASS	SES DES DIFFÉRE	INTES FRACTIONS	S DE MINÉRAUX LO	URDS	
ECHANTILLON N°	MAGNÉTITE	RÉCIP. N°1	RÉCIP. N°2	+ 0.850 mm	EXCÈS	REMARQUES
156	27,9	80,4	73,1	7.4	23.6	
157	7,3	11,9	10,5	6.2		
158	6,6	13,4	11,6	8,9		
159	18,2	32,2	30.2	6,8		
160	73,3	18,2	19.9	23.6		
161		19,2				***162
162	4,2	18,9	37,0	1,3	·	
163	2,0	10,4	7,2	2.6		
164	0,7	20,8	24,4	1.7		
165	10,7	18,1	19,6	4.4		
166		10,6				C.R. (GS)
167	6,9	12,3	10,9	3,4		
168	8,0	16,3	14,6	6,2		
169	16,0	26,7	27,7	7.0		
170	70,3	21,2	23,6	41.0		OR
171	100,2	24,2	25,5	20_3		<u> </u>
172	39,8	10,6	7,5	33,2		
173	83,5	27,9	25,2	32,0		
174	7,1	10,5	7,7	3.9		·
175	83,9	20,6	23,1	16,9		
176	7,1	10,1	8,2	6,8		OR
177	32,9	29,1	30,6	9,5		
178	26,6	33,3	34,2	9,1		
179	17,3	18,2	19,1	4,0		
180	53,8	21,8	22,8	57.3		
181		43,3				***185
182	7,3	11,6	11,9	6,6		
183	23,4	68,6	59,6	2,3		
184	4,6	17,9	18,3	3,6		
185	5,6	42,4	88,5	1.3	58,8	
186	19,2	80,1	72,7	7,3		

*** : DUPLICATAS ### : PARTICULES MÉTALLIQUES
C.R. : CONTROL REFERENCE OR : PARTICULES D'OR OBSERVÉES

	MASS	SES DES DIFFÉRE	NIES FRACTIONS	DE MINÉRAUX LO	OURDS	
ÉCHANTTILLON N°	MAGNÉTITE	RÉCIP. N°1	récip. n°2	+ 0,850 mm	EXCÈS	REMARQUES
187	19,7	71,1	74,4	3,3		
188	43,2	78,3	85,6	2,3		
189		11,3				C.R. (GS)
190	153,5	51,9	51,6	11,3		
191	66,6	24,8	24,7	54,0		
192	4,1	10,3	10,8	5,0		
193	42,6	70,4	72,4	2,1		
194	15,3	50,3	50,8	8,6		
195	61,0	24,2	24,0	79.2		
196	16,0	36,8	36,7	10,8		
197	4,8	14,2	14,3	4,2		
198	38,8	83,1	87,7	2,4	47,2	
199	72,0	52,8	48,8	13,6		
200	148,8	39,5	39,6	83,5	,	
201		43,5				***217
202	50,6	55,1	51,0	32,2		
203	6,5	42,6	43,5	2,6		
204	55,4	89,7	84,3	2,8		
205	31,7	46,2	50,1	4,0		
206	0,2	35,8	35,4	2,9		
207	0,5	35,8	36,3	2,0		
208	1,5	29.8	30,4	2.7		
209	32,3	72,8	69,1	5,6		
210	15,1	35,2	34,5	3.0		
211	17,4	31,4	31,9	2.9		
212	18.4	40.0	41.9	4.6		
213	34.9	70.9	66.9	4_6		
214	41.6	51_7	56_0	5.3		
215	5.3	54.6	56.9	5.7		·
216	6.5	15_0	14.7	2 9		
217	53.7	46.5	81_5	3_2	36 2	

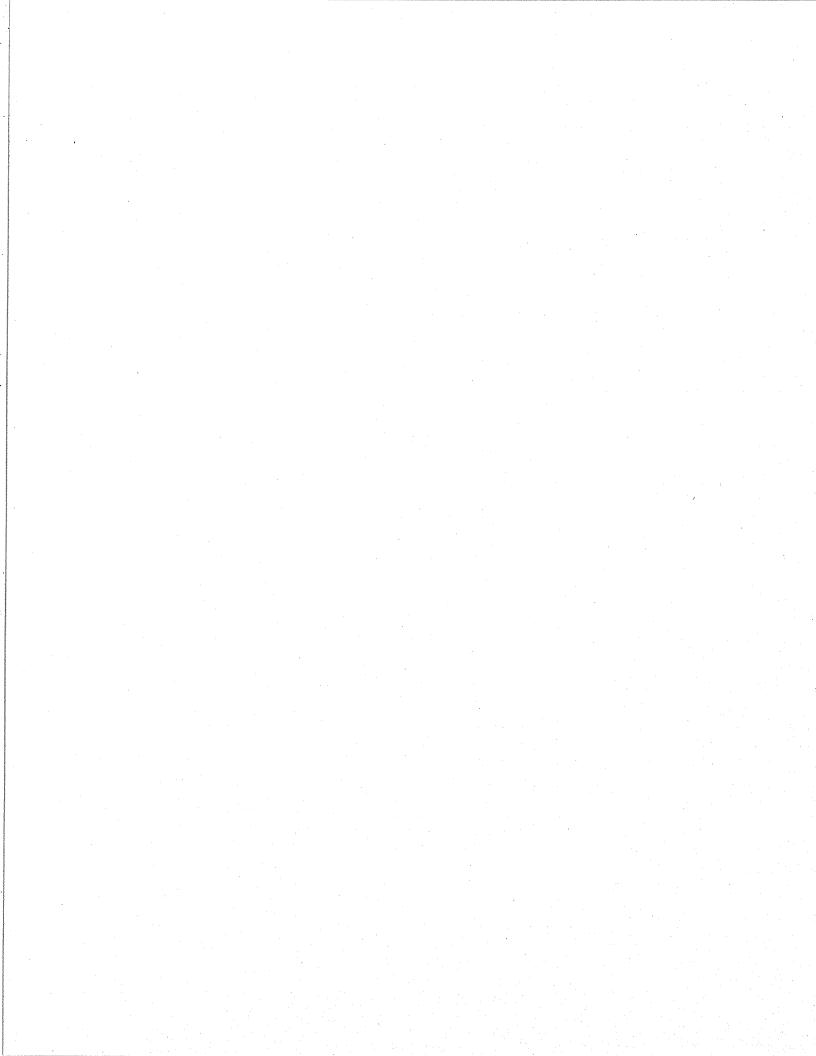
*** : DUPLICATAS ### : PARTICULES MÉTALLIQUES
C.R. : CONTROL REFERENCE OR : PARTICULES D'OR OBSERVÉES

	MAS	SES DES DIFFÉRE	NIES FRACTIONS	DE MINÉRAUX LO	URDS	_
CHANTILLON N°	MAGNÉTITE	récip. n°1	récip. n°2	+ 0,850 mm	EXCÈS	REMARQUES
218	4,1	16,6	16,9	12,4		
219		11,5				C.R. (GS)
220	11,0	40,7	44,4	3,9		
221		44,1				***236
222	8.9	34,3	32,6	2,4		
223		9,8				C.R. (GS)
224	11,7	35,2	35,3	4,1		
225	10,7	61,1	63,2	4,2		
226	6.3	47,9	50,3	2.0		
227	7,8	61,1	61,2	4,4		
228	42,5	31,5	32,2	62,0		
229	23,7	83,6	85_0	1.3	40.6	
230	25,5	25,9	26,6	33,2		OR
231	6,2	14,5	14.1	6,4		
232	10,9	21,1	21,6	2,5		
233	27,4	47,6	49,9	3,7		
234	45,6	80,3	80,4	3,3		
235	97,3	32,9	32,6	41,0		
236	48,0	41,9	80,6	9.2		
237	8,0	27,6	27_5	2,2		
238	9,9	38,4	42,3	0.8		
239	7,3	22,9	23,2	4,9		·
240	6,8	16,2	17,0	1,8		
241		39.4				***249
242	61,3	49.8	50_2	6.9		
243	4.6	25,1	26.3	3,3		
244	4_6	8.3	1,1	7.0		
245	18,5	10_3	2,7	14,6		
246	67_4	67.5	70_8	3.0		
247	4.7	14 0	14.4	2.7		
248	<u>-</u>	8.3				C.R. (GS)

: PARTICULES MÉTALLIQUES *** : DUPLICATAS

: PARTICULES D'OR OBSERVÉES OR C.R. : CONTROL REFERENCE

	MAS	SES DES DIFFÉRE	NIES FRACTIONS	DE MINÉRAUX LO	URDS	
ÉCHANTILLON N°	MAGNÉTITE	RÉCIP. N°1	récip. n°2	+ 0,850 mm	EXCÈS	REMARQUES
249	63,6	41,8	84,1	1,0	23,5	
250	66,2	71,5	78,9	4,2		
251	67,9	16,0	16,5	26,8		
252	218,2	49,4	45,4	21,7		
253	227,5	71,7	54,4	60,3		
254	10,9	13,0	13,7	4,9		
255	33,1	10,8	5,0	39,0		
256	159,0	45,6	44,0	26,0		
257	23,0	12,4	12,7	19,4		
258	97,9	25,8	28,6	50,9		
259	87,8	25,4	27,0	48,4		
260	67,1	23,0	22,4	53,4		
261		44,0				***275
262	82,0	25,5	25,9	28,7		
263	21,3	17,1	17,6	17,8		
264	37,5	18,9	19,4	14,4		,
265	40,7	43,7	40,6	15,6		
266	26,4	64,1	68,7	4,1		
267	17,6	29,4	29,1	1,9		
268	1,7	19,7	19,7	1,2		
269	5,9	51,2	56,4	1,1		
270	53,2	82,1	91,8	1,9	23,5	
271	17,1	34,4	31,1	7,8		
272	50,5	79,5	77,3	4,6		
273	26,4	48,2	49,5	4,8		
274	9,1	25,3	25,4	8,6		
275	38,1	44,3	89,7	3,4		
276		8,0				C.R. (GS)
277	70,5	85,7	84,5	2,9		
278	19,4	33,8	33,9	6,0		
279	0,7	13,8	13,5	4,1		


*** : DUPLICATAS ### : PARTICULES MÉTALLIQUES
C.R. : CONTROL REFERENCE OR : PARTICULES D'OR OBSERVÉES

	MAS	SES DES DIFFÉRE	NIES FRACTIONS	DE MINÉRAUX LO	URDS	
ÉCHANTILLON N°	MAGNÉTITE	RÉCIP. N°1	RÉCIP. N°2	+ 0,850 mm	EXCÈS	REMARQUES
280	0,9	8,1	1,3	0,8		
281		37,1				***299
282	10,1	31,8	32,8	3,0		
283		11,2				C.R. (GS)
284	22,1	22,3	22,8	5,9		
285	64,8	20,5	21,1	22,8		
286	28,1	18,0	18,4	32,7		
287	28,3	26,4	26,9	9,7		
288	7,1	11,5	11,9	6,9		
289	23,2	26,5	28,7	7,0		
290	6,0	13,1	13,6	2,1		
291	15,7	21,8	23,3	4,1		
292	22,0	24,2	27,0	12,9		
293	57,2	59,4	61,3	8,6		
294	39,3	58,2	60,1	9,6		
295	16,5	18,5	18,5	0,9		
296	0,6	21,6	23,0	0,7		
297	36,0	39,9	42,7	30,8		OR
298	20,1	20,4	21,6	23,3		
299	8,1	36,2	78,4	0,6		
300	23,1	35,0	33,7	3,0		
301		28,4				***303
302	< 0,1	4,2	0,9	1,2	-	
303	0,1	31,9	54,9	2,3		
304	< 0,1	2,5	0,1	1,4		
305		14,5				C.R. (GS)

: DUPLICATAS

C.R. : CONTROL REFERENCE

: PARTICULES MÉTALLIQUES
OR : PARTICULES D'OR OBSERVÉES

APPENDICE C

Tableau des résultats analytiques (sauf pour Pd, Pt, et Ir -voir appendice D)

Note: INS - insuffisamment d'échantillon pour l'analyse ND - valeur non-déterminée

ÉСН	Au ppm	Cr %	Fe t	Co ppm	Ni t	Zn t	Mo ppm	S b ppm	La ppm	Ce ppm	Sm ppm	Eu ppm	Tb ppm	Yb ppm	Lu ppm	Hf ppm	Ta ppm	Th ppm
002 003 004 005 006 007 008 009	0.01 0.03 0.01 16.70 0.25 1.03 0.03 0.04 1.71	0.28 0.15 0.19 0.24 0.22 0.29 0.23 2.63 0.43	44.4 36.1 39.3 35.6 41.7 36.3 36.8 31.2 29.3	62 100 43 47 47 57 160 74 41	150 68 <25 63 <25 43 120 64 <41	210 340 140 150 170 120 170 260 180	3 14 5 6 7 5 9 3	2.1 2.1 1.0 1.1 0.3 1.1 2.4 0.4 0.6	55 66 66 70 59 69 66 140 150	120 120 150 170 140 140 110 260 300	15 16 17 19 15 18 15 30 30	2 2 2 4 2 2 2 2 3 4	8.7 6.7 8.0 10.0 7.0 8.4 4.1 7.6 7.6	39 36 48 58 43 46 28 45	5.7 5.9 6.9 8.3 6.4 7.3 4.1 7.6 7.1	93 227 250 184 314 261 269 583 421	12 17 20 16 <26 19 18 24 24	14.0 20.1 18.0 16.0 23.0 19.0 21.0 37.5 36.4
011 013 014 015 016 017 018 019 020	0.07 0.01 0.05 <0.01 <0.01 0.02 0.20 4.25 0.19	1.81 0.35 1.72 0.56 2.64 1.09 1.98 2.24 1.30	30.1 39.6 32.0 34.2 35.8 38.9 35.8 36.5 36.6	68 45 58 49 76 94 76 97 67	72 35 <110 <37 82 110 59 130 48	270 150 580 160 260 220 240 390 230	5 6 <5 7 5 6 3 4 8	0.8 0.5 0.6 0.7 0.7 2.1 1.9 3.3 0.7	95 100 60 91 85 110 84 97	210 180 140 170 160 200 160 210 150	25 22 12 21 21 27 19 20 21	3 <1 <5 3 2 3 2 <1	8.5 4.9 3.8 6.4 5.5 7.2 4.8 4.6 5.8	53 32 34 38 34 37 29 23 27	8.6 5.9 5.3 6.3 5.7 6.1 4.7 3.5 4.8	305 586 320 310 395 218 196 224 323	21 31 19 22 21 19 16 14 28	24.8 38.6 21.0 28.7 27.5 26.7 19.0 25.1 31.7
022 023 024 025 026 027 028 030	0.01 <0.01 2.17 0.04 0.04 0.90 <0.01 0.85	2.14 0.28 2.55 0.76 2.65 15.10 24.00 7.40	30.0 38.4 35.2 39.3 38.0 30.4 25.6 29.9	64 48 77 56 100 260 360 140	110 29 40 60 120 300 380 130	<200 170 180 180 340 620 950 420	<10 10 3 6 14 <5 <5 <3	1.3 0.5 0.8 0.6 2.2 1.3 0.6 0.5	91 160 89 75 77 61 47	160 320 180 170 150 170 100 220	14 34 25 22 18 16 14 26	<5 3 2 <1 <1 2 2 2	<2.5 7.5 7.8 6.3 4.8 4.4 3.6 6.4	25 43 47 40 34 27 25 43	3.0 8.0 7.7 6.2 5.2 4.2 4.0 7.6	421 652 280 255 255 149 123 425	21 33 22 21 18 9 7 21	33.0 46.0 24.9 24.2 19.0 15.0 16.0 30.9
031 032 033 034 035 036 037 038 039 040	0.03 <0.01 0.01 0.02 0.03 0.04 <0.01 0.17 <0.01	3.93 4.74 7.76 2.34 6.28 1.22 0.43 0.15 0.42 1.10	33.8 37.8 32.7 32.5 34.3 36.2 37.1 39.1 37.2 34.7	96 110 150 110 130 69 46 42 48 77	65 91 170 92 160 <92 <30 <39 41 89	310 340 450 400 350 420 220 220 160 260	3 2 <3 4 <3 7 6 8 6 5	0.3 0.8 1.2 0.5 <0.4 0.8 0.5 0.5	110 110 150 130 150 266 110 160 150 140	210 220 300 270 300 490 230 330 280 280	25 28 38 31 37 45 27 34 36 38	3 2 4 5 4 8 3 <1 3 3	7.0 6.5 7.3 8.0 8.1 6.5 6.3 11.0	44 41 37 47 41 49 39 38 55 54	7.1 6.5 5.3 7.1 6.8 <8.5 6.7 <7.0 8.4 8.4	447 449 197 264 237 1050 478 1050 442 271	24 23 15 17 18 31 24 32 29 21	28.7 30.1 34.8 27.8 29.4 90.5 31.5 74.0 33.3 28.2
042 043 044 045 046 048 049	<0.01 <0.01 <0.01 0.06 1.27 4.90 0.98 0.02	0.74 1.15 0.28 0.59 2.30 0.73 2.18 2.85	36.1 38.7 38.8 39.6 38.0 42.4 37.4 36.4	51 67 54 60 79 63 79 85	46 <25 58 55 70 61 50 66	320 200 150 170 230 310 230 280	10 5 8 6 3 8 4 <1	0.6 0.5 0.5 0.6 0.5 0.6 0.5	120 140 160 110 76 130 100 98	250 280 300 220 150 280 200 200	27 34 33 28 21 30 27 26	3 4 3 4 4 2 3	7.3 7.5 8.7 9.0 7.3 9.0 8.4 7.8	47 39 57 52 40 51 49 43	7.6 6.4 8.9 8.1 6.7 7.9 7.5 7.4	584 193 652 271 248 272 266 249	28 21 28 23 22 25 21 21	38.8 28.3 37.6 21.7 20.1 35.1 26.4 24.1
051 052 053 054 055 056 057 058 059 060	3.33 0.02 <0.01 0.01 0.12 <0.01 0.61 0.03 0.03	1.35 1.38 2.28 2.52 1.39 2.12 1.66 0.28 0.43 0.23	40.1 37.5 40.4 37.8 36.0 42.3 34.3 38.2 42.5 35.1	71 56 79 81 62 82 75 55 67 49	46 <26 46 43 <24 81 51 68 <57 47	310 270 240 260 180 270 270 200 260 240	7 3 4 6 5 6 3 11 12 9	0.5 0.5 0.5 0.2 0.7 0.6 1.2 1.0 5.4 0.5	82 110 150 120 90 110 110 79 130 294	180 200 270 240 180 220 220 160 250 570	22 26 34 29 23 28 30 23 31 67	2 3 3 4 3 2 4 2 5 8	6.4 6.5 8.1 6.5 6.5 7.5 7.7 6.5 7.8 12.0	41 39 46 39 38 45 38 33 48 60	6.8 6.6 7.8 6.7 6.3 7.0 6.3 5.2 7.1 8.9	332 425 608 489 272 388 293 300 515 460	23 28 31 25 22 28 21 28 30 25	23.6 30.8 42.5 31.1 24.0 32.1 27.7 27.4 34.9 48.8
062 063 064 065 066 067 068 069	0.07 <0.01 <0.04 <0.01 <0.01 <0.01 0.12 <0.01	0.17 0.16 0.08 0.12 0.07 0.07 0.08 0.22	39.5 38.2 37.0 37.9 39.0 35.9 41.4 42.3	51 49 32 50 45 46 51 55	<26 <25 <130 <25 <26 29 <25 27	210 230 1400 190 <100 150 150	5 7 28 6 8 12 10 6	0.4 0.3 <0.5 0.4 0.3 0.3 0.4 <0.1	232 140 230 90 150 180 100 140	440 270 360 180 270 340 190 260	61 38 43 27 38 43 25 37	7 4 <5 2 4 3 2 2	7.7 7.8 4.2 7.0 5.6 6.3 4.2 5.2	36 38 17 40 31 34 21 23	6.0 6.7 4.1 6.6 5.6 6.3 3.7 3.7	243 287 591 254 464 637 296 256	25 24 34 23 31 41 28 26	47.1 32.5 93 23.0 43.2 69.2 36.5 31.9

