SOFTWARE DESIGN DOCUMENT
FOR FIELD CHECKING
SYSTEM
Submitted to: Geological Survey
of Canada
SKL Document #2100-12-002-01.0
Copy #3 15 December 1987

This document was produced
by scanning the original publication.

Ce document est le produit d'une ‘(

numeérisation par balayage
de la publication originale.

Software Kinetics

eburgoyn
black block

SOFTWARE
DESIGN DOCUMENT
FOR

FIELD CHECKING SYSTEM

Submitted to: Geological Survey of Canada
Experimental Airborne Operations

) SKL Document #2100-12-002

15 December 1987

Prepared by: %W&W //" Dec- 97

o Wé’yne A. Reed Date
Approved by: o <(\J‘/\)\/ %eﬁ_—\\ (
T. M. fohydh Date

$K

Software Kinetics

Part

Section
Section

Part

Section

Appendix
Appendix
Appendix
Appendix

1
2

TABLE OF CONTENTS

OVERVIEW
DESIGN DESCRIPTION
DEPENDENCY DIAGRAMS

PROGRAM STRUCTURE
CONSTANTS

PROMPT STRINGS
STATUS/ERROR MESSAGES
HARDWARE CONFIGURATIONS

) ¢

Software Kinetics

#2100-12-002.01.0

OVERVIEW

This document specifies the software design of the Field Checking
System for the Experimental Airborne Operations of Geological
Survey of Canada. The System will reside in the field laboratory

during field operations.

Using a Beachcraft B80 Queenaire aircraft, sampling lines are
flown to record aeromagnetic data using the Aeromagnetic Data
Acquisition System, built internally at Energy Mines and
Resources. This combined magnetic and navigational data is

stored, during flight, on a rigid disk drive.

Magnetic data is also collected at a Diurnal Ground Station and
stored on a hard disk. The hard disks can be removed from their
acquisition systems and taken to the field laboratory for data
verification and transfer to magnetic tape, a permanent storage
medium. An IBM-AT microcomputer will be used to verify the
recorded information, to plot geomagnetic fields on a
printer/plotter, to perform fourth difference calculations and to
copy data between hard disk and magnetic tape. The System will
also allow the creation of an edited tape, to be sent to the
Booth Street Laboratories of E.M.R. for computer compilation of

the resultant aeromagnetic maps.

$K

Software Kinetics

SECTION 1

DESIGN DESCRIPTION

SCREEN PRESENTATION

1.1 Screen Layout
1.1.1 Presentation Area
1.1.2 Error/Status Line
1.1.3 Prompt Line
1.1.4 Input Line

1.2 Using The Screen Package

DATA STRUCTURES
2.1 Displays
2.1.1 Files
2.1.1.1 Template File
2.1.1.2 vValue File
2.1.1.3 File Names
2.1.2 Display Windows
2.1.3 Presentation Area Field Values

2.2 Error Table

2.3 Prompt Table

2.4 Logical Unit Numbers

2.5 Recording Parameter Specifications
2.6 Airborne/Diurnal Data Sets and Header
2.7 Storage Device Specifications

2.8 Plot Table

2.9 Stacked Profile Table

2.10 Gradient Parameter Creation Table
2.11 Edit Table

FULL SCREEN EDITING
3.1 Cursor Movement
3.2 Field Modification

STEM SPECIFICATIONS

1 Logical Unit Numbers

2 Recording Parameters

.3 Airborne Data Character Set & Header
4 Diurnal Data Character Set & Header
5 Storage Device Specifications

$K

Software Kinetics

page

PR N N

10.0

MEDIUM CONTROL

5.1 Tape Control Functions
5.2 Disk Control Functions
5.3 Search/Copy Functions

BLOCK PRINTING

PLOTTING
7.1 Plot Specifications

7.1.1 Standard Plot

7.1.2 Successive Difference Plot
7.2 Plotting Process

STACKED PROFILES

8.1 Data Extraction

8.2 Inclusion Process

8.3 Plot Profiling Process
8.3.1 Free Format Profile
8.3.2 Time-Adjusted Profile
8.3.3 Other Format Profile

8.4 Exiting and Saving Stacked Profile Data

GRADIENT PARAMETER CREATION

EDIT FUNCTIONS

10.1 Batch Editor
10.1.1 Start/Stop Edit Limits
10.1.2 Output NNN Blocks

10.1.3 Add/Subtract a Value to a Parameter

10.1.4 Replace a Parameter Value
10.1.5 Delete/Insert a Parameter
10.1.5.1 Deletion

10.1.5.2 1Insertion
10.1.6 Change One Digit
10.1.7 Check For Spike
10.1.8 Perform Edit Changes

10.2 Screen Editor

10.2.1 Reading a Block
10.2.2 Paging

10.2.2.1 Up

10.2.2.2 Down
10.2.3 Cursoring
10.2.4 Destructive Changes
10.2.5 1Insertion
10.2.6 Deletion
10.2.7 Backward One Block
10.2.8 Error Checking
10.2.9 Writing a Data Block
10.2.10 Exiting Editor

$K

Software Kinetics

59
59
60
60

62

65
65
65
67
68

70
70
71
72
73
74
74
75

76

78
78
78
79
79
80
81
81
81
82
83
84
86
86
86
86
87
87
88
88
89
89
89
90
90

2100-12-002.01.0

SECTION 1

DESIGN DESCRIPTION

1.0 SCREEN PRESENTATION

The Field Checking System will employ menus to guide the Operator
through the various options of the System. Screen presentations
will also be used to set up specifications and data for certain
options. Specialized software to perform these functions is
available with the VENIX/86 Operating System. Referred to as the
"Screen Package" this software can be thought of as three parts:
(1) Screen updating; (2) Screen updating with user input; and (3)
Cursor motion optimization. All three of these functions will be

utilized in the Field Checking System Software.
1.1 Screen Layout
1.1.1 Presentation Area

A typical display will be broken up into four parts as shown in
Figure 1-1-1. The largest portion will be known as the
Presentation Area. Located between lines 0 through 21 inclusive
and columns 0 through 79 inclusive, this zone will be outlined by
a ‘'dashed box’ with corner coordinates (containing a ’+/

character) as follows:

upper left = (0,0)

upper right = (0,79)
lower left = (21,0)
lower right = (21,79)

e

Software Kinetics

2100-12-002.01.0

Within the Presentation Area the wvarious menus will be
displayed. This area will also be used by the Operator to enter
data for some options. The cursor keys will provide the means
for movement within this zone. In most cases these keys will be
disabled when the display is presenting a menu: a message will
inform the Operator of those instances when this is not true.
For those displays requiring input from the Operator within the

Presentation Area the cursor keys will be enabled.

) ot

Software Kinetics

2100-12-002.01.0

o

19
20
21
22
23
24

0123 column e e . .

+ ___
I

I

|

|

|

|

!

I

| PRESENTATTION AREA
|

I

|

|

|

I

|

f

!

!

|

+ ___
ERROR/STATUS L INE
PROMPT LINE

INPUT L INE

Figure 1-1-1 Screen Layout

) ¢

Software Kinetics

79

e e . —— — — — — —— —— — — — —— —— — —— ——— —— —

2100-12-002.01.0

1.1.2 Error/Status Line

Immediately below the Presentation Area will be the Error/Status
Line. This will be located on line 22 of the Monitor, running
the entire horizontal length of the screen. On this line system
messages and error diagnostics will be displayed in inverse
video. For the most part, this area of the screen will be

referred to as the Error Line throughout this document.
1.1.3 Prompt Line

Below the Error Line will be the Prompt Line, line 23 of the
monitor, which will also be eighty characters in 1length. All
prompts will be issued on this line. The Operator will have no
access to this area nor to to the Error Line. When data entry is
not done in the Presentation Area it will be made in the fourth

and final zone of the display.
1.1.4 Input Line

Line 24 of the monitor will be the Input Line. The Operator will
use the keyboard, when the cursor is present in this zone and so
prompted by a message on the Prompt Line, to enter a response to

an issued prompt.
1.2 Using The Screen Package

To incorporate the screen package into the Field Checking System
the 1library routines of the package must be included in the
software during compilation. To obtain the necessary types and
variables defined, a line at the top of any software module

referencing screen package functions must be added as follows:

$«

Software Kinetics

2100-12-002.01.0

#include <curses.h>

When compiling, the library routines must be linked using a form

as follows:

cc filename -lcurses -ltermlib

&

Software Kinetics

#2100-12-002.01.0

2.0 DATA STRUCTURES
2.1 Displays

A Display refers to any image presented on the IBM-AT Monitor.
Menus will form the greatest number of images. Each display will
consist of two components: (1) a ’'template’ which will contain
the static text, etc. of the image and, (2) the ’'values’ which

will be needed for presentation.

Both components will be saved as files on the IBM-AT Winchester
Disk. When a particular display is to be presented the elements
of the file will be combined to form the requested image. The

following subsections describe the contents of these files.
2.1.1 Files
2.1.1.1 Template File

Each Template file will contain the following information:

(1) the prompt to be issued when the display is first
brought up on the monitor,

(2) the (y,x) coordinate for the text,

(3) the text string to be displayed at this
coordinate.

The prompt will be the string to be presented on the Prompt line
when the display first appears. The template file will contain a
number which will represent the prompt. This three digit number
will be used to index an internally-stored table containing the
text of the limited number of prompts used by the Field Checking
System.

$«

Software Kinetics

#2100-12-002.01.0

The prompt number will be the first item of the template file.
If no prompt is required for the display, a zero (000) will be
placed in the template file to indicate that the Prompt line is
to be left blank.

The (y,x) coordinate is the character position on the IBM-AT
screen with (0,0) representing the wupper, left corner. Y
represents the column, and X represents the row position. Each

coordinate value will be three characters in length.

The text will be exactly that to be presented: both lower-case
and upper-case characters will be allowed along with any other
printable characters. The text string delimiters will be double

quotes (").

NOTE: Coordinates and text will be separated from one another by

at least one blank space.

Figure 2-1-1-1 shows an example layout of a template file.

004
002 014 "TE S T PATTERN"
004 010 "™ !#$%&" ()*+,-./0123456789:;<=>7"

005 010 "ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A_‘"
006 010 T"abcdefghijklmnopgrstuvwxyz{|}~"

Figure 2-1-1-1 Template File Layout

2.1.1.2 Value File

Each Value file will contain the following information:

$«

Software Kinetics

#2100-12-002.01.0

(1) the (y,x) coordinate for the start of the wvalue
/text,

(2) the (y,x) coordinate for the end of the wvalue
/text,

(3) the wvalue or text.

The (y,x) coordinate will be the character position on the IBM-AT
screen with (0,0) representing the wupper, 1left corner. X
represents the row and Y represents the column position. Each

coordinate value will be three characters in length.

The start coordinate will indicate where the text/value is to be
placed on the display. The end coordinate will indicate where
the text/value will finish, at most, on the display. These
parameters will also be used when screen-editing, to be discussed

in a succeeding section.

NOTE: The end coordinate will not be the position of the last
character of the current wvalue but, rather, the last coordinate
of the largest text/value string.

Combined, the starting and ending coordinates will be used to
determine the maximum number of characters that may make up a

given field.

In some instances the value on a display may actually be a piece
of text. For example, the text "GJ" references the TIMDS
recording parameter. For this reason, text wvalues must be
supported in the Value file. All value fields will look 1like
text fields when the value file is edited: the software will
convert those fields as defined by the code to either hexadecimal

or decimal integer values, or text strings, as required.

$«

Software Kinetics

#2100-12-002.01.0

Figure 2-1-1-2 shows an

003 019
004 019
007 025
008 014

example layout of a Value file.

