This document was produced
by scanning the original publication.

numérisation de la publication originale.

GEOLOGICAL SURVEY OF CANADA
OPEN FILE 1767

COMPUTER PROGRAM FOR CONVERTING
ARC-NODE VECTOR DATA TO RASTER FORMAT

M. Steneker and G.F. Bonham-Carter

Mineral Resources Division

1988



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

GEOLOGICAL SURVEY OF CANADA
OPEN FILE 1767

COMPUTER PROGRAM FOR CONVERTING
ARC-NODE VECTOR DATA TO RASTER FORMAT

M. Steneker and G.F. 'Bonham-Carter

Mineral Resources Division

1 Project partly funded by the Canada-Nova Scotia Mineral Development
Agreement 1984-1989

1988



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

ABSTRACT

This report describes a computer program written in FORTRAN-77 for the VAX
11-780, which is used for producing raster images of thematic maps. Input to the
program consists of data describing the boundaries of map polygons in arc-node
format, produced during the digitizing process. The principal source of this data is
the Canada Lands Data System (CLDS), where maps are digitized by raster scanning,
and vector files produced after various editing and transformation steps. Output
from the program consists of raster files in a variety of formats. In this form,
thematic map data can be readily integrated with remote sensing images, and with
regional geophysical and geochemical data. A second program is provided which
puts raster data into a run-length encoded archive format (ACSIl), used by CLDS and
other organizations for map exchange. Images and associated attribute files
conforming to this format can be readily moved from one computer to another, and
can be directly input to ‘the TYDAC SPANS system. This is a microcomputer-based
spatial analysi§ system used for display and manipulation of digitized maps recently
purchased by GSC.

The source listings of these programs are of general use for those working in
digital cartography and data integration of maps. The programs are available on
diskette in ASCII or the executable program may be used directly by users of the

EMR VAX system.

INTRODUCTION

From a cartographic viewpoint, geological maps in part comprise a set of
interlocking polygons, each polygon belonging to a geological unit or theme.
Digital capture of polygons on geological maps can be carried out in a variety of
ways, normally by raster scanning or manual line following methods, and in

general, raster scanning is the most efficient for complex maps, Bonham-Carter



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

etal. (1985). Representation of polygon in digital form can either be in raster or
vector mode. In raster mode, each pixel in the raster is labelled by a polygon
number which acts as a pointer to a table of attributes — rock type, age, formation
name and others. In vector mode, each polygon is defined by one or more
bounding arcs, terminating at nodes, and each arc, or line segment, is described by
two or more (X-Y) coordinate pairs, Figure 1. Associated with each arc are labels
which refer to the polygon on the right and on the left of the arc. Arc-node vectors
may be generated from manual digitizers, or they may be derived by digital
processing of raster-scanned data, Crain (1984).

Any particular polygon on a map is thus identified by finding those arcs with
labels pointing to its polygon number. Except for polygons intersecting the map
boundary, every arc has separate polygons to right and left, so each arc does double
duty describing the common boundary between adjacent pqugons. This is efficient
for data storage, but requires a list of arc pointers associated with each polygon for
rapid access of the arcs bounding a polygon. This would be important, for example,
fordrawing a polygon on a video display device using a polygon-fill algorithm.

Alternatively, it is often desirable to generate a raster file from arc-node data.
The raster data can be in expanded form with every pixel described by polygon
number, or in run-length encoded form wherein adjacent pixels on a line belonging
to the same polygon are described by run-length and polygon label.

For several years, the GSC has contracted the raster scanning of a limited
number of maps to Canada Lands Data Systems (CLDS), a unit of Environment
Canada in Hull. These maps have been used in data integration research projects,
for example Aronof et al. (1986). Two digital formats are obtained from CLDS, one
using the vector arc-node format, which in CLDS terminology is ‘Pairwise Contact’ or
PCdata. The other format is run-length encoded raster, with a predefined pixel size

and raster origin. Ellwood (personal communication) has developed software



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

written in FORTRAN on the departmental CYBER for reading these files, and for
producing Applicon plots which have been used extensively for poster displays,
eg., Ellwood et al. (1987). For these digitally-produced displays, the raster files were
used in the main, with the vector PC data only used to draw polygon boundaries,
using Applicon software to convert the vector lines to raster form.

There is, however, a need to generate raster files from arc-node data locally,
without having to rely on CLDS processing capability. This arises because:

1. Raster files from CLDS are confined to one pixél size and raster origin. This
if windowing is needed, zooming to a small area at a larger scale, the pixel
size is too coarse, yet the full precision of the vector data would allow for
much greater resolution.

2. Change of projection is not readily feasible with raster format, yet in
vector form this is straightforward, although computationally demanding.

3. the handling of coastline information from two co-registereq maps poses
a problem using the CLDS system as will be described further below.

As no commercial package was readily available, a program (VEC2RAS) was
written in FORTRAN-77 to convert arc-node data to raster format for the
VAX 11-780. VEC2RAS will accept data in PC format from CLDS, and with minor
_modifications other arc-node formats, such as INTERGRAPH files or arc-node data
generated from digitizing tables. The program allows the user to choose a pixel
size, origin, and whether the raster file records are to correspond to lines parallel to
N-5 or E-W. Output can be in run-length encoded, or expanded formats, using
binary or ASCll representation. The source listing of VEC2RAS isin Appendix 1.

A further option is available for producing a simplified vector file, useful for
drawing polygon boundaries on an image. The co-ordinates used for the vector file
are the pixel coordinates of the selected grid (as opposed to UTM coordinates in

metres normally used on the CLDS vector files). With two exceptions, each arc that



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

occurs on the original file appears in the new file, but with many fewer coordinate
pairs, consistent with the resolution of the raster file. The first exception is for the
case of a window smaller than the original map, when clipping retains only those
lines, or part-lines, occurring in the window. The second exception is for two-
classification PC data (see below), when boundaries are kept for one selected
classification only.

Compact vector files, still retaining the polygon-left, polygon-right labels, are
invaluable in data integration studies. For example, the boundaries of selected
geological units or a coastline can be superimposed on a coloured image of
geochemical or geophysical data.

A computer program to select and plot polygon boundaries from the simplied
vector file is straightforward to write, and efficient to execute because the
simplified vector file is much smaller than the full CLDS PC data file. Further,
because the coordinates are pixel coordinates, correctly registering vector polygon
outlines with a raster is easy, and vector polygon boundaries will always correctly fit
the rasterized polygon fill. An example of using the boundary option is shown in
the the example dialogue, Appendix 2.

A second program, CLDSARC, is shown in Appendix 3. This takes formatted
run-length encoded raster files and writes them out in an archive format, used by
CLDS and by GSC for exchange of thematic map data. Because the archive format
uses ASCll representation, and 80-column records, it is bulky but ideal for exchange
between machines. The specifications for the archive format are shown in
Appendix 4. Archive format is not included directly as an option in VEC2RAS
because it would often require two tape drives simultaneously, one for the CLDS
input tape, one for the archived output.

A separate program is also available, not published here, for generating a list

of arc-pointers for each polygon in the arc-node table, and ordering arcs to form a



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

continuous boundary, which is useful for displaying polygons with polygon fill

algorithms. This program is also in FORTRAN-77, for the VAX 11-780 using VMS.

METHOD

The algorithm on which VEC2RAS is based is described by Foley and Van Damm
(1982). Each arc orline segment is defined by n (x, y) coordinate pairs, and labelled
according to the polygon on each side. The program reads the vector data for each
arc, and finds the intersection of the arc with every row of a grid (with predefined
origin and pixel size), keeping track of the polygon to right and left of the
intersection. This operation is repeated for every arc, whereupon the intersections
for each grid row are sorted by grid column. This leads easily to a run-length
encoded description of the grid row, one (run length, run polygon) per intersection.

The principal stepsin the calculation are:

1. Define the pixelsize, grid origin, and grid dimensions.

2. For every arc in the vector file, find the coordinates at which the arc
intersects each grid line parallel to the x-axis, and store these
x-coordinates rounded to the nearest grid line parallel to the y-axis. The
X-axis is normally orientated E-W, unless the 90° rotation option is used
(Figure 2).

3. Iftwo intersections fall on the same grid-line intersection, retain only the
intersection with largest x-coordinate before rounding. This ensures that
along every line parallel to x, only one polygon intersection per pixel is
possible.

4. |If fwo or more intersections on any line parallel to the x-axis intersect at
exactly the same x—coqrdinate, the grid line is moved a small distance and
the two arcintersections recalculated. Then the new intersection with the

largest x-coordinate is chosen as in 3.



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

5. After calculating all intersections for all arcs, each line parallel to the x-axis
is subdivided into intervals (or runs) between intersections. These
intervals, to the nearest pixel, and their polygon labels, comprise the

outputin run-length encoded form, line-by-line.

INPUT FORMAT

CLDS tapes with PC data are in the format shown in Tables 1 and 2. Both files
are in ASCIl. Field widths may vary depending on the job. The program actually
uses the second file first, because it contains the lookup table relating ‘face’ number
to polygon number. Thus, the first file is skipped, the second file read, and then the
tape rewound for processing the pairwise contact data.

In some situations, the "face’ number is related to more than one polygon
number. This occurs when two maps have been merged to produce a single vector
file. For this case each arc has a‘face’ to right and to left; each face is related to two
polygons, one from the first map, and one from the second map. CLDS (and other
GIS’s) can merge many maps into a single vector file in this manner. The VEC2RAS
program is at present limited to two merged maps (also referred to a two
classifications).

For situations where two maps, such as surficial geology and bedrock geology
have both been raster scanned, and both contain a coastline which should be
exactly co-registered, CLDS uses the following method to ensure that no under- or
overlap exists between the coastlines. This task is virtually impossible when scribing
the two coastlines on separate documents and then scanning them independently:

1. The accurate coastline is put on to the first map.

2. Aline parallel to the coast, but everywhere clearly offshore, is put on to

the second map, and polygon boundaries which intersect the coastline

extended to meet the ‘false’ coastline.



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

- 3. The two maps are raster scanned, edited, raster-to-vector converted, and
the polygons classified as normal.

4. The two vector files are merged, so the combined file has polygons,

‘faces’, that are classified according to both maps.

When extracting raster files for each geology map, the polygons
corresponding to SEA on the first map are used to clip the polygons on the second
map back to the correct coastline. In this way, the accurate coastline is used for
both maps. VEC2RAS will enquire from the user whether more than one polygon
classification is being used; if itis, the polygon numbers for SEA must be entered for
both map classifications.

The conventions for defining the coordinate origin and grid arrangement are
shown in Figure 2. Note that the lines of the raster file, each line starting on a new
record, can be made a) to run W to E, starting in the NW corner; or b)to run S to N
starting in the SW corner by using the 90° rotation option.