ЕСН	U ppm	Fe p	Ni p	Cu ppm	Zn p	Ag ppm	Pb ppm	A s	W ppm	Hg ppb	Ti %	Sr ppm	Zr ppm	N b	Sn ppm	Ba ppm	Y ppm	S %
002 003 004 005 006 007 008 009	8.6 8.3 10.0 11.0 9.3 11.0 7.2 14.0 11.0	3.6 7.3 2.0 2.5 1.3 2.8 6.5 1.2	72 66 19 22 2 26 102 9	41 95 11 24 3 22 163 12 3	96 68 24 29 14 36 85 18	<0.1 0.3 <0.1 <0.1 <0.1 0.3 0.7 <0.1	76 65 12 14 9 23 208 32	98 228 6 21 <2 50 300 5 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 120 35 60 5 20 200 10 60	10.7 12.5 15.5 15.0 18.2 14.9 11.2 14.1 17.5	36 15 20 26 6 23 278 7 8	1791 5890 6238 4661 7856 5962 6823 14235 12426	106 151 186 151 199 179 152 200 219	5 12 6 13 23 21 13 10 14	290 69 57 92 15 100 50 52 32	259 204 271 359 190 308 124 203 259	2.72 10.32 0.18 0.64 0.03 2.39 13.83 0.55 0.05
011 013 014 015 016 017 018 019	10.0 14.0 8.1 9.2 11.0 8.5 6.9 7.5 9.5	1.4 0.8 1.6 1.5 1.4 5.2 2.9 3.5 1.3	12 2 6 9 8 63 22 31 4	14 6 7 8 12 96 21 25 4	17 12 23 20 20 57 37 31	0.1 <0.1 0.1 <0.1 <0.1 0.2 <0.1 <0.1	33 20 21 24 26 111 79 33 12	15 <2 3 3 2 95 54 78 <2	2 8 2 12 2 2 2 2	15 70 15 25 180 40 15 15	13.9 17.3 12.9 15.1 15.5 13.9 13.7 9.8 17.7	18 6 30 22 15 9 17 24 2	8934 4142 9345 9150 10746 5616 5545 6307 7836	194 252 176 207 198 162 151 112 224	14 27 22 18 32 17 21 14 27	39 <15 74 56 15 15 33 <15 17	288 118 157 182 159 190 144 117 129	1.00 0.07 0.09 0.19 0.30 5.88 0.56 0.09 0.13
022 023 024 025 026 027 028 030	6.8 14.0 9.4 8.4 6.9 5.0 3.4 10.0	1.3 0.9 1.4 1.8 5.0 4.6 1.0	2 <2 2 8 52 69 11 6	4 2 8 8 151 75 12 6	13 11 19 25 73 62 36 21	<0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1	179 15 17 11 29 32 10 13	<2 <2 <2 52 192 7 <2	2 2 4 2 2 4 2 2 2	20 55 60 45 545 105 15 55	INS 17.5 16.1 15.3 11.6 8.4 7.3 13.7	INS 3 16 22 23 11 1 7	INS 14786 7632 6085 6314 3902 3023 11413	INS 251 193 183 157 86 71 194	INS 21 19 21 10 <1 <1 6	INS 17 <15 45 93 457 34 39	INS 166 218 182 134 155 121 212	0.09 0.02 0.01 0.14 5.34 5.19 0.37 0.06
031 032 033 034 035 036 037 038 039 040	10.0 9.2 6.7 8.9 7.8 22.9 13.0 24.3 15.0 11.0	0.9 1.5 2.2 3.5 1.8 1.0 1.4 1.1 1.4 3.3	6 8 18 48 12 6 6 2 3 29	3 12 31 90 26 12 21 3 20 52	17 20 21 44 24 14 15 12 24 31	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 <	9 10 18 64 19 22 8 11 12 61	2 3 22 96 9 4 88 <2 <2 67	2 8 2 <2 <2 2 2 8 2	70 60 80 105 75 50 45 45 60	14.3 15.5 12.6 11.6 13.6 INS 16.4 19.0 15.9 14.4	8 6 11 24 5 INS 10 5 10	11833 11116 4952 6834 6254 INS 13082 34700 10661 7213	208 205 139 170 150 INS 201 229 207 185	24 18 6 5 10 INS 16 25 21	15 18 83 154 107 INS 27 <15 29 77	137 161 191 209 233 INS 157 120 310 266	0.01 0.26 1.32 3.65 0.53 0.43 0.17 0.02 0.03 3.05
042 043 044 045 046 048 049 050	14.0 8.3 18.0 11.0 9.2 9.4 9.1 10.0	1.4 1.6 1.8 1.6 1.6 1.7	3 6 11 8 8 6 13 8	4 8 13 13 14 10 28 11	18 23 18 21 37 17 36 24	<0.1 <0.1 <0.1 0.2 <0.1 0.2 <0.1 <0.1	14 13 14 10 15 117 19	<2 2 6 7 12 <2 25 17	2 <2 2 2 8 2 2 2	75 55 65 140 60 70 75 70	16.3 16.7 16.7 15.6 15.2 17.5 14.5 15.5	9 12 7 13 10 6 12 7	14374 4459 15090 6916 6467 6353 6768 6343	233 173 213 192 178 195 191 183	8 11 22 12 17 21 9 11	19 55 30 61 124 22 192 62	174 221 256 251 198 253 228 239	0.02 0.05 0.14 0.27 0.27 0.11 0.60 0.20
051 052 053 054 055 056 057 058 059	9.3 11.0 16.0 12.0 9.0 11.0 10.0 9.0 12.0 14.0	1.6 1.1 1.3 1.8 1.4 1.5 2.2 1.6 1.3	6 2 4 3 9 6 7 14 8 4	8 3 8 6 11 20 9 20 15 4	31 14 15 15 25 26 22 39 25 22	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.1	9 11 95 12 30 14 12 19 124 13	8 <2 2 2 17 2 2 21 23 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55 25 80 60 75 95 20 45 85	15.9 17.7 16.3 16.6 15.3 15.8 14.1 16.8 17.0 16.2	9 4 5 5 7 8 12 8 8	7940 10937 13681 12678 7318 8997 7632 7178 11617 11460	189 239 221 215 185 195 174 215 222 211	14 16 8 20 21 22 35 26 28 12	97 19 38 16 54 47 64 59 53 72	169 163 165 166 211 180 213 153 162 273	0.26 0.03 0.13 0.03 0.46 0.07 0.07 1.39 0.59 0.03
062 063 064 065 066 067 068	10.0 8.7 13 7.6 11.0 15.0 6.7 6.2	1.2 1.4 INS 1.2 1.5 0.9 1.3 1.4	4 3 INS 2 4 <2 3 2	17 9 INS 4 7 4 6	19 20 INS 19 13 18 12 14	<0.1 <0.1 INS <0.1 <0.1 <0.1 <0.1	12 20 INS 11 18 8 23 19	3 <2 INS <2 8 <2 <2 <2	2 2. INS 2 2 2 2 2 2	65 70 INS 85 85 65 15 <5	17.3 16.3 INS 16.8 18.7 21.7 20.0 18.8	9 7 INS 7 2 2 3 3	6111 7681 INS 6283 11646 15362 7233 6100	203 207 INS 195 262 329 238 213	17 23 INS 21 18 21 24 16	82 87 INS 57 17 37 <15	158 179 INS 180 116 105 80 90	0.12 0.10 INS 0.02 0.30 0.02 0.19 0.05

ÉСН	Au ppm	Cr %	Fe t	Co ppm	Ni t	Zn t	Mo ppm	S b ppm	La ppm	Ce ppm	Sm ppm	Eu ppm	Tb ppm	Yb ppm	Lu	Hf ppm	Ta ppm	Th ppm
070	0.01	0.19	40.4	55	<79	420	14	0.5	200	440	51	6	6.0	23	3.7	250	23	46.6
071 072 073 074 076 077 078 079 080	0.02 0.04 <0.01 <0.01 1.10 0.37 2.90 0.11 2.29	ND 13.90 16.20 22.50 14.40 16.90 8.77 INS 1.99	ND 31.1 33.2 29.7 32.3 29.5 37.0 INS 45.0	ND 240 280 380 280 310 200 INS 84	ND 200 280 410 320 340 240 INS 61	ND 820 760 1100 720 880 620 INS 260	ND <6 <4 <4 <4 <4 <4 INS 6	ND 0.7 0.3 0.3 1.0 0.7 0.8 INS 5.5	ND 130 77 60 79 68 85 INS 218	ND 240 180 130 170 140 190 INS 440	ND 26 20 14 18 15 21 INS 48	ND <3 2 2 1 2 2 INS 7	ND 4.5 2.9 3.2 3.3 2.9 4.4 INS 10.0	ND 22 17 16 14 12 17 INS 40	ND 3.4 3.0 3.3 3.0 2.7 2.9 INS 5.9	ND 215 155 109 135 120 216 INS 256	ND 13 14 9 11 11 19 INS 24	ND 24.5 20.0 15.0 17.0 15.0 29.7 INS 34.4
082 083 084 085 087 088 089	0.16 0.03 0.01 5.33 <0.01 0.12 <0.01 <0.01	3.78 1.74 1.08 3.78 0.91 2.33 1.16 1.09	44.8 42.8 42.0 39.7 40.6 38.3 42.4 40.0	180 80 79 100 59 88 75 60	220 90 79 99 <28 89 62 <67	330 240 210 380 <100 160 170 400	6 7 8 2 5 <3 7 10	1.9 0.8 0.9 0.5 2.2 0.7 0.3 <0.3	120 190 225 170 307 225 203 180	220 380 440 350 589 440 390 400	27 41 48 38 65 46 44 34	3 5 4 5 9 5 3 4	4.1 7.9 7.6 11.0 7.1 10.0 6.5 8.5	24 42 45 51 32 42 29 37	4.1 6.8 7.7 7.3 5.5 5.9 4.3 5.6	329 303 495 222 448 201 276 305	22 23 26 19 29 19 25 22	33.4 32.3 45.4 26.5 51.3 40.3 37.8 32.9
091 092 093 094 095 096 097 098 099	<0.01 0.02 0.23 <0.01 0.03 1.11 0.02 0.03 <0.01 0.01	0.56 0.19 0.29 0.65 0.50 8.02 1.27 0.47 0.29 0.38	45.2 40.0 39.4 40.4 44.6 37.4 40.8 40.9 39.8 40.6	62 46 51 54 170 160 72 59 49 56	28 <130 <40 39 140 120 <30 44 55 <65	180 570 220 160 220 450 130 200 180 320	6 16 9 8 9 5 6 12 7 6	0.7 <0.5 0.5 0.3 2.0 <0.2 4.2 1.0 0.4 <0.3	100 320 190 130 140 150 204 160 246 408	200 610 370 270 300 290 380 330 480 853	23 66 44 30 31 32 50 36 61	2 <5 5 3 3 4 3 7 11	4.2 6.2 8.0 5.6 6.9 6.1 7.6 5.2 7.1	25 18 48 35 42 32 27 25 29 47	3.9 4.9 7.5 5.7 6.7 4.9 3.8 3.9 5.0 7.4	264 350 388 363 189 245 200 354 410 281	25 29 26 25 20 19 21 28 27 24	25.3 65.0 40.2 30.4 24.8 28.8 36.0 38.4 53.7 85.0
103 104 105 106 107 108 109 110	1.44 0.04 0.02 0.01 0.01 0.11 0.01 <0.01	0.38 0.21 0.31 0.54 0.43 0.45 0.43	43.6 38.5 41.3 44.3 40.3 44.2 38.6 40.7	57 40 96 62 48 130 53 64	<30 <41 89 56 <43 130 <63 34	210 230 290 170 280 <100 <240 170	2 7 12 4 11 9 11 8	0.4 0.5 0.6 3.4 0.5 2.5 0.6 3.2	408 648 120 528 650 492 889 487	770 1250 280 1040 1290 947 1610 953	99 155 32 124 145 102 160 119	11 20 5 11 19 14 24 13	9.1 13.0 7.3 12.0 13.0 10.0 15.0 11.0	32 43 43 45 40 40 46 38	5.4 6.4 6.3 6.4 5.8 6.3 6.6 5.9	305 467 301 296 369 280 353 269	27 25 21 25 24 19 27 23	78.2 111.0 28.9 98.4 86.8 59.0 106.0 91.5
111 112 113 114 115 116 117 118 119	<0.01 <0.01 2.74 <0.01 <0.01 <0.01 0.08 <0.01 <0.01	0.69 0.20 0.05 0.10 0.04 0.14 0.12 0.16 0.20 0.46	43.4 44.7 40.5 39.0 39.0 40.3 36.2 37.5 38.2 41.0	71 51 48 55 46 48 46 57 55 56	56 43 23 27 27 28 <27 <53 42 32	140 250 130 190 160 160 110 250 140 150	2 8 9 5 8 6 8 5 4	2.7 <0.1 0.4 0.2 0.7 1.0 0.5 0.8 0.5	623 372 91 68 75 100 321 373 438 130	1220 780 150 130 140 210 617 737 773 250	162 96 23 20 19 28 77 88 106 32	19 11 <1 1 3 9 12 12 3	13.0 9.4 3.2 4.5 3.9 4.5 6.9 11.0 11.0 4.5	39 41 12 23 21 25 29 47 36 24	5.9 6.2 2.1 4.1 3.9 4.2 5.1 6.9 6.3 4.3	196 404 280 204 322 250 376 301 403 431	19 26 32 22 29 27 25 20 27 34	123.0 73.4 43.1 26.0 33.1 27.3 55.1 63.5 74.1 39.6
122 123 124 126 127 128 129 130	0.15 0.23 <0.01 <0.01 <0.01 <0.01 <0.01	0.16 0.08 0.06 0.16 0.15 0.15 0.09 0.12	43.6 41.1 37.9 40.2 43.0 38.7 41.6 42.7	46 44 48 50 53 46 48 52	<23 28 <32 <32 <27 30 <20 <39	130 <100 170 200 180 140 130 220	9 8 10 11 7 11 8 10	0.2 0.3 0.3 0.3 0.6 0.3 0.4 0.5	170 203 100 130 91 150 110 217	290 360 210 260 180 300 200 410	35 42 24 30 24 34 23 43	2 3 2 3 2 2 2 2	4.5 5.5 5.6 5.4 4.8 4.7 3.3 5.7	23 23 37 34 27 25 18 25	4.7 4.2 6.4 5.7 4.5 4.7 3.5 4.5	619 467 438 397 232 440 352 404	40 36 27 29 27 34 32 36	67.4 82.2 40.1 46.9 31.4 51.7 43.1 84.0
131 132 133 134 135 136 137	<0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01	0.11 0.08 0.50 0.05 0.14 0.11 0.20	39.2 40.3 39.4 37.4 38.1 43.3 41.3	53 50 53 42 43 51 45	<36 <44 94 <34 <40 <32 <42	180 240 280 240 220 220 200	9 10 8 9 8 7 7	0.4 0.3 0.8 0.3 0.4 <0.1	170 208 438 294 88 224 233	340 410 884 556 170 410 430	34 42 111 74 23 51 52	3 3 12 7 3 5 7	5.6 6.1 10.0 6.5 5.5 5.1 5.7	31 25 30 23 31 28 24	5.6 4.3 4.5 4.2 4.9 4.4 3.9	421 413 293 641 286 302 204	29 33 27 39 26 30 22	69.8 70.3 69.3 81.7 28.2 44.8 50.3