003 025
004 021
007 019
008 018

"reverse"

"5'76"

"IBM-AT Memory"
"-2.45"

Figure 2-1-1-2 Value File Layout

$K

Software Kinetics

#2100-12-002.01.0

2.1.1.3 File Names

The following conventions will be employed in the naming of the

display data files:

(1) Each file name will commence with ’dsp’ standing
for DiSPlay,

(2) Template

files will have the dot (.) extension

"tpl’ (TemPLate) while value files will have the
extension ‘val’ (VALue) ,

(3) Each ‘'dsp’ string will be followed by three

numbers:

these numbers will represent the option

and suboptions chosen by the Operator. The file

name for
no value

the Main Menu will be dsp000.tpl with
file existing.

Examples:

(1) Main Menu dsp000.tpl

(2) System Specifications (option 1) dspl00.tpl

(3) Option 1, suboption 2 dspl20.tpl
Recording Parameters and dspl20.val

(4) Option 1, suboption 2, suboption 2 dspl22.tpl

Page 2

and dspl22.val

NOTE: if a display has no Operator-modifiable wvalues in the

Presentation Area,

exist (for instance,

no value file will be needed and none will

dsp000.val is nonexistent).

$«

Software Kinetics

#2100-12~-002.01.0

2.1.2 Display Windows

The display windows, as discussed in the previous section, will
be defined as types existing in the ’Screen Package’ software of
the VENIX Operating System. Figure 2.1.2 shows the C language

definition of the four windows.

WINDOW *present area;
WINDOW *error_ line;
WINDOW *input line;
WINDOW *prompt line;

Figure 2.1.2 Window Definitions

$&

Software Kinetics

$#2100-12~-002.01.0

2.1.3 Presentation Area Field Values

When a display or menu is presented on the IBM-AT Monitor, all
text for the various Presentation Area field values will reside
in memory while the display is visible. The text will be stored
in a character array with all field values run together as shown
in Figure 2-1-3a. Each message will be defined in terms of a

start and end pointer into this character string as illustrated.

A screen will consist of several fields. These fields will be
linked to the 1left, right, wup and down. Storage will be
allocated for the pointers to the next fields.

Also needed will be the starting fields from the Input Line: that
is, if cursoring starts at the Input Line where will a left arrow
key move the cursor to? Storage will be allocated for each of
the up, left, right, and down starting fields from the Input

Line.

Storage will also be required to save the field of modification
so that cursoring may be intermixed with other functions, as

described in later sections.

21l the fields will be collected in a table of a predetermined
size. Within this table all next field pointers and screen
location coordinates will be saved. The screen will consist of
this table as well as the display text and the Input Line

cursoring start pointers.

The C language data type and variable representations are defined

in Figure 2-1-3b and Figure 2-1-3c, respectively.

$«

Software Kinetics

#2100-12-002.01.0

NOTE: the end of the field table will be marked by an ending X

coordinate value of zero for the marking field.

g

Software Kinetics

#2100-12-002.

01.0

display text
0123456789101 234567892012345

Figure 2-1-3a

struct
{
int
int
int
int
int
int
int
int
int
int

}:

field

1f;
rt;
up;
dn;
S_Xx;
s_y;
e x;
e y;
t -1
t_g,

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Figure 2-1-3b

struct

{

struct field £ _lay[MAX FLD];
d _txt [DSP 'I‘XT ' MAXT ;

scr_typ

char

int i If;

int 1_;t,

int i up;

int i dn;

int £ ptr;
} scr;

Figure 2-1-3c

Display Text Representation

field
field
field
field
field
field
field
field
index
index

Field

to left */

to right */

above */

below */

start X coordinate */

start Y coordinate */

end X coordinate */

end Y coordinate */

to start of display text */
to end of display text */

Construct

/* field layout
/* display text

1st field left of Input Line
/* lst field right of Input Line
/* lst field above Input Line
/* lst field below Input Line
/* field of modification

Variable Storage Definitions

$<

Software Kinetics

*/
*/
*/
*/
*/

*/'

*/

- 14 -

#2100-12-002.01.0

2.2 Error Table

All text for the wvarious error and status messages of the Field
Checking System will reside in memory during execution of the
System. The text will be stored in a character array with all
messages run together as shown in Figure 2-2a. Each message will
be defined in terms of a start and end pointer into this
character string as illustrated in Figure 2-2b. This text will be
read in form the IBM-AT hard disk.

Two other variables will be used to store the lowest and highest
error and status codes available in the System (these values will
be needed for error checking). Error messages will have negative
indices into the Error Table and status messages will have
positive positions. However, since C language arrays must begin
at 0 and cannot be negatively indexed, error codes will have a
fixed, constant offset added to them when referring to the Error
Table via ’'start’ and 'end’ pointers. For example, error code -4
with an offset of 40 will reserve Error Table position 36 for the
start and end text pointers for message -4. The software routine
which reads in the text from the disk and builds the Error Table
will add this offset to the error number prior to storing the

message.

The C language data type is defined in Figure 2-2c and the
storage variable is defined in Figure 2-2d.

0123456789101 2345¢67892012345¢6738

e o - S T B o — — - S e G e o — —— —— b CEY G G Ve T e e e et e e e —

Figure 2-2a Error Text Storage

) ot

Software Kinetics

#2100-12-002.01.0

start end

0O | 0 |0 | ERROR TABLE
1 1 | 6 |
2 | 7 | 27 | * 3 - 40 = Error Code - 37
3* | 28 | .. | as read from disk file
| I [

Figure 2-2b Error Table Pointers

$K<

Software Kinetics

- 16 -

#2100-12-002.01.0

struct
{
int
int
int
int

}:

Figure 2-2c

struct msg_tbl_ typ

char

msg_tbl typ
start [MSG_CNT]; /*
end [MSG_CNT] ; /*
min code; /*
max_code; /*

text [ERR_TXT LEN];

start of string */
end of string */
smallest code value */
largest code value */

Message Table Type Definition

error_ table;

Figure 2-2d Variable Storage

)

Software Kinetics

- 17 -

#2100-12-002.01.0

2.3 Prompt Table

All text for the various prompts of the Field Checking System
will reside in memory in the same form as error and status
messages discussed in the preceding subsection. The C language

variable definition is shown in Figure 2-3.

struct msg_tbl typ prmpt_table;

char pmt txt[PMT_ TXT LEN];

Figure 2-3 Prompt Table Storage

$«

Software Kinetics

#2100-12-002.01.0

2.4 Logical Unit Numbers

The Logical Unit Number (LUN) Table will map physical devices of
the Field Checking System to a representative value or LUN. This
table will resemble the example of Figure 2-4a. Note that LUN 0
is reserved for the NULL device and no reassignment is possible
by the Operator. Specifying a LUN of 0, then, will signify that
no such physical device is available. Figure 2-4b shows the C
language data structure for the LUN Table and Figure 2-4c shows

the storage variable.

$«

Software Kinetics

#2100-12-002.01.0

no device* | 0* |
mag tape 1 | 4 |
mag tape 2 | 7 |
hard disk 1 | 3 |
hard disk 2 | 1]
Versatec printer | 8]
Versatec plotter | 6 | *non user
IBM Monitor | 2] definable
star printer | 5]
logical physical
unit device device device
number number descriptor name
0 | 0 | 0 | /dev/null [
1 | 4 | 0 | /dev/hdl |
2 | 8 | 0 | "monitor" |
3 } 3 | 0 | /dev/hdO0 |
4 | 1 | 0 | /dev/mtr0 I
5 I 6 | 0 | /dev/lp |
6 u 7 | 0 | /dev/spp2 |
7 | 2 | 0 | /dev/mtl |
8 i 5] 0 | /dev/1p2 [

Figure 2-4a LUN Table Representation

$K

Software Kinetics

#2100-12-002.01.0

struct lun_tbl typ
{

char phys_dev; /* physical device no. */
int fp; /* file descriptor */
char *dnam; /* device name string */

}:

Figure 2-4b LUN Table Type Definition

struct lun tbl typ lun tbl[LUN_TBL_LEN];

Figure 2-4c LUN Table Storage Variable

) ¢

Software Kinetics

—21_

#2100-12-002.01.0

2.5 Recording Parameter Specifications

Each recording parameter specification will consist of seven
parts: (1) the two-character parameter code used as an identifier
when the data is recorded, (2) a parameter mnemonic or short-form
version of the actual parameter name, to be used for printing and
plotting, (3) the parameter type, referring to either a decimal
or hexadecimal form, (4) the maximum number of characters/digits
that will form the parameter value, to be used for parameter
verification and data block formating, (5) the parameter units
expressed as text, (6) the parameter scaling value expressed as
the number of decimal places in a raw data wvalue, and (7) the
sign associated with a parameter value, expressed as a single

character.

Figure 2-5a illustrates the structure of one recording parameter
specification. Figure 2-5b shows the C language type definition
to be used to organize this information. Several of these
specifications will be combined in a C language table as defined

in Figure 2-5c.

g«

Software Kinetics

#2100-12-002.01.0

| char| char| parameter code

R T (R S I parameter mnemonic

| char i type (decimal or hex)

| char | length (# of digits)

[T R I O units (text)

| char | scale (no. of decimal places)

] char | sign

Figure 2-5a Recording Table Representation

)

Software Kinetics

#2100-12-002.01.

struct

{

char
char
char
char
char
char
char

}i

Figure 2-5b Element

struct parms

Figure 2-5c¢

parms

codel[2];

mnem [MNEM LEN] ;
typ:

len;

unit [UNIT LEN];
scale; -
sign;

)

/*
/*
/*
/*
/*
/*
/*

Type

parameter code */
mnemonic */

type - hex. or dec. */

length */

units (text) */

no. decimal places */
sign */

Definition

rec_prm[REC_ TBL LEN];

Storage Variable

Software Kinetics

- 24 -

#2100-12-002.01.0

2.6 Airborne/Diurnal Data Character Sets and Headers

For plotting and printing diurnal and airborne data a
character-checking set and header will be required. The
character-checking set will simply be an array of characters, of
a predefined length, specifying those characters which may be

used within the particular data block.

The block header will also be an array of characters, similar to
that found in Figure 2-6a, made up of spaces and parameter
mnemonics. However, this header will be saved internally in a
slightly different format. Each of the parameter mnemonics will
be stored as references into the Recording Parameter Table.
Along will each of these indices will be counts of the number of
preceding spaces in the header. Figure 2-6b illustrates an
example of the internal representation of the header. Figure
2-6c and Figure 2-6d show the C language data structure and
variable representation, respectively, for each of the airborne

and diurnal character-checking sets and headers.

header

Figure 2-6a Sample of Airborne Print Header

g -

Software Kinetics

#2100-12-002.01.0

rec. number
parm of
table preceding
index spaces

0 I 4 | 2 |
1 | 20 | 3 |
2 | 21 | 3 |
3 | 8 | 5 |
4 | 0 | 0 |

P S

Figure 2-6b Internal Representation of Print Header

struct chk set typ

{
char char set[CHAR SET LEN];
struct

{
struct index typ p_idx; (see Figure 2-8b)
int spaces;
} header[REC TBL LEN};
}7

Figure 2-6c Check Set/Header Data Type

struct chk_set typ air chk set;
struct chk set typ diu_chk set;

Figure 2-6d Storage Variables

$«

Software Kinetics

#2100-12-002.01.0

2.7 Storage Device Specifications

The Field Checking System storage devices will require data
structures to maintain information during operation of the
system. The two major storage media will be magnetic tape and

flexible bernoulli disk drives.