The limitations of the program are: no more than 1024 raster lines, and no
more than 1024 theme changes per line. The grid may be much smaller than the
maximum and minimum coordinates found in the input file, i.e., windows with only
part of the input are possible - ‘zoom in’. Alternatively the grid may be larger than
the input data, with padding round the outside — ‘zoom out’. If an image with
more than 1024 lines are required, this is possible using multiple passes, changing
the origin successively but keeping the same pixel size. Concentration of the
resulting raster files must be carried out separately, but with judicious sequencing
of the origin is not difficult. Normally the limit of 1024 changes in theme per line is

not a practical restriction.



OuTPUT

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

File formats in the present version include:

1.

Expanded raster. Formatted file.

Record 1. NROWS, NCOLS (freefield Integer format).

Record 2. Blank.

Record 3. Image data from first row (N*14) format.

Record 4 to (3 + NROWS). Repeat of Record 3.

Morpholog (expanded raster). Unformatted file.

The name Morpholog refers to an image analysis program, commercially
available and in use at GSC.

Recqrd 1. NCOLS, NROWS (Integer *4).

Record 2 to (NROWS + 1). Image data, one record per row (Integer *2). If
the image is larger than 512 x 512, a warning is issued and decimation is
offered as an option.

Rasterized boundary file. Unformatted (Morpholog) file. Same as
output 2 except boundary pixels are 1's, with 0's elsewhere.

Run-length encoded file. Formatted.

Record 1. “ H", Descriptive comment line. The “ H" must be in
cols. 1 -2 (A2, A6O).

Record 2. "_H", NROWS, NCOLS (A2, 18,17).

Record 3. “ H", EASTING, NORTHING of origin (A2, 113, 112).

Record 4. " _H",EASTING, NORTHING of top-right corner (A2, IB, 112).
Record 5. "_H", EASTING SCALE, NORTHING SCALE (A2, F12.5, F15.5).
Expressed in <réciprocal form, e.g., 1:1,000 is 1,000.

Record 6. ”_H", UTM ZONE (A2, F5.0)

Record 7. “ H", Integer number usually set to 1 unless the second

classification of a double classification image is used (= 2). (A2, 14).



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

-10 -

Record 8. NROWS, NCOLS (16, 17).
Record 9. POLYGON, PIXEL RUN (16, 17).
Record 10 to end. SAME as 10.

5. This file contains arc-node data, but restricted to a window (if selected)
and simplified into integer pixel coordinates, thus greatly reducing file
volume. The pixel origin (0, 0) is at the same location as the UTM origin in
the header (Record 3). _

Record 1to 7. HEADER INFO (same as 1to 7 in file format 4).
Record 8. LEFT POLY, RIGHT POLY, A* (14, 15, [4) where A* = # of pts used
to define this segment.
Record 9 to (A* + 8) X-COORD, Y-COORD (215).
Record (A* + 9) LEFT POLY, RIGHT POLY, B* (14, 15, 14) where B* = # of pts
used to define this segment
Record (A* + 10) to (A* + B* + 9) X-COORD, Y-COORD (215).
6. Run-length encoded. Unformatted.

Same as 4 except unformatted file.

SAMPLE RUN

The dialogue in Appendix 2 was dumped to a line printer to show a typical
session. The responses of the user have been added in a different typeface. A CLDS
tape was first mounted using the command: MOUNT/FOREIGN/BLOCKSIZE =
2818 MT: CG1156 TAPE. The blocksize and tape label was supplied on the CLDS
tape description, see Table 1. In this case the local file name for use with the
program is TAPE. The program is executed by typing RONDUB1: [BCVAX.EXEC]
VEC2RAS.



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

11 -

PROGRAM PERFORMANCE

A number of factors affect performance, but typically the program will
produce a raster image from PC data at the rate of about 1000 segments (arcs) per

minute. Typical maps will have 1000 to 10000 arcs, so interactive use of the program

is quite tolerable.

ACKNOWLEDGEMENTS

We thank Casey van der Grient for some early work on this problem, and

Danny Wright for his advice as a user.



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

-12-

REFERENCES

Aronof, A., Goodfellow, W.D., Bonham-Carter, G.F., and Ellwood, D.J., 1986,
Integration of surficial geochemistry and Landsat imagery to discover skarn
tungsten deposits using image analysis techniques, Proc. IGARSS’ 86
Symposium, Zurich, 8 — 11 Sept., 1986, p. 513-520.

Bonham-Carter, G.F., Ellwood, D.J,, Crain, I.K,, and Scantland, J.L., 1985, Raster
scanning techniques for the capture, display and analysis of geological maps,
Canada Lands Data Systems, Lands Directorate, Environment Canada, Report
R003210, 12 p.

Crain, 1.K., 1984, A comparison of raster scanning and manual digitizing, Canada
Lands Systems, Lands Directorate, Environment Canada, Report R001300.

Ellwood, D.J.,, Bonham-Carter, G.F., and Goodfellow, W.D., 1986, An automated
procedure for catchment basin analysis of stream geochemical data: Nahanni
River Map Area, Yukon and Northwest Territories, Geological Survey of
Canada, Paper 85-26.

Ellwood, D.J., Bonham-Carter, G.F., and Rogers, P.J., 1987, Integration and display of
surficial geochemical data using catchment basins, Cobequid Highlands, Nova
Scotia, GSC Forum, Poster.

Foley, J.D. and Van Dam, A, Fundamentals of computer graphics, Addison-Wesley,
664 p.



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

-13-

FIGURE CAPTIONS

1. Diagram of arc-node vector representation of polygon data.
2. Conventions for definig grid origin and placement.

3. Black and white reproduction of a coloured image produced on a Tektronics
4696 ink-jet plotter, approximately 7 inches square. The image was initially
created on a Chromatics 7900 at a 1024 x 1024 resolution. The raster image in B
shows the surficial geology of Eastern Nova Scotia. The inset portion in A shows
the same image but rotated clockwise 90° and using a smaller scale. This
example is described in the sample dialogue (Appendix 2) and the CLDS tape
description isshown in Tables 1 and 2.

4. Black and white reproduction of a colour image showing polygon boundaries
of the same map in Figure 3. The simplified vector file used to create this image
was created as an option in VEC2RAS. Selected boundaries, such as ‘coastline’
or ‘all granite contacts’, can be plotted using this file which uses integer pixel
coordinates and is therefore very compact. Images with solid themes and
selected boundaries provide an effective means to compare two maps, for
example bedrock geology with a catchment basin geochemical map.



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

-14 -

TABLE CAPTIONS

1. File organization for CLDS PC-data.

2. File organization for CLDS Descriptive Dataset.



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

Figure 1. Eight polygons labelled A to H. Each polygon is bounded by one or more
line segments, or ‘arcs’, which intersect at 'nodes’.



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

A. NO ROTATION B. 90% ROTATION

NORTH WEST

©
1 > 1 >
W 2 > £ s 2 > g
E 3 > A R —>» R
S ]

S . T T . T
T ] H H
\ <

SOUTH EAST

= co-ordinates of the SW corner of the grid file, in the same units as the
- input vectors, usually UTM metres.

= co-ordinates of the NE corner of the grid file, also in the same units as the
input vectors.

Pixel size: defined in units of input vectors, normally metres, for E-W and N-S.
Grid size: defined by number of pixels E-W and N-S.

The numbered arrows indicate the sequence and direction of the ‘scan’ lines, each
line held as a separate record in the output file.

Figure 2. Conventions for defining grid origin and placement. Three alternative
options are possible for specifying the size and resolution of the raster
grid, see the example dialogue



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

Reduced and rotated

inage,
B, Original image,

FIGURE 3

e



FIGURE 4

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

TABLE 1

PAIRWISE CONTACT (PC DATA) (UTM): IDS PROJECT: _%71-2103
Image Data Set DATE May 5th/87
DESCRIPTION:
Segment file for coverage 9373
FILE STRUCTURE:
Field No. Field Name Field Type Field Length Comments
1 FACR picture '999999! 6 bytes
2 FACL picture '999V99’ 6 bytes
3 ZONE picture '99! 2 bytes
4 NOVERT picture '9999! 4 bytes
5 XUTM picture '999999! 6 bytes ] This pair
6 YUTM picture '99999999! 8 bytes ] repeated
. ] NOVERT times
YHERE
FACR - POLYGON number on the right side of the segment. All segments
required to define a POLYGON (an area) have the same POLYGON
) number,
FACL - Same as FACR except polygon 1s on the left side of the segment.
ZONE ~ UTM zone,
NOVERT - The number of points along the segment.
XUTM, YUTM - UTM eastings and northings in meters.

(FACR or FACL = 0 defines areas outside the map).

FILE STATISTICS:

2879 records 53995 verticies 8,113,022 bytes
Record Format FB Recording Mode ASCII

Logical Record Length (LRECL) _2818

Density _1600 _ Bpi.NL

Block Size (BLKSIZE) 2818 Track 9
Number of Records 2879
Tape Volume Serial Number CG1211 File 1

Data Set Name (DSN)

CGI01,CGIS.COV9373,.PC9373

INTERNAL USE
Coverage _9373
Backup _NIL

Date _May 5/87

- G e e e T A D S . A Tt Gt D e o A U S S T e e S e S e S Y U T T - S = T -

By _André Dalgneault

PLEASE COPY AND RETURN TAPE

CLDS Doc/CLDS 500-530



This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

TABLE 2

DESCRIPTIVE DATA FOR COVERAGE (UTM): DDS PROJECT: _471-2103
Descriptive Data Set DATE May 5, 1987
FILE STRUCTURE:
eld No. Field Name Field Type Field Length
1 FACE # picture '999999' 6 bytes
2 AREA picture '99999999V99! 10 bytes
3 XUTM picture '9999999!' 7 bytes
y YUTM picture '99999999' 8 bytes
5 ZONE picture '99!' 2 bytes
- V for implied decimal only
6 POLY_NO picture '9999' 4 bytes
HWHERE:
FACE # - CLDS polygon identifier
AREA - Polygon area (in hectares)
XUTM - Centroid X
YUTM - Centorid Y
ZONE - Zone number
POLY_NO - Polygon number
Record Format FB Recording Mode ASCIT

Logical Record Length (LRECL) 37

Block Size (BLKSIZE) 37
Number of Records 854
Tape Volume Serial Number CG1211

Data Set Name (DSN)

Density _1600  Bpi.NL
Track 9

File 2

CGI01.CGIS.COV9373.DESCO373

" o - S S B W T W . S S T S %4 BT T G W - SRy S P S G - D S P S e SO e e S S G e S e B

INTERNAL USE
Coverage _9373
Backup NII,

Date May 5th/87

- " T ot 0 s o T e S PR W e B e R > B G e S o

By _André Daigneault

PLEASE COPY AND RETURN TAPE

CLDS Doc/CLDS 500-530



PROGRAM Vector_To_Raster

OO0 0O00O0000000O0000O00C0

OO0

1100

Vector_To_Raster program

Written by: M. Steneker

This program takes digitized 1ine segments on tape from
Environment Canada’s CLDS (as well as other places which is
the reasoning for the OTHER clause), and creates a polygon table.
The tape consists of one 1ine segment / record and
which has a left and right polygon attributed to it.