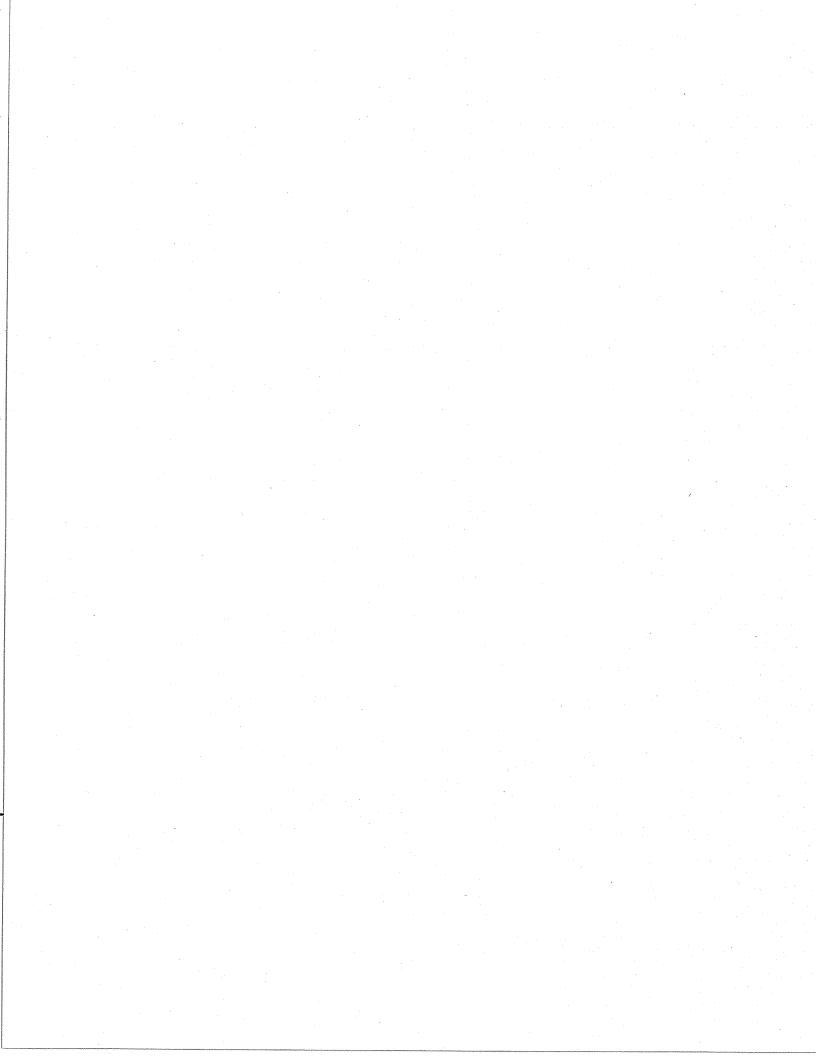
ĖСН	U ppm	Fe p	Ni p	Cu ppm	Zn p	Ag ppm	Pb	As ppm	W ppm	Hg ppb	Ti %	Sr ppm	Zr ppm	N b	Sn ppm	Ba ppm	Y ppm	S %
070	5.1	1.4	3	4	. 14	<0.1	11	3	4	10	18.3	5	6094	219	29	24	94	0.21
071 072 073 074 076 077 078 079	ND 5.3 3.5 2.8 3.2 2.6 5.6 INS 8.6	1.4 1.7 1.2 1.5 3.5 2.1 3.2 1.2 1.3	4 15 13 19 61 28 36 9	18 13 8 12 34 31 37 10	17 25 23 31 39 32 29 20	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	17 28 20 8 57 28 39 21 151	2 33 4 7 162 44 52 9 2	2 <2 <2 <2 2 2 2 2 2 2	15 10 <5 <5 35 15 20 25 15	18.0 11.8 12.4 8.4 10.4 10.1 14.4 INS 18.8	7 3 2 1 4 6 3 INS 2	9602 5974 3671 2527 3464 2925 4896 INS 5935	232 112 125 83 104 99 148 INS 172	18 16 8 <1 3 <1 16 INS 45	30 <15 <15 18 15 15 15 <15 INS <15	144 96 84 81 76 67 86 INS 222	0.13 0.73 0.22 0.24 3.73 1.66 3.14 0.32 0.05
082 083 084 085 087 088 089	7.7 7.5 10.0 8.2 10.0 6.7 6.9 8.7	6.1 2.6 4.0 1.4 1.1 1.2 1.5	98 24 31 8 3 7 10 6	133 39 47 8 6 6 12 6	62 20 22 18 14 15 15	0.2 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 <0.1	94 28 43 17 20 45 25 9	264 27 117 8 <2 4 58 7	4 2 <2 2 2 2 2 2 2	45 25 20 20 10 <5 5 25	14.8 16.5 16.6 16.7 19.3 17.8 19.4 18.3	3 6 4 3 4 4 4	7962 6923 11397 5706 12005 4981 7017 7965	173 184 210 149 229 157 200 194	18 14 18 32 29 22 26 31	<15 15 25 26 15 24 33 <15	85 219 188 284 129 261 129 245	9.73 2.28 4.40 0.65 0.16 0.35 0.77 0.06
091 092 093 094 095 096 097 098 099	6.5 8.8 10.0 7.7 8.2 6.1 6.7 7.3 10.0 11.0	1.5 1.1 6.1 1.4 1.5 1.4 1.7 1.3 2.1	8 3 105 7 6 9 4 7 7	14 3 123 9 18 11 20 9 9	15 12 66 20 14 21 13 13 14 23	<0.1 <0.1 0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.4	21 12 174 274 53 20 72 19 10	13 <2 308 12 <2 7 4 10 32 326	2 2 2 2 16 2 2 2 2 4	20 20 75 15 15 20 15 5 <5	19.4 INS 13.5 18.5 17.0 15.9 18.8 19.1 18.4 16.5	2 INS 5 6 6 2 4 3 6 8	6310 INS 4156 9332 9660 5971 4723 8956 10923 7244	194 INS 147 217 202 161 168 223 225 196	35 INS 15 27 17 10 36 35 18	<15 INS 34 15 53 30 43 17 15 67	92 INS 196 130 230 145 148 105 122 260	0.52 0.05 8.55 0.23 0.32 0.67 0.21 0.74 0.17 1.31
103 104 105 106 107 108 109	8.5 12.0 6.8 9.2 10.0 8.5 12.0 10.0	1.4 1.3 3.4 1.7 1.1 6.4 1.2 2.1	7 4 54 12 7 94 9	21 14 73 11 17 89 8 30	19 15 52 15 19 56 15	<0.1 <0.1 0.1 <0.1 <0.1 0.2 <0.1 <0.1	31 22 48 32 90 188 41 122	125 4 134 41 11 330 5 87	2 2 2 2 16 2 2 2	55 20 25 20 25 915 25 15	18.9 18.4 16.2 16.5 16.8 13.0 15.7 18.3	5 6 5 9 4 6 7 6	7877 12783 7728 7577 9677 6882 8834 6928	197 223 185 162 204 141 214 175	37 21 16 17 13 15 15	15 36 26 59 48 40 68 32	151 189 181 250 189 181 225 190	0.46 0.08 3.75 1.00 0.40 10.98 0.39 1.85
111 112 113 114 115 116 117 118 119	24.0 9.3 6.2 6.1 8.0 6.8 8.1 9.2 12.0 10.0	3.6 1.3 1.1 1.4 1.2 1.5 1.5 3.9 1.7	25 3 2 3 2 6 6 35 13 3	43 6 <1 1 <1 6 19 99 33 <1	26 14 10 15 15 19 25 50 19	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 <0.1 0.2	101 11 43 8 17 100 36 113 23 10	300 4 4 <2 <2 22 12 222 45 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 5 15 10 15 25 5 20 25 <5	16.2 18.2 21.1 18.9 19.1 18.3 17.4 14.3 18.1 20.5	6 5 1 2 4 7 7 7 9 6 3	4750 9567 6795 4897 8266 6511 10159 8016 11002 10525	147 204 253 180 243 215 225 170 229 273	28 18 26 25 32 34 26 9 23 28	52 48 <15 38 38 351 89 62 42 67	194 162 45 108 81 97 117 237 199 84	3.70 0.04 0.08 0.03 0.04 0.47 0.26 4.39 1.17 0.05
122 123 124 126 127 128 129 130	14.0 13.0 11.0 11.0 6.4 11.0 8.1 11.0	1.1 1.5 1.1 1.3 1.1 1.7	2 2 4 3 4 3 4 3	<1 <1 <1 <1 60 2 5 <1	12 11 23 13 20 13 15	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	8 6 15 105 25 10 32 7		2 2 2 2 8 2 14 2	5 10 5 <5 <5 5	20.7 19.5 15.9 16.7 18.9 20.6 20.8 20.3		14118 11396 10668 9658 5132 10385 9013 8633	280 280 216 227 226 289 261 298	24 22 18 16 45 23 24 21	108 <15 <15 58 191 <15 54 <15	66 81 126 110 100 83 63 94	0.07 0.02 0.12 0.13 0.10 0.02 0.26 0.19
131 132 133 134 135 136 137	12.0 10.0 8.6 15.0 5.9 6.7 6.4	1.7 1.2 1.4 1.3 1.2 1.3	6 3 5 2 5 4 4	16 <1 101 4 6 <1	39 14 25 16 23 15	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	36 11 231 10 8 10	13 2 4 2 4 4 4 3	2 2 2 2 2 2 2 4	30 10 10 15 10 10	18.2 18.6 18.5 20.4 16.1 19.5 18.1	5 5 8 3 11 6 6	10497 9760 7045 15134 6957 7114 5077	263 275 221 291 218 236 187	20 24 38 21 15 25 21	48 25 80 <15 107 39 17	112 84 118 87 118 92 96	0.44 0.14 0.15 0.10 0.10 0.05 0.05

ЕСН	Au ppm	Cr %	Fe t	Co ppm	Ni t	Zn t	Mo ppm	Sb ppm	La ppm	Ce ppm	Sm ppm	Eu ppm	Tb ppm	Yb ppm	Lu ppm	Hf ppm	Ta ppm	Th ppm
138 139 140	<0.01 0.15 <0.01	0.93 0.10 1.72	40.8 38.3 41.3	65 52 81	<25 <47 <38	130 200 210	<3 12 3	0.4 0.5 0.3	638 220 678	1180 420 1360	165 46 172	19 8 21	11.0 5.7 12.0	17 27 35	3.0 3.9 5.0	253 236 228	26 25 24	94.3 45.0 104.0
142 143 144 145 146 147 148 149	<0.01 <0.01 <0.01 2.03 0.01 <0.01 <0.01 0.73 <0.01	0.26 0.78 0.90 1.13 0.80 0.31 0.44 0.18 0.39	41.1 37.4 29.6 34.0 36.7 38.5 37.7 39.4 41.4	70 62 61 56 47 57 43 42 51	<43 47 90 <26 50 <29 <29 <23 <29	<100 <100 290 170 180 170 180 100 <100	3 4 5 1 3 6 4 3 <3	0.6 0.8 0.5 0.8 0.5 8.3 0.5 0.4	1430 825 1180 680 644 520 643 442 826	2770 1590 2300 1270 1240 1050 1290 816 1520	387 210 291 177 173 143 169 107 208	45 25 31 20 19 16 20 12 23	24.0 17.0 20.0 15.0 18.0 13.0 16.0 7.3 13.0	44 42 43 41 61 40 56 18	<5.9 5.9 <6.4 6.2 8.4 5.8 7.8 3.0 3.0	244 194 378 244 295 323 274 243 212	23 21 25 20 24 24 21 26 21	312.0 160.0 233.0 141.0 124.0 96.4 132.0 78.1 148.0
151 153 154 155 156 157 158 159 160	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 4.79	0.23 0.20 0.17 0.96 0.22 0.56 1.08 0.29 0.18	38.1 36.8 40.6 30.7 38.9 41.4 33.9 38.8 50.5	46 36 61 54 48 66 62 60 64	<28 56 <44 38 51 50 66 59 <39	<100 210 <100 120 180 140 280 180 210	<3 4 <5 <3 <4 6 4 4 11	0.5 0.7 0.6 2.0 0.7 1.0 0.5 0.7 0.8	1010 636 2140 679 1480 550 517 386 537	1800 1240 3740 1300 2640 1070 1060 766 1050	271 191 552 186 406 140 137 102	35 19 64 23 50 15 17 10	17.0 14.0 32.0 15.0 25.0 10.0 13.0 10.0 8.3	22 27 33 37 29 28 44 38 19	4.3 <4.2 <5.4 5.9 <5.4 4.7 6.3 6.3 3.2	343 206 235 299 322 233 238 292 300	29 21 22 27 30 22 20 23 28	166.0 146.0 452.0 110.0 275.0 104.0 94.7 75.7 98.6
162 163 164 165 167 168 169 170	1.72 <0.01 <0.01 <0.01 <0.01 <0.01 <17.87	9.62 0.76 0.35 0.23 0.18 0.91 0.38 0.19	36.9 35.2 39.1 44.7 44.6 43.0 39.9 46.6	190 64 45 50 48 61 50 37	210 50 47 62 42 53 <28 69	660 220 210 <100 160 160 110 <100	<5 6 7 10 10 3 8 5	0.4 0.7 <0.1 0.5 0.4 <0.1 0.5 0.3	110 763 891 608 656 639 625 1250	190 1520 1770 1250 1360 1290 1250 2320	23 192 221 149 164 168 162 281	2 22 24 16 18 19 21 36	4.6 18.0 14.0 9.3 10.0 17.0 12.0 18.0	22 62 36 24 27 58 34 21	3.9 8.6 5.6 3.6 4.2 8.2 5.7 3.4	298 424 303 273 315 267 376 257	21 23 28 27 29 25 26 22	29.3 114.0 155.0 97.3 109.0 120.0 108.0 119.0
171 172 173 174 175 176 177 178 179 180	35.34 0.06 <0.01 0.22 4.67 0.02 0.86 <0.01 <0.01	0.16 0.15 0.22 0.10 0.15 1.17 0.31 0.21 0.22 0.18	46.2 54.6 46.0 40.9 44.4 41.2 47.7 43.4 44.5 48.5	38 450 41 57 42 60 43 50 46 53	<50 300 <30 <82 <61 100 75 37 44 51	<220 <220 <100 <400 <290 270 250 120 280 120	<6 <5 6 <9 <7 6 6 <3 10 8	0.5 1.3 0.7 1.2 0.6 7.9 0.6 0.4 0.3 0.5	2500 1350 742 4850 3470 630 914 526 489 516	4310 2440 1350 8390 6200 1330 1890 1030 1020 1000	575 306 184 1090 807 176 246 141 126 121	69 37 18 137 99 24 23 17 13	35.0 21.0 13.0 70.7 45.0 13.0 14.0 10.0 9.0 8.4	26 18 19 30 29 32 21 27 24 19	3.8 3.1 3.3 5.3 4.7 5.0 3.2 4.5 3.7 3.1	283 144 314 237 227 225 240 250 312 306	26 22 23 21 23 24 31 26 29	224.0 126.0 82.9 552.0 374.0 117.0 153.0 78.0 79.8 88.4
182 183 184 185 186 187 188	<0.01 <0.01 <0.01 0.05 0.07 <0.01 0.10 0.45	0.19 0.15 0.08 0.05 0.13 0.05 0.05 0.20	44.7 42.1 41.3 40.5 45.6 40.8 40.9 44.3	60 53 56 45 47 46 48 37	43 23 <28 <21 <23 <21 <20 33	270 170 230 140 170 160 150 <100	7 5 10 11 8 8 9 <2	0.5 0.3 0.7 0.2 0.4 0.3 0.3	258 202 120 205 316 150 110 379	506 370 240 380 588 280 200 712	62 46 27 41 75 33 22 90	6 4 3 2 6 2 1 10	6.4 5.2 6.4 3.7 6.5 4.2 3.8 6.4	25 20 34 17 22 24 24 15	4.5 3.8 5.9 3.1 4.0 4.5 4.4 2.7	336 321 313 447 363 403 345 188	29 30 26 38 32 34 29 18	54.7 46.4 41.9 71.2 62.2 52.4 42.1 70.9
191 192 193 194 195 196 197 198 199 200	<0.01 <0.01 <0.01 <0.01 0.65 2.29 0.01 0.29 <0.01 4.58	0.33 0.08 0.07 0.23 0.19 0.17 0.30 0.10 0.20 0.18	43.6 36.6 41.0 45.3 43.6 41.3 43.9 44.6 46.3 42.2	51 51 44 50 49 54 48 50 58 56	<27 85 <22 <23 <28 <21 <39 <21 <22 31	110 310 140 <100 220 180 140 110 150 160	2 8 9 5 9 6 4 7 5 3	1.0 0.5 0.3 0.4 0.9 1.3 0.5 0.9 0.4	665 268 190 411 520 217 366 248 412 528	1270 470 350 790 1010 410 731 460 748 976	169 64 45 103 123 51 90 58 93 125	17 6 4 12 15 5 12 6 10	12.0 7.6 5.2 8.5 8.0 5.7 9.0 4.6 7.2 8.4	22 27 20 24 19 25 31 13 17	3.2 4.7 3.8 4.3 3.2 4.5 5.1 2.4 3.0 3.2	177 453 374 265 262 296 256 298 207 228	19 35 32 27 26 26 24 31 23 24	112.0 67.9 43.7 62.3 106.0 44.1 61.7 54.6 59.4 102.0
202 203 204 205	0.09 <0.01 0.27 <0.01	0.17 0.07 0.08 0.06	43.8 40.1 42.9 40.4	54 43 43 43	<22 <23 <23 <20	160 140 160 <100	7 9 6 8	0.3 0.1 0.8 0.4	291 289 470 170	537 540 838 310	68 65 108 34	7 7 11 3	7.1 6.0 6.7 4.0	29 24 15 20	4.7 4.4 3.1 3.9	309 457 439 398	27 34 33 29	51.8 64.5 94.9 62.5

ĚСН	U ppm	Fe p	Ni p	Cu ppm	Zn p	Ag ppm	Pb ppm	As ppm	W ppm	H g ppb	Ti %	Sr ppm	Zr ppm	N b	Sn ppm	Ba ppm	Y ppm	S %
138 139 140	8.0 5.1 8.2	1.3 2.4 1.1	5 16 3	1 34 <1	17 46 13	<0.1 <0.1 <0.1	19 104 7	3 366 8	2 2 2	5 25 10	19.6 18.1 16.8	3 7 7	6754 5885 5653	214 230 188	17 24 15	24 150 77	76 97 157	0.03 1.90 0.06
142 143 144 145 146 147 148 149	23.4 17.0 27.0 15.0 15.0 11.0 13.0 7.9 11.0	3.2 2.9 1.9 2.4 1.5 2.5 1.5 0.7 0.8	16 20 18 14 10 14 5	19 50 24 18 313 28 42 13 27	23 28 38 29 30 27 25 12	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.4 0.1	90 121 16 15 62 52 61 7 28	156 54 18 34 11 472 19 6 52	2 2 2 2 2 2 2 2 2 2 2 2	5 10 15 15 15 110 10 5 5	16.6 17.0 15.4 16.5 17.1 18.1 16.6 18.5 17.8	9 15 23 12 8 8 10 11	6064 4912 9527 7269 7397 8561 7187 6459 5510	161 171 197 172 194 197 155 207	12 8 15 11 14 17 23 18 12	77 94 130 160 93 44 63 53 40	269 262 233 261 395 226 340 80 88	2.93 1.44 0.47 1.41 0.15 1.75 0.12 0.06 0.14
151 153 154 155 156 157 158 159 160	16.0 26.3 20.0 18.0 20.9 7.6 11.0 10.0 7.0	0.7 0.8 0.8 1.1 0.8 2.9 1.3 1.5	6 6 15 5 20 11 16 6	6 2 11 38 8 39 9 57 2	14 24 19 25 15 19 29 27 13	<0.1 <0.1 0.1 <0.1 0.4 0.1 <0.1 0.2 <0.1	8 17 39 106 16 41 10 75 72	7 17 17 7 7 364 25 188 3	2 2 2 16 2 2 2 2 2	5 10 5 5 <5 20 5 15	18.4 16.1 14.7 17.5 18.1 16.5 15.8 16.9 18.9	6 15 12 19 8 8 18 7 6	8819 5106 5884 8030 7749 5681 6485 7547 6717	202 158 163 215 202 190 170 200 203	9 13 11 24 21 45 10 28 11	51 75 114 93 80 43 211 45 <15	120 160 187 189 167 140 264 186 64	0.09 0.12 0.08 0.22 0.07 3.96 0.36 1.36 0.08
162 163 164 165 167 168 169 170	6.4 17.0 11.0 7.1 9.4 13.0 12.0 9.0	1.1 1.7 0.5 0.6 0.6 1.4 0.9 0.7	8 16 3 3 7 5 5	8 36 <1 19 2 38 8 6	18 33 11 13 12 18 16	<0.1 0.1 <0.1 0.3 0.1 0.1 <0.1	16 14 9 24 28 19 160 6	9 137 2 2 3 51 33 <2	2 2 2 2 2 2 2 24 20	20 165 5 5 20 10 10	15.8 14.0 19.4 18.8 18.0 17.0 17.9 17.3	3 16 6 5 4 8 10 7	7321 10278 7612 6546 7008 6121 9372 6107	161 184 230 215 214 179 213 165	22 17 30 42 41 39 31 8	<15 97 30 32 <15 26 49 47	98 298 154 92 99 301 167 87	0.27 1.25 0.02 0.03 0.08 0.78 0.21 0.05
171 172 173 174 175 176 177 178 179 180	12.0 11.0 11.0 18.0 19.0 17.0 9.2 8.3 9.1 7.3	1.3 3.2 1.1 1.1 0.9 1.0 0.7 0.7 0.6 0.5	12 252 8 10 7 8 7 5 4 3	22 120 11 35 21 4 28 <1 8	14 26 12 23 13 33 22 14 13 10	<0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 0.2 <0.1 0.2	13 35 7 13 24 80 32 17 19	46 832 9 40 25 5 5 2 14 <2	2 2 4 2 2 2 2 2 2 2 2 2 2	15 30 30 25 15 3695 70 5 20 5	17.4 13.0 15.8 13.7 16.9 17.3 17.6 17.4 19.0 19.5	11 11 12 29 16 11 10 8 7	6798 2642 7411 5269 4991 4812 5019 6344 7507 6949	184 131 150 150 179 182 227 193 216 211	13 8 14 8 16 22 21 19 26 25	82 57 <15 223 177 79 267 28 <15 <15	104 77 80 189 152 144 81 98 82 62	0.78 6.68 0.58 0.42 0.32 0.22 0.14 0.02 0.06 0.03
182 183 184 185 186 187 188	7.4 7.7 8.1 9.3 8.0 10.0 8.4 8.4	0.7 0.6 1.7 1.3 1.2 1.4 1.7	3 9 2 2 2 3 4 12	<1 <1 7 <1 <1 <1 <1 <1 <1 <1 <4	12 12 59 10 10 14 15	0.2 <0.1 0.1 <0.1 0.1 <0.1 <0.1 <0.1	31 14 26 9 16 14 15 29	4 2 5 2 <2 <2 2 6	2 2 2 2 4 2 2 8	10 5 25 5 5 5 5	18.9 20.2 16.2 22.4 20.2 20.3 19.2 16.2	8 3 8 <1 2 <1 1 9	7471 7779 7828 11192 8538 9881 9001 4675	215 227 218 314 237 274 253 143	17 28 27 25 27 25 23 22	33 <15 117 <15 <15 <15 <15 <15 <15	87 76 137 48 73 85 84 64	0.09 0.11 0.91 0.03 0.01 0.21 0.26 0.13
191 192 193 194 195 196 197 198 199 200	10.0 11.0 8.1 10.0 7.9 6.8 7.3 6.5 8.5 9.4	1.4 1.6 1.4 1.6 1.4 1.5 1.2 2.0 1.6	4 13 5 4 9 3 6 3 18	5 35 1 <1 8 50 2 <1 32	13 141 11 14 14 12 17 10 32 15	<0.1 <0.1 <0.1 0.1 0.1 0.2 <0.1 <0.1 <0.1 0.4	27 18 11 7 23 89 7 28 83 73	3 10 6 2 4 2 3 <2 14 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 50 10 5 5 5 5 5 5	15.4 17.3 20.0 18.0 19.0 18.8 15.6 21.0 17.4 18.2	13 7 2 8 9 4 18 3 8	4068 10681 9510 6334 6734 7500 5731 7334 5034 5631	152 256 246 201 210 214 182 238 180 189	19 20 29 17 18 50 14 33 12 22	48 <15 <15 <15 27 18 54 <15 <15 <15 44	103 112 76 99 81 98 123 45 70 83	0.04 0.91 0.25 0.01 0.32 0.03 0.02 0.07 1.23 0.41
202 203 204 205	8.9 10.0 11.0 9.2	1.5 1.2 1.2 1.3	4 2 2 5	1 <1 <1 7	14 10 9 11	0.1 <0.1 <0.1 <0.1	47 9 7 54	2 2 <2 2	2 2 2 8	5 5 <5 15	17.2 20.3 20.8 19.3	5	7406 11142 10970 10318	201 178 257 249	15 28 30 22	<15 <15 <15 <15	104 85 59 74	0.09 0.02 0.01 0.41