Associated with each magnetic tape device will be three user
specifiable attributes: (1) recording density, which is fixed for
the drive, (2) interrecord gap which is also device dependent,
and (3) length of usable tape which allows for differing length
tapes to be used by the System.

The two Bernoullin disks will be treated as raw devices where
data will be steamed onto them without elaborate file
structures. As a result, the disks will be partioned by the
Operator as a means of accessing only specific areas of the
disk. These partions will be defined by logical disk addresses

in conjunction with the disk directories contained on the disk.

The disks will have wvariable storage reserved for the disk
directories which will contain the traverse line numbers, date,
number of records for each block, and starting and ending logical
disk addresses for each line on the disk. Figure 2-7a shows the
C language data type for the storage device specifications,
figure 2-7b shows the variable definition for this information,
figure 2-7c shows an example of the information contained in a
disk directory, figure 2-7d shows the data type for a disk
directory, and figure 2-7e shows the variable definition for each

of the two directories in the system.

g

Software Kinetics

#2100-12-002.01.0

struct sdev_typ
{

char dsk intlv; /* disk interleave */
struct
{
unsigned rec _dns; /* recording density */
unsigned use tap; /* usable length of tape */
float int_gap; /* interrecord gap */
} tapl2];

}i

Figure 2-7a Storage Device Specs. Type Structure

struct sdev_typ sdv_spc;

Figure 2-7b Storage Device Specs. Variable

line flight block start end
entry number date size LAD LAD
0 | 00010127 03287 6 00006 00030 |
1| olzezssa 03287 & 00030 0014c |
2 | e1963265 03287 6 00ldc 00350 |
S T - |

Figure 2-7c Disk Directory Representation

struct dir typ
{

struct
{
char datel[5]:; /* flight date */
char bcnt; /* no. recs/data blk */

unsigned char 1line({4]; /* line number */
unsigned char s 1d[3]; /* starting LAD */
unsigned char e_1d[3]; /* ending LAD */

} entry[MP_ENTRYS];

<

Software Kinetics

#2100-12-002.01.0

struct dsk map typ
{

long s lad; /* start LAD for disk partition */
long e lad; /* end LAD for disk partition */
long cur; /* current LAD accessed on disk */
char b cnt; /* no. sectors per data block */
union
{
struct dir typ dir; /* internal rep. */
char bfr[DSK _MAP LEN]; /* raw disk map */
} dd;

}s;

Figure 2-7d Data Types for Disk Directories

struct dsk map typ d mapO0;
struct dsk _map typ d mapl;

Figure 2-7e Disk Map Storage Variables

g«

Software Kinetics

$#2100-12-002.01.0

2.8 Plot Table

The Plot Table will contain the different parameters needed to
create a plot of recorded data. Figure 2-8a illustrates the
makeup of the Table.

The vertical scale will be saved as an integer, representing the

number of blank lines to be left between horizontal plot lines.

The fiducial parameter (the plot reference) will be defined in
terms of a pointer to the appropriate entry of the Recording
Parameter Table. A storage location will also be reserved for
the pointer to the parameter in the first record of a recording
data block. These two pointers will be defined by the C language
construct shown in Figure 2-8b. Each fiducial parameter will also

require an interval value.

A character flag will save the response to whether or not
printing of vertical scale lines is desired. Storage will also

be made available for the source LUN.

For each parameter to be plotted, a pointer to the appropriate
entry of the Recording Parameter Table will be needed along with
a pointer into the data block. Included, aiso, will be the
parameter plot interval along with the start and end .sectors of
the plot page within which the curve for each parameter must

lie.

Finally, space will be reserved for a flag to indicate whether or

not the plot is to be one of Successive Differences.

Figure 2-8c shows the C language definition of the Plot Table.

j"?": - 30 -

Software Kinetics

#2100-12-002.01.0

—— i ——————

| vertical |
| scale |
| fiducial | rec tbl | data blk | interval |
| parm: | index | index | |

| flag |

| plot | rec tbl | data blk | scale | start | end |
| parms: | index | index | | sect. | sect. |
| successive |
| diff. flag |

Figure 2-8a Plot Table Representation

$K

Software Kinetics

- 31 -

#2100-12-002.01.0

struct
{
int r_tbl; /* record. parm. table index */
int d blk; /* index to parm. in data block */
} index typ:;

Figure 2-8b Index/pointer Type Definition

struct plt_tbl typ
{

int v skl; /* vertical scale */
struct

{

struct index typ ptr; /* rec. parm ptr */

long intvl; /* interval */

} fd_pm; /* fiducial parm */
char skl flg; /* scale lines? */
int src_lun; /* source device */
struct :

{

index typ ptr; /* plot parm */

int skl; /* scale */

int s_sct; /* start sector */

int e sct; /* end sector */

} pm[MAX PLT PRM];
char s dif; /* succ diff flag */
} plt _tbl;

Figure 2-8c Plot Table Type Definition

)

Software Kinetics

#2100-12-002.01.0

2.9 Stacked Profile Table

Figure 2-9a shows the storage allocation required for the Stacked

Profile Creation Process.

The first two fields of the Stacked Profile Table will contain
the source LUN and the flight date that the data for the traverse
lines was collected. This date will be used during the plotting

process.

For each of the parameters which the Operator may specify to be
extracted, the two pointers seen in preceding subsections will
have space allocated for them (the Recording Parameter Table and
data block indices). Two additional fields will be provided: (1)
the parameter wvalue, to be wused during the actual plotting
process and (2), a pointer into the first record for the
parameter of the temporary data blocks formed from the extracted
data. This temporary block will be explained in more detail in
the section entitled "Stacked Profiles".

A single integer will be used to save the new, temporary record
length formed from the extracted data.

The Flight Lines Table will contain the majority of the
information needed to create a Stacked Profile. This table will
be filled starting from index location 0, upwards, as new lines

are encountered during preprocessing of the data.

The traverse 1line number will head the Table. This will be
followed by two character fields used to define the orientation
of the line data. When extracted from the source medium, the

orientation will be assumed to be "back, forth, back, forth,

) o

Software Kinetics

#2100~-12-002.01.0

back, etc." in the order encountered for each line. However,
after extraction the Operator will be given the ability to change
the orientation for each line which may be different from the
extraction orientation. These two different views will be

saved.

A character field will be used to specify whether the line data

is to be included in the profile.

Space will be left for the file pointer of the extracted line
data file, open during profiling. This will be followed by the
table index for the next line to appear on the plot. The number
of blocks of data extracted for the 1line will be the last

variable in the Line Table.

The Extraction Table index for the Profile Parameter will have a

single, integer allocation for it.

Flags will follow in the Stacked Profile Table specifying whether
a Free Format profile is requested, flight line text is to be
included next to each curve, and scale lines marking plot sector

boundaries are to be placed on the profile.

The index of the first 1line of the Line Table will require
storage allocation, also. The plot scale, first sector starting
location, first sector ending location, and plot separation will
follow. The plot scale will refer to the profile parameter. The
first plot position will define the start and end sectors within
which the leftmost curve must lie. The separation will define
the number of sectors separating the starting sector of line X
and the starting sector of line X+1. It will be entirely possible

for some curves to be defined with overlapping plot positions.

) ot

Software Kinetics

#2100-12-002.01.0

Finally, the wvertical scale will be defined. The wvertical scale
will represent the number of blank 1lines to be left between

horizontal plot lines.

A single, character field will mark the end of the table,
providing an easy way for the end of the table to be determined
when examined in its ASCII format. This marker character will be

an asterisk ("*7).

Figure 2-9 shows the C language definition of the Stacked
Profile Table.

o=

Software Kinetics

#2100-12-002.01.0

| flight date |
| of profile |
| extraction | rec tbl | data blk | value | temp. data |
| parameter: | index | index | | blk index |

————— " " Gt T o o —— T T S G e T - G A e i S v o —— — T —

| new record |

| length |
| flight | line | extraction | user-defined |
| line #s: | number | orientation | orientation |
| print on |
| plot flag |
| file | next line | no. of blks |
| pointer | on plot] in line | (24)
| profile |
| parameter |
| format | rec tbl | interval |
| parameter: | index | i

——— e o T e A e e e —

| free format |

| profile flag |

| first line |

| index I

| scale lines |
| included flag |
| list line nos. |
| text flag]

o o e e e e e S D M S S G e S S S e M M e e e e e G Wy e e e — — ——

| plot | plot | start | end | plot]
| specs: | scale | sector | sector | separation |

| vertical |
| scale |

$KL

Software Kinetics

(10)

- 36 -

#2100-12-002.01.0

—— - — o — —— et ———

| end of table |
| marker |

————— - o —— ——— o —

Figure 2-9a Table Representation

$KL

Software Kinetics

- 37 -

$#2100-12-002.01.0

struct
{
int src_1ln;
unsigned j_date;
struct

{

index typ ptr;
long val;
int tb inx;

/*
/*

/*
/*
/*

} =xtrct[MED TBL SIZ]; /%

int tr_ln;
struct
{
long 1n;
char «rvrs;
char or;
char pr flg;
int 1p:;
int nsq;
long bk_cnt;
} 1n tbl[MX F LNJ};
int pf _pm; .
struct
{
int pm;
long ivl;
} £mt;
char free;
int f 1n;
char scl 1ln;
char 1st;
struct
{
int p_scl;
int p_ss;
int p es;
int p_ spn;
} plt;
int v_scl;
char marker;
} stk _tbl;

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*

source LUN */
flight date */

indices */

value */

new record index */
extraction parms */
new record length */

line number */
extracted orient. */
user defined orient */

include in plot flag */

file pointer */

next line on plot */
no. of blks in line */
line table info. */
profile parameter */

format indices */
interval */

free format flag */
index to first line */
scale lines flag */
list lines flag */

plot scale */

first start sector */
first end sector */
plot separation */

vertical scale */
end of tbl marker */

Figure 2-8b Type Definition

$K£

Software Kinetics

38

#2100-12-002.01.0

2.10 Gradient Parameter Creation Table

The Gradient Parameter Table will actually include three smaller
tables. Figure 2-10a shows an example of these three tables. Up
to nine gradient parameters may be created based on twelve
defining parameters. For each defining and to-be-created
gradient parameter, two values must be saved during compilation:
(1) the pointer to the parameter in the Recording Parameter
Table, and (2) the pointer to the data in the data block. A
third item will be required for the defining parameters: the

value of the parameter as obtained from the data block.

The "defining parameters" will merely be those specified by the
Operator. The "pair parameters" will be those calculated from
the difference between each pair of defining parameters. The
"quad parameters" are the slightly more complex parameters found
by taking the difference of averaged, compiled pairs. Included
in the Gradient Table will be the source and destination LUNs of
the two devices required by the process. As well, storage will
be provided for a variable indicating the additional length of
the new record containing the gradient parameters. Figure 2-10b

shows the C language construct of the Gradient Table.

s«

Software Kinetics

#2100-12-002.01.0

0(a)
1(B)
2(C)
3 (D)
4 (E)
5(F)
6(G)
7 (H)
8(I)
9(J)
10 (K)
11(L)

struct grd tbl typ

defining
parameters

'3 | 23 | I
| 17 | 34 | .. |
| 14 | 67 | .. |
b9 1511 .. |
| 63 | 44 1 .. |
9 | 60 | l
I 21 | 75 | |
| 42 | 97 | . |
P =11 -1 1 ..
-1 1 -1 1 .. 1
b -1 1 -1 1 .. |
-1 1 -1 !