The program creates depending on what is required either a
raster table of the image, or a run-iength encoded file of the
image. This program also has the capability of windowing part
of the data vector file, and allows for magnification or shrinkage
of the window.

PARAMETER n_poly=1024,n_segments=10000,n_polyseg=256,
+ n_vertices=300000

BYTE inbuff(4096)

INTEGER*4 record_len, xy_buf(1024,2),HEX_30,
x_coord(n_polyseg), y_coord(n_polyseg), ydes,
num_coords, ystart, xstart, a, b, ¢,
max_segments,max_coords, max_seg(n_poly), arrow,
head, tail, max_y, mi, m2, rightside, area, xdes,
start, Pnum, focus, xstop, ystop :

+ o+

INTEGER*2 next(0O:n_poly, O:n_poly), null, FaceToPoly(2000,2),
end(O:n_poly), out(i:n_poly),

outi(1:n_poly),

out2(1:n_poly),

+ o+ +

dump(O:n;poly)

LOGICAL migsif, pcdata, other, renew, flip, traverse, clipping,
+ ballpark, dump_out, morph, bound, error, Cor, Siz, Num,
+ face, is_tape, rle, crle, boundry, first, passone

REAL*4 exp(6),expi(8),
true_x, slope, x1, x2, vyi, v2,
true_xprim, slopeprim, yviprim, y2prim,
yint, xint, rsave(O:n_poly, O:n_poly),
ixmin, ixmax, iymin, iymax

-

CHARACTER fname*24, ffname*24, boundfile*24, fn*85, reply*1,
+ label*60

INTEGER*2 savei1(0O:n_poly, O:n_poly), pointer, xnum, ynum,
+ second_last, distance, last, reduce, numofcoords,
+ left, right, oldleft, oldright, map_y. n, nprim
INTEGER*4 save2(O:n_poly, O:n_poly)

DATA CHAIN/1/, HEX_30/'30’X/, exp/100000.0, 10000.0,1000.0, 100.0,

+ 10.0,1.0/,exp1/10000000.0, 1000000.0, 100000.0, 10000.0, 1000.0,
+ 100.0.10.0.1.0/,vertice_po1nter/1/.Xo/99999999/,Xn/-999999/.
+ Y0/99989999/,Yn/-99999999/ ,head/1/,tai1/2/,null/-1/

/* Request the data file and the coordinates */

ixmin=9999999.
iymin=99893899.
ixmax=0.
iymax=0.

flip = .false.

PRINT*
PRINT*, ’ Vector to Raster File Program '/
Printx*
Print 1100
Format (’ Do you require a brief introduction ? y/N ‘,$)
Read (*,’(a1)’) fn
If (fn.eq.’'y’.or.fn.eq.’Y’) then

APPENDIX 1

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




1000

1022

1342

1002

1003

56

555

556

59

58

Call Help (1)
End If
fn =’/
PRINT *

PRINT 1000
FORMAT (’ The name of the input vector file : /,$)
READ(*,’(A32)’) ffname

PRINT *

PRINT 1342
FORMAT (’ Is the input vector file on tape ? (Y/n)
READ (*,‘(at)’) fn

PRINT *

iIf (fn.eq.’n’ .or. fn.eq.’N’) then
Is_tape .FALSE.

else
Is_tape

endif

n

.TRUE.

PRINT 1002
FORMAT(’ The file type or structure : ‘,
+ ‘(m)igsif, (P)cdata, (o)ther (2)Help ’.,$)
READ(*,’(A1)’) fn
PRINT *

If (fn.eq.’?’) THEN
Call Help (2)
GoTo 1022

End If

.FALSE.
.FALSE.
.FALSE.
.FALSE.

passone
migsif
pcdata
other

IF (fn.EQ.’M’ .OR.fn.EQ.’m’) THEN
migsif = .TRUE.

ELSE IF (fn.EQ.’0O’.DOR.fn.EQ.’0’) THEN
other = .TRUE.

ELSE
pcdata = .TRUE.

ENDIF

IT (migsif.or.pcdata.or.other) Then
flip = .false.

Else
GoTo 1022

End if

IF (migsif.or.pcdata) then
PRINT 1003

FORMAT(’ The logical record length for image data set

READ(*,*) 1_rec)
ENDIF
PRINT *

WRITE(*,56)

FORMAT (’ Many CLDS files require a second file (a descriptive’,
+’ data set) which 1inks’,/,’ the face value to the true polygon’,

+’ number. ‘,/,’ Do you wish such linking ? (y/N) %)
Pnum=0
GOTO 58
IF (Is_tape) THEN
PRINT*
PRINT=*, One moment ..... Tape Rewinding’

REWIND (10)
REWIND (10)
PRINT*, char(7)
ENDIF
CLOSE (10)

WRITE(*,59)

FORMAT (’ Do you wish to read or re-read the descriptive’,/,
+ ’ data set to allow for new face value linking ? (y/N)

second = .true.
READ (*,"(at1)’) fn
focus = O
Face = ((fn .eq. ‘Y’) .or. (fn .eq. 'y’))
PRINT*
IF (Face) THEN

%)

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




CALL FaceReader (FaceToPoly, migsif, pcdata, other, Pnum,
+ is_tape, ffname)

ENDIF
PRINT*

IF (Pnum .eq. 1) THEN
focus = 1

ELSEIF (Pnum .eq. 2) THEN

PRINT 577
577 FORMAT(’ For the two classification sets which do you wish to ’,
+ ‘focus on ?2’,/,’ (n)one (F)IRST (s)econd : /,
+ $)

READ(*,’(at1)’) fn

IF ((fn .eq. ‘n’) .or.

focus = O

(fn .eq. ‘N’)) THEN

ELSE IF ((fn .eq. ’s’) .or. (fn .eq. ‘S’)) THEN

focus = 2
ELSE
focus = 1
ENDIF
ENDIF

Face = focus.ne.O
PRINT*

IF (migsif.or.pcdata) then
OPEN(10,ERR=333,FILE=ffname, FORM='unformatted’,

+ RECORDTYPE='VARIABLE‘, STATUS=‘0l1d’)
GO TO 444
333 OPEN(10, FILE=ffname, FORM=‘unformatted’,
+ STATUS='01d’)
444 CONTINUE
ELSE

OPEN(10,FILE=ffname,

END IF

FORM='formatted’',STATUS="'01d’)

WRITE (*,*)’ What are the UTM coords of S-W corner for the OUTPUT’

WRITE (*,*)’ image ? '

IF (passone) write (*,*) * . (default is /,
+ ystart,’)’ -
PRINT 1008
1009 FORMAT (“ Northing : ‘,$)
ystart = NumberReader (ystart)

IF (passone) write (*,6*)
+ xstart, )’
PRINT 1098

4 (default is ’,

1099 FORMAT (* Easting : ’,$)

xstart = NumberReader

Cor = .true.
Siz = Cor
Num = Siz

1888 print*

(xstart)

print*, ’ There are three possiblie ways to define the output’,

+ ‘ image. Default

print*
print*, 1. The
print*, and
print*
print*, -
print*
print*, / 2. The
print*, and
print*
print*, ’
print*
print*, 3. The
print*, and
print*
print*,
printx*
print 1800

1800 format (’ ‘,’ Choice
read (*,’(a1)’) fn

IF (fn.eq.’1’.or.fn.eq.’
Cor = .false.

is 1./

size for each pixel N-S, and E-W.'
the number of pixels in N-S, and E-W’

ie (50m X 60m, 256 X 512)’

number of pixels in N-$§, and E-W’
the N-E corner coordinates.’

ie (512 X 1024, ystop, xstop)’
size of each pixel N-S, and E-W /
the N-E corner coordinates.’

je (100m X 30m, ystop, xstop)’

%)

/) THEN

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




1007

1777

1066
1006

1778

1070

1071

1012

+

ELSE IF (fn .eqg. ’2’) THEN
Siz = .false.

ELSE IF (fn .eqg. ‘3’) THEN
Num = .false.

ELSE
Goto 1888

END IF

IF (Siz) Then
print *
print 1007

FORMAT (’ The size of each output pixel’,/,

= 5.2 input units’,/,

’ e.g., 1 output pixel
‘ Along Northing : ‘$)
READ(*,*), yint
PRINT 1777
FORMAT (° Along Easting : ’'$)
READ(*,*), xint
END IF

IF (Num) THEN

WRITE (*,%*)
PRINT 1006

FORMAT (’ Number of pixels in the output image’,

Output Image Size’,/,

‘$)

‘$)

print*, ’ Sorry maximum aliowable N-S value is 1024, ',

! i.e.,
! Along Northing
READ(*,*), ynum
PRINT 1778
FORMAT (' Along Easting
READ(*,*), xnum
IF (ynum .gt. 1024) THEN
print*
’ please re-enter.’
GoTo 1066
End If
END IF

IF (Cor) THEN

print *

print*, ‘Wwhat are the UTM coords of N-E corner for the

‘output image ?
IF (passone) print*,’
ystop,
print 1070
FORMAT (~

ystop = NumberReader (ystop)

IF (passone) print*,’
xstop, ’
PRINT 1071
FORMAT (’

xstop = NumberReader (xstop)

END IF
passone = .TRUE.

IF (num .and. cor) THEN
xint = (xstop - xstart)/xnum
yvint = (ystop - ystart)/ynum
ELSE IF (num .and. siz) THEN
xstop = xstart + xnum * xint
ystop ystart + ynum * yint
ELSE
xnum = (xstop - xstart)/xint
ynum = (ystop - ystart)/yint
END IF

PRINT *
PRINT 1001

)I

Northing : ’.$)

)/

Easting : ’,$)

(default

(default

is

is

’

’

’

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




1001

126

121

222

223

FORMAT (’ Do you wish to rotate the image 90 degrees clockwise ?°,

+ ©y/N/? L, 8)

READ(*,’(al1)’) reply
If (reply.eq.’?’) Then

Call Help (3)
GoTo 1012
End If

If (reply.eq.’y’.or.reply.eq.’Y’) flip = .true.

write (*,*)

IF (flip) THEN
x1 = ystart
ystart = Xxstart
xstart = xi
x1 = yint
yint = xint
xint = x1
x1 = ystop
ystop = Xstop
xstop = xt
a = ynum
ynum = xnum
Xrum a

END IF

IF (ynum .gt.
print*

1024) THEN

print*,’ Sorry maximum allowable N-S value is 1024, ',
+ ’ please re-enter.’