ĖСН	Au	Cr	Fe t	Co	Ni t	Zn t	Mo	Sb	La	Ce	Sm	Eu	Tb	Yb	Lu	Hf	Ta	Th
DOM	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	11			••	••													
206	< 0.01	0.03	35.6	44	33	170	9	0.1	180	350	40	3	6.8	36	6.5	571	34	62.8
207	0.02	0.07	34.4	44	27	<100	9	1.0	563	989	126	14	10.0	26	4.9	558	36	104.0
208	< 0.01	0.14	40.0	45	<25	140	5	0.4	643	1150	146	16	11.0	24	4.2	314	29	79.7
209	2.32	0.18	41.9	46	36	150	3	0.2	874	1520	199	21	13.0	17	2.9	281	27	108.0
210	< 0.01	0.05	37.5	46	<24	200	5	0.5	200	370	45	4	6.2	31	5.2	349	28	42.0
011	-0.01	0.00	41.0	52	53	120	8	<0.1	420	728	97	10	8.3	23	3.8	329	33	60.8
211 212	<0.01 <0.01	0.09 0.05	41.2 41.0	32 41	<24	170	8	1.4	444	795	96	9	7.8	23	4.5	576	38	79.1
213	< 0.01	0.05	41.3	47	36	100	9	0.3	190	340	39	3	5.1	23	4.0	426	37	62.2
214	< 0.01	0.04	41.3	50	<22	170	10	0.4	190	340	40	4	4.8	24	4.3	387	32	54.8
215	0.04	0.10	36.3	44	<23	120	5	< 0.1	409	761	91	9	8.1	27	5.1	542	36	90.1
216	< 0.01	0.05	38.1	45	<37	230	8	< 0.2	160	290	34	3	5.1	30	5.2	411	27	41.0
217	< 0.01	0.06	43.7	48	<22	120	7	0.4	297	543	62	6	5.4	17	3.0	405	35	73.7
218	< 0.01	0.12	40.7	57	48	300	9	9.4	190	380	39	4	5.2	36	5.8	245	22	36.3
220	< 0.01	0.06	38.0	42	<20	160	6	0.3	212	390	46	5	5.6	28	5.2	356	30	36.3
							_					_		•		600	20	667
222	<0.01	0.05	39.2	42	<22	140	8	0.4	291	510	56	6 4	6.3 6.1	29 33	5.6 5.7	508 260	32 23	55.7 31.8
224	< 0.01	0.07	35.8	45	<21	110	6	0.2	200	380	43 56	5	6.9	33 31	5.7	339	28	45.8
225	<0.01	0.07	38.8	50	<22	130 130	. 7 9	0.5 0.2	255 203	480 360	41	3	4.5	21	3.9	448	36	65.8
226	0.07	0.04	39.3 41.8	44 53	22 58	<100	<6	0.2	2720	4380	584	73	38.0	28	5.3	425	35	242.0
227 228	0.03 1.62	0.12 0.17	43.0	42	<28	<100	2	0.3	1090	1990	262	30	16.0	16	2.5	265	24	129.0
229	0.13	0.17	37.9	45	<22	140	4	0.4	538	919	117	13	8.4	16	2.6	277	29	59.9
230	51.74	0.10	39.5	52	<33	230	<5	<0.2	644	1090	150	15	12.0	27	4.3	273	26	58.8
250	51.71	0.15	57.5	-	100					,-								
231	2.17	0.09	37.3	56	51	370	7	0.5	778	1480	175	21	15.0	34	5.3	269	21	68.0
232	12.66	0.06	43.3	56	<33	190	9	0.6	295	580	67	8	7.3	28	5.0	282	28	44.7
233	0.09	0.04	33.4	38	<20	120	10	0.2	160	300	37	4	4.5	22	3.9	366	28	34.3
234	0.11	0.04	39.8	43	25	120	10	<0.1	170	320	36	2	3.8	18	3.4	461	35	52.1
235	0.21	0.24	40.6	44	<34	<100	<4	0.4	1840	3210	443	52	25.0	23	3.5	229	24	240.0
236	0.43	0.12	41.2	48	<28	150	<3	<0.1	1230	2110	262	34	18.0	23	4.0	293 272 [/]	27	94.1 136.0
237	0.01	0.10	40.9	54	<36	<100	<4	0.6	2010	3350	442	55	28.0	19 22	3.3 3.7	286	30 27	118.0
238	< 0.01	0.10	39.8	51	<30	150	<4	< 0.1	1500	2550	328	43	21.0 8.1	30	4.9	264	24	43.5
239	< 0.01	0.10	39.2	48	55	170	5 8	0.2	408 443	746 847	87 93	9 11	8.3	27	4.6	271	26	45.2
240	<0.01	0.09	39.6	37	<38	220	0	0.4	443	047	93	11	0.5	21	4.0	2,1	20	13.2
242	1.32	0.35	44.0	59	<47	<100	<7	< 0.3	3860	5890	705	94	45.0	20	2.6	186	23	228.0
243	23.39	0.13	37.4	47	<41	<100	8	0.5	1760	3290	380	48	25.0	25	4.3	402	27	158.0
244	1.52	0.09	38.2	100	93	<100	6	0.6	1550	2960	343	44	23.0	25	3.9	223	24	133.0
245	0.04	0.12	45.6	90	<70	<290	<8	2.2	1720	3190	364	58	26.0	27	4.1	184	20	149.0
246	0.01	0.10	44.3	51 ~	<36	<100	<5	0.5	2520	3980	471	66	30.0	14	2.9	320	31	147.0
247	0.03	0.13	40.0	41	<58	380	<6	<0.4	1040	1900	213	31	16.0	23	4.1	268	24	82.3
249	< 0.01	0.05	39.7	42	<25	130	7	0.3	349	625	84	7	6.2	12	2.2	367	36	65.1
250	0.05	0.16	41.7	76	<70	<300	<14	1.0	7060	10500	1370	183	97.8	31	3.8	228	26	347.0
					=-	222		0.7	50.50	10700	1.000	107	90.9	41	-50	105	15	849.0
251	0.04	0.10	37.5	51	<79	<390	<11 <6	0.7 0.6	5860 3550	10700 5620	1600 709	197 91	89.8 47.0	41 21	<5.9 3.4	105 198	15 24	268.0
252	3.46	0.10	44.4	49	<49	<100	<6	0.8	3410	5310	655	93	46.0	22	4.3	258	25	229.0
253	0.18	0.08	43.6	60 64	<41 <50	<100 <250		1.0	2060	3700	421	60	31.0	41	6.2	308	19	162.0
254 255	0.03 19.29	0.11 0.30	36.8 46.7	64 63	<59 51	180	<7 <5	0.5	1280	2420	285	38	23.0	35	4.7	177	17	134.0
256	0.01	0.13	42.3	59	<35	<100	ં ઢં	0.5	2030	3550	444	55	28.0	21	3.4	231	24	175.0
257	0.01	0.13	40.3	81	<61	290	<7	0.6	2400	4700	568	70	36.0	34	5.5	182	19	212.0
258	0.01	0.12	43.2	58	<36	<100	<5	0.4	2090	3760	501	60	32.0	37	5.2	199	21	199.0
259	4.42	0.21	43.3	60	59	<100	<4	0.6	1490	2700	339	42	23.0	28	4.2	249	23	158.0
260	5.12	0.27	42.0	54	<39	<100	<5	0.6	2110	3930	483	57	31.0	36	5.5	205	22	266.0
													,a -					200.0
262	3.92	0.17	42.4	49	<43	<100	<6	1.1	2850	4930	641	76	40.0	25	3.9	211	25	329.0
263	0.02	0.13	43.8	47	<50	<220	7	0.5	2320	4460	531	73	35.0	32	<5.4	209	21 28	263.0 342.0
264	0.05	0.17	41.5	43	<51	<230	<7	<0.4	3130	5640	689 502	85 74	42.0 39.0	27 31	3.7 <4.7	188 284	28 34	309.0
265	<0.01	0.13	45.3	55	<41	<100	<6 0	0.3	3030 258	4770 470	593 58	74 5	6.0	20	3.6	348	33	58.5
266	0.22	0.05	40.7	44 50	<20 <23	170	9 9	0.9 0.3	297	534	58 67	6	6.6	26	4.3	349	31	54.0
267	< 0.01	0.04 0.07	39.4 34.6	50 35	<23 <51	190 <230	<7	5.4	2350	4150	568	59	36.0	20	3.5	317	29	214.0
268 269	0.01 0.05	0.07	34.6 42.2	33 48	<71	<300	<15	0.9	6590	10200	1430	181	94.9	32	4.0	341	36	528.0
270	0.05	0.13	42.2 45.4	45	<22	150	11	<0.1	190	340	40	3	3.6	9	1.8	307	36	52.0
<i>4</i> / ∪	0.10	U.UT	-1J.*T		~~~	150		-0.1		2.10				-				
271	< 0.01	0.11	42.9	50	<25	170	5	0.3	455	818	103	12	9.4	30	5.0	268	28	56.8
272	0.17	0.04	44.6	45	<20	100	- 8	0.2	200	370	42	3	3.1	9	1.8	298	34	55.0

ĖСН	Au	Cr	Fe t	Co	Ni t	Zn ŧ	Mo	Sb	La	Ce	Sm	Eu	Tb	Yb	Lu	Hf	Ta	Th
	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
273	< 0.01	0.04	42.8	50	<24	130	. 7	0.3	593	1050	125	15	9.3	20	3.7	424	34	75.4
274	9.21	0.11	42.7	50	<27	260	3	0.4	361	652	78	7	7.8	26	4.1	267	27	62.4
275	< 0.01	0.04	40.8	43	21	150	8	0.2	190	340	41	4	4.5	19	3.5	387	34	42.0
277	< 0.01	0.03	45.0	43	<21	190	8	< 0.1	150	270	30	2	3.0	11	2.0	326	35	51.2
278	< 0.01	0.11	42.0	52	30	130	3	0.3	511	946	113	14	8.3	22	3.8	296	27	54.0
279	< 0.01	0.12	40.6	54	- 58	<220	<7	0.4	1140	2170	253	32	19.0	42	6.5	309	24	109.0
280	0.03	0.11	41.7	50	<59	270	<8	<0.4	2720	4930	555	71	37.0	29	5.6	424	31	236.0
282	<0.01	0.08	37.7	42	<27	170	<4	0.4	1180	2080	262	32	18.0	33	5.4	342	27	100.0
284	1.90	0.13	42.2	59	<43	<100	<6	0.4	2610	4660	556	69	35.0	24	3.9	240	26	216.0
285	10.94	0.13	43.5	34	<56	<270	<8	0.9	4240	7430	958	121	60.8	26	2.8	256	27	364.0
286	0.81	0.28	41.3	58	<140	<620	<21	1.2	15000	23500	2960	404	215.0	21	2.8	215		1180.0
287	11.42	0.29	37.3	43	<50	<240	<7	<0.4	3960	6460	950	104	61.4	22	3.9	177	23	253.0
288	0.04	0.11	35.7	49	<54	220	8	<0.4	608	1190	136	17	11.0	27	4.0	255	23	59.3
289	0.03	0.10	37.7	52	<53	<260	<8	1.3	4260	7310	954	120	61.5	.25	4.0	298	26	310.0
290	0.67	0.26	33.7	62	<170	<810	<33	3.6	21500	31100	2290	585	331.0	31	3.8	167	20	1030.0
291	0.03	0.12	40.9	50	<53	<240	<7	0.5	3500	6420	803	111	52.3	21	3.5	177	20	270.0
292	0.06	0.17	39.1	50	84	<310	<14	0.8	6910	10500	1300	182	91.4	24	4.2	236	26	364.0
293	1.28	0.11	44.7	40	51	<100	<6	0.6	2620	4350	589	71	37.0	18	2.6	253	27	237.0
294	0.03	0.14	43.8	48	32	<100	<4	1.6	1620	2810	374	46	24.0	15	2.5	225	26	154.0
295	< 0.01	0.04	38.8	47	32	180	6	0.3	120	230	24	1	4.8	30	4.8	381	28	33.6
296	< 0.01	0.07	33.7	36	<28	120	7	< 0.2	265	500	55	4	6.3	33	6.0	655	34	71.5
297	12.80	0.14	43.3	54	<30	120	<5	0.6	1640	2850	365	45	22.0	14	2.6	342	31	137.0
298	0.14	0.17	44.3	53	51	<100	7	0.7	1110	2090	249	30	15.0	17	3.1	215	23	89.2
299	< 0.01	0.08	48.1	53	<27	200	8	0.4	757	1360	171	20	12.0	19	3.5	404	38	81.8
300	< 0.01	0.05	38.1	40	41	180	9	0.4	140	260	31	3	4.1	21	3.5	335	31	36.4
302	0.01	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS
303	0.02	0.11	36.8	47	<54	<100	11	1.2	263	530	62	4	6.9	28	4.5	639	39	76.8
304	0.05	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS	INS


ECH	U ppm	Fe p	Ni p	Cu ppm	Zn p	A g	Pb ppm	As ppm	W ppm	Hg ppb	Ti %	Sr ppm	Zr ppm	N b ppm	S n	Ba ppm	Y ppm	S %
206 207 208 209 210	14.0 13.0 7.8 10.0 8.4	1.0 1.0 1.3 1.2 1.5	<2 2 3 3 6	<1 <1 <1 <1 16	12 10 13 9 32	<0.1 <0.1 <0.1 0.2 <0.1	7 97 11 16 13	<2 2 2 2 4	2 2 2 2 2	5 5 5 5 15	18.3 21.0 19.0 19.9 17.5	5 2 7 6 6	14074 14381 8027 7147 9223	284 300 229 200 237	17 20 27 22 27	25 <15 <15 <15 103	132 97 98 79 117	0.02 0.02 0.02 0.02 0.31
211 212 213 214 215 216 217 218 220	7.9 13.0 10.0 10.0 13.0 8.6 9.2 7.7 8.2	1.4 1.4 1.2 2.0 1.3 1.3 1.2 2.8 1.1	2 3 3 10 3 4 3 17 <2	<1 7 <1 16 <1 <1 <1 52 <1	12 13 11 16 13 14 11 32	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 <0.1	16 28 7 42 20 6 40 639 13	2 2 24 2 2 2 9 0	2 2 2 2 2 2 2 2 2 2 2 2	25 5 5 25 10 10 5 70 <5	19.5 20.6 20.7 18.7 20.1 17.2 21.4 15.8 19.1	3 2 1 4 5 7 3 11 4	8006 13840 10464 10431 13385 10468 9981 6116 9555	238 294 282 251 306 243 301 195 244	29 38 31 19 26 22 29 23 18	<15 <15 <15 <15 <15 50 <15 1347 22	91 72 73 81 95 111 46 118 106	0.06 0.05 0.10 1.19 0.11 0.07 0.14 2.23 0.01
222 224 225 226 227 228 229 230	12.0 7.0 8.3 11.0 14.0 10.0 6.4 9.2	1.6 1.5 1.9 1.2 1.4 1.5 1.3	7 3 14 <2 3 3 2 5	15 16 19 <1 <1 <1 <1 <1 6	13 18 25 9 13 10 10	<0.1 0.1 0.1 <0.1 <0.1 <0.1 <0.1 1.7	25 11 30 8 11 12 9 24	2 2 3 2 6 5 2 7	2 8 8 2 2 2 8 2	15 10 30 <5 <5 <5 <5 45	19.3 17.3 18.5 20.8 19.3 18.4 20.9 17.8	2 3 2 2 11 5 2 5	12624 7586 9075 11311 9844 6863 7853 6833	269 224 247 308 228 184 242 201	25 21 29 37 22 28 38 34	<15 38 <15 <15 80 30 <15 48	100 135 108 72 123 73 63 116	0.77 0.14 1.16 0.01 0.02 0.12 0.02 0.23
231 232 233 234 235 236 237 238 239 240	7.4 5.8 7.8 9.2 10.0 7.0 6.8 8.2 5.9 9.4	2.4 1.4 1.2 1.3 1.4 1.4 1.6 1.4 1.4	21 6 2 3 2 5 10 <2 4 3	79 41 <1 <1 <1 23 <1 4 44	47 17 14 11 11 12 13 13 12 16	0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	220 16 12 9 8 11 109 19 35 22	15 2 <2 <2 7 6 16 3 2	2 2 2 2 2 2 8 4 2 4 2	35 10 くり くり り り り り り り り り り り り り り り り り	14.1 18.0 19.9 21.3 18.0 19.1 19.9 20.3 18.0 18.8	9 4 2 2 11 6 7 4 3 6	7060 6668 11210 11599 5983 7760 7280 7947 6718 6981	185 228 268 281 189 207 222 225 227 239	18 30 32 35 26 23 30 27 27 23	52 <15 <15 <15 78 42 81 38 <15	124 101 88 60 109 97 85 94 111	1.83 0.60 0.16 0.13 0.02 0.20 0.63 0.18 0.23 0.11
242 243 244 245 246 247 249 250	7.0 10.0 7.0 10.0 6.7 6.1 7.4 12.0	1.3 1.5 2.8 4.3 1.2 1.1 1.2	3 5 19 26 2 2 3 8	<1 4 38 25 19 <1 <1 30	10 12 23 21 9 10 10	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.1	14 49 11 17 9 8 10	5 6 10 33 2 2 2 2	2 2 2 2 2 2 2 2 2	\dagger \dagge	18.3 19.3 16.7 14.2 19.8 18.8 21.2 17.0	10 10 30 19 10 7 3 28	4360 10671 5668 4116 7645 6556 9627 5389	176 235 188 150 230 223 274 170	17 24 12 3 27 16 32 27	111 99 126 283 74 62 <15 996	90 115 125 126 73 107 48 147	0.02 0.44 1.65 3.05 0.02 0.05 0.10 0.42
251 252 253 254 255 256 257 258 259 260	20.8 11.0 11.0 8.9 11.0 8.9 8.2 9.5 10.0 15.0	1.8 1.8 2.2 2.4 4.1 2.3 3.2 1.7 1.9	8 10 16 17 16 17 26 7 12 6	12 20 27 25 85 24 50 7 19	26 15 18 28 19 19 30 21 20	0.2 <0.1 <0.1 <0.1 0.2 <0.1 <0.1 <0.1 <0.1	7 26 14 30 126 37 157 13 21	36 32 30 33 73 32 69 6 21	2 8 2 2 2 2 2 2 2 2 2 2	<5 <5 <5 10 25 20 <5 10 <5 <5	11.3 16.1 15.7 14.0 14.0 17.6 13.4 14.9 14.9	27 21 22 37 15 14 23 16 15 22	2568 4719 6592 8152 3947 6066 4285 4826 5921 5233	105 157 178 174 132 182 140 161 170 176	4 16 16 12 13 16 8 12 22 13	354 114 131 139 53 82 160 87 59 113	281 119 125 187 186 108 165 155 121 194	0.11 0.65 0.87 0.35 3.29 1.24 2.16 0.27 0.67
262 263 264 265 266 267 268 269 270	12.0 21.4 18.0 21.0 8.2 10.0 9.3 17.0 7.1	1.3 1.4 1.4 1.2 1.0 1.3 1.1 0.9	5 6 4 3 3 5 3 3 2	5 2 9 4 <1 3 <1 <1 <1	15 19 16 15 13 33 14 11	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	62 8 29 13 106 18 10 11 25	15 8 7 6 2 9 9	2 2 8 2 2 2 4 2 4	75 く く く く く く く く く く く く く く く く く く く	17.5 14.8 18.0 18.3 20.3 18.8 19.7 19.1 21.9	15 22 11 12 1 3 11 14	5625 4776 4480 6445 8648 9298 8021 8208 7360	192 167 221 219 258 247 197 216 270	25 17 21 31 38 23 19 19	174 127 139 96 <15 <15 119 190 <15	148 150 128 134 78 92 129 130 32	0.18 0.06 0.06 0.05 0.09 0.32 0.04 0.09 0.07
271 272	7.2 6.0	1.1 1.0	4 2	6 25	12 10	<0.1 <0.1	9 104	2 <2	2 2	ර ර	18.1 21.3	2 2	6420 7779	221 273	25 32	15 <15	110 31	0.12 0.01