—— o ———

——— e M ——

pairs
0(KG) | 66 |
1(KH) | 67 |
1(KI) | 68 |
1(KJ) | 69 |
1(KK) | -1 |
1(KL) | -1 |

quads
O(KM) | 72 |
1(KN) | 73 |
1(Ko) | -1 |

parameter value
data block record index
recording parm. table index

Figure 2-9a Gradient Table Representation

{
struct def typ

{

struct index typ ptr;

long wval;

} def prm[GRAD DEF_ CNT];
struct index typ Ppr[GRAD DEF_CNT / 2];

/* data blk and rec.

/*
/*

~7x

table ptrs
data blk value
defining parms.

grad pairs prms

struct index typ qd[GRAD DEF CNT / 4];

int src 1ln;
int dst 1n;
int add len;
} grd tbl;

_/*
/*
/*
/*

grad quads prms
source LUN
destination LUN
additional len

Figure 2-10b Gradient Table Type Definition

) ¢

Software Kinetics

- 40 -

#2100-12-002.01.0

2.11 Edit Table

The Edit Table will contain the greatest collection of data of
any of the tables. The Edit Table Representation is illustrated
in Figure 2-lla. With the exception of the source and destination
LUN'"s, all the data will be used solely by the Batch Editor.

For batch editing, start and stop limits are required. These
values will be saved in the Table. A parameter upon which to
base these limits is needed and will be specified by a pointer to
the appropriate entry of the Recording Parameter Table. For
quicker accessing during the edit, a pointer into the data block

for each parameter will also be saved.

The source and destination devices will be specified as logical
unit numbers (LUN’s) and will be saved in the Table. These two
entries will be used by both the Batch and Screen Editor.

To add a value to a parameter the two indices (Recording
Parameter Table and data block indices) will be required as well
as the value to be added. The same storage will be allocated for
the specifications required to replace a parameter wvalue. Only

the indices will be needed to delete a parameter.

To replace a parameter value’s digit, space will be reserved for
the indices along with space for the digit position to be changed

and the new digit, a character.
Spike checks will also have storage for the parameter indices as

well as the spike definition. This definition will be the

absolute change of the value over a given range.

$«

Software Kinetics

#2100-12-002.01.0

To add a parameter to recorded data, several additional storage

locations must be allocated to accommodate more than Jjust the

indices. For each new parameter, a calculation will be defined
as a basis for the new parameter’s creation. A table of
operators and operands will make wup this calculation. The

operators will be the characters representing the computer
symbols for the mathematical operations. The operand table will
contain a tag indicating whether or not the operand is a constant
or is the wvalue of an existing recording parameter. If a
constant, this wvalue will be obtained from the numeric field of
the operand table; otherwise, the numeric field will contain the
index into the Recording Parameter Table for the specified

operand and the data block pointer to the wvalue.
Figure 2-11b shows the C language data type for one of the

structures used to form the Edit Table definition of Figure
2-1lc.

) S

Software Kinetics

#2100-12-002.

e - G S e G —— — — —— e = . T G A G e

| basis
| parameter:

| rec tbl
| index

| data blk
| index

| data blk
| index

o ———— - e G —— A f = e e e e fan

| index

| data blk
| index

| delete
| parameter:

—— . ———— T GG Y S Gt G e - e A W G G S Gw e e e Gy R S S ——

| add

| index

| data blk
| index

| index

| index

digit
position

| digit
| value

| rec tbl | data blk |

| index

index

Figure 2-11la

Edit Table Representation

> < 4

Software Kinetics

(10)

(10)

.-43...

#2100-12-002.01.0

struct

{

struct index typ ptr;
long int <wvalue;

} val_typ:

Figure 2-11b Value Data Type

struct

{
struct index typ basis parm; /* basis parm */

int sr_lm; /* start limit */
int sp 1m; /* stop limit */
int sln; /* source LUN */
int dln; /* destination LUN */

struct val typ a_ v1[MED TBL SIZ];
~/* add-to-value */
struct val typ r_v1[MED TBL SIZ];
/* replace value */
struct index typ d pm[SML TBL_SIZ];
/* delete parameter */

struct
{
struct index typ ptr; /* pointers */
int d_ps; /* digit position */
char d vl; /* new digit */
} r_dg{MED_TBL_SIZ]; /* replace digit */
struct
{
struct index typ ptr; /* pointers */
int chg; /* absolute change */
int rng; /* record range */
} chk[MED_TBL SIZ]; /* spike check */
struct
{
struct index typ ptr; /* new parameter */
struct
{
char tag; /* type of operand */
union

{
long wval; /* constant */
struct index_typ vptr;

/* parm. variable */
} vliua;

) ot

Software Kinetics

#2100-12-002.01.0

} opnd[OPER TBL SIZ + 1];

char optr[OPER_TBL SIZ]; /* operators */
} a_pm[SML_TBL SIZ];
} edt Ebl;

Figure 2-11lc Edit Table Data Type

) 8

Software Kinetics

45

#2100-12-002.01.0

3.0 FULL SCREEN EDITING

When the prompt "USE CURSOR KEYS AND KEYBOARD TO SET UP
SPECIFICATIONS" is issued on the Prompt line of the Display, the
cursor keys on the keyboard will become enabled and the Operator
will be permitted to do screen editing. Any changes made in the
Pregsentation Area will be accepted as new values. Cursor

movement will be as described in the next subsection.
3.1 Cursor Movement

The location or area of each modifiable value or text string
shown in the Presentation Area of the screen will be referred to
as a 'field’. Associated with each field will be a length, in
characters, which is determined by the start and end field
coordinates. When a display is presented and cursoring is
enabled, the visible cursor will be noted at the Input Line.
When cursoring is complete, the cursor should be returned to this

position on the screen.

Horizontally, or left to right, cursor movement will be field by
field. When the left and right arrows are depressed the cursor
moves to the start of the next field to the left or right,
respectively. If the cursor is at the beginning of a line and
the left arrow key is struck, the cursor will be moved to the
start of the rightmost field at the end of the 1line above.
Similarly, if the cursor is at the end of a line, hitting the
right arrow key will move the cursor to the start of the leftmost

field at the beginning of the line below.

Vertically, cursor motion will also be by fields. When the up

and down arrows are depressed the cursor will be moved to the

g

Software Kinetics

#2100-12-002.01.0

start of the nearest field directly above or below that one being
vacated. If the cursor is at the top of a line and the up arrow
key is struck, the cursor will be moved to the start of the next
field to left of the vacated field, at the bottom of the screen.
Similarly, if the cursor is at the bottom of a line, hitting the
down arrow key will move the cursor to the start of the next
field to the right of the wvacated field, at the top of the

screen.

When in the top, left field in the Presentation Area, depressing
the left or up arrow keys will return the cursor to the Input
Line of the screen. When in the bottom, rightmost £field, the
right arrow and down keys will return the cursor to the Input
Line. Figures 3-la through 3-1d illustrates the cursor movement
over a sample Presentation Area for each of the cursor

directions.

At any time the Operator may return to the Input Line by striking
the ’‘enter’ key.

j"al‘: - 47 -

Software Kinetics

#2100-12-002.01.0

+ __
|
| FIELTD CHECEKTING SYSTEM
I
..> fieldl ...> field2 ...> field3 ..> field4
. v
. field5 ...> field6 > field?

.> field8

.................... > field9 .

INPUT LINE <.ttt eeeeeesooosonscnsocsascsscssoscssssssocsscas

Figure 3-la -- Right Cursoring
+ ——
!
| FIELD CHECKTING SYSTEM
I
... fieldl <... field2 <... field3 <.. field4 <.
. .field5 <... field6 <......ccvueuss field7 <.

.field8 <.
.................... field9 <.

v .
INPUT LINE ...ttt etteeeassosssnssnsssassosnsssssccasenss

Figure 3-1b -- Left Cursoring

Software Kinetics

.48.

#2100-12-002.

y
H

... fieldl

field5<.
v
INPUT LINE .
fmm e

tz
H

..> fieldl .

. v .
. fields..

01.0

ELD CHECKTING SYSTEM

field2 field3 <.. field4 <.
.> field6 . .> field7...
.. field8 <.......
........ field9

Figure 3-1lc -- Up Cursoring

ELD CHECEKING SYSTEM

..> field2 field3 ..> field4 ..
A

v . .

field6 . .. field7 <.

.> field8

ooooooooooooooooooooooooooooooooooooo

Figure 3-1d -- Down Cursoring

$L

Software Kinetics

- 49 -

#2100-12-002.01.0

3.2 Field Modification

Within fields, movement will be character by character. Cursor
keys, namely the arrow keys, will not be used for Jjumping between
characters; only for fields. To replace a character in a field
at which the wvisible cursor is located, the Operator need only
enter the desired, new character. To move to the right within a
field, without overwriting the displayed character, the ’tab
forward’ (-->|) key will be used. Continually striking the tab
forward key will advance the cursor one position to the right
until the end of the field is reached. At this point the bell
will sound to indicate no further movement is possible when this

key is hit.

To nondestructively backspace, the backward tab key (|<--) will
be used. Continually striking this key will return the wvisible
cursor to the start of the field at which time the bell will

sound to signal no movement being possible.

A destructive backspace may be made using the delete (<--) key.
Again, no backing up past the start of the field will be
possible. The bell will sound if an attempt to delete past the
start of the field is attempted.

To insert a blank character in the field, the open, square brace
key ([) will be used. This key will simply make room for
characters to be added at the cursor location. If two characters

are to be inserted, the square brace key must be hit twice.
NOTE: The square brace key will not cause an "insert mode" to be

entered but but rather will make space available for inserting

characters. One other important note is that the space made

$«

Software Kinetics

#2100-12-002.01.0

available for insertion characters will cause all characters of
the field to the right of the cursor to be shifted one position
to the right. The last character of the field, then, will be

lost every time the open, square brace key is depressed.

To delete a character in a field, the cursor will be positioned
over the unwanted character and the closed, square brace key (])
struck. This will cause all characters to the right of the
cursor to be shifted one position to the left. A blank (space)
character will be added at the end of the field.

At any time, the Operator may return to the Input Line by
striking the enter key (Enter <--7).

$«

Software Kinetics

#2100-12-002.01.0

4.0 SYSTEM SPECIFICATIONS

When the System Specifications option of the Main Menu is chosen,
the System Specifications Menu will be displayed along with the
prompt, "ENTER NUMBER OF OPTION". Keyboard entries will be
handled until a CTRL Z or CTRL C is received to return the Main
Menu display.

4.1 Logical Unit Numbers

Choosing to modify the logical unit numbers (LUN’s) for the Field
Checking System will result in the Logical Unit Numbers Display
being presented. The prompt "USE CURSOR KEYS AND KEYBOARD TO SET
UP SPECIFICATIONS" will be shown on the Prompt Line. Keyboard
input will then be accepted. Input will first be examined for
cursor motion keys and, if the key is one of the left, right, up
or down arrows or the enter key, the screen will be updated
accordingly. Otherwise, the value will be changed on the screen

and stored for later processing.

When a CTRL Z exit is requested, wverification of the wvalues
specified will take place. First, each LUN will be checked to
ensure that it is a numeric value, secondly, that it is within
the valid range of values and, thirdly, that no two logical unit
numbers, with the exception of 0, are identical. Error messages
of "INVALID CHARACTER", "INVALID DATA" and "DUPLICATE LUN’s

ASSIGNED" will be issued in either case, respectively.