GoTo 1066
End If

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

sliver = (yint*1.0) / 100

Just a quick

clipping = .TRUE.

interactive check to see if all is correct before running

Print*

Print*,/ CONFIRMATION of OUTPUT DIMENSIONS & FACE MAPPINGS.’
Print* . ’

Print*,’1. S-W corner has coordinates (’, ystart,’,’, xstart,’)’
Print*,’2. N-E corner has c¢oordinates (’, ystop ,’,‘, xstop, ‘)’
Print*,’3. Number of pixels in E-W directions =‘, xnum
Print*, 4. Number of pixels in N-S directions =', ynum
Print*,’5. Size (in input scale) for 1 E-W output pixel =/, 6xint
Print*, 6. Size (in input scale) for 1 N-S output pixel =',yint

IF (face) THEN
write(*,126) focus

format(’ 7. Face Value

ELSE
Print*x,’7.

ENDIF

write (*,*)

WRITE(*, 121)

Format (“

Read (*,’(at1)’) fn

WRITE (*,%)

IF (fn .eq. ‘n‘ .OR.
PRINT*

WRITE (*,222)

FORMAT (’ Output formats ’,//,

* (formatted)’,/,
’ (formatted)’,/,
* (unformatted)’,/,
(unformatted)’,/,
* (formatted)“,/,

’ (unformatted)’,/,

A I A T T T T S e

write (*,223)

FORMAT (“ If you wish the following format, type a filename, '

Face Value

fn

is sent to Polygon Set ’,i2)

is not sent to any Polygon Set.’

Is this all correct ? Y/n *,%)

.eq. ‘N’) GOTO 556

- Vector Boundaries (h) ‘,
- Expanded Raster, ’,
~ Morphotog, 4

Morpholog Boundaries Only, ‘Y
Run Length Encoded, (h) ’,

Run Length Encoded, -

‘ any or all of them. ’,/,

’

‘NOTE : (h) - Header Records Included.’,//)

+ ‘otherwise type a return key.’,/)




OO0 0

166

[sNeoNoNe] - 000

O0O0O000

[eNeNe]

91

11

/* Initialize the pointers */

write (*,69)
fname = '/ 4
format (‘' Please enter the vector boundary filename :’,$)
format(’ H ‘,i2,a2,’ polygon set’)
read (*,’(a24)’) fname
IF (fname .ne. '’ ‘) THEN
OPEN (UNIT=11, FILE=fname, STATUS='NEW’, FORM=‘FORMATTED’)
write(*, *)

write(*,*) ’ A 60 character label may be placed on‘,
+ ’ this file.’

write(*,91)

format(’ Label :’,%)

read(*,’(a60)’) label
write(11,’(a3,a60)’) * H ', label

write(11,*) ‘H ’, xnum, ynum, ' is the ’,
+ . ‘size of the image.’

write(11,*) ‘H ’, xstart, ystart,’ is the origin ’,
+ ‘of the image.’

write(11,*) 'H ’, xstop, ystop, ' is opposite the ',

+ ‘origin.
write(11,*) ‘H ', xint, yint, ‘ is the scale of the image.’
write(11,*) 'H ’, zone ,’ is the UTM zone.’
IF (face) THEN
IF (focus.eqg.1) THEN
write(11,166) focus,’'st’

ELSE
write(11,166) focus, ‘'nd’
ENDIF
ELSE
write (11,*) ‘H O polgon sets used with the face values.’
ENDIF
boundry = .TRUE.
ELSE
boundry = .FALSE.
ENDIF
print*
DO 11, i = 1, n_poly
savei (i,0) = nuil * 2
save2 (i,0) = O
next (i,0) = nulil

end (i) = 1
CONTINUE

i=0

max_coords =
max_segments
num_coords =

o no
o

Repeat as long as there are more records to read .....

Continue
i= 1+ 1
max_segments = max_segments + 1
coord_start = num_coords
IF (migsif) THEN

/* I haven’t checked this migsif stuff out yvet so it

might not work | Casey, July30, 1986 */

READ(10,err=998) record_len,sif_id,num_coords,data_type,
+ cont_code, left,right, ((xy_buf(j,k),j=1,(record_len-8)/4),
+ k=1,2)

zone = O

IF (data_type.EQ.CHAIN) GO TO 999
Other data structures that the user may build his own
format for the data files. refer to last subroutine in
this file for information

ELSE IF (other) THEN

CALL OtherRead (left, right, num_coords, x_coord, y_coord,

+ flip, error)

if the reading is all done then go to printing it out.

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




[sNeNe!

1011

a W

[eNeNeoNe]

zone = O

IF (error) GO TO 999

Pcdata data files that are recieved form CLDS

ELSE IF (pcdata)

THEN

READ( 10, ERR=999,END=999) (inbuff(j),j=1,1_recl)
DO 2 k = 1,1_recl

inbuff(k) = inbuff(k) - HEX_30

CONTINUE

right = JINT (inbuff(1)*100000.0+inbuff(2)*10000.0+
+ inbuff(3)*1000.0 + inbuff(4)*100.0 +inbuff(5)*10.0
+ + inbuff(6))

left = JINT(inbuff(7)*100000.0+inbuff(8)*10000.0 +
+ inbuff(9)*1000.0 + inbuff(10)*100.0 +
+ inbuff(11)*10.0 + inbuff(12))

zone = JINT(inbuff(13)*10.0 + inbuff(i4))
num_coords = JINT(inbuff(15)*1000.0 + inbuff(16)*100.0+
+ inbuff(17)*10.0+inbuff(18))

IF (face) THEN
right = FaceToPoly(right, focus)
left = FaceToPoly(left, focus)

ENDIF

IF (JMOD(1i,50).

FORMAT (/

istart = 19
ic = 0

IF (f1ip) THEN

EQ.0) WRITE(*,1011) i
Processing segment # ‘,I5)

DO 3 j = 1,num_coords

y_coord(j)
x_coord(j)

max_coords =

DO 4 k = 1,6

y_coord(j)

ic = ic +
CONTINUE
DO 5 k = 1,8

x_coord(j)

ic = ic +
CONTINUE

CONTINUE
Temp = Left
Left = Right
Right = Temp

o]
o]

max_coofds + 1

= JINT(inbuff(istart+ic)*exp(k)) + y_coord(j)
1

= JINT(inbuff(istart+ic)*expi(k)) + x_coord(j)
1

ELSE
DO 6 j = 1,num_coords
x_coord(j) = O
y_coord(j) = O

max_coords

max_coords + 1

DO 7 k = 1,6
x_coord(j) = JINT(inbuff(istart+ic)*exp(k))
+ + x_coord(j)
ic = ic + 1
CONTINUE
DO 8 k = 1,8
y_coord(j) = JINT(inbuff(istart+ic)*expi(k))
+ + y_coord(j)
. ic = ic + 1
CONTINUE
CONTINUE
END IF
END IF

If a vector file is desired then output the 1eft and right

poly numbers.

IF ((boundry) .and. (numofcoords.gt.1) .and.
+ (oldleft.ne.oldright)) THEN
call compress (oldleft, oldright, numofcoords, out, outt)

ENDIF

oldleft = left

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




Cc

C

C
C
c /x
c /*
C
C
c /*
c /*
c /x*
C
71

72
C
c /*
Cc
C
C
¢

100

/*

+

oldright =
numofcoords = O

first =

DO 9 j = 1,

right

For each pair of points
.TRUE.

num_coords-1
.le.

IF (y_coord(j) y_coord(j+1)) THEN

x1 = x_coord(j) * 1.0
y1 = y_coord(j) * 1.0
x2 = x_coord(j+1) * 1.0
y2 = y_coord(j+i) * 1.0
IF (y1.1t.iymin) iymin = y1
rightside = right
ELSE
x1 = x_goord(j+1) * 1.0
y1 = y_coord(j+1) * 1.0
x2 = x_coord(j) * 1.0
y2 = y coord(j) * 1.0
IF (y2.gt.iymax) iymax = y2
rightside = left
END IF
IF (x_coord(j)*1.0 .1t. ixmin) ixmin = x_coord(j)*1.0
IF (x_coord(j)*1.0 .gt. ixmax) ixmax = x_coord(j)*1.0
Determine if the xy pairs are in the ball park */
of the section to be examined. */
IF (clipping) THEN
balipark = ((y1 .le. ystop)
.and. (y2 .ge. ystart))
ELSE
ballipark = ((x1.ge.xstart) .and. (x1.le.xstop)
.and. ( x2 .ge. xstart) .and. (x2 .le. xstop)
.and. ( yi1 .ge. ystart) .and. (yi .le. ystop)
.and. ( y2 .ge. ystart) .and. (y2 .le. ystop))
ENDIF
IF (balipark) THEN
determine the y intervals for yi and y2. */
if exactly on an interval line then increase the */
value by yint/1000 . */
mi = int ((y1 - ystart) / yint + 1)

yiprim = yi

if ((m1 - 1) * yint .eq. y1 - ystart) then
yi = yi1 + stiver
go to 71

endif

map_y = mi

m2 = int ((y2 - ystart) / yint)

y2prim = y2

if (( m2 * yint .eq. y2 - ystart) then

y2 = y2 + sliver
go to 72
endif
1ine does cross an interval. x*x/

IF (m2 .ge. map_y) THEN

IF (x2-x1 .ne. 0) THEN

stope = ((y2 - y1) * 1.0)/(x2 - x1)
ELSE

slope = 88889.0
END IF

WHILE (m2 .ge. map_y) DO

IF (slope.ne.99999.) THEN
true_x = ((map_y * yint + ystart) - y1)
* 1.0 / slope + xi

in xy_coord determine the intervals..

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

*/



eNeNeNe]

A

aO0O00n

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

ELSE
true_x = x1
END IF

n = ((true_x - xstart) * 1.0) / xint

determine if clipping required and handle some unique cases that
may arise with respect to the boundaries of the output image..

IF ((n .gt. xnum) .or.
(map_y .1t. 1) .or.
(map_y .gt. ynum) .or.
((true_x .gt. x1) .and.
(true_x .gt. x2))) THEN
go to 888

ELSE IF (n .le. O) THEN

IF ((true_x .gt. rsave(map_y,0)) .or.
(rsave(map_y,0).ge.1)) THEN

rsave(map_y,0) = true_x

save2(map_y,0) = rightside
ENDIF '
go to 888

ELSE IF (true_x .1t. rsave(map_y,0)) THEN

IF (face) THEN
IF (facetopoly(right,focus)
.ne. rightside) THEN
save2(map_y,0) = facetopoly(right, focus)
ELSE
save2(map_y,0) = facetopoly(left, focus)
ENDIF
ELSE
IF (right .ne. rightside) THEN
save2(map_y,0) = right

ELSE .
save2(map_y,0) = left
ENDIF
ENDIF
rsave(map_y,0) = true_x

ELSE IF ((true_x .1t. x1) .and.
(true_x .1t. x2)) THEN

go to 888

ENDIF

If vector boundary file is to be created then,
save the coordinates.