ЕСН	U ppm	Fe p	Ni p ppm	Cu ppm	Zn p	A g ppm	Pb ppm	A s ppm	W	Hg ppb	Ti %	Sr ppm	Zr ppm	N b ppm	Sn ppm	Ba ppm	Y ppm	S %
273	8.5	1.1	2	7	11	< 0.1	32	<2	2	<5	20.2	6	10912	261	40	<15	65	0.01
274	6.0	2.4	2	<1	16	< 0.1	23	<2	2	<5	19.3	2	6634	219	40	21	92	0.02
275	7.7	1.2	2	<i< th=""><th>12</th><th>< 0.1</th><th>7</th><th>2</th><th>2</th><th><5</th><th>20.4</th><th>3</th><th>10855</th><th>282</th><th>34</th><th><15</th><th>62</th><th>0.03</th></i<>	12	< 0.1	7	2	2	<5	20.4	3	10855	282	34	<15	62	0.03
277	5.5	1.3	3	<1	13	< 0.1	46	4	2	<5	21.7	. 1	7502	291	22	<15	33	0.10
278	6.2	1.3	4	4	15	< 0.1	30	5	2	<5	19.3	3	7847	229	37	<15	83	0.15
279	7.9	1.2	2	<1	14	< 0.1	13	<2	2	<5	17.2	14	7842	198	16	50	146	0.01
280	12.0	1.0	2	<1	13	< 0.1	13	3	2	<5	18.2	15	9758	230	18	186	143	0.02
282	9.3	1.5	2	<1	14	<0.1	13	2	2	<5	17.8	8	9384	217	15	71	136	0.01
284	8.8	1.6	5	13	19	< 0.1	14	28	2	<5	16.7	10	6219	201	21	170	117	0.19
285	8.1	1.6	4	<1	13	< 0.1	7	7	24	<5	17.9	12	6523	197	32	155	108	0.03
286	12.0	0.9	3	5	9	0.1	14	28	2	5	16.6	16	4645	162	21	401	203	0.02
287	7.7	1.4	. 5	6	12	< 0.1	9	8	2	5	17.2	15	4521	154	27	213	132	0.15
288	5.5	1.5	6	1	14	0.1	32	3	2	5	16.2	7	6962	213	25	34	110	0.03
289	8.5	1.6	10	8	29	< 0.1	48	15	2	20	17.3	18	8154	208	31	317	134	0.64
290	<6.6	1.2	3	58	16	0.1	109	23	2	20	11.8	65	3664	108	31	1045	330	0.08
291	7.1	1.4	4	2	22	<0.1	8	7	4	5	16.3	13	4254	160	26	182	137	0.02
292	9.0	1.2	6	16	13	0.3	34	15	4	5	17.8	23	5900	181	23	285	140	0.24
293	9.1	1.3	2	<1	10	< 0.1	30	6	2	120	19.1	8	6174	201	31	87	89	0.02
294	6.5	1.3	3	<1	11	0.2	52	3	2	5	18.7	6	5559	185	21	36	80	0.03
295	6.3	2.6	21	16	30	< 0.1	7	3	2	5	17.8	7	10298	254	22	270	99	1.88
296	12.0	0.8	2	<1	9	0.1	6	3	2	5	19.3	6	16676	302	13	<15	110	0.01
297	7.5	1.1	2	<1	9	0.4	75	2	2	220	20.7	5	8562	229	35	105	60	< 0.01
298	5.3	1.6	6	28	15	0.3	53	7	2	20	19.0	7	5207	180	34	62	73	0.24
299	7.1	1.2	2	<1	10	< 0.1	8	2	2	5	20.9	2	12122	250	26	<15	63	0.02
300	6.3	1.2	3	<1	11	< 0.1	40	. 2	14	10	19.8	2	9034	262	22	<15	67	0.06
302	INS	4.3	48	68	45	< 0.1	63	98	2	55	INS	INS	INS	INS	INS	INS	INS	5.71
303	12.0	1.0	2	13	11	< 0.1	40	<2	2	10	21.3	1	14898	303	24	<15	94	0.03
304	INS	1.0	3	6	13	< 0.1	12	<2	2	<5	INS	INS	INS	INS	INS	INS	INS	0.09

APPENDICE D

Tableau des résultats analytiques de Pd, PT et Ir

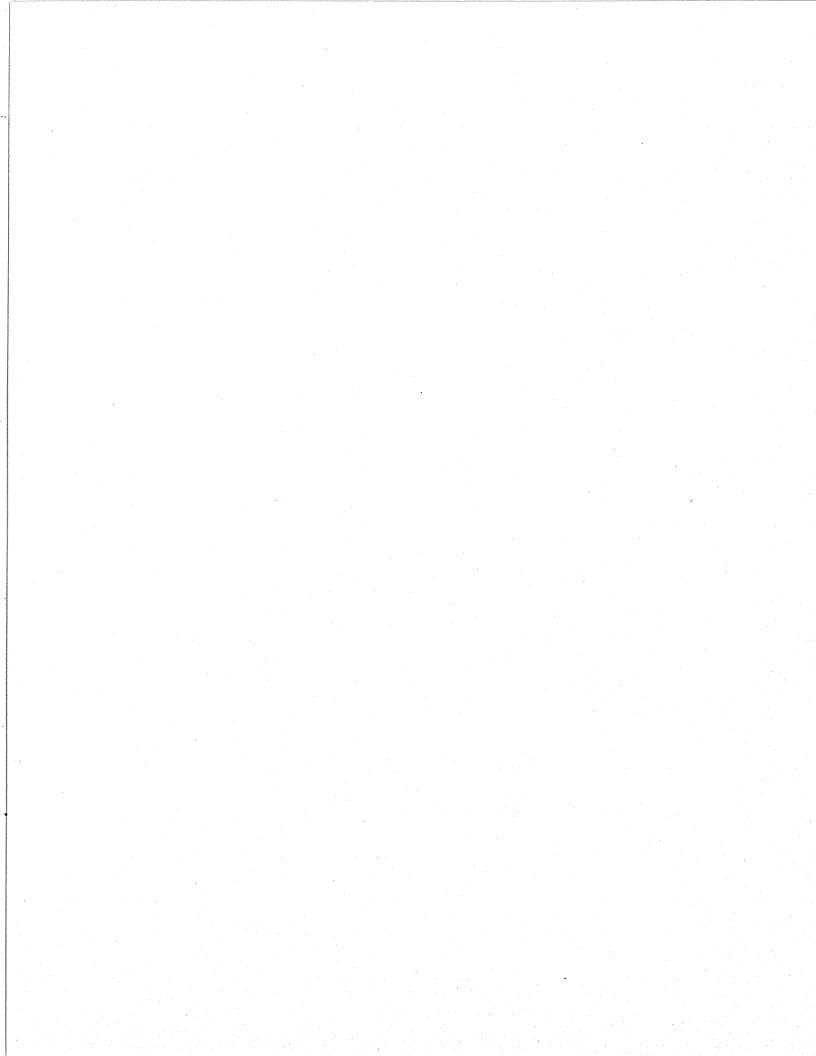
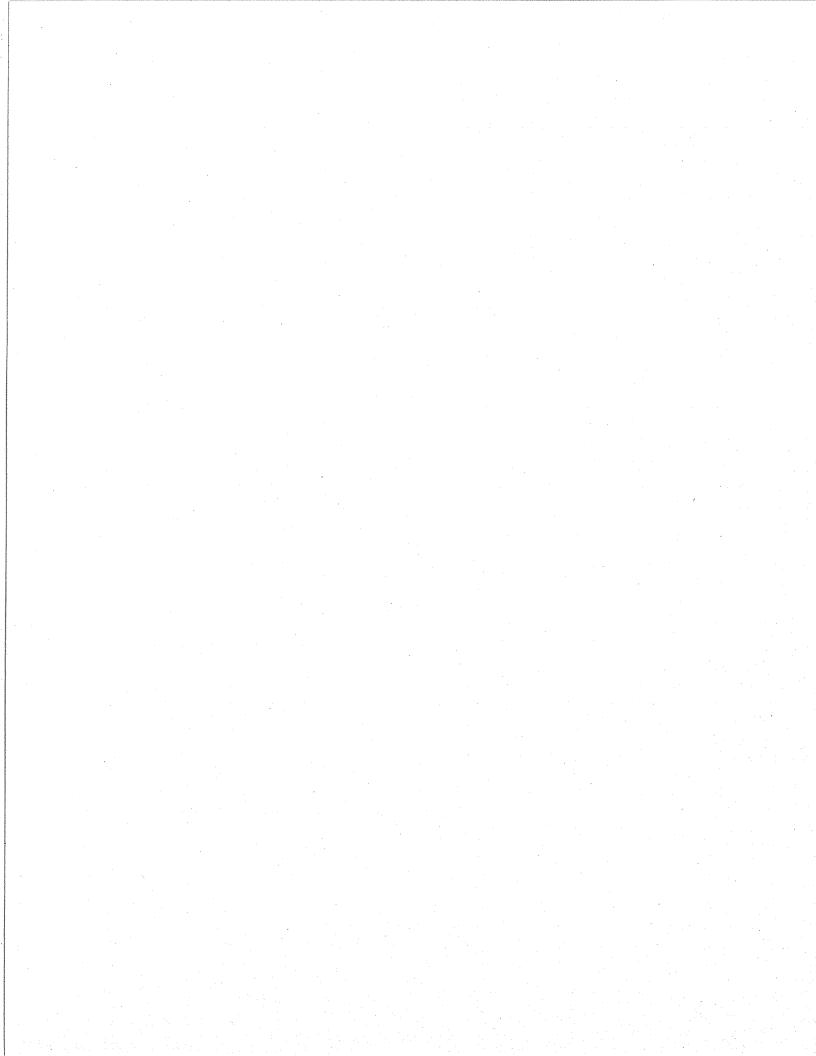
Note: INS - insuffisamment d'échantillon pour l'analyse ND - valeur non-déterminée

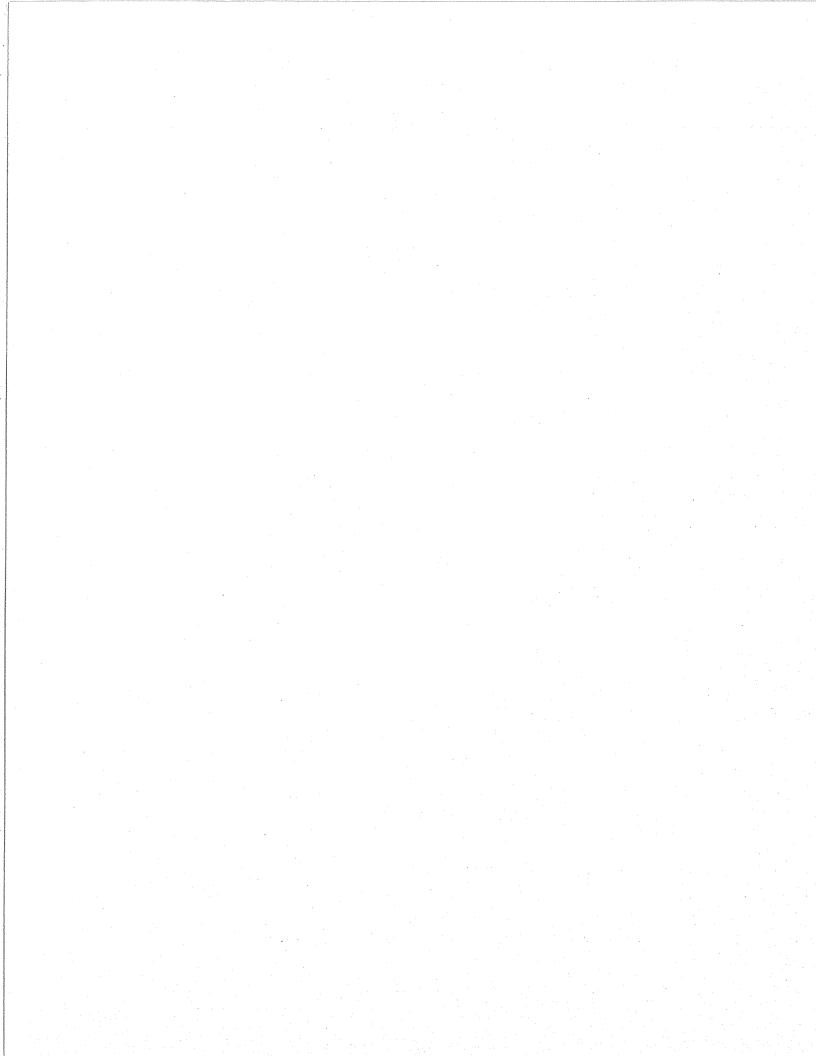
ÉCH	Pd ppb	Pt ppb	Ir ppb	ÉCH	Pd ppb	Pt ppb	Ir ppb		ÉCH	Pd ppb	Pt ppb	Ir ppb	ÉCH	Pd ppb	Pt ppb	Ir ppb	
002	2	<5	<50	058	<4	<30	< 50	1	116	1	<5	<50	173	1	<6	<50	
003	8	<11	<50	059	<5	27	<120	1	117	2	9	<50	174	4	<19	<190	
004	<1	<5	<50	060	4	<12	<50	1	118	7	<28	<110	175	2	<11	<140	
005	<2	<11	<50	062	<1	<5	<50	1	119	<1	<5	<50	176	3140	55	<120	
006	<4	<30	<50	063	<4	<30	<50	1	120	<4	<30	<50	177	27	<25	<50	
007	<4	<30	<50	065	<4	<30	<50		122	1	<5	<50	178 179	1 4	<5 <15	<50 <50	
008	3 <4	<9 <30	<50 <50	066	<4 <4	<30 <30	<50 <50	1	123 124	2 5	<5 <19	<50 <50	180	3	<13	<50	
009	<4 <4	<22	<50	068	<4	<30	< 5 0		126	8	<19	<50	182	<3	<15	< 5 0	
011	1	<6	<50	069	<4	<30	<50		127	<2	<11	<50	183	4	<30	<50	
013	<1	<5	<50	070	<15	<77	<160		128	2	<8	<50	184	<3	<13	<50	
014	46	<183	<250	071	INS	INS	INS		129	11	148	<50	185	<5	<35	<50	
015	<3	<14	<50	072	13	<37	< 50	ı	130	6	<25	<50	186	<4	<30	<50	
016	4	<5	<50	073	13	<30	<50		131	5	<25	<50	187	<4	<30	<50	
017	<4	<30	<50	074	16	<30	< 50		132	<8	<38	<50	188	<4	<30	<50	
018	<4	<30	<50	076	16	<5	<50	1	133	9	<39	<120	190	6	30	<50	
019	8	<18	<50	077	23	<29	<50		134	<2	<11	<50	191	10424	<7	<50	
020	<4	<30	<50	078	12	<8 TNTC	<50	1	135 136	8790	<38 <13	<50 <50	192	10424	<38 <30	<50 <50	
022	38 <1	<179 <5	<230 <50	079	INS 2	INS <9	INS <50		137	69 20	<38	<50	194	6	<35	<50	
023	<4	<30	<50	082	8	<7	<50		138	5	<5	<50	195	9	<9	<50	
025	2	<11	<50	083	<3	<14	<50	1	139	20	<50	<50	196	<1	<5	<50	
026	4	<16	<50	084	2	<12	<50		140	4	<19	<50	197	6	<25	<50	
027	27	<15	< 50	085	4	<11	< 50	ı	142	<3	<13	<50	198	<4	<30	<50	
028	21	<12	< 50	087	<1	<5	< 50		143	<2	<8	<50	199	<4	<30	< 50	
030	7	<7	< 50	088	3	<11	<50		144	7504	<25	<50	200	3	<5	<50	
031	2	<5	< 50	089	<1	<5	<50		145	3	<5	<50	202	<4	<30	<50	
032	4	<8	<50	090	11	54	<140		146	<1	<6	<50	203	<4	<30	<50	
033	9	<11	<50	091	1	<5	<50		147	<2	<9	<50	204	<4 -1	<30 <30	<50 <50	
034	<9 12	<44	<120 <50	092 093	68 3	<197 <15	<250 <50		148 149	2 <5	<8 <40	<50 <50	205	<4 <1	<5 <5	<50	
035	14	<30 <68	<200	093	<2	<11	<50	H	150	2	<8	<50	207	<1	<5	<50	
037	<2	<8	<50	095	5	<14	<50		151	<4	<30	<50	208	1	<5	<50	
038	<2	<11	<50	096	11	<19	<50		153	<3	18	<50	209	<4	<30	<50	
039	<1	<5	<50	097	1	<6	<50		154	<4	<30	< 50	210	<1	<6	<50	
040	<1	<5	<50	098	1	<5	<50		155	<4	<30	<50	211	<1	<5	< 50	
042	<3	<13	<50	099	<1	<7	<50		156	<4	<30	<50	212	<1	<5	< 50	
043	1	<5	<50	100	9	<44	<140		157	3	11	<50	213		<30	<50	
044	1	<7	<50	103	<4	<30	<50		158	4390	35	<50	214		<30	<50	
045	<1	<5	<50	104	<3	<13	<50		159	6	<5	<50	215		<30	<50	
046	<4	<30	<50	105	<7	<33	<110		160	4	<19	<50	216		<38	<50	
048	<3	<14	<50	106	<2	<12	<50		162 163	10	15 <19	<50 <50	217		<30 <38	<50 <50	
049	<4 <4	<30 <30	<50 <50	107 108	<3 <3	<15 <13	<50 <50		164	<4 <3	<13	<50	220		<5	<50	
050	3	<10	<50 <50	109	<5 <6	<31	<140		165	<15	53	<50	222		<5	<50	
052	<1	<5	<50	110	5	<30	<50		167	<3	<15	<50	224		<30	<50	
053	2	<5	<50	111	<1	<6	<50		168	5	<19	<50	225		<30	<50	
054	3	<10	<50	112	<2	<8	<50		169	<1	<6	<50	226		<30	<50	
055	<4	<30	<50	113	1	<5	<50		170	2	<11	<50	227	<4	<30	<50	
056	1	<5	<50	114	<4	<30	<50		171	3	<8	<110	228		<5	<50	
057	<4	<30	<50	115	1	<5	<50		172	8	<19	<110	229	<4	<30	<50	