If no errors are detected, the previous menu will be returned
with a CTRL Z exit. Ctrl Z will save the modifications in the
display’s value file and will process the changes, updating the

LUN table. CTRL C will ignore all changes on an exit.

s«

Software Kinetics

#2100-12-002.01.0

4.2 Recording Parameters

Option 2 of the System Specifications will define the Recording
Parameters comprising Airborne and Diurnal data. When the
Recording Parameter Display and prompt "USE CURSOR KEYS AND
KEYBOARD TO SET UP SPECIFICATIONS" are presented on the Monitor,
the Operator will be free to make any changes desired to any of

the three pages of parameters.

For each recording parameter number, there will be seven
specifications as described in section 2.5. Because of the large
number of recording parameters, three display pages will be
required. To move back and forth between pages the Operator will
type, while the visible cursor is located at the Input Line
window of the display, the desired page number to be presented.
Verification will be done immediately, before a valid, new page
of parameters is presented. At this time, checks will be made
for wvalid parameter codes, parameter names present, correct
parameter types, valid parameter lengths, unique parameter codes,
unique parameter names, valid parameter signs, and vwvalid
parameter scales. Corresponding error messages will be issued
for any inconsistencies discovered. If no errors are detected,

the new page will be displayed.

When the Operator exits from any page via CTRL Z, these same
checks will be performed. If no errors are encountered, the
Recording Parameter Table and value file will be updated with the
new changes and a return to the System Specifications Menu will
take place. If errors are found, however, the Operator will be
forced to remain in the Recording Parameter Display until either
all the errors are corrected and CTRL Z is entered or a CTRL C

sequence is used to escape. CTRL C will cause all changes made

$«

Software Kinetics

#2100~-12-002.01.0

to all pages to be disregarded and the previous menu returned.

j’la‘l: - 54 -

Software Kinetics

#2100-12-002.01.0

4.3 Airborne Data Character Set & Header

Choosing option 3 of the System Specifications Menu will result
in the Airborne Data Character Set Display being presented on the
IBM-AT Monitor. The Prompt Line will contain the text "USE
CURSOR KEYS AND KEYBOARD TO SET UP SPECIFICATIONS".

Keyboard input will be accepted with cursor movement being
examined first. If an arrow or edit key is encountered the
display will be updated accordingly. Data keys will be accepted
at face value: that is, no verification will take place until the

Operator signals a return to the previous Menu via CTRL Z.

Upon receiving a CTRL Z, the Field Checking System will verify
the character-checking set for uniqueness of characters. If
duplicate characters are evident the message "DUPLICATE
CHARACTERS FOUND" will be displayed.

Next, each word (characters separated by spaces) of the Block
Print Header will be verified against the wvalid recording
parameter mnemonic table entries. Inconsistencies will be
flagged by the message "INVALID PARAMETER NAME" with the cursor
positioned at the Header field. The Operator will then be
expected to make the necessary correction before attempting to
save again and return to the Main Menu. No updating will be
permitted by the software until the character~checking set
contains only unique characters and the block print header

contains only valid mnemonics.
NOTE: the ’'NULL’ parameter must be placed at the end of the

header to mark the last column position to be used during
dumping; the error message "MISSING PARABMETER(S)" will be issued

j"?": = 55 =

Software Kinetics

#2100-12-002.01.0

if this is not done.

When both fields are free from error, a CTRL Z exit will cause
the new values for both the Data Character Set and Airborne Block
Print Header to be written to the corresponding value file for

the display and the respective tables updated.

CTRL C at any time will return the System Specifications Menu
with the modifications having been discarded. See the section
entitled "Block Printing" for more on the character-checking set

and header.

jilill: - 56 -

Software Kinetics

#2100-12-002.01.0

4.4 Diurnal Data Character Set & Header

The same procedure will be followed for the Diurnal Data
Character Set & Header option of the System Specifications Menu
as is performed for the Airborne Data Character Set & Header

option.

) ot

Software Kinetics

$#2100-12-002.01.0

4.5 Storage Device Specifications

When the fifth option of the System Specifications Menu is chosen
the Storage Device Specifications Display will be presented along
with the "USE CURSOR KEYS AND KEYBOARD TO SET UP SPECIFICATIONS"
prompt.

Modification of these system specifications will be done in a
similar manner as described in the previous subsections. Here,
the Field Checking System will be looking to verify that the Disk
Logical Addresses are valid hexadecimal wvalues and that they
encompass an increasing partion for each disk; and that the
amount of usable tape, interrecord gaps, and recording densities
for each drive are valid decimal values and within acceptable
ranges. No exit and save will be done until any errors detected

by the System have been corrected by the Operator.

‘jliglt: - 58 -

Software Kinetics

#2100-12-002.01.0

5.0 MEDIUM CONTROL

Choosing the Medium Control option of the Main Menu will result
in the Medium Control Menu and "USE CURSOR KEYS AND KEYBOARD TO
SET UP SPECIFICATIONS" prompt being presented on the display.
The Operator will choose to do either Tape Control, Disk Control,

or Copy/Search Functions from the Menu.
5.1 Tape Control Functions

The Tape Control Functions Display will be presented when option
1 of the Medium Control Menu is chosen. Prior to choosing an
option from this display, the LUN for the device to be accessed

must be set in the Presentation Area.

Magnetic tape operations will be performed as specified. If an
error of any kind is encountered, the appropriate message will be
issued on the Error Line. Messages will include "INVALID
CHARACTER", "INVALID DEVICE", "CANNOT OPEN DEVICE" and "ERROR AT
SOURCE DEVICE". The auxiliary Operator’s manual will describe

the cause of these errors in detail.

A CTRL Z exit from this display will save the LUN specified as
the new default, providing it 4is not in error. Leaving the
display wvia CTRL C will discard any changes made in the

Presentation Area.

$«

Software Kinetics

#2100-12-002.01.0

5.2 Disk Control Functions

The second option of the Medium Control Menu will cause the Disk
Control Functions Display to be presented. Prior to choosing an
option from the display, the LUN for the device to be accessed
must be defined, and, if a cartridge is to be formated, the

sector interleave must be set.

The first option will allow cartridges to be formated. The
second will allow the directory to be cleared on a cartridge.
Choosing either of these options will result in a prompt being
issued to ensure that the operation is truly desired. If the
Operator responds affirmatively, the option will be attempted.

A third option will cause the disk directory to be read and
presented on the display. This directory will show the data

outlined in section 2.7.

Exiting the Menu will be similar to that for the Tape Control

Functions.
5.3 Search/Copy Functions

The third option of the Medium Control Menu will allow storage
media to be searched for strings and data to be copied between
differing devices. Prior to performing an operation both a
source and destination LUN must be specified in the Presentation
Area of the display.

Searching for strings on a medium will require the Operator to

set up the search string in the Presentation Area. When invoked,

and after an affirmative response to the issued prompt "ARE YOU

<«

Software Kinetics

#2100-12-002.01.0

SURE?", the search will continue until (1) either a match is
made, (2) the end of the device is encountered or (3) an error
occurs. In either of the three cases a hard-copy message will be
issued on the standard error device (usually the Star matrix
printer): in the first case the message will be to the effect
that "a match was found on string S in block #B, at Cth
character”; in the other two cases the message will resemble "no
match found for string S". The date and time will also be
issued. The standard error console will be used instead of the
Monitor because of the need to retain a permanent record of this
time-consuming operation. If the source device is one of the two
hard disks, the console message will also include the logical
address of the data block containing the match.

Similarly, magnetic tape may be positioned to a desired location
using a special option of this Menu. The Operator’s Manual will

describe this operation in detail.

Data copy between media will be performed until successfully
completed or an error is encountered. To prevent accidental
copies, a prompt to the effect "ARE YOU SURE?" will be issued by
the System prior to attempting to perform the copy option. Note
the importance of specifying LUN’s for this operation.

Exit from this Menu will be as described for the previous Control

Functions.

j’IE.I{: ~ 61 -

Software Kinetics

#2100-12-002.01.0

6.0 BLOCK PRINTING

The Block Printing Process will allow the Operator to obtain a
hardcopy of acquired data. Printing may be done to either the
Star Matrix Printer or the Versatec Printer, with up to 132

characters of text per line.

When the Block Printing option of the Main Menu has been
selected, the Block Printing Display will be brought up on the
IBM-AT monitor. From the display the Operator will choose the
print format. After the choice is entered by way of the

keyboard, the Print Frequency Menu will be brought up.

The prompt "USE CURSOR KEYS TO SET UP SPECIFICATIONS" will be
issued on the Prompt Line. The required specifications will be
the source LUN of the data and the destination LUN for printing
as defined via the System Specifications option; and a response
indicating whether or not error checking is to be performed
during dumping. When the Operator is satisfied with the
specified values on the screen the the cursor will be returned to

the Input Line.

The Operator will then enter the desired option listed in the
Menu. If every N'th block is to be printed, the Operator will be
prompted for the value of N. This value will be verified and if
not valid, an error message will be issued. The Operator will
then be expected to rechoose an option and, if the
Every-N’th-Block choice is made again, the prompt for a wvalue
will be reissued. Until a wvalid option and, if necessary, a
valid frequency, is specified, the Operator will remain in the

Print Frequency Menu and no printing will be done.

) o

Software Kinetics

#2100-12-002.01.0

After a valid option (and parameter) have been specified,

Printing will commence.

The Header, set up in the System Specifications, will be used to

set up the spacing for the block data as it appears in columns.

Recording blocks that are made up of many parameters may require
more than one 132-character line to print a record in hardcopy
form. When a record extends beyond a single line, the remaining
parameters will be printed on a second line as defined by the
block header.

Below the Header on the hardcopy will be a single, dashed line
with a blank line below this. Above the Header will also be a
blank 1line. Above this blank 1line will be a block title
consisting of the block number and the block length. For Diurnal
and Airborne data, the Julian date of recording will also be
included in the Block Title. The traverse line number will be

added for Airborne data.

Unformated data will refer to a form in which the data is printed
as a physical block of the actual length. Printing in this form
will mean that no spaces will be added, no structuring will be
done and no header will provided. Unformated printing will be
required for nonaeromagnetically or nondiurnally acquired data.

This form will also be used to print blocks containing bad data.

Bad data will be the result of characters appearing in the data
block that do not appear in the character-checking set, blocks of
differing lengths, records of differing lengths, or parameter

values differing in type or length specified.

g«

Software Kinetics

#2100-12-002.01.0

Printing will continue until terminated by the Operator, a file
mark is detected -- in the case of magnetic tape -- or the end of
a data map is encountered -~ in the case of hard disk --, or an
error occurs at either of the source or destination devices.
When Printing is complete, CTRL Z and CTRL C will take the
Operator out of Block Printing and back to the Main Menu with
similar characteristics for saving/discarding changes as

described for previous operations.

) ot

Software Kinetics

#2100-12-002.01.0

7.0 PLOTTING

When the plot option of the Main Menu is chosen, the Plot
Specifications Menu and prompt "USE CURSOR KEYS AND KEYBOARD TO
SET UP SPECIFICATIONS" will be presented on the display.

7.1 Plot Specifications
7.1.1 Standard Plot

Up to thirty-six recording parameters to be plotted may be
handled by the system. For each parameter, specified by its
two-character code, a plot scale and plot position will be
required. The parameter code set up on the display will be
verified against those found in the Recording Parameter Table.
If no match is found, the error message "INVALID PARAMETER CODE"
will be issued on the Error Line; otherwise the Table index will

be saved.

The plot scale will be a long integer not to exceed eight digits
in length: for hexadecimal parameters, the scale must still be
expressed as a decimal value. The scale will be converted from
the text seen on the screen to a decimal integer by the
software. If any invalid characters are found during the
conversion, an appropriate error message will be issued;

otherwise the wvalue will be saved.