IF ((boundry) .and. first) THEN
numofcoords = numofcoords + 1
IF ((yiprim .ne. yi1) .or.
(y2prim .ne. y2)) THEN

IF (slope .ne. 99989.0) THEN
slopeprim = ((y2prim - yiprim) * 1.0)/
(x2 - x1)
true_xprim = ((map_y * yint + ystart) - yiprim)
* 1,0 / slopeprim + x1

ELSE
slopeprim = slope
true_xprim = xi
END IF
nprim = ((true_x - xstart) * 1.0) / xint
out(numofcoords) = nprim
ELSE
out(numofcoords) = n
END IF
outi(numofcoords) = map_y
IF (out(numofcoords).gt.xnum) THEN
numofcoords = numofcoords - 1
ELSE

first = .FALSE.



eNeNoNoNoNoNeNo RS

111

OoO0O0O00

[eXeNe] [eNeNe] OO0 oNeNe]

[eNeNe]

/*

ENDIF
ENDIF

Input new value conditions

while (not end of y-line)

then check if x already exists
if so then check if x should be replaced

if x doesn’t exist add

it onto the end.

and 1ink the pointers to it.

pointer = O

traverse = .true.
Continue
valid to test then

saved

saved

X
x > x then save
saved x = x then compare
X < X then traverse to next saved x

if (pointer.eq.n_poly) then

traverse = .false.

else if (next(map_y,pointer).eq.null) then
traverse = ,false.

else if (savei(map_y, pointer).ge.n) then
traverse = .false.

else if (savei(map_y, pointer).1t.n) then

last = pointer

pointer = next(map_y, last)

else

print *,’Something funny is going on.’

end if
if (traverse) goto 111

If reached the end of the 1ink list.

if ((pointer.eq.n_poly).or.
( end(map_y)+1.eq.n_poly)) then

print *, ’ error -
‘ raster 1
goto 988

too many points on one’,
ine. line = ‘' map_y

If that x point a]Feady exists in the 1ink list then compare.

else if (savei(map_y, pointer).eqg.n) then

if (rsave(map_y, pointer).1t.true_x) then
renew = .true.
else
renew = .false.
end if

If passed the x point

*/

else if (savei(map_y., pointer).gt.n) then

spot = end(map_y)
next(map_y, spot)
next(map_y., last)
pointer = spot

= pointer
= spot

end (map_y) = spot + 1

renew = .true.

/* 1f the x point has reached the end of the 1ist. */

else if (next(map_y,pointer).eq.null) then

spot = end(map_y)

next(map_y, pointer) = spot

next(map_y, spot)
pointer = spot

= nuitt

end (map_y) = end (map_y) + 1

renew = .true.
If nothing satisfied by now, major probiems exist. */
else
print *,/++++++++++ MAJOR ERROR +++++4bttd’
renew = ,false.
end if

IF (renew) THEN

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




o000

IF (x_coord(j)*1.
IF (y_coord(j)*1.
IF (x_coord(j)*i.
IF (y_coord(j)*1.

[oNeNeXe]

O0O0000

To get to this point
read in and now output of the data may begin

[eNeNoNe]

save! (map_y, pointer) = n
save2 (map_y, pointer) = rightside
rsave (map_y, pointer) = true_x

map_y = map_y + 1
if (m2 .ge. map_y) go to 100

IF (boundry) THEN
IF ((outi(numofcoords) .ne. map_y =1)

(out(numofcoords) .ne. n)) then

numofcoords = numofcoords + 1
outi(numofcoords) = map_y - 1
out(numofcoords) = n

IF (out(numofcoords).gt.xnum) THEN

ENDIF
ENDIF
first

ELSE IF (boundry) THEN
IF (first) THEN
numofcoords

numofcoords = numofcoords

numofcoords + 1

outi(numofcoords)

out{(numofcoords)

if ((out(numofcoords).1t.0).or.
(out(numofcoords).gt.xnum)) then

numofcoords numofcoords - 1

.FALSE.

IF (.not.first) then
numofcoords
out1(numofcoords)
out(numofcoords)
if ((out(numofcoords).1t.0).or.

(out(numofcoords).gt.xnum)) then

numofcoords numofcoords - 1

L1t
L1t
.gt.
.gt.

This means that there did exist an xy
occured when trying to read the value.
the top and try to read the next xy pair.

it shows that alil

int((x1-xstart)/xint)

if (outi(numofcoords).1t.0) then
outi(numofcoords) = 1

else if (outi(numofcoords).gt.ynum) then
outi(numofcoords) = ynum

numofcoords + 1
out1{numofcoords-1)
int((x2-xstart)/xint)

if (outi(numofcoords).1t.0) then

outt(numofcoords) = 1
else if (outi(numofcoords).gt.ynum) then
outt(numofcoords) = ynum

IF ((outi(numofcoords-1) .eq. outi(numofcoords))

.and.

(out(numofcoords-1) .eq. out(numofcoords))) then
numofcoords

= numofcoords - 1

ixmin = x_coord(j)*1.0
iymin = y_coord(j)*1.0
ixmax = x_coord(j)*1.0
iymax = y_coord(j)*1.0

pair and that no error
Therefore return to

the xy pairs have been

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




[eNeNe]

[oNeNe]

200

OO0

aoon (@]

[eNeXe]

301

[eNeNeNe]

203

204
205

[eNeRe]

[eNeKe]

IF

EN

IF

EL

EN

If a
potly

/*

((boundry) .and. (numofcoords.gt.0) .and.
(oldright.ne.oldleft)) THEN

call compress (oldleft, oldright, numofcoords, out, outt)

close(11)
DIF

Determine the order to output the information...

(f1ip) THEN

a = 1
b = ynum
c =1

SE
a = ynum
b = 1
c = -1

D IF

Determine the type of output required...

print*, char(7), char(7)
WRITE (*,200)
FORMAT (’ A1l input segments read ..... )

vector file is desired then output the left and right

numbers.

READ (*,’(at1)’) reply
reply = ‘A’
WRITE (*,*)
write(*,223)

Set-up the Output Raster File

IF (reply .eq. ‘r’ .or. reply .eq. ‘R’'.or.
reply .eq. ‘a’ .or. reply .eq. 'A’) then

For all the regions of interest....
WRITE (*,301)
fname = /
FORMAT (’ Please input the expanded raster’,
’ filename :’,%)
READ (*,7(a32)’) fname
IF (fname .ne. ’
OPEN (UNIT=6, FILE=fname, FORM='formatted’,
STATUS=’NEW’)
WRITE (6,*) ynum, xnum
DO 201 1= a, b, c
j=20
pointer = O
last = save2(1,j)
write (6,*)
write (*,*)

.

While next(1,j) continue writing out info for the one line

IF (next(1,j).ne.null) THEN
i = next(1,j)
IF (save2(1,j) .ne. last) THEN
do 204, k=1, savei(l,j)-pointer
write (*,205) last
write (6,205) last
format (’+’,i4,$)
IF (savei(1,j).gt.0) THEN
pointer = savei(1,j)
ELSE
pointer = O
END IF
last = save2(1,j)
END IF
GOTO 203

END WHILE
END IF
If the end of the region has not been reached

IF (pointer .1t. xnum) THEN
write (6,205) ((last),k=1, (xnum=-pointer))

‘) Then

*/

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




C

201

c

C

C

Cc

C

300
+
380

+

777
+
+
+
+
+
+

700

701
+
+

718

[

Cc

wfite (*,205) ((1ast),k=1, (xnum-pointer))

END IF
CONTINUE
CLOSE (6)
ENDIF
WRITE (*,*)

END IF

If a morpholog data file of

the raster

image is wanted,

simply enter the filename when prompted for one
For all the regions of interest dump to a morpholog file

xdes = 1

ydes = 1

WRITE (*,300)

fname = ‘

Format (’ Please input
‘ filename : ‘,$)

READ (*,’(a32)’) fname

morph = (fname .ne. '/

WRITE (*,%*)

WRITE (*,380)
boundfile = ’
Format (‘ Please input

the morphoiog’,

READ (*,’(a32)’) boundfile

bound = (boundfile .ne.

’

IF (bound.or.morph) THEN
IF (xnum.gt.512 .or. ynum.gt.512
IF (xnum.gt.512) THEN

WRITE (*,%*)

WRITE (*,*) ‘ WARNING -
‘must be less

WRITE (*,*)’

you

‘ pixelis’

xdes = xnum / 512

IF (xdes*512 .1t.
WRITE (*,*)

. END IF

the morpholog BOUNDARY ',
’ filename : ’,$%$) :

) THEN

number of x pixels /,
than or equal to 512,°

have ‘,xnum,

xnum) xdes = xdes + 1
recommended integer ’,
‘decimation factor of ‘,xdes

IF (ynum.gt.512) THEN

WRITE (*,*)

WRITE (*,*) ‘WARNING - number of y pixels ’,
‘must be less than or equal

WRITE (*,*)

to 512,

you have ’,ynum,

‘ pixels’

ydes = ynum / 512

IF (ydes*512 .1t.
WRITE (*,*) -

END IF
WRITE (*,*)
WRITE (*,700)

ynum) ydes = ydes + 1
recommended integer /,
‘decimation factor of ‘,ydes

FORMAT (’ Please enter x decimation factor...’.$%$)

READ (*,*) xdes
WRITE (*,701)

FORMAT (’ Please enter y decimation factor...’,$)

READ (*,*) ydes
c = Cc * ydes
END IF
IF (morph) THEN

OPEN (UNIT=6, FILE=fname, FORM

STATUS='NEW’)

Write (6) xnum/xdes, ynum/ydes

END IF
IF (bound) THEN

OPEN (UNIT=7, FILE=boundfile,

STATUS='NEW’)

Write (7) xnum/xdes,

Do 718 1=1,n_poly
out2(1) = -10
Continue
END IF
DO 712, 1=
outt (1)
start =
j =0
kk = 0
last = save2(1,0)
pointer = 0

a, b, ¢
= 1

1

While next(1,j) continue writing out info for the one 1line

ynum/ydes

=‘unformatted’,

FORM=‘unformatted’,

")

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




703

704

707

[eNeNe]

o0n0n

713

00000

717

712

[eNeNe]

806

IF (next(1,j).ne.null) THEN
j = next(1,j)
do 704, k=1, (savei(1,j)-pointer)/xdes
kk = kk + 1
out(kk) = last
IF (((savei(1,j)-pointer)/xdes .gt. 0).and.
(1ast.ne.save2(1,j))) THEN
start = start + 1
outi (start) = 1
do 707, k = start+1, kk
outi (k) = 0
start = kk
END IF
IF (savei1(1,j).gt.0) THEN
pointer = savei(1,j)
ELSE
pointer = O
END IF
last = save2(1,j)
GOTO 703

END WHILE
END IF
If the end of the region has not been reached x/
IF (kk .1t. xnum/xdes) THEN
pointer = kk + 1
DO 713, kk = pointer, xnum/xdes

out(kk) = last
outi(kk) = 0

CONTINUE.
kk = xnum/xdes
END IF

IF (kk.gt.512) THEN
WRITE (*,*) ‘ERROR ~-- in x decimation factor, /,
‘please increase it.’