APPENDICE E

Tableau statistique

ÉCH	Pd ppb	Pt ppb	Ir ppb												
230	7	21	<50	249	<4	<30	<50	267	<1	<5	<50	287	<1	<6	<110
231	10	< 50	<50	250	<4	<30	<160	268	4	<19	<110	288	<8	<40	<110
232	3	<15	<50	251	4	<15	<180	269	<4	<30	<160	289	5	<8	<120
233	<4	<30	< 50	252	<4	<30	<50	270	<4	<30	< 50	290	2240	<12	<390
234	<4	<30	<50	253	<4	<30	< 50	271	<1	<5	< 50	291	8	<14	<120
235	<1	<5	<50	254	12	<50	<130	272	<4	<30	< 50	292	2	<7	<160
236	<4	<30	<50	255	5	<15	<50	273	<4	<30	<50	293	<4	<30	<50
237	<1	8	<50	256	<4	<30	< 50	274	<2	<8	<50	294	<4	<30	<50
238	<4	<30	<50	257	12	< 50	<130	275	<1	<5	<50	295	3	<12	<50
239	<2	<8	<50	258	<1.	<7	<50	277	<4	<30	<50	296	2	<11	< 50
240	<8	38	< 50	259	2	<8	<50	278	<1	<7	< 50	297	<4	<30	<50
242	<4	<30	<50	260	3	<11	< 50	279	8	<37	<120	298	2	<12	<50
243	<4	<19	<50	262	<12	<8	< 50	280	5522	<23	<130	299	<1	<5	<50
244	8549	<38	<50	263	6	<25	<110	282	2	<5	< 50	300	<4	<30	< 50
245	51	<285	<150	264	<4	<19	<110	284	2	<9	<50	302	INS	INS	INS
246	<4	<30	< 50	265	<1	<5	< 50	285	9	<10	<130	303	9	<26	<110
247	14	<39	<120	266	<4	<30	<50	286	<3	<14	<320	304	INS	INS	INS


TABLEAU STATISTIQUE

Nombre de déterminations Valeur minimale Valeur maximale Médiane Moyenne arithmétique Écart type Limite de détection analytique*	Au ppm 272 <0.01 51.74 0.015 1.18 4.71 ≤0.04	Cr % % 268 0.029 24.00 0.19 1.11 3.08	Fe t % % 268 25.6 54.6 40.1 39.8 4.0 0.2	Co pppm 268 32 450 52 67 52 5	Ni t ppm 268 <20 410 29 49 60 ≤170	Zn t ppm 268 <100 11400 170 207 164 <810	Mo ppm 268 <1 28 6 6 6 6 33 <33	Sb ppm 268 <0.1 9.4 0.5 0.8 1.1 ≤0.5	La ppm 268 47 21500 264 862 1916 2	Ce ppm 268 100 31100 495 1493 2951 5	S m ppm 268 12 2960 61 183 329 0.05	Eu ppm 268 <1 585 6 53 53	Tb ppm 268 268 <2.5 331.0 7.8 15.3 27.4 2.5
	X p b b m	Lu ppm	Hf ppm	Ta ppm	Ir ppb	Th ppm	n Dbm	Fe p %	N dd	Cu	Zn p ppm	Ag ppm	Pb ppm
Nombre de déterminations Valeur minimale Valeur maximale Médiane Moyenne arithmétique Écart type Limite de détection analytique*	268 9 62 28.5 31 11	268 1.1 8.9 4.5 4.9 1.6 28.5	268 93 1050 296 322 128	268 7 7 41 26 26 6 6	268 <390 22 22 <390	268 14 1180.0 59.4 99.2 131.9 0.2	268 2.6 27.0 9.2 9.9 3.9 ≤6.6	271 0.5 7.3 1.4 1.7 1.0 0.1	271 <2 252 6 111 22 2	271 <1 313 8 8 19 31	271 9 141 16 21 15	271 <0.1 1.7 0.05 0.1 0.1	271 6 639 19 39 56 2
	A s ppm	M bpm	Hg ppp	Ti %	Sr ppm	Zr ppm	NP ppm	S n pp m	Ba ppm	Y bpm	% %	Pd ppb	Pt ppb
Nombre de déterminations Valeur minimale Valeur maximale Médiane Moyenne arithmétique Écart type Limite de détection analytique*	271 <1 832 5 32 84 84	23 24 25 27 27 27 27 27 27 27 27 27 27 27 27 27	271 <5 3695 10 44 234 5	265 7.3 22.4 17.5 17.2 2.6 0.01	265 <1 <1 10 10 118 118	265 1791 34700 7321 7935 3198	265 71 329 203 205 45	265 <1 50 21 21 21 1	265 <15 1347 39 73 135 15	265 31 395 122 140 67	271 <0.01 13.83 0.15 0.77 1.76 0.01	268 <1 10424 2 193 1177 ≤15	268 <5 <148 10 12 17 <5285

^{*} Pour les analyses de certains éléments à l'activation neutronique et Pd & Pt, les limites de détection analytique sont variables. Pour ces éléments, les valeur maximales précédées du signe ≤ sont inscrites.

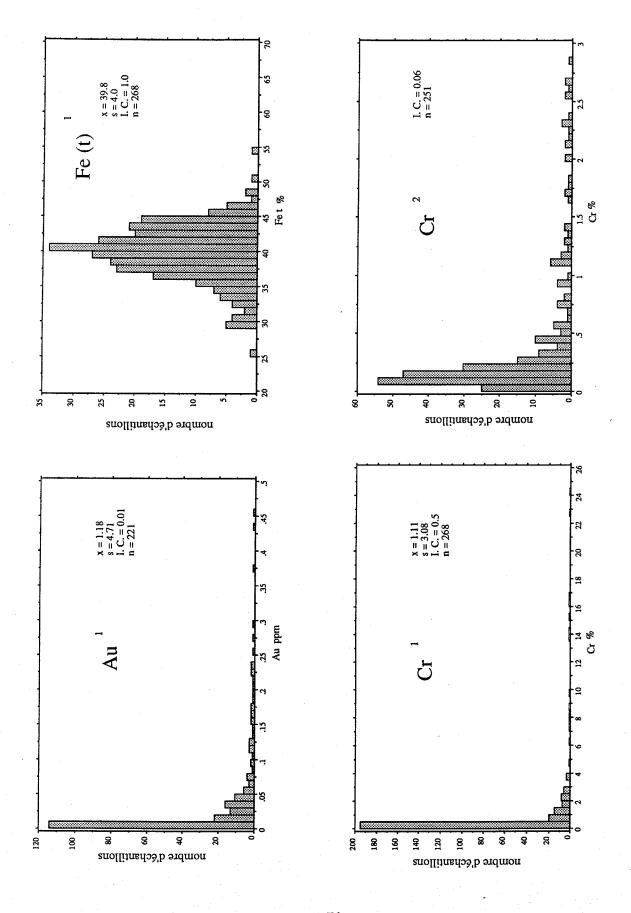
NOTE Pour les valeurs sous la limite de détection analytique, on a utilisé la moitié de cette limite pour construire ce tableau.

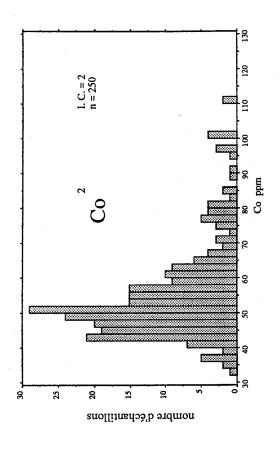
APPENDICE F

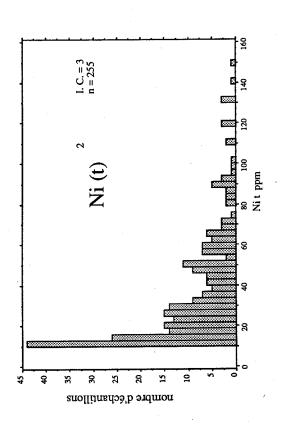
Histogrammes des valeurs analytiques

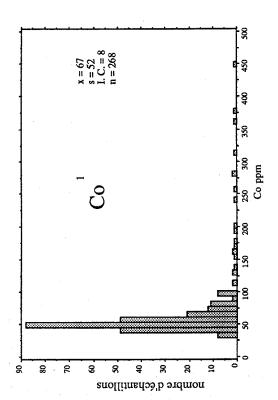
Légende

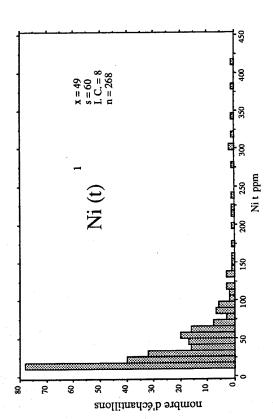
x = moyenne arithmétique

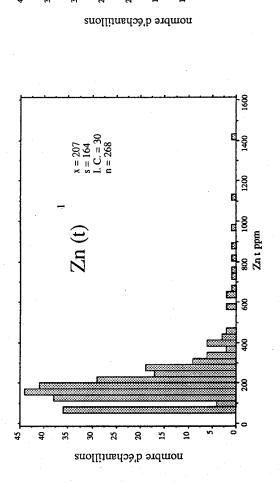

s =écart type

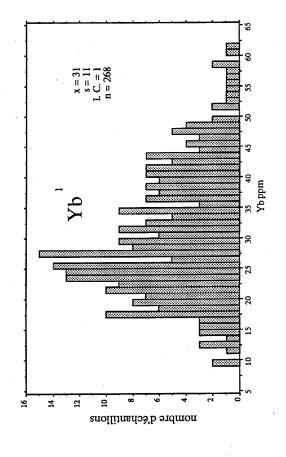

I.C. = intervale des classes

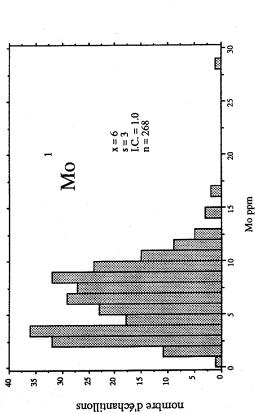

n = nombre d'échantillons actifs

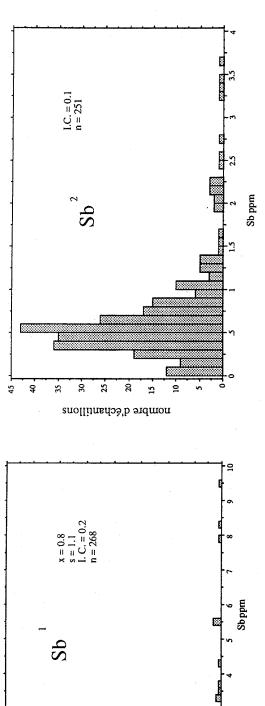

Notes

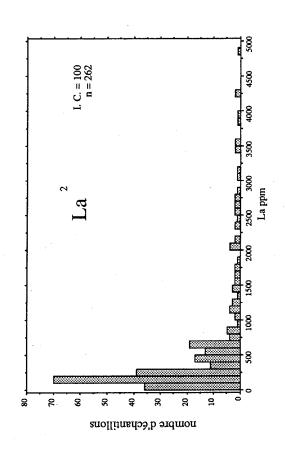

- a) Pour les valeurs sous la limite de détection analytique, on a utilisé la moitié de la limite pour construire les histogrammes
- b) Pour certains éléments, on présente deux histogrammes:
 - 1- histogramme de l'ensemble des échantillons
 - 2- histogramme d'un champ restreint