The plot position will consist of . two, three digit values
representing the starting and ending sectors, inclusively,
between which the plot is to be placed on the output device. A
plot sector is defined as sixteen bits wide with a plot line of

output containing 132 sectors numbered 0 through 131. Therefore,

$«

Software Kinetics

#2100-12-002.01.0

a start sector of 3 and an end sector of 5 will provide a
resolution of 3 x 16 = 48 bits for plotting the specified
parameter. The bit to be turned on in a plot line will be

determined by the following equation:

plot bit = start sector x 16 +
(value MOD scale x
{ end sector - start sector + 1) x 16)

DIV scale
examples:
scale = 45, start sector = 3, end sector = 6
(1) wvalue = 0 3 x 16 + (0 MOD 45) x (6 - 3 + 1) x 16) DIV 45

48 + (0 x 64) DIV 45

I

48 + 0
(2) value = 42 3 x 16 + ((42 MOD 45) x 64) DIV 45
= 48 + 59
= 107
(3) value = 44 3 x 16 + ((44 MOD 45) x 64) DIV 45
= 48 + 62
= 110

Also required, by Operator set up, will be a response to five
other specifications. First, a vertical scale must be defined.
This will be restricted to a two-digit wvalue between 0 and 10.
Specifying a wvalue larger than ten will result in an error
message, "LIMIT ERROR". The message "INVALID CHARACTER" will be
displayed if nondecimal digits are found during the conversion
from text to integer. A wvalid scale will be saved in the Plot
Table.

Secondly and thirdly, a fiducial parameter and interval must be
defined. The fiducial parameter, used as the scale along the
leftmost edge of the plot, will be verified for existence by a

search of the Recording Parameter Table. If a match on a

jl‘aI{> - 66 -

Software Kinetics

#2100-12-002.01.0

parameter code in not found, the message "INVALID PARAMETER CODE"
will be displayed on the Error Line of the monitor; otherwise,
the index will be saved in the Plot Table.

The interval will be converted from text to either a decimal or
hexadecimal integer value (depending upon the parameter type) and
any invalid character found will result in the presentation of a

corregponding error message.

The Operator must specify whether wvertical scale 1lines are
desired. These lines will run vertically along the plot marking
each start/end sector boundaries. Only a 'Y or 'y" for the
affirmative response or, ’'N’ or ‘n’ for the negative response
will be accepted by the System: anything else will cause the
message "INVALID RESPONSE" to be displayed.

Finally, the source lun must be specified. This must be one of
the magnetic tape or hard disk devices to be acceptable by the
System. If not, the message "INVALID SOURCE LUN" will be
presented on the Error Line of the display.

7.1.2 Successive Difference Plot

Successive Differences, a special form of plot, will also be set
up from the Plot Specifications Display. The parameter to be
plotted will be specified as the first parameter in the upper,
left corner of the Presentation Area. To distinguish between a
regular plot and a successive difference plot, the scale and plot
positions for the latter will all be defined on the screen as
zero. If the System finds that the scale is zero but both plot
position sectors are not, then it will be assumed that a regular

plot is desired and an error message "INVALID DATA" will be

$«

Software Kinetics

#2100-12-002.01.0

issued, referring to the missing scale value.

If the parameter for a Successive Difference plot has been
specified correctly, then parameters two through eight will be
examined as these define which Successive Differences are
required. Only those seven parameter codes defined in the
Recording Parameters Specifications relating to Successive
Differences may be specified in any of the seven screen locations
mentioned. At least one must be set up. A Successive Difference

of zero will plot the actual data.

As with a regular plot, a scale and plot position must also be
defined for Successive Differences with verification identical to

that of regular plot specifications.
7.2 Plotting Process

If any errors are found during plot specification wverification,
the appropriate error message will be displayed and the field
causing the error will be highlighted by positioning the wvisible
cursor at the field in question. No plotting will commence until

all errors have been corrected.

Once plotting is requested (via ‘P’ at the keyboard), it will
continue until either the end of the source device is reached or
a serious error occurs. A Plot Header will be printed at the top
of the output with every new traverse line encountered causing a
form feed to be issued and a new header generated for the next

line.

Every time the current record value for the fiducial parameter is

greater than the last saved fiducial value plus the fiducial

$«

Software Kinetics

#2100~-12-002.01.0

interval, a scale mark will be placed on each edge of the plot.
Every tenth time, the actual fiducial value will be placed at the
left edge of the output.

Regular plots will be generated by simply using the values from
each record for each parameter to plot a line of data.
Successive Differences, however, will require that data from
several records be collected to form one plot line. For a fourth
successive difference, for instance, a wvalue will not be
available for plotting until after the fifth record is examined.
The software will maintain a table of the required number of
previous data values for the parameter. When the correct number
of wvalues are available, the succeeding record wvalue will be
added and the oldest wvalue removed from the table to create the

new Successive Difference value.

$«

Software Kinetics

$2100-12-002.01.0

8.0 STACKED PROFILES

Chosing option 5 of the Main Menu will bring up the Stacked
Profile Display and the prompt "USE CURSOR KEYS AND KEYBOARD TO
SET UP SPECIFICATIONS" on the Monitor. Several procedures will

be performed prior to creating a profile.
8.1 Data Extraction

Necessary raw data from a source device must be extracted and
organized as the first process of Stacked Profile creation. The
System will allow up to ten parameters for extraction, one of
which should be TIMDS.

Each parameter will be specified Dby the appropriate,
two-character parameter code. Verification will be done on those
codes specified to ensure their existence and definition in the

Recording Parameter Table.

The only other specification required for the extraction process
will be the source LUN. An invalid LUN will be flagged by an
error message. No extraction will take place until all parameter
codes are valid and the source LUN is one of the magnetic tape or

hard disk devices.

Extraction will be initiated by the Operator depressing the
capital ‘P’ on the keyboard. When extraction begins, a status
message to this effect will be presented. Extraction will
proceed as follows:

(1) The header of each block will be extracted.

(2) The requested data for each record of each

g«

Software Kinetics

$2100-12-002.01.0

block will be extracted.

(3) The header and extracted data will be
combined to form a new, smaller block.

(4) This new block will be written
sequentially to a file entitled by the
the flight line number of the data.

(5) When data for a new flight line number is
encountered, the current flight line file
will be closed and a new flight line file
will be opened.

(6) The first, third, £fifth, etc. lines
extracted will be marked with an
orientation of '1’; the second, fourth,
sixth, etc. lines extracted will be
marked with an orientation of "0’.7

(7) Steps (1) through (6) will be repeated
until either an error is encountered or
the end of the source device is reached.

When extraction is complete, a status message to this effect will

be displayed. The Inclusion Process will then be performed.
8.2 Inclusion Process

The System will next request confirmation of the traverse line
data to be included in the Profile based on the data extracted.
The line number of each curve to be plotted will be specified in
the Presentation Area. Along with each line number, the Operator
will be provided a field in which to inform the System as to the
true orientation of the line. If no orientation is provided on
the display, the System will use that determined at time of
extraction. However, any Operator-specified orientation will

override the extraction value.

j"al:: - 71 -

Software Kinetics

#2100-12-002.01.0

The only other item to note is that the System will plot the
curves in the order that the lines are specified on the Inclusion

Display.

When all inclusion specifications have been set up as desired,
the Operator will move to the next process by typing a capital
'P’ at the keyboard. If line numbers are specified for which no
data was extracted then an appropriate error message will be
issued on the display to inform the Operator of this fact and the
error will have to be corrected before the Profiling procedure

can continue.
8.3 Plot Profiling Process

Several plot specifications must be defined before the Profile
can be generated. The first will be the plot/profile parameter.
Again, this will be the two-character code, verified for error
against the Recording Parameter Table. As an added check, the
parameter will also be verified as having been extracted. If it
has not, the message "MISSING PARAMETER" will be displayed on the

Error Line.

Next, the format must be defined. If a free format or
time-adjusted format profile is desired, the System will look to
see that the TIMDS parameter has been extracted. If the profile
is to be based on another format, the format parameter must have
been specified for extraction. In either case, if the required
parameter has not been extracted then an appropriate error

message will be issued.

The Operator will inform the System whether or not to include

line number text next to each curve. This will be done by a

s«

Software Kinetics

#2100-12-002.01.0

character field in the Presentation Area.

Finally, the remaining four specifications, with the exception of
"Separation” will be identical to, and handled the same as, those
in the Plotting Process. "Plot Scale", "First Plot Position" and
"Vertical Scale" will be defined. "Separation" will be the
number of sectors separating each flight 1line curve on the
profile output. A value between 0 and 131 will be accepted:

anything else will result in an error message.

If errors are detected in the specifications, the Operator will
be forced to correct them prior to the Stacked Profile creation.
Once started, the profiling will continue until the end of all
the temporary traverse line data files are reached or an error is

encountered.

When profiling commences and completes, messages to these effects

will be presented on the Error Line of the Display.
8.3.1 Free Format Profile

To create the Free Format Profile the parameter data will simply
be extracted from each of the flight line data files a record at
a time. Data will be extracted sequentially from lines with an
orientation of ’0’; data will be taken from the ends of files for
those lines with an orientation of ’1’. As each file empties it
will be closed and the curve will no longer be plotted for the

flight line. When all files are empty, the plotting terminates.

s«

Software Kinetics

#2100-12-002.01.0

8.3.2 Time-Adjusted Profile

To create the Time-Adjusted Profile, the longest flight line will
be determined. The absolute value of the recording time of the
first record of the file subtracted from the recording time of
the last record of the file will define the time period over
which all curves will be scaled against. Shorter length files

will be plotted according to the following equation:

Time to plot yet = # of records in test file X
plot line number DIV
of records in longest file -
of records in test file X
(plot line number - 1) DIV
of records in longest file

This will simply be a vertical scaling similar to the horizontal
scaling done to plot a parameter within 4its start and end

sectors.
8.3.3 Other Format Profile

"Other" Format Profiles will be generated according to the

following algorithm:

(1) Read the first record of each flight line
file :

(2) Use the smallest value as the start of the
"other" scale parameter

(3) Plot the smallest +walue and any that are
equal to it

(4) Get the next record for any flight lines
just plotted

(5) If the flight line file is empty close the

g«

Software Kinetics

#2100-12-002.01.0

file

(6) Add the plot interval to the value lasted
plotted and call this new value the
"smallest value",

(7) Repeat steps (2) through (6) until all
the flight line files have been closed

At varying intervals the value of the "other" parameter will be
printed along the edge of the plot for reference. If
line-number-listing is desired, these will be found at the top of
the profile.

8.4 Exiting and Saving Stacked Profile Data

Similar to other operations, CTRL Z and CTRL C may be used to
backup to the Main Menu. However, if extraction was successfully
completed during the Profiling Process, before returning to the
Main Menu a prompt will be issued asking whether to remove the
extracted data from the IBM-AT Hard Disk. If the Operator does
not remove the data, then it will be available the next time the
Stacked Profile option is chosen. The internal Stack Table will
also be saved on the IBM-AT Disk.

NOTE: To reuse data already extracted, a LUN of 0 will be placed

on the Presentation Area field requesting the source device prior
to initiating the Extraction Process.

‘1Iiil{: - 75 -

Software Kinetics

#2100-12-002.01.0

9.0 GRADIENT PARAMETER CREATION

Choosing the Gradient Parameter option of the Main Menu will
cause the appropriate display and prompt to be presented on the
Monitor. The Operator will specify the recording parameters to
be wused in creating the new parameters, The two-character
parameter codes will be expected: errors will be flagged with the
message "INVALID PARAMETER CODE" if the parameters specified

cannot be located in the Recording Parameter Table.