GO TO 777 .
END IF
IF (kk .ne. xnum/xdes) THEN
WRITE (*,*) YERROR -- kk <> xnum/xdes’, kk, xnum/xdes
END IF
outi(kk) = 1

Do 717 j = 1, kk
IF (out2(j).ne.out(j)) THEN
outi(j) = 1
ENDIF
out2(j)=out(j)
Continue

IF (morph) WRITE (6) (out(j),j=1,kk)
IF (bound) WRITE (7) (outt(j),j=1,kk)

CONTINUE
IF (morph) CLOSE (6)
IF (bound) CLOSE (7)
END IF

write (*,*)
For the run length encoded output

IF (reply .eq.’L’.or.reply.eqg.’1’.or.

reply .eq.’A’.or.reply.eq.’a’) THEN

boundfile = ~’ !
crle = .FALSE.
fname = / !
rie = .FALSE.

WRITE (*,806)
FORMAT (’ Please input the formatted run length encoded’,
‘ filename :’,$)
READ (*,’(a32)’) fname
If (fname .ne. '’ ') Then
rie = .TRUE.

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




+
+
+
+
+
+
606
+
+
C
c
c
603
+
c
C

endif
print*
IF (rle) THEN
OPEN (UNIT=6, FILE=fname, FORM=‘'formatted’,
STATUS='NEW’)
write(*,*) / A 60 character label may be placed on’,
’ this file.’
write(*,91)
read(*, ‘(a60)’) label
write(6,’(a3,a60)’) ' H ’,labe)
write(6,*) ‘H ’, xnum, ynum, ’ 4
‘is the size of the image.’

write(6,*) ‘H ’/, xstart, ystart,’ is the ’,
‘origin of the image.’
write(6,*) ‘H ’, xstop, ystop, ’ is opposite’,

’ the origin.’
write(6,*) ‘H ', xint, yint, ’ is the scale of ',
‘“the image.’
write(6,*) ‘H ’, zone ,% is the UTM zone.’
IF (face) THEN
IF (focus.eq.i) THEN
write(6,166) focus, ‘st’
ELSE
write(6,166) focus, ‘nd’
ENDIF
ELSE .
write (6,*) ‘H O polgon sets used with the ',
‘face values.’

ENDIF
boundry = _TRUE.
WRITE (6,*) ynum, xnum
ELSE
boundry = .FALSE.
ENDIF
print *

WRITE (*,606)

FORMAT (’ Please input the unformatted run length encoded’,
’ filename :’,$)

READ (*,’(a32)’) boundfile

IF (boundfile .ne. ‘) THEN
crle = .TRUE.
endif

IF (crle) THEN
OPEN (UNIT=7, FILE=boundfile, FORM=’unformatted’,
STATUS='NEW’)
WRITE (7) ynum, xnum
ENDIF

IF (crle.or.rle) THEN
DO 601 1= a, b, C
j=0
distance = 0O
last = save2(1,0)
second_Tlast = last
pointer = O

While next(1,j) continue writing out info for the one 1line

IF (next(1,j).ne.nul1) THEN
i = next(1,j)
IF ((save2(1,j).ne.last).and.
(savei(1,j)-pointer.gt.0)) THEN
IF (distance .ne. O) THEN
IF (rle) write (6,*) second_last, distance
IF (crle) write (7) second_last, distance
ENDIF
second_tlast = last
distance = savei(1,j)-pointer
IF (savei(1,3j).gt.0) THEN
pointer = savei(1,j)

ELSE
pointer = O
END IF
last = save2(1,j)
END IF
GOTO 603

END WHILE

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




[eXeNe]

601

1111

T T I T S s

END IF

/% If the end of the region has not been reached

IF ((pointer .1t. xnum)

and.

(second_last .eq. last)) THEN
reduce = xnum - pointer + distance

IF (reduce.gt.0) THEN
IF (rle) write (6,*)
IF (crle) write (7)

ENDIF

last, reduce

last, reduce

ELSE IF (distance .gt. 0O) THEN
reduce = xhum - pointer

IF (rle) THEN

E3

write (6,*) second_last, distance

IF (reduce.gt.0)

write (6,*) last,

ENDIF
IF (crle) THEN

write (7) second_last, distance

IF (reduce.gt.0)

write (7) last,

ENDIF
ELSE

reduce = xnum -~ pointer

IF (reduce.gt.0) THEN
IF (rle) write (6,%)
IF (crile) write (7)

ENDIF
ENDIF

CONTINUE
IF (rle) CLOSE (6)
IF (crle) CLOSE (7)
ENDIF
WRITE (*,%*)
END IF

IF (f1ip) THEN
WRITE (*,*) ’ Northing Range
WRITE (*,*) ’ Easting Range
ELSE
WRITE (*,*) ‘ Northing Range
WRITE (*,*) ’ Easting Range
END 1IF
print*

write (*,11411)

reduce

reduce

last,  reduce

last, reduce

min
min
min
min

format (’ ’/,’Test somemore ? Y/n /,%)

READ(*, (ai1)’) reply
WRITE (*,%*)

IF (reply.ne.’n‘.and.reply.ne.’N’) go

IF (Is_tape) THEN
PRINT*

PRINT*, One moment

REWIND (10)
REWIND (10)
PRINT*, char(7)
ENDIF
CLOSE (10)

STOP
END

SUBROUTINE HELP (what)

INTEGER what

IF (what .eq. 1) THEN
WRITE (*,1)

FORMAT (’ ',//.

to 555

fyixmin, ’
fLiymin,
‘Liymin,
fyixmin,

max
max

max
max

/

, ixmax
, iymax

non

, iymax
, ixmax

.. Tape Rewinding’

This program is designed to compute a raster format’,/,.
from an already existing vector file. The input file is’,/,
a vector file and must be in the format of MIGSIF,

PCDATA’,/,

or of a users written format. The vector data file may be’,/,
windowed, blown up, shrunk down or even rotated clockwise’,/,

direction can never exceed 1024 pixels
An added advancement is the ability to input face value,’,/,

‘ 90 degrees. The only restriction is that the output y’,/,
'’ polygon value pairs. This way the true

given a vector file of multiple

in size.

"

image may be seen,’,/,

images all in one.’)

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




OO0 0oO0O0

ELSE IF (What .eq. 2) THEN

WRITE (*,2)

FORMAT (' *,/,

R

The file type for the input vector file must be one of’,
the three types shown, if it is not then to run the file’,/
code changes must be made to the subroutine OTHER found ’,
at the end of vec2ras.for, to allow for the input of your’,
file type. (subroutine OTHER has a format at present for ’
possible reference purposes.)’)

/.
/.

ELSE IF (What .eq. 3) THEN

WRITE (*,3)

FORMAT (/ ./,

+ This requests if the image given is to be rotated 90’,/,
+ / degrees clockwise. This option is mainly to allow for ’,/,

+ / the full image to fit. Since 1024 is the max allowance’,/,
+ ’ in the y-direction, if the image is 1222 in the y, but’,/,

+ ‘ only 989 in the x-direction a simple rotation is all that’,/,
+ / would be required.’)

END IF

RETURN

END

SUBROUTINE compress (left, right, num, out, outi)

This subroutine trys to quickly compress the data that will be saved

in the new vector boundary file.

Compression is always being traded for speed, so the only test to
compress will be if the 1ine shown has three or more horizontal or
vertical points, were the middle points may be eliminated.

INTEGER*2 left, right, num, out(1:1024), outi(1:1024),

o+

donenum, done(1024,2)

-donenum = O
if (num.ge.2) then
if (num.gt.2) then

donenum =
done(1,1) out(1)
done(1,2) outi(1)
do 1 i = 2, num - 1
if ((done(donenum,2) .eq.outi(i)) .and.
(outi(i+1) .eq.outi(i))) then
if ((done(donenum,1).1t.out(i)) .and.
(out(i) .1t.out(i+1))) then
go to 1
else if ((done(donenum,1).gt.out(i)) .and.
(out(i) .gt.out(i+1))) then
go to 1
else
donenum = donenum + 1
done(donenum, 1) out(i)
done(donenum, 2) out1(i)
endif
else if ((done(donenum, 1).eq.out(i)) .and.
(out(i+1) .eq.out(i))) then
if ((done(donenum,2).1t.out1(i)) .and.
(out1(i) .1t.out1(i+1))) then
go to 1 .
else if ((done(donenum,2).gt.out1(i)) .and.
(out1(i) .gt.outi(i+1))) then
go to 1
else
donenum = donenum + 1
done(donenum, 1) = out(i)
done(donenum, 2) = outi(i)
endif
else
donenum = donenum + 1
done(donenum, 1) = out(i)
done(donenum, 2) = outi(i)
endif
continue

nn -

write (11,4) left, right, donenum+i
format(’ /,i4,i5,i4)

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




O000O00

OO0O0O00O000000000

OO0

34

141

do 2 kij = 1, donenum

write (11,3) done(kij,1), done(kij,2)
continue
write (11,8) out(num), outi(num)
format(’ ’,i4,i5)

else
write (11,4) left, right, 2
write(11,3) out(1), outi(1)
write(11,3) out(2), outi(2)
endif
endif

return
end

SUBROUTINE clip (x1, y1, x2, y2, xint, yint, xnum, ynum,
+ xcoord, ycoord)

INTEGER*2 xcoord, ycoord, xnum, ynum
REAL xint, yint, x1, yi, x2, y2

This subroutine is responsiblie for determining is any two

Xy pairs that define an area, do in any way cross the grid
region that has been declared. And if so save the two sets
of coordinates.

end

SUBROUTINE FaceReader (FaceToPoly, migsif, pcdata, other, Pnum,

+ tape, image)

This routine is designed to read and load up an array of

face value, polygon value pairs, to be used when reading
a polygon file.

With the tapes sent over from CLDS all the vector files )
are followed by a second file. This second file has the following

data. CLDS identifier (face_value)
Polygon Area, Centroid X and Y, Zone Number and
Polygon Number{s].