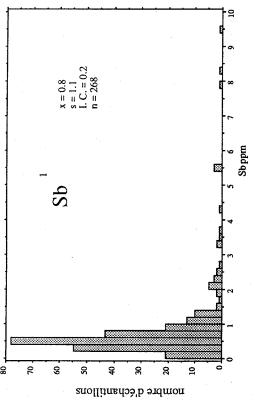


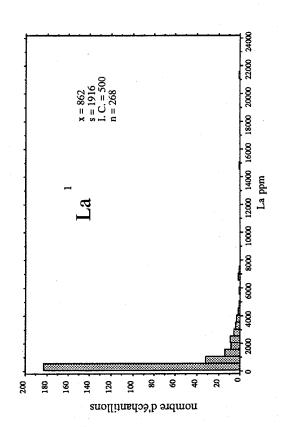


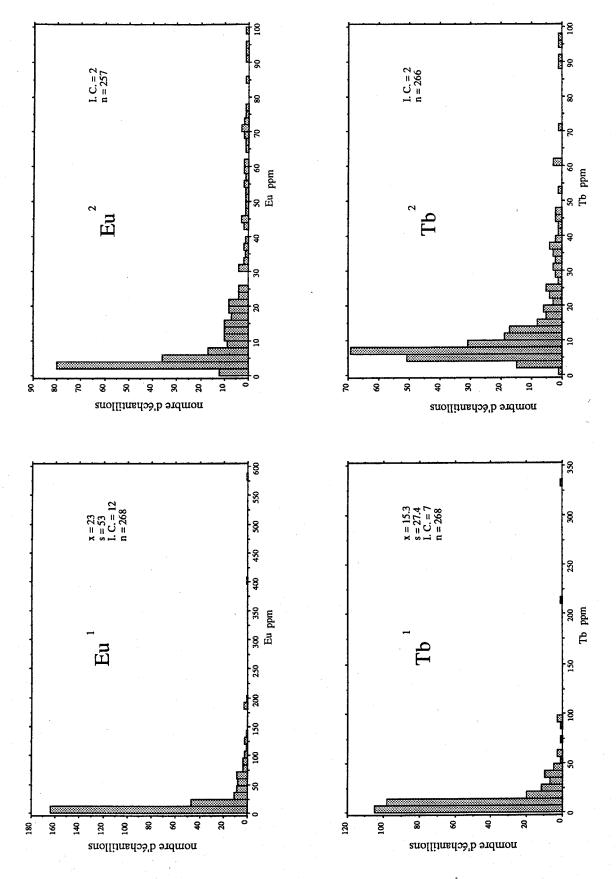


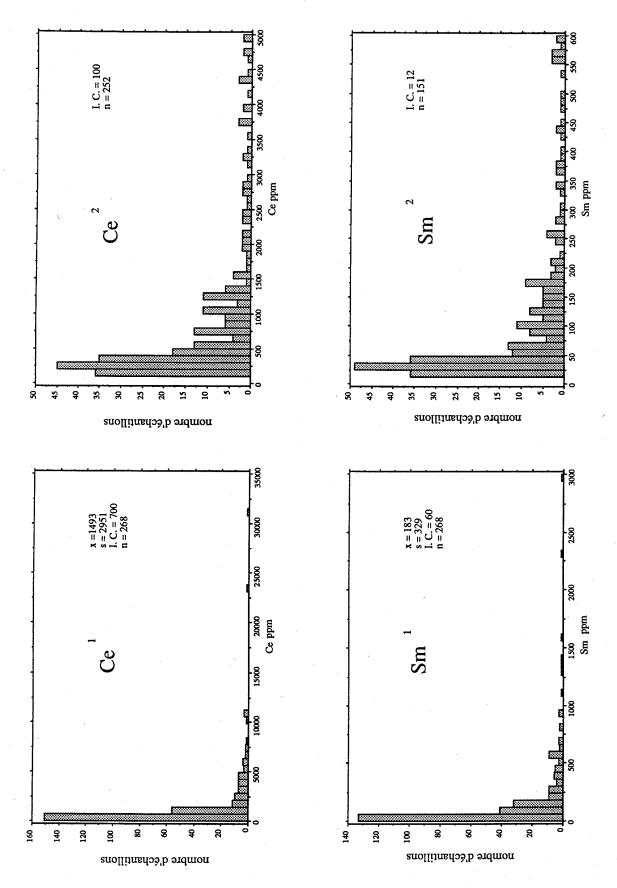


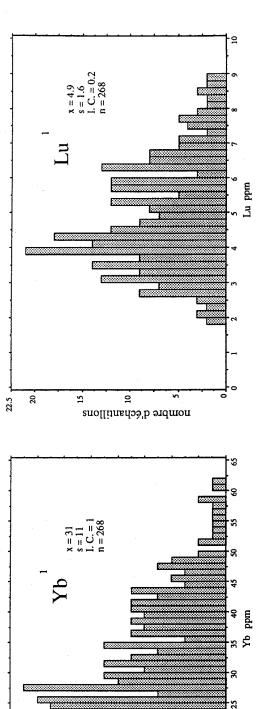


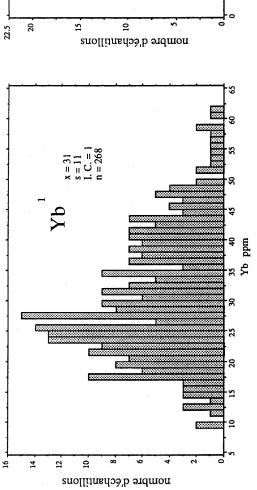


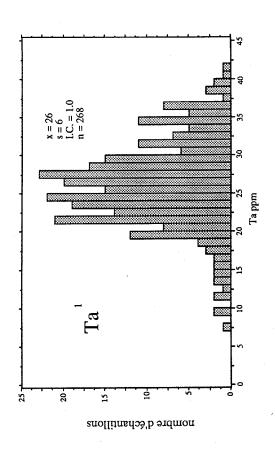


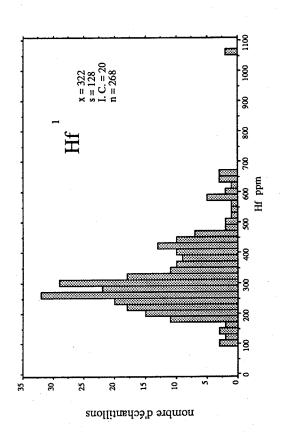


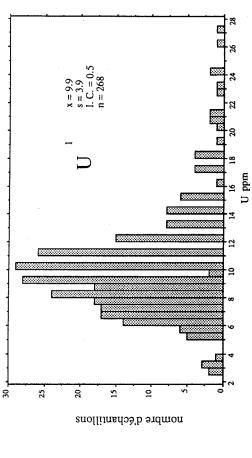




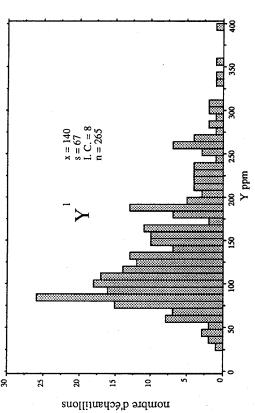


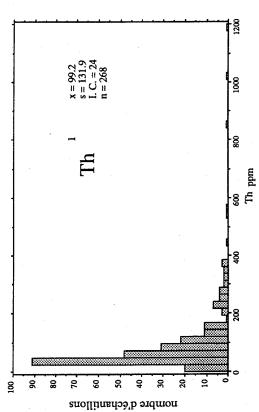


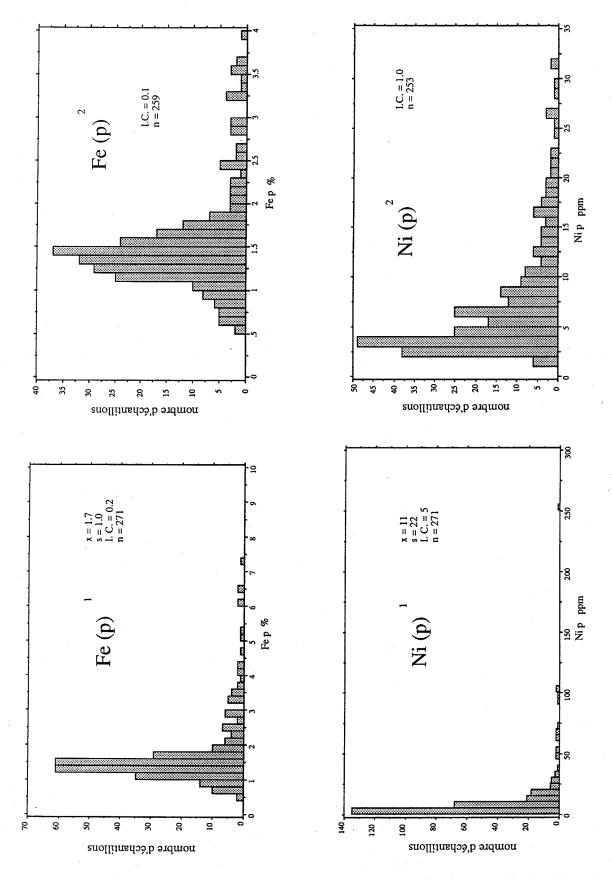


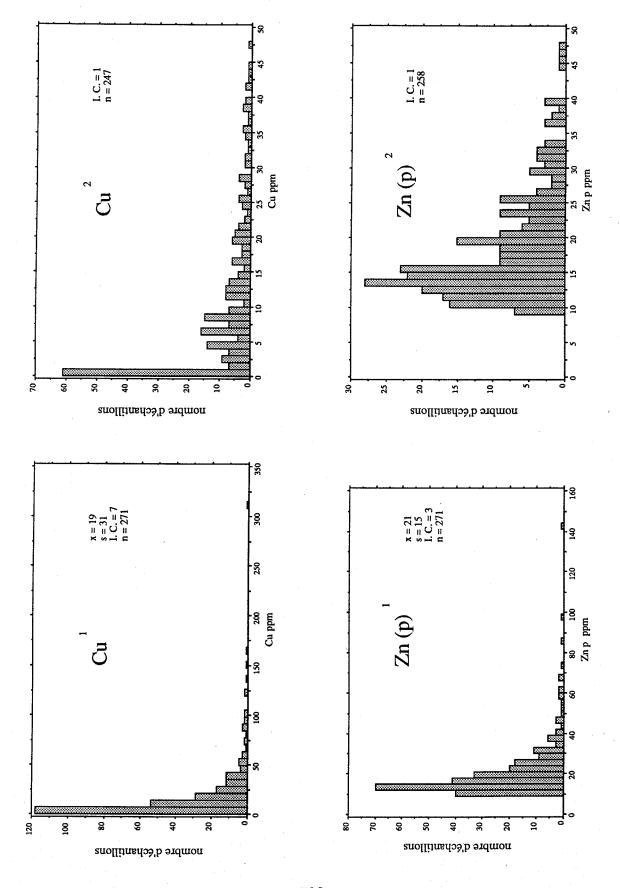


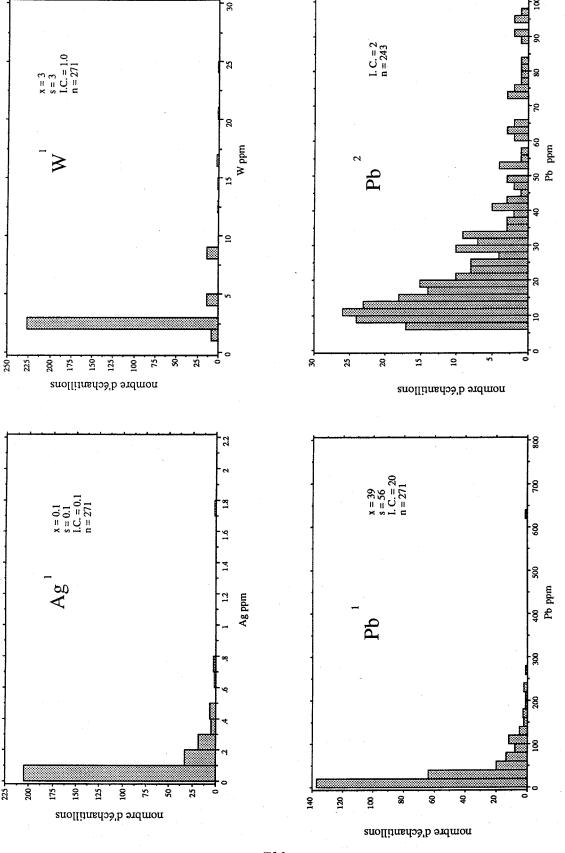


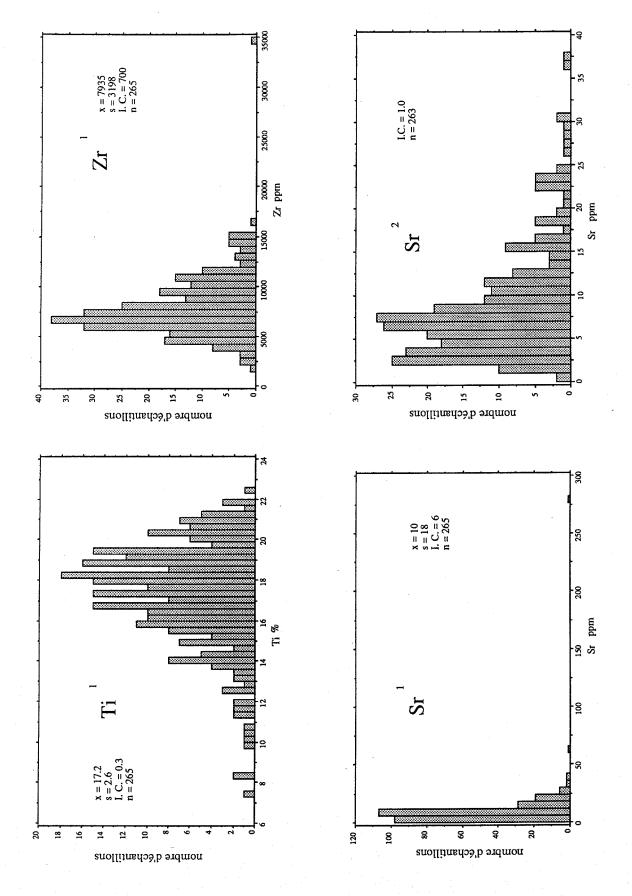


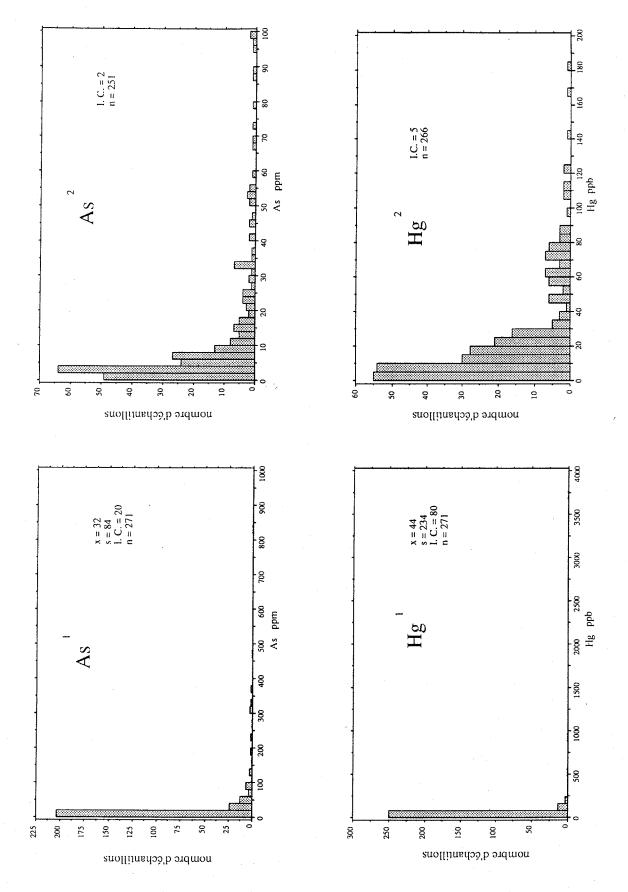


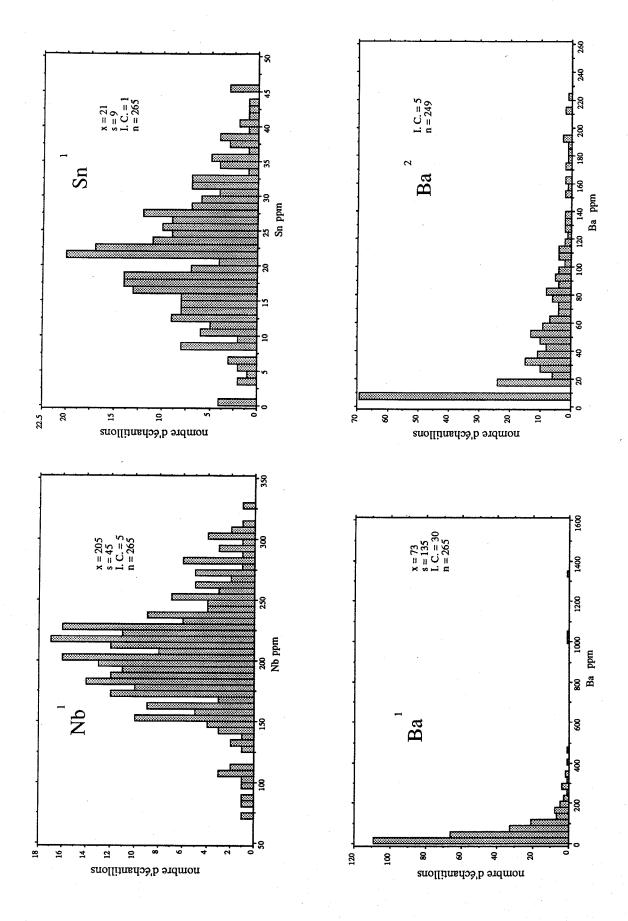


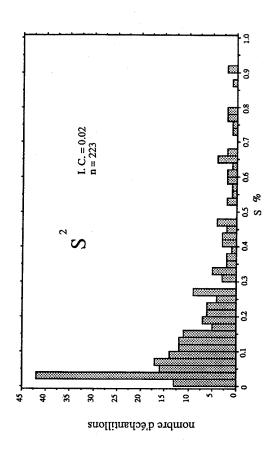


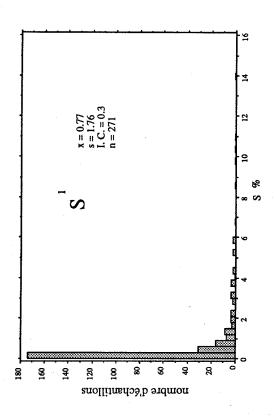


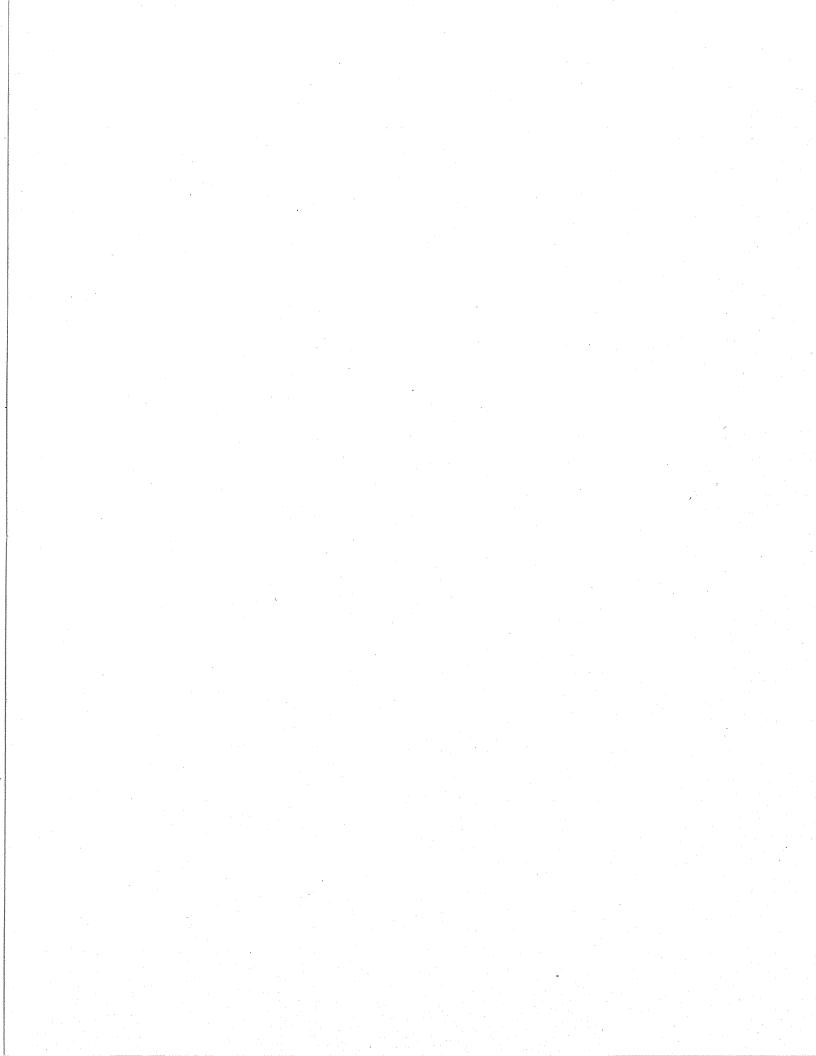












APPENDICE G

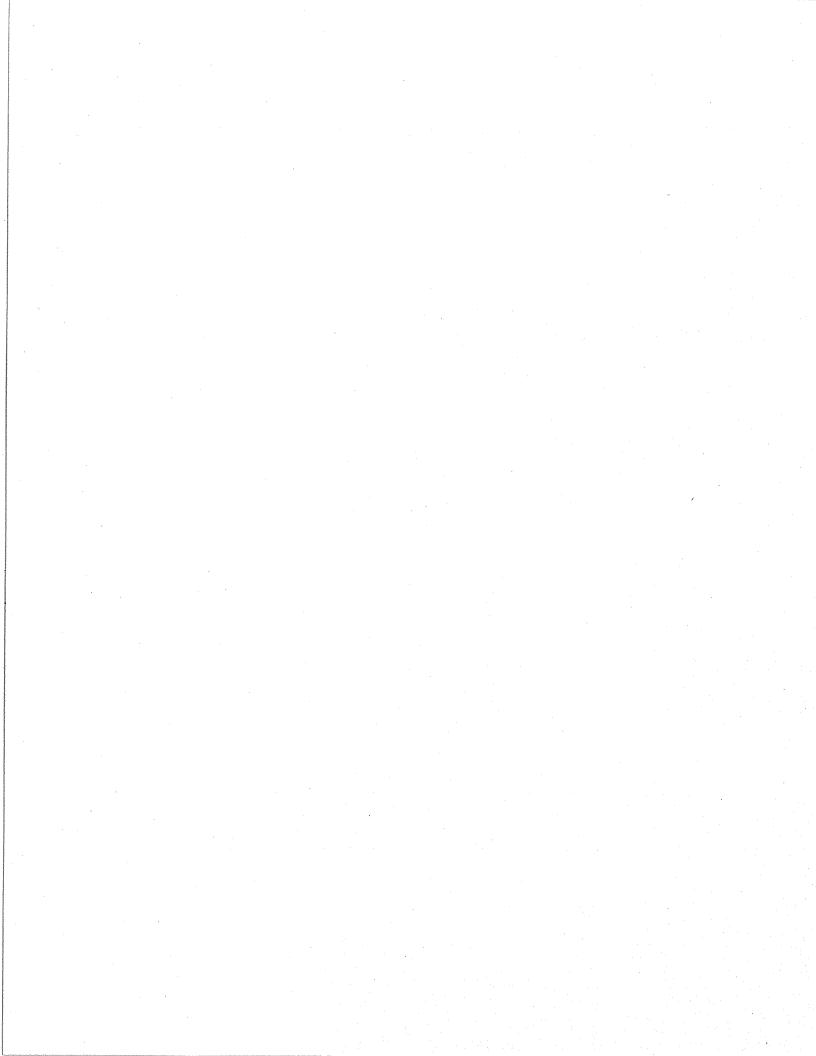
Tableau des corrélations

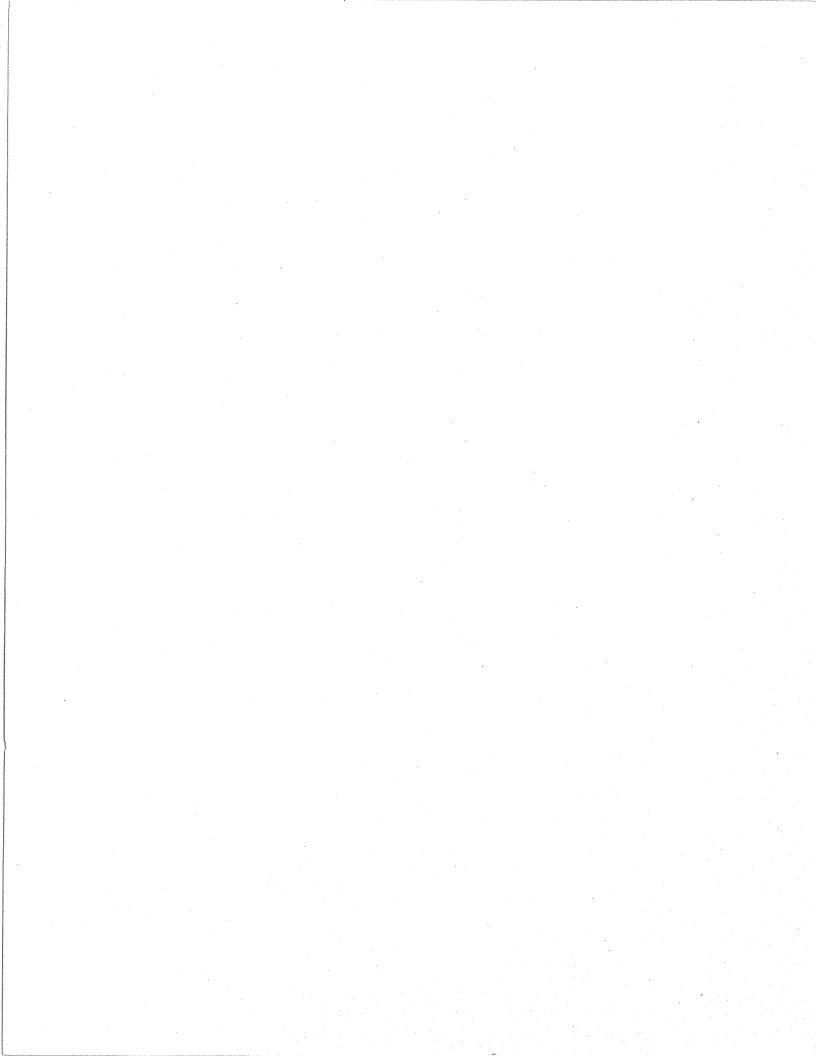
```
Ä
                                                                                                                                                                                                                     Zn p
                                                                                                                                                             Ţ,
                                                                                                                                                                                                           J
                                                                                                                                                                                                                                       Pb
                                                                                                                                                                                                                                                                  Hg
            -0.02
                    0.10
                              -0.01
                                                         0.13
                                                                                                                                            0.12
                                                                                                                                                     -0.17
                                                                                                                                                              -0.34
                                                                                              8
9
                                                                                                       -0.09
                                                                                                                                  0.14
                                                                                                                                                                                                  0.80
                                                                                                                                                                                                                     0.64
                                                                                                                                                                                                                                                         -0.07
                                                                                                                                                                                                                                                                  0.13
                                       0.38
                                                0.36
                                                                   0.08
                                                                           0.22
                                                                                     90.0
                                                                                                                         -0.07
                                                                                                                                                                       -0.11
                                                                                                                                                                                -0.07
                                                                                                                                                                                         0.92
                                                                                                                                                                                                           19.0
                                                                                                                                                                                                                              0.28
                                                                                                                                                                                                                                      0.37
                                                                                                                                                                                                                                                0.70
                                                                                                                                                                                                                                                                           -0.45
                                                                                                                                                                                                                                                                                    0.45
                                                                                                                                                                                                                                                                                                      0.44 -0.35
                                                                                                                0.16 -0.08
                                                                                                                                                                                                                                                                                                               -0.33 -0.27
            -0.01
                              -0.36
                                                                                                      0.12
                                                                                                                                           0.75
                                                                                                                                                              -0.46
                                                                                                                                                                      0.15
                                                                                                                                                                               0.36
                                                                                                                                                                                         0.23
                                                                                                                                                                                                  0.11
                                                                                                                                                                                                           0.32
                                                                                                                                                                                                                                                                  90.0
                                                                                                                                                                                                                                                                                    0.18
                                                                                                                                                                                                                                                                                             -0.10
                                       0.00
                                                                                     0.14
                                                                                                                         0.21
                                                                                                                                  0.89
                                                                                                                                                    0.12
                                                                                                                                                                                                                                                         0.02
                                                                                                                                                                                                                                                                           -0.48
                                                                                                                                                                                                                                                                                                                         0.20
                                                0.08
                                                         0.09
                                                                           0.23
                                                                                                                                                                                                                    0.27
                                                                                                                                                                                                                              0.05
                                                                                                                                                                                                                                      0.09
                                                                                                                                                                                                                                                0.15
                                                                                                                                                                                                           0.15
                                                                                                                                                                                                                     0.13
                                                                                                      0.54
                                                                                                                                            -0.02
                                                                                                                                                    -0.25
                                                                                                                                                              -0.19
                                                                                                                                                                                                                                                         -0.01
                                                                                                                                                                                                                                                                                             -0.24
                                                                                                                                                                                                                                                                                                      -0.26
  Ba
           0.01
                                       0.0
                                                0.05
                                                         0.05
                                                                  0.03
                                                                           0.39
                                                                                     0.60
                                                                                                                0.60
                                                                                                                         99.0
                                                                                                                                  0.07
                                                                                                                                                                       0.50
                                                                                                                                                                               0.03
                                                                                                                                                                                         0.11
                                                                                                                                                                                                  90.0
                                                                                                                                                                                                                              0.03
                                                                                                                                                                                                                                       0.41
                                                                                                                                                                                                                                                0.02
                                                                                                                                                                                                                                                                  0.01
                                                                                                                                                                                                                                                                           -0.25
                                                                                                                                                                                                                                                                                    0.22
                                                                                                                                                                                                                                                                                                               0.08
                                                                                                       -0.05
                                                                                                                                  -0.30
                                                                                                                                                                                                                                                -0.18
                                                                                                                                                                                                                                                                                    -0.18
  Sn
           9.0
                                                -0.42
                                                                                                                                           -0.25
                                                                                                                                                                               -0.14
                                                                                                                                                                                         -0.32
                                                                                                                                                                                                  -0.33
                                                                                                                                                                                                                    -0.35
                                                                                                                                                                                                                                                                  0.04
                              0.30
                                       -0.41
                                                         -0.33
                                                                  0.25
                                                                           0.01
                                                                                    0.01
                                                                                             0.0
                                                                                                                9.0
                                                                                                                         0.0
                                                                                                                                                    0.18
                                                                                                                                                              0.50
                                                                                                                                                                       6
8
                                                                                                                                                                                                           -0.21
                                                                                                                                                                                                                              0.03
                                                                                                                                                                                                                                      0.03
                                                                                                                                                                                                                                                         0.06
                                                                                                                                                                                                                                                                           0.63
                                                                                                                                                                                                                                                                                                      0.48
                                                                                                                                                                                                                                                                                                               8
           -0.10
                             0.14
                                                                                                                -0.25
                                                                                                                                                              0.90
                                                                                                                                                                                                           0.34
                                                                                                                                                                                                                              -0.10
                                                                                                                                                                                                                                      -0.14
                                                                                                                                                                                                                                                        0.01
                    0.48
                                       -0.53
                                                -0.57
                                                         -0.43
                                                                           -0.27
                                                                                     -0.23
                                                                                             0.24
                                                                                                       -0.25
                                                                                                                         -0.25
                                                                                                                                  -0.23
                                                                                                                                            -0.07
                                                                                                                                                    99.0
                                                                                                                                                                                         -0.43
                                                                                                                                                                                                  0.40
                                                                                                                                                                                                                    -0.36
                                                                                                                                                                                                                                                                  -0.08
                                                                                                                                                                                                                                                                                    -0.27
  £
                                                                  0.47
                                                                                                                                                                               0.08
                                                                                                                                                                                                                                                0.30
                                                                                                                                                                                                                                                                           0.82
                                                                                                                                                                                                                                                                                             0.64
                                                                                                                                                                       -0.21
                                                                                                                                                                                                                                                                                                      8
                             -0.16
           -0.11
                   -0.22
                                      -0.29
                                                -0.30
                                                         -0.16
                                                                                                      -0.26
                                                                                                                                                    9.9
                                                                                                                                                                                                                                                        0.00
                                                                          -0.15
                                                                                    -0.23
                                                                                                                                                              0.59
                                                                                                                                                                                                           -0.21
                                                                                                                                                                                                                                      -0.13
                                                                                             -0.24
                                                                                                                -0.24
                                                                                                                                                                                                                                                                  -0.06
                                                                                                                                                                                                                                                                          0.40
                                                                  0.35
                                                                                                                         -0.22
                                                                                                                                  0.15
                                                                                                                                                                      -0.22
                                                                                                                                                                               0.31
                                                                                                                                                                                         -0.25
                                                                                                                                                                                                  -0.26
                                                                                                                                                                                                                    -0.20
                                                                                                                                                                                                                                               -0.20
                                                                                                                                           0.23
                                                                                                                                                                                                                              Ġ.
                                                                                                                                                                                                                                                                                             8
                   90:0
                             -0.10
                                                                                                      0.19
                                                                                                                                                    -0.16
          0.01
                                               0.09
                                                        0.02
                                                                                                                                                              -0.24
                                                                                                                                                                                                           0.34
                                                                                                                                                                                                                                                        -0.01
                                      0.08
                                                                  0.00
                                                                          0.17
                                                                                    0.22
                                                                                             0.22
                                                                                                                0.22
                                                                                                                         0.23
                                                                                                                                  0.10
                                                                                                                                           0.02
                                                                                                                                                                      0.18
                                                                                                                                                                               9.0
                                                                                                                                                                                         0.36
                                                                                                                                                                                                 0.30
                                                                                                                                                                                                                    0.35
                                                                                                                                                                                                                             0.25
                                                                                                                                                                                                                                      0.19
                                                                                                                                                                                                                                               0.21
                                                                                                                                                                                                                                                                  0.05
 Ξ
          0.00
                                                                                    -0.10
                                                                                             -0.10
                                                                                                      -0.08
                                                                                                                -0.12
                                                                                                                                                    0.42
                                               19:0-
                                                         -0.58
                                                                          -0.20
                                                                                                                         -0.14
                                                                                                                                  -0.39
                                                                                                                                           -0.30
                                                                                                                                                                                        -0.52
                                                                                                                                                                                                                                      -0.14
                                                                                                                                                                                                                                               -0.32
                   -0.57
                             0.43
                                      -0.61
                                                                                                                                                                                                  -0.48
                                                                                                                                                                                                           0.41
                                                                                                                                                                                                                    -0.56
                                                                                                                                                                                                                             0.09
                                                                                                                                                             0.84