To create gradient parameters there must also be 2 to the power
of X recording parameters specified. If not, the system will
respond with the message "MISSING PARAMETER(S)".

Also required are the logical unit numbers for the source and
destination devices. Both must be unique and be one of the
magnetic tape or hard disk devices: i1f not, either of the
messages "INVALID SOURCE LUN" or "INVALID DESTINATION LUN" will

be presented on the Error Line of the display.

Gradient Creation will not commence until all specifications are
error free. When this is so, an appropriate message will be

issued on the display.

Each data block on the source device will be read and the
requested gradient parameter codes will be appended to each
record of a new, larger data block. Necessary, existing
parameter <values will be converted from text and used to
calculate the new parameter’s value which will then be converted
to text and placed in the new data block. The new data block
will then be written to the destination device with the process

continuing until either the end of the source device is reached

o

Software Kinetics

#2100~12-002.01.0

or an error is encountered at either of the source or destination

devices.

A check will also be done each time an existing data block is
read to ensure that all required values are present and correctly

located in the block.
A successful completion of the process (end of the source device

is reached) will be marked by the presentation of an appropriate

message.

) o

Software Kinetics

#2100-12-002.01.0

10.0 EDIT FUNCTIONS

Choosing the Edit Function option of the Main Menu will result in
the Edit Function Menu and the prompt "USE CURSOR KEYS AND
KEYBOARD TO SET UP SPECIFICATIONS" being presented on the
Monitor. When a valid choice is made, the appropriate subroutine
will be called to handle the function desired. Prior to choosing
one of the Menu options, the source and destination LUN’s must be

set.

Before the Edit Function Menu is brought up, the Edit Table will
be initialized to an empty state. Once wvalid Table entries have
been defined, these wvalues will remain until an exit to the Main

Menu is made.
10.1 Batch Editor
10.1.1 Start/Stop Edit Limits

This option must be called before a batch-edit can take place. A
basis parameter must be specified first. This will be the
two-character code of the parameter defining the start/stop
limits. The Recording Parameter Table will be parsed to verify
the existence of this parameter. If it does exist, the index
into the Table will be saved in the Edit Table; otherwise, the
message "INVALID PARAMETER CODE" will be issued.

Provided a valid parameter code has been specified, the start and
stop edit limits will then be checked according to the parameter
type, be it hexadecimal or decimal. If both are correct, they
will be saved in the Edit Table. If not, an appropriate error

message will result.

$«

Software Kinetics

#2100-12-002.01.0

If a CTRL Z exit is made and no errors are found, these new

specifications will be added to the Edit Table for later use.
10.1.2 Output NNN Blocks

This option will provide the Operator with an easy means of
directly copying data that is to be left unchanged, between two
devices. When the choice is made, a prompt "ENTER NUMBER OF
BLOCKS" will be placed on the Prompt Line. The Operator will
enter a valid, signed decimal number which will be verified. If
okay, this number of blocks will be copied from the source device
to the destination device provided no errors occur at either of
the two devices. A message will be printed on the standard error
console (usually the Star matrix printer) indicating how many
blocks were dumped. This will provide a hard copy record for the

Operator.
10.1.3 Add/Subtract a Value to a Parameter

To add a wvalue to a parameter, the Operator will set up the
two-character code to be used to identify the parameter in the
data block. A comparison will be made against this code and the
Recording Parameter Table to ensure the parameter exists. If it
does not, the message "INVALID PARAMETER CODE" will be issued.
Otherwise, the index into the Table for the parameter code will
be stored in the Edit Table.

For each parameter, the value to be added must be specified. The
value must match the type of the parameter, be it decimal or
hexadecimal. If not, an appropriate error message will be

given.

) o

Software Kinetics

#2100-12-002.01.0

To subtract a value from a decimal parameter, the Operator will
simply place a negative sign in front of the wvalue. That is, the
negative value will be added. For subtraction of a hexadecimal
value, the ones-complement will be provided as the
specification. The value to be added will be placed in the Edit
Table.

Up to ten parameters may be specified for this option.
10.1.4 Replace a Parameter Value

To replace a parameter’s wvalue, the Operator will set up the
two-character code to be used to identify the parameter in the
data block. A comparison will be made against this code and the
Recording Parameter Table to ensure the parameter exists. If it
does not, the message "INVALID PARAMETER CODE" will be issued.
Otherwise, the index into the Table for the parameter code will
be stored in the Edit Table.

For each parameter, the replacement value must be specified. The
value must match the type of the parameter, be it decimal or
hexadecimal. If not, an appropriate error message will be

given. The value to be added will be placed in the Edit Table.

Up to ten parameters may be specified for this option.

j"al:: - 80 -

Software Kinetics

#2100-12-002.01.0

10.1.5 Delete/Insert A Parameter
10.1.5.1 Deletion

To delete a parameter from a recording block, the Operator will
simply place the appropriate recording identifier next to one of
the five deletion fields of the Delete/Insert Parameters
Display. The recording identifier will be verified against those
in the Recording Parameter Table to ensure its existence. The
index into the Recording Parameter Table for the entry will be

saved in the Edit Table for later reference.
10.1.5.2 Insertion

To insert a parameter, the Operator will enter the two-character
code to be used to identify the parameter in the data block. A
comparison will be made against this code and the Recording

Parameter Table to ensure the parameter already exists.

IMPORTANT: before using the editor to add new parameters to data
blocks, the Recording Parameter Specifications must first be
updated to include the new parameter codes, as this is the only
place in the Field Checking System that parameter codes may be
added. Although the calculation defining the parameter is made
in the Batch Edit option, the parameter reference must be made in

the System Specifications option.

For each new parameter, a calculation must be defined in order
for a wvalue to be generated during batch-editing. This
calculation may contain one of four operators: '+’ for addition,
f-r for subtraction, "*’ for multiplication, and '/’ for

division. Only two types of operands will be permitted: (1)

$«

Software Kinetics

#2100-12-002.01.0

recording parameter codes and (2) signed, decimal constants. The
values for the given parameter codes will be substituted from
each record during the edit process. Signed constants are
specific values. Up to ten (10) recording parameters or numeric

symbols may be included in one calculation.

As the operands are parsed and verified, they are stored in the
Edit Table. A tag field in the table will identify the integer
stored as either a constant or as an index into the Recording
Parameter Table. This will facilitate faster computation during
the editing ©process. The Operators will be stored as

characters.
Up to tem parameters may be created at a time using this option.
10.1.6 Change One Digit

The appropriate display will be presented upon which the Operator
will define up to ten (10) parameters to be changed along with a
two-digit number indicating which digit to <change and a
one-character value of the new digit. When the parameters have
been defined on the screen, each recording identifier will be
verified against those contained in the Recording Parameter Table
for existence. The index into the Table for the parameter code

will be stored in the Edit Table for later reference.

Each ’‘digit position’ specified will be examined for only decimal
values. Each ’digit wvalue’ will. be examined for the type of
digits expected based on the specified parameter type found in
the Recording Parameter Table. If errors are found, an
appropriate error message will be issued; otherwise, these two

specifications will also be saved in the Edit Table.

s«

Software Kinetics

$2100-12-002.01.0

10.1.7 Check For Spike

To check for a spike the Operator must specify the parameter to
be examined, the absolute change in wvalue which will cause alarm

and the range over which the change will apply.

A two-character parameter code will define the parameter. This
code will be matched against those of the Recording Parameter
Table and, if found, then the index will be stored in the Edit
Table; otherwise, the error message "INVALID PARAMETER CODE" will

be displayed on the Error Line of the Monitor.

The absolute change specification will be up to an eight digit
value representing a fraction of the parameter wvalues to be
examined. If an error is determined it will be indicated, else
the value will be saved in the Edit Table.

The range will define, in number of records, the difference for
value comparison. For instance, a range of three would mean the
1st and 4th record wvalues would be compared, the 2nd and 5th
etc.. This range must be two decimal digits between 01 and 99;
if not, an error message "LIMIT ERROR" will be issued. A correct

value for the range will be stored in the Edit Table.

s«

Software Kinetics

#2100-12-002.01.0

10.1.8 Perform Edit Changes

This option will process all the batch-editing specifications
that have been set up using the preceding options. When batching
commences a status message to this effect will be sent to the
display. The source and destination devices will be opened and,

if no errors have been encountered, the process will continue.

Each block of data on the source device will be read and checked
against the edit 1limits. If not within the 1limits, the block
will simply be copied to the destination device. If the basis
parameter value is within the limits then editing will be carried

out as follows for each of the ten records of the block:

(1) The spike-checks will be done first. For each
parameter to be checked the value of the parameter
will be converted from text to an integer value. If

"range" previous records have been examined then
the spike test will be done according to the
formula:

change = ABS (current spike table entry -
value at range previous entries)

If the change is greater than or equal to the limit
change specified then a message will be logged on
the standard error console to the effect that a
"spike at block B, record R, <value ¥V, absolute
change P" occurred. This will provide the Operator
with a hard copy listing of all spikes detected
within the limits. The current record value will be
added to a circular queue, displacing a previous
value if "range" records have been checked.

(2) The record of the data block will be transferred to
a temporary record buffer.

(3) The change-one-digit edits will be performed next.

This is a straight-forward text overwrite of the
given digit in the temporary record buffer.

g

Software Kinetics

#2100-12-002.01.0

(4) The replace-a-value changes will be made. The
specified value will be converted to text and placed
in the temporary record buffer.

(5) The add/subtract-from-a-value changes will be made.
The text value will be converted to its associated
type and the specified value will be added to it.
The new value will be converted back to text in the
temporary record buffer.

(6) The add-parameter changes will be performed next.
The calculation specified will be performed as
given. Checks will be done for missing parameters
and divide by zero attempts. If the calculation is
error free, the new parameter code and value, as
ASCII text, will be appended to the end of the
temporary record buffer.

(7) The delete-parameter changes will be made. Those
parameters to be deleted will have a special
character placed in the parameter code and value
fields of the temporary record buffer.

(8) The temporary record will be copied to a temporary
block buffer, less the special delete characters.

When the entire block has been edited (ie. all ten records) the

new data block will be written to the destination device.

The batch editor will continue, successfully, until the stop
edit-limit or the end of source device is reached or,
unsuccessfully, until the end of the destination device is
encountered or an error is detected. Completion of the editor

will be specified by a message on the Monitor.

g

Software Kinetics

#2100-12-002.01.0

10.2 Screen Editor

The Screen Editor will allow blocks of data to be modified more
intensively than with the Batch Editor, though the blocks must be
modified individually. When the Editor is first invoked, a blank
Presentation Area will be evident. Until a block of data is read

from the source device no data will be displayed.
10.2.1 Reading a Block

To read a data block from the source device the Operator will
depress the <CTRL R> keys. With this action a block of data will
be read and the first 78 x 20 = 1560 characters will be written
to the Presentation Area of the display. If 1560 characters are
not available then only those characters that are [available]

will form the remainder of the display.
10.2.2 Paging
10.2.2.1 Up

<PgUp> will cause the next string of 1560 characters to be
presented. If this number of characters is not available then
only those that are will be displayed: spaces will form the
remainder of the display. If the Editor is in the insert-mode,
however, no paging will be done. The bell will sound to indicate

an erroneous action and the insert-mode will be exited.

jl‘al:: - 86 -

Software Kinetics

#2100-12-002.01.0

10.2.2.2 Down

<PgDbn> will cause the previous string of 1560 characters to be
presented. Again, if this number is not available then only
those that are will be displayed. If the Editor is in the
insert-mode the bell will sound, no paging will be done and the

insert-mode will be exited.
10.2.3 Cursoring

Prior to cursoring or doing any operations in the Presentation
Area, the <Home> key may be struck to move the wvisible cursor to
the top, left corner of the Display. Any of the four cursor keys
will then allow movement over the displayed text. If a boundary
is reached and an attempt is made to go beyond it, the bell will

sound to signal the error.