This knowlegde is required to coorespond the CLDS identifier
with the valid polygon number, allowing for numbers below the

value of 512.

BYTE inbuff (4096)
INTEGER*2 FaceToPoly(2000, 2)

INTEGER*4 Face_Num, Area, X_Utm, Y_Utm, HEX_30,

+ Zone, Poly_Num, Num_Records, L_Rec1,
+ Pnum, Face, Flen, Pleni, Plen2, Poly1, Poly2,
+ sea(20), sea_max, sea_to_be, accurate,
+ filelabel
REAL hold

LOGICAL migsig, pcdata, other, mask, Is_tape, clipping,
+ dump, tape

CHARACTER filename*24, fn*1, fname*24, blanks*24, image*24

DATA HEX_30/’30'X/

/* Request the data file and the output filenames */
blanks = “/ !
fname = !
filename = ‘ 4

PRINT*,’ There are two ways to input the face-polygon’,

+ ‘ relationship...’
PRINT*

PRINT*,’ EITHER enter the CLDS descriptive data set’

PRINT*,’ OR enter the saved face-polygon results,’

PRINT*, ’ generated from an earlier run.’

PRINT*

WRITE (*,141)

FORMAT (’ (D)escriptive data or (e)arlier run saved data’,//.

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




40

26

28

989
27

72

73

82

83

+
READ
PRINT

IF ((

’  Enter choice :’.,%)
(*,’(a1)’) reply

*

reply .eq. ‘E’) .or. (reply

WRITE (*,40)

F

f
ELSE
IF

p

ELS

END
ENDIF

ORMAT (’ Name of the already
READ (*,'(a24)’) fname
ilename = blanks

(tape) THEN

PRINT 26

FORMAT (’ Is the descriptive
’  on the same tape drive

READ (*,’(a1)’) fn

Is_tape = .FALSE.
IF ((fn .ne. ’N’) .and. (fn
Is_tape = .TRUE.

IF (migsif.or.pcdata) THEN
OPEN(12,ERR=2,FILE=1image
RECORDTYPE='VARIABLE’
GO TO 3
OPEN(12, FILE=image, FOR
STATUS=’01d’)
CONTINUE
ELSE
OPEN(12,FILE=image, FORM=
END IF
filename = image
PRINT*
ii =0
RINT*,
PRINT*
READ (12,END=27,ERR=999)
it o= i1 + 1
IF (jmod(ii, 1000).eq.0) t
print*,ii,’ records pas
ENDIF
GO TO 28 :
PRINT*, “MASSIVE ERROR HAS
PRINT*, char(7), char(7)
ii =0
PRINT*,
ELSE
PRINT 1
FORMAT (’ Name of the inpu
'’ description data
READ(*,’(A24)’) filename
fname = blanks

Reading past

First file h

IF (migsif.or.pcdata) THEN
OPEN(12,ERR=72,FILE=file
RECORDTYPE=’VARIABLE’
GO 70 73
OPEN(12, FILE=filename,
STATUS=’01d’)
CONTINUE
ELSE
OPEN(12,FILE=filename,FO
END IF

ENDIF

E

PRINT 1

READ (*,’(A24)’) filename
fname = blanks

IF (migsif.or.pcdata) THEN
OPEN( 12,ERR=82,FILE=f1le
RECORDTYPE=’VARIABLE"
GO 7O 83
DPEN( 12, FILE=filename,
STATUS=’01d"’)
CONTINUE
ELSE
OPEN(12,FILE=filename,F0D
END IF

IF

.eq. ‘e’)) THEN

built face-poly filename :’,$)

data set the second file,’,/
as the image set? (Y/n) ’,$%)

.ne. ‘n’)) THEN

, FORM="unformatted’,
, STATUS=’01d’)

M=’unformatted’,

‘formatted’,STATUS='01d’)

the first file, one moment

hen
sed.’

OCCURED.’
as now been passed by ...... ’
t CLDS’,/,

set :’,%)

name, FORM=‘unformatted’,
, STATUS=‘01d’)

FORM='unformatted”’,

RM=’formatted’,STATUS='01d"’)

name, FORM='unformatted’,
, STATUS='old’)

FORM=’unformatted’,

RM='formatted’,STATUS='01d’)

7

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




10

24

21

+

A 3

IF ((fname .eq. blanks) .and. (filename .ne. blanks)) THEN

PRINT 4
FORMAT(’ The logical record length of the descriptive data’,/,
‘set? (normally 37 or 41) : ',%$)
READ(*,*) 1_recl
PRINT*
PRINT*, ’ How many images are associated with ’,

‘the input vector file ?’

IF (1_recl .eq. 37) THEN
write (*,5), 1, 2
sea_max = 1
ELSE
write (*,5), 2, 2
sea_max = 2
ENDIF
FORMAT (* 7,* (default is /,i1,’, max is ’,i1,’) : *,%)

pnum = NumberReader (sea_max)
PRINT=*

PRINT 6
FORMAT(’ What is that starting byte for the face # ?’,/,
’ (default is 1) : ’,$%$)
face = NumberReader (1)
PRINT*

PRINT 7
FORMAT(‘’ What is the length of the face value (in bytes) ?/,/,
‘ (default is 6) : ’,$%$)
flen = NumberReader (6)
PRINT*

PRINT 8
FORMAT(’ What is that starting byte for the first image ',

‘poly_no ?',/," (default is 34) : ’,%)

poly1 = NumberReader (34)
PRINT*

PRINT 9
FORMAT (’ What is the length of this po]ygon number’
* (in bytes) 2/./.’ (defautt is 4) : 7,%)
pieni = NumberReader (4)

PRINT*

accurate = 0O
sea_to_be = O

IF (Pnum .eq. 2) THEN

PRINT 10
FORMAT(’ What is that starting bit for the second images ’,
‘polygons numbers ?‘/,/," (default is 38) : ',%$)
poly2 = NumberReader (38)
PRINT*
PRINT 11
FORMAT (’ What is the length of the polygon numbers'
f (in bits) 2/,/, (default is 4) : ’,%)
plen2 = NumberReader (4)
PRINT*
PRINT 24

FORMAT (’ Does one image require cookie-cutting’,
‘ with the other for coastline accuracy ? ‘',//,
’ NOTE: This requires knowledge of polygon’,
’ numbers for SEA in each image.’.,//,
’ Do you wish to cookie~-cut one image-’,
’ with the other (y/N) ’,$)
READ (*,’(at1)’) fn
PRINT*

IF ((fn .eqg.’y’) .or. (fn.eq.’Y’)) THEN

PRINT*
clipping = .true.
PRINT 21

FORMAT (’ The accurate coastline is found in’,
' image # ? (1/2) ',/,
’ (default is 1) ‘,$)

accurate = Numberreader (1)

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

PRINT*
PRINT 28, accurate
29 FORMAT (’ How many unique polygon numbers define’,
+ /. ’ the sea on the accurate image set ’',i1,’.’,/,
- ’ (default is 1) ’,$)
sea_max = numberreader (1)
PRINT*
PRINT 22, accurate
22 FORMAT (’ The sea on this set ‘,i1,
+ ’ is assigned polygon numbers ’',/,$)
READ (*,*) (sea(ii),ii=1,sea_max)
PRINT*
PRINT 23, JMOD{accurate,2) + 1
23 FORMAT (’ The sea on the other image ’,i1,
+ " will be assigned to the one polygon number :’,$%)
READ (*,*) sea_to_be
PRINT*
ELSE
clipping = .false.
ENDIF
ENDIF
PRINT*

PRINT*,’ The face value to polygon number’
PRINT*,’ look up table may be saved,’
PRINT*,’ OR, just hit return key to omit the option.’

PRINT*
WRITE (*,30)
fname = ’/ . !
30 FORMAT (‘' The filename to save, face to polygon pairs :’/,$)
READ (*,’(a32)’) fname
IF (fname .ne. ’ ’) Then
OPEN (UNIT=13, FILE=fname, FORM=‘unformatted’,
+ STATUS='NEW’)
write (13) pnum : )
dump = .TRUE. . -
ENDIF -
PRINT*
C
MAXP = O
i =0

print*
13 i= i+ 4
IF (i .gt. 2000) GOTO 18
READ(12,END=20, err = 19) (inbuff(j),j=1,1_recl)
DO 14 k = 1,1_rec)
inbuff(k) = inbuff(k) - HEX_30
14 CONTINUE

hold = O

DO 15, j=face, (face + flen - 1)
hold = hold * 10 + inbuff(j)
15 CONTINUE

face_num = JINT (hold)
hold = O

DO 16, j=polyi, (polyi + pleni - 1)
hold = hold * 10 + inbuff(j)
16 CONTINUE

FaceToPoly(Face Num, 1) = JINT (hold)

mask = .FALSE.

IF ({(clipping) .and. (accurate.eq.1)) THEN
Ihold = JINT (hoid)

DO 31, ii=1, sea_max
IF (sea(ii) .eq. Ihold) THEN

mask = .TRUE.
FaceToPoly(Face_Num, 2) = sea_to_be
ENDIF
31 CONTINUE
ENDIF
IF ((Phum .eq. 2) .and. (.NOT. mask)) THEN
hold = ©

DO 17, j=poly2, (poly2 + plen2 - 1)



17

32

25

i8
19

20

38

37
36

35

o000 0

hold = hold * 10 + inbuff(j)
CONT INUE

IF ((clipping) .and. (accurate.eq.2)) THEN
Ihold = JINT (hold)

DO 32, ii=1, sea_max
IF (sea(ii) .eq. Ihold) THEN
mask = ,TRUE.

FaceToPoly(Face_Num, 1) = sea_to_be
ENDIF
CONTINUE
ENDIF
FaceToPoly(Face_Num, 2) = JINT (hold)
ENDIF

IF (dump) THEN
IF (pnum .eq. 2) THEN
write (13) face_num, facetopoly(face_num, 1),
facetopoly(face_num, 2)
ELSE
write (13) face_num, facetopoly(face_num, 1)
ENDIF
ENDIF

IF (JMOD(1,100).eq.0) Print 25, i
FORMAT ('’ Read in’,i5,’ face values.’)
GOTO 13

print*, char(7), char(7), char(7)
PRINT*,’ WARNING Too many Face numbers overwriting possible’

PRINT*, ’ ERROR occured in reading the Face Value File.’
CONTINUE
IF (Is_tape) THEN

PRINT*

PRINT*, / One moment ..... Tape Rewinding’

REWIND (12)
REWIND (12)
PRINT*, char(7)
ENDIF
Close(12)

ELSE IF ((filename .eq. blanks) .and. (fname .ne. blanks)) THEN
OPEN (UNIT=13, FILE=fname, FORM=‘unformatted’,
STATUS='0LD")
READ (13) Pnum
i =0
print*
i= i+ 1
IF (i .gt. 2000) GOTO 37
IF (pnum .eq.1) THEN
READ(13, END=35, ERR=86) face_num,
facetopoiy(face_num, 1)
ELSE
READ( 13, END=35, ERR=36) face_num ,
facetopoly(face_num, 1),
facetopoly(face_num,2)
ENDIF
GOTO 38
print*, char(7), char(7), char(7)
PRINT*,’ WARNING Too many Face numbers overwriting possible’
PRINT*,’ ERROR reading the face-polygon pairs file.’