                                                                                                                                                                               0.02
                                                                                                                                                                                                                                                        0.04
                                                                 0.31
                                                                                                                                                                      0.07
                                               0.10
          -0.01
                   0.02
                             0.00
                                                                                                                                                    .
50.0
                                                                                                                                                                                        0.10
                                                                                                                                                                                                 0.09
                                                        9.0
                                                                          0.41
                                                                                    -0.03
                                                                                             -0.03
                                                                                                                9.02
                                                                                                                                                                                                                   0.16
                                      0.03
                                                                 0.04
                                                                                                      0.04 -0.03
                                                                                                                                  90:0
                                                                                                                                                             -0.07
                                                                                                                                                                               0.11
                                                                                                                                                                                                           0.07
                                                                                                                                                                                                                             0.03
                                                                                                                                                                                                                                      0.10
                                                                                                                                                                                                                                                        -0.03
  띪
                                                                                                                         -0.03
                                                                                                                                           0.08
                                                                                                                                                                      0.03
                                                                                                                                                                                                                                               0.07
                   -0.05
          0.08
                             0.03
                                      90.0
                                               -0.03
                                                        -0.08
                                                                 -0.02
                                                                          -0.02
                                                                                            0.03
                                                                                                               0.03
                                                                                                                                  6.04
40.04
                                                                                                                                           6.04
40.04
                                                                                                                                                             -0.02
                                                                                                                                                                               -0.02
                                                                                                                                                                                        -0.08
                                                                                                                                                                                                 -0.05
                                                                                                                                                                                                           -0.05
                                                                                                                                                                                                                                               90.0
                                                                                    0.03
                                                                                                                        0.02
                                                                                                                                                                                                                    -0.07
                                                                                                                                                                                                                             0.06
                                                                                                                                                                                                                                      9.0
                                                                                                                                                    -0.18 -0.05
                                                                                                                                                                      0.02
                                                                                                                                                                                                                                                        8.
                             0.10
                                               0.30
                                                                          0.12
          6.0
                   0.04
                                     0.41
                                                                                   -0.02
                                                                                            -0.02
                                                                                                      -0.02
                                                                                                                                                             -0.26
                                                                                                                                                                      -0.01
                                                                                                                                                                                                 0.80
                                                                                                                                                                                                                            0.16
                                                        0.05
                                                                 -0.03
                                                                                                                                 0.11
                                                                                                                                           0.08
                                                                                                                                                                               0.03
                                                                                                                                                                                        0.60
                                                                                                                                                                                                           0.50
                                                                                                                                                                                                                    0.39
                                                                                                                                                                                                                                      0.24
                                                                                                               -0.01
                                                                                                                        -0.01
                                                                                                                                                                                                                                               8
                             0.05
                                                                0.13
                                                                                            -0.01
                                                                                                      <del>0</del>.04
                                                                                                                                                   -0.12
                                                                                                                                                             -0.14
 륍
                   -0.05
                                     9.0
                                               0.05
                                                                          0.52
                                                                                   -0.01
                                                                                                               0.00
                                                                                                                                 0.12
                                                                                                                                           0.10
                                                                                                                                                                      -0.03
                                                                                                                                                                               -0.05
          -0.01
                                                        0.03
                                                                                                                                                                                        0.36
                                                                                                                                                                                                 0.25
                                                                                                                                                                                                           0.39
                                                                                                                                                                                                                   0.27
                                                                                                                        0.0
                                                                                                                                                                                                                             0.20
                                                                                                                                                                                                                                      8
                             -0.03
                                                                                                                                                                                                 0.18
          0.50
                   -0.06
                                     -0.01
                                               -0.01
                                                        90.0
                                                                 -0.01
                                                                                            0.01
                                                                                                                                 0.03
                                                                                                                                                    -0.07
                                                                                                                                                             -0.07
                                                                                                                                                                     0.00
                                                                                                                                                                               -0.03
                                                                                                                                                                                       0.23
                                                                                                                                                                                                           0.19
                                                                                                                                                                                                                   0.15
                                                                          0.02
                                                                                   0.01
                                                                                                      0.01
                                                                                                               0.01
                                                                                                                        0.01
                                                                                                                                          0.01
                                                                                                                                                                                                                             8
                                                                                            -0.12
                            -0.24
                                                                                                      -0.13
                                                                                                                                                                     -0.13
         -0.07
                  0.19
                                     0.29
                                                       0.29
                                                                                   -0.12
                                                                                                               -0.11
                                                                                                                       90.0
                                                                                                                                                    -0.19
                                                                                                                                                             -0.39
                                                                                                                                                                               -0.03
                                                                                                                                                                                                 0.55
                                               0.38
                                                                0.04
                                                                          0.21
                                                                                                                                 0.26
                                                                                                                                          0.22
                                                                                                                                                                                        0.67
                                                                                                                                                                                                           0.55
 Cu Zn p
                                                                                                                                                                                                                   97
                                                                                            0.01
         -0.01
                            -0.06
                                                                                   0.01
                                                                                                      -0.02
                                                                                                               0.02
                                                                                                                       9.0
                                                                                                                                                    -0.20
                                                                                                                                                             -0.33
                                                                                                                                                                     -0.02
                                                                                                                                                                              -0.01
                   0.07
                                     0.27
                                               0.29
                                                        0.13
                                                                 0.01
                                                                          0.23
                                                                                                                                 0.27
                                                                                                                                          0.22
                                                                                                                                                                                        0.65
                                                                                                                                                                                                 0.60
                                                                                                                                                                                                           8.
         -0.03
                                                                                                                                                   -0.23
                                                                                                                                                            -0.36
                                                       0.15
                                                                          0.18
                                                                                   90.0
                                                                                            90.0
                                                                                                      90.0
                                                                                                                                                                     -0.08
                                                                                                                                                                              90.0
                   0.15
                            90.0
                                     0.58
                                               0.50
                                                                 -0.05
                                                                                                               90.0
                                                                                                                        -0.05
                                                                                                                                 0.08
                                                                                                                                          90.0
                                                                                                                                                                                       0.72
                                                                                                                                                                                                 8
         0.02
                                                                                                      -0.10
                   0.11
                                                                                   0.09
                                                                                            90.0
                                                                                                                        -0.07
                                                                                                                                                    0.24
                                                                                                                                                             6.
4.
                                                                                                                                                                      0.12
                            -0.07
                                     0.32
                                               0.32
                                                       0.15
                                                                0.01
                                                                          0.25
                                                                                                               0.08
                                                                                                                                 0.20
                                                                                                                                          0.17
                                                                                                                                                                                        8.
         -0.03
                   -0.28
                                                                                            0.13
                            -0.03
                                     -0.13 -0.27
                                                       -0.29
                                                                -0.07
                                               -0.23
                                                                          0.05
                                                                                   0.11
                                                                                                      0.21
                                                                                                               0.12
                                                                                                                        0.11
                                                                                                                                 0.38
                                                                                                                                          0.18
                                                                                                                                                    0.3
K
                                                                                                                                                             0.18
                                                                                                                                                                      0.33
                            0.12
         90.0
                  -0.17
                                               90.0
                                                                9.04
                                                                                            9.9
                                                                                                                                 90.0
                                                                                                                                          -0.28
                                                                                                                                                    -0.21
                                                       -0.16
                                                                          0.08
                                                                                   0.92
                                                                                                      96.0
                                                                                                                        0.90
                                                                                                               0.93
                                                                                                                                                             9.0
         -0.07
                  -0.52
                            0.32
                                     -0.53
                                                                                                                                          -0.19
                                                                0.43
                                                                                   9.0
                                                                                            ó.
2
                                                                                                                                 -0.30
                                                                          -0.21
                                                                                                                                                   0.67
                                               -0.57
                                                       0.49
                                                                                                      -0.03
                                                                                                               -0.06
                                                                                                                        -0.07
                                                                                                                                                             8.
                  -0.25
        -0.11
                            -0.11
                                     -0.31
                                                                                                              -0.24
                                              -0.32
                                                                0.39
                                                                          -0.15
                                                                                            -0.24
                                                                                                                        -0.22
                                                                                                                                0.15
                                                       -0.18
                                                                                  -0.23 -0.22
                                                                                                      -0.26
                                                                                                                                         0.26
                                                                                                                                                    8
        -0.07
                  -0.03
                            -0.35
                                    -0.05
                                             -0.01
                                                                9.0
                                                                         0.12
                                                                                            -0.24
                                                                                                                       -0.16
                                                                                                    -0.27
                                                                                                               -0.23
                                                                                                                                0.91
                                                      0.09
                                                                                                                                         8
        -0.05
                  90.0
                            6.34
                                                                                                              0.09
                                                                                  -0.11
                                                                                            -0.11
                                                                                                     -0.12
                                                                                                                       900
                                     -0.07
                                                      90.0
                                                                0.02
                                                                         0.17
                                              0.01
                                                                                                                                8
        0.07
                  -0.11
                           0.03
                                     -0.07
                                              0.02
                                                       -0.05
                                                                0.05
                                                                         0.13
                                                                                  0.99
                                                                                            0.99
                                                                                                     0.92
                                                                                                              96.0
                  0.12
                          0.07
        0.07
                                     80.0
                                                      90.0
                                                                         0.11
                                                                                  1.00
                                             -0.03
                                                                0.02
                                                                                            9:1
                                                                                                     0.95
                                                                                                              8
        0.10
                           0.13
                 -0.13 -0.14
                                     -0.10
                                                      -0.15
                                                                -0.07
                                                                         0.07
                                                                                  0.95
                                             -0.07
                                                                                            0.97
                                                                                                     8
                           0.00
                                     0.09
                                                      0.10
                                             -0.05
         0.08
                                                                0.01
                                                                         0.10
                                                                                  8
                                                                                            8
                  -0.12
                           0.07
         0.07
                                     90.0
                                                               0.03
                                             9.0
                                                      90.0
                                                                         0.11
                                                                                  8
        -0.05
                          -0.01
                 0.00
                                             0.12
                                     0.07
                                                      90.0
                                                                0.05
                                                                         8
        -0.05 -0.14
                 -0.31
                          0.00
                                     -0.26
                                             -0.24
                                                       -0.09
Co Nit Znt Mo
                                                                8
                          -0.51
                 0.85
                                            0.77
                                    0.71
                                                      8
```

90.0

8

0.14 8.


00.1


40.0 98.0 -0.35 0.92 8

-0.05 0.84 -0.26 8

0.11 -0.49 8

0.04 8.