STOP
CLOSE(13)
ENDIF
RETURN
END

FUNCTION NumberReader (default)

This just reads a chracter string of lingth 3 and
converts it to an integer, were a space means assign
the default value.

INTEGER*4 NumberReader, number, default, start, i
CHARACTER*11 ch

ch = ’
READ(*,’(a10)’) ch

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




0000000000000 00000ODON

OO0

[CNeNeNoNoNe]

number = O
start = O
start = start + 1

if ((ch(start:start) .eq. ’ ‘) .and. (start .le. 10)) goto 1

DO 2, i = start, 10
if ((ch(i:i).ge.’0’) .and. (ch(i:i).1e.’9’)) then
number = number*10 + ichar (ch(i:i)) - 48
else
goto 3
endif
CONTINUE

IF (i .eqg. start) number = default
NumberReader = number

RETURN

END

SUBROUTINE OtherRead (left, right, num_coords, x_coord,
+ y_coord, flip, error)

This is a user’s routine intended to allow the user to input
his own unique file type for the program to run.

As can be seen the following variables must be entered at
each pass of this function call.

Each call to this function reads from the file the polygon
to the left and right of any one segment, the coordinates
of the segment and the number of coordinates for the left

right pair. .

It uses the variable FLIP to determine if the x read must
be flipped to the y-axis and vise versa for the y coord.

Finally the ERROR logical tells when the file has been
totally read and the EOF marker has been encountered.

The only other issue is the OPENING of the data file.
This is done on 1ine 104 of the main program and may
require changes as well.

PARAMETER n_polyseg=256

INTEGER*4 left, right, num_coords, x_coord(n_polyseg),
+ y_coord(n_polyseg)
LOGICAL fl1ip, error

error = false
IF (Flip) THEN
READ (1410, fmt=* ERR=998) num_coords, right, left
DO 10 i=1,num_coords
READ (10,fmt=*,ERR=999) y_coord(i), x_coord(i)
CONTINUE
ELSE
READ (10, fmt=*,ERR=998) num_coords, left, right
DO 20 i = {1, num_coords
READ (10,fmt=*,ERR=999) x_coord(i), y_coord(i)
CONTINUE
ENDIF
RETURN

This says that there are no more segments in the file, so
quit trying to read them and continue to the output of the
data that has already been collected.

error = .TRUE.
RETURN

This shows that the data file used was inconsistent with the
data that was given to the previous read. Therefore report
the error and quit the program.

WRITE (*,*) ‘ERROR - Input of the x and y coordinates is
+ /INCORRECT.

STOP

END

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

APPENDIX 2

Vector to Raster File Program
Do you require a brief introduction ? y/N
The name of the input vector file : TAPE
Is the input vector file on tape ? (Y/n)
The file type or structure : (m)igsif, (P)cdata, (o)ther (?)Help
The logical record length for image data set : 2818
Many CLDS files require a second file (a descriptive data set) which 1inks
the face value to the true polygon number.
Do you wish such linking 2?2 (y/N) : Y
There are two ways to input the face-polygon relationship...
EITHER enter the CLDS descriptive data set
OR enter the saved face-polygon results,
generated from an earlier run.
(D)escriptive data or (e)artier run saved data

Enter choice : (¢

Is the descriptive data set the second file,
on the same tape drive as the image set? (Y/n)

Reading past the first file, one moment

1000 records passed.

2000 records passed.

3000 records passed.

4000 records passed.

First file has now been passed by ......

The logical record length of the descriptive data
et? (normally 37 or 41)

How many images are associated with the input vector file ?
(default is 2, max is 2)

What is that starting byte for the face # ?
(default is 1) :

What is the length-of the face value (in bytes) ?
(default is 6)

What is that starting byte for the first image poly_no ?
(default is 34)

What is the length of this polygon number (in bytes) ?
(default is 4) :

What is that starting bit for the second images polygons numbers ?
(default is 38)

What is the length of the polygon numbers (in bits) ?
(default is 4) :

Does one image require cookie-cutting with the other for coastline accuracy ?
NOTE: This requires knowledge of polygon numbers for SEA in each image.

Do you wish to cookie-cut one image with the other (y/N) Y

The accurate coastline is found in image # 2 (1/2)

(default is 1)

How many unique polygon numbers define

the sea on the accurate image set 1.

(default is 1) 3

The sea on this set 1 is assigned polygon numbers
1 410 420

The sea on the other image 2 will be assigned to the one polygon number : 2



The face value to polygon number
look up table may be saved,
OR, just hit return key to omit the option.
The filename to save, face to polygon pairs : A.dds

Read in 100 face values.
Read in 200 face values.

Read in 1600 face values.
Read in 1700 face values.
One moment ..... Tape Rewinding
For the two classification sets which do you wish to focus on ?
(n)one (F)IRST (s)econd : S
wWhat are the UTM coords of S-W corner for the OUTPUT

image ?
Northing : 4955084
Easting : 538717

There are three possible ways to define the output image. Default is 1.

1. The size for each pixel N-S, and E-W.
and the number of pixels in N-S, and E-W

ie (50m X 60m, 256 X 512)

2. The number of pixels in N-S, and E-W
and the N-E corner coordinates.

je (512 X 1024, ystop, xstop)

3. The size of each pixel N-S, and E-W
and the N-E corner coordinates.

ie (100m X 30m, ystop, xstop)

Choice : 2

Number of pixels in the output image i.e., OQutput Image Size
Along Northing 4
Along Easting 1024

What are the UTM coords of N-E corner for the output image ?

Northing : 5096025
Easting : 668215

Do you wish to rotate the image 80 degrees clockwise ? y/N/?

CONFIRMATION of OUTPUT DIMENSIONS & FACE MAPPINGS.

1. $-W corner has coordinates ( 4955084 , 538717)

2. N-E corner has coordinates ( 5086025, 668215)

3. Number of pixels in E-W directions = 1024

4. Number of pixels in N-S directions = 1024

5. Size (in input scale) for 1 E-W output pixel = 126.0000
6. Size (in input scale) for 1 N-S output pixel = 137.5000
7. Face Value is sent to Polygon Set 2

Is this all correct ? Y/n

Output formats

- Vector Boundaries (h) (formatted)
- Expanded Raster, (formatted)
- Morpholog, (unformatted)
- Morpholog Boundaries Only, (unformatted)
- Run Length Encoded, (h) (formatted)
- Run Length Encoded, (unformatted)

any or all of them.
NOTE : (h) - Header Records Included.

If you wish the following format, type a filename, otherwise type a return key.

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.




This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.

Please enter the vector boundary filename : B. VEC

A 60 character label may be placed on this file.

tabel : THIS IS VECTOR FILE FOR CG1156.

Processing segment # 50
Processing segment # 100

Procéssing seg;ent # 47%0
Processing segment # 4800
A1l input segments read .....

If you wish the following format, type a filename, otherwise type a return key.
Please input the expanded raster filename
Please input the morpholog filename
Please input the morpholog BOUNDARY filename
Please input the formatted run length encoded filename : B. POLY

A 60 character label may be placed on this file.

Label : THIS IS THE POLYGON FILE FOR CG1156.

Please input the unformatted run length encoded filename

Northing Range min = 4955084 . max = 5096025.
Easting Range min = 538717.0 max = 668215.0
Test somemore ? Y/n Y
One moment ..... Tape Rewinding

Do you wish to read or re-read the desériptive
data set to allow for new- face value linking ? (y/N)

For the two classification sets which do you wish to focus on ?

(n)one (F)YIRST (s)econd : S
What are the UTM coords of S-W corner for the OUTPUT
image ?
(default is 4955084)
Northing
(default is 538717)
Easting

There are three possible ways to define the output image. Default is 1.

1. The size for each pixel N-S, and E-W.
and the number of pixels in N-S, and E-W

ie (50m X 60m, 256 X 512)

2. The number of pixels in N-S, and E-W
and the N-E corner coordinates.

ie (512 X 1024, ystop, xstop)

3. The size of each pixel N-S, and E-W
and the N-E corner coordinates.

ie (100m X 30m, ystop, xstop)

Choice : 2

Number of pixels in the output image i.e., ODutput Image Size
Along Northing : §12
Along Easting : 512
What are the UTM coords of N-E corner for the output image ?
(default is 5096025)
Northing
(default is 668215)
Easting

Do you wish to rotate the image 90 degrees clockwise ? y/N/? Y



CONFIRMATION of OUTPUT DIMENSIONS & FACE MAPPINGS.

1. S-W corner has coordinates ( 538717, 4955084)
2. N-E corner has coordinates ( 668215, 5086025)
3. Number of pixels in E-W directions = 512
4. Number of pixels in N-S directions = 512
5. Size (in input scale) for 1 E-W output pixel = 275.0000
6. Size (in input scale) for 1 N-S output pixel = 252 .0000
7. Face Value is sent to Polygon Set 2
Is this all correct ? Y/n

Output formats

- Vector Boundaries (h) (formatted)

- Expanded Raster, (formatted)

- Morphoiog, (unformatted)

- Morpholog Boundaries Only, (unformatted)

- Run Length Encoded, (h} (formatted)

- Run Length Encoded, (unformatted)

any or all of them.

If you wish the following format,

NOTE : (h) - Header Records Included.

Please enter the vector boundary filename

Processing segment # 50
Processing segment # 100

Processing segment # 4750
Processing segment # 4800

A1l input segments read .....

If you wish the following format,

Please input
Pilease input
Please input

Please input

the

the

the

the

expanded raster filename

morpholog filename

morpholog BOUNDARY filename

type a filename, otherwise type a return key.

type a filename, otherwise type a return key.

formatted run length encoded filename

A 60 character label may be placed on this file.

Label

A. POLY

THIS IS THE ROTATED POLYGON FILE CG1156.

Please input the unformatted run length encoded filename

Northing Range min =
Easting Range min =
Test somemore ? Y/n N

One moment

FORTRAN STOP

538717.0
538717.0

max
max

..... Tape Rewinding

5096025.
5096025.

NOTE: The imageé produced from these files are shown in Figures 3A
(raster file A. POLY), 3B (raster file B. POLY) and Figure 4
(vector file B. VEC).

This document was produced
by scanning the original publication.

Ce document a été produit par
numérisation de la publication originale.