If the cursor lies within the Input Line then cursoring will be
as follows: depressing the <right> or <down> arrow keys will
cause the cursor to be moved to the top, left character of the
Presentation Area; depressing the <left> or <up> arrow keys will
cause the cursor to be positioned at the lowermost, right

character of the Presentation Area.

$«

Software Kinetics

#2100-12-002.01.0

10.2.4 Destructive Changes

Any noncursor or noncommand key hit while outside of the
insert-mode will replace the character at the wvisible cursor and
the cursor will be moved one space to the right, if possible;
otherwise to the beginning of the next line below, if possible;
otherwise no movement will be made (the cursor will be located at
the bottom, right corner of the Presentation Area in this case).
Destructive screen changes will be made to the corresponding

character of the data block, also.
10.2.5 Insertion

<Ins> will place the Editor in and out of the insert-mode. When
inserting, the character entered at the keyboard will be placed
at the screen location of the visible cursor, the cursor will be
moved to the right, if possible, and all characters to the right
of the new character will be moved right and/or down one
position, if possible. Characters moved off the screen are not
lost: a Page Up will return the character to the top of the

screen.

To delete a character while in the insert-mode the backspace key
is used. Backspacing can be done all the way to the start of the
.data Dblock on the screen. This operation is destructive:
characters backed over will be replaced by spaces both on the

screen and in the data block.

If an insert beyond the bottom, right corner of the Presentation
Area is done a Page Up operation will be done by the software and
the cursor will be repositioned near the top of the screen as

will the data being inserted. Similarly, backspacing past the

‘1I‘al:: - 88 -

Software Kinetics

#2100-12-002.01.0

top, left corner of the Presentation Area will cause a Page Down
sequence and the cursor will then be found near the bottom of the

Presentation Area.
10.2.6 Deletion

Outright deletion of a character with a corresponding shortening
of the data visible will be done using the key. When the
curgor is positioned over the character to be removed and the
 key is depressed, the character will disappear and all
characters to the right of it will be moved to the left by one

position.
10.2.7 Backward One Block

<CTRL B> will back up the source device by one block, up to the
beginning of the medium. This will be true for the hard disks,
as well, where a ’'seek’ will be performed to do the backward

block operation.
10.2.8 Error Checking

<CTRL E> will perform an error check of the block of data
displayed on the IBM-AT Monitor. The error checking process will
use the Airborne Block Header and Charécter—Check Set of the
System Specifications to verify block length, character
composition of the block, parameter codes and the digits of each
parameter. Errors detected will be highlighted on the display
using inverse video and the display will be redrawn so that the
error is found in the top, left corner of the Presentation Area.
Only one error at a time will be indicated: therefore, it may be

necessary to use <CTRL E> several times to find and correct

j"a": - 89 -

Software Kinetics

#2100-12-002.01.0

several errors.
10.2.9 Writing a Data Block

<CTRL W> will write the edited version of the data block to the
destination device. CTRL R will be required to get a new block.

10.2.10 Exiting Editor
<CTRL Z> or <CTRL C> will return the Operator to the Edit Menu

with any changes made for the data block displayed on the screen

left unrecorded.

s«

Software Kinetics

#2100-12-002.01.0

SECTION 2

DEPENDENCY DIAGRAMS

The diagrams of the following section depict the procedural
relationships of those modules written specifically for the Field
Checking System. The numbers in brackets under the procedure
names refer to the figure in which the dependencies for the

routine in question are defined.
NOTE: many of the routines make calls to the Operating System

library functions: however, these references have not been listed

to avoid adding unnecessary confusion.

$E

Software Kinetics

#2100-12-002.01.0

syspec medctl fmtspc pltmnu stkprf grdspc edtfnt
(2-0) (3-0) (4-0) (5-0) (6-0) (7-0) (8-0)

Figure 1-0

fldink rvalue | i]

vfylun vfyprm vfyhdr

vfysdv

(2-1-1) (2-2-1) (2-3-1) (2-4-1)

Figure 1-1

rtmplt rvalue fldlnk

Figure 1-2

$<

Software Kinetics

clrinp

$#2100-12-002.01.0

rtmplt
I
|

dsperr

Figure 1-2-1

syspec

cshspc prmspc sdvspc
(2-1) (2-2) (2-3) (2-4)

Figure 2-0

$K<

Software Kinetics

- 93 -

#2100-12-002.01.0

viylun
|

I
dsperr

Figure 2-1-1

Figure 2-2

viyhdr
|
|

dsperr

Figure 2-2-1

prmspc

Figure 2-3

) ¢

Software Kinetics

94

$2100-12-002.01.0

txtdec dsperr
(9-1)

Figure 2-3-1

Figure 2-4-1

medctl
|
| | | ! |
dspscr] | | dsperr
tapctl dskctl cpyctl
(3-1) (3-2) (3-3)

Figure 3-0

) {8

Software Kinetics

- 95 -

#2100-12-002.01.0

tapctl
|
I | l I I I I
dspscr movcsr chgval | wvalue dsperr clrinp
I
I I
ioopen ioclos
(3-4-1)
Figure 3-1
dskctl
I
I | I I I I I
dspscr movecsr chgval | wvalue dsperr clrinp

ioopen txtdec inpstr ddirct ioclos
(3-4-3) (3-2-1)

Figure 3-2

ddirct

dspscr hextxt clrinp

Figure 3-2-1

) ¢

Software Kinetics

- 96 -

#2100-12-002.01.0

dspscr movcsr chgval | wvalue dsperr clrinp

ioopen fndstr trnsfr ioclos
(3-3-1) (3-3-2)

Figure 3-3

fndstr

e S o G e G G . G G A AU GES GRS e M e e e e e ey P (e (e G e e G o P T P e g Py

ioread inpstr iocopen ioclos iowrit hextxt dectxt
(3-4-2) (9-3)

Figure 3-3-1

dsperr inpstr ioread wrtblk
(3-4-4)

Figure 3-3-2

) ¢

Software Kinetics

sserch

- 97 -

#2100~12-002.01.0

ioopen
dsperr ioread ioclos

Figure 3-4-1

ioread
I
I

dsperr

Figure 3-4-2

inpstr
!
I

clrinp

Figure 3-4-3

wrtblk

dsperr iowrit
(3-4-5)

Figure 3-4-4

) ¢

Software Kinetics

- 98 -

$2100-12-002.01.0

iowrit
I
I
dsperr
Figure 3-4-5
fmtspc
I
I I I
dspscr fgyspc dsperr
(4-1)
Figure 4-0
fqyspc
[
I I I | I
dspscr movcsr chgval | wvalue
I
I ! I I
inpstr txtdec dsperr dmpblk
(4-2)
Figure 4-1
dmpblk
|
I I ! I I I |
dsperr ioopen ioread chkblk sserch iowrit ioclos
(4-3)
Figure 4-2

) ¢

Software Kinetics

hextxt

- 090 -~

#2100-12-002.01.0

chkblk

dsperr sserch vdatbk txtdec txthex

Figure 4-3

dspscr pltspc dsperr
(5-1)

Figure 5-0

dspscr movcsr chgval | wvalue

pltchk dmpplt
(5-2) (5-3)

Figure 5-1

$K

Software Kinetics

- 100 -

#2100-12-002.01.0

—— e —— —— - —— —————— i — o —————————

txtdec txthex
(9-2)

ioread sserch

Figure

sendln

iowrit

Figure

dspscr movesr chgval |

xtrchk
(6-1)

xtrprc
(6-2)

incprc
(6-3)

Figure

sendln iowrit

(5-3-1)

ipower

5-3

inpstr dsperr

6-0

$K<

Software Kinetics

- 101 -

#2100-12-002.01.0

xtrprc
|
I I
AdBperr — S e-aise il o e e s e — S e e
| | I I I
ioopen ioread | sserch ioclos
| I
txtdec txthex
Figure 6-2
incprc
I
l | | I I
dspscr movcsr chgval | wvalue
I
| I
incchk stkprc
(6-4) (6-5)
Figure 6-3

) {8

Software Kinetics

- 102 -

#2100-12-002.01.0

incchk
txthex dsperr

Figure 6-4

stkprc
|
| | I l
movecsr chgval | wvalue
I
| |
stkchk stkplt
(6-6) (6-7)

prmtch dsperr txtdec

Figure 6-6

b S

Software Kinetics

- 103 -

#2100-12~-002.01.0

dsperr ioopen | ioclos

stkhdr hextxt dectxt rdblck ipower iowrit
(6-7-1) (9-4) (6-7-2)

Figure 6-7

sendln dectxt

Figure 6-7-1

txthex txtdec

Figure 6-7-2

) S

Software Kinetics

- 104 -

#2100-12-002.01.0

dspscr movcsr chgval wvalue dsperr

dsperr ioopen | ioclos

ioread sserch txtdec txthex dectxt hextxt wrtblk
(9-4)

Figure 7-2

)

Software Kinetics

- 105 -

#2100-12-002.01.0

edt£fnt

- o — G —— P = — v " G SN G S0 G S wm G Gws mam

dspscr chgval movcsr | dsperr wvalue

!
setlim outblk addval rplace | delprm rdigit spkchk |
l
l

(8-1) (8-2) (8-3) (8-4) | (8-5) (8-6) (8-7)
|
scredt = 2= 00 —meemcee—eeo-
(8-9) | |
inpstr edtchg

(8-8)

Figure 8-0

)

Software Kinetics

- 106 -

#2100-12-002.01.0

setlim

dspscr movesr chgval | wvalue

dsperr prmtch txtdec txthex

Figure 8-1

outblk

inpstr txtdec ioopen dsperr ioread wrtblk ioclos

Figure 8-2

addval

dspscr movecsr chgval | wvalue

prmtch dsperr txtdec txthex

Figure 8-3

) S

Software Kinetics

- 107 -

#2100-12-002.01.0

movesr chgval | wvalue
prmtch dsperr txtdec txthex

Figure 8-4

dsperr prmtch prscal
(8-5-1-1)

Figure 8-5-1

$K

Software Kinetics

- 108 -

#2100-12-002.01.0

dsperr prmtch txtdec

Figure 8-5-1-1

dspscr movcsr chgval | wvalue

prmtch dsperr txtdec

Figure 8-6

prmtch dsperr txtdec

Figure 8-7

$K

Software Kinetics

109 -

#2100-12-002.01.0

ioread sserch txtdec txthex dectxt hextxt wrtblk

Figure 8-8

scredt

ioopen ioread iowrit chkblk wrtblk inpstr ioclos

Figure 8-9

11IE.|: - 110 -

Software Kinetics

#2100-12-002.01.0

txtdec
|
[

dsperr

Figure 9-1

txthex

dsperr

Figure 9-2

dectxt
|
|

dsperr

Figure 9-3

hextxt

dsperr

Figure 9-4

j"il:: - 111 -

Software Kinetics

#2100-12-002.01.0

SECTION 3

PROGRAM STRUCTURE

page
SCOPE
1.0 Mainline and Display Routines 1
2.0 System Specifications Routines 33
3.0 Medium Control and Input/Output Routines 55
4.0 Block Printing Routines 93
5.0 Plotting Routines 110
6.0 Stacked Profiles Routines 132
7.0 Gradient Parameter Creation Routines 164
8.0 Editing Routines 173
9.0 Text/Numeric Conversion Routines 220

j"al:: - 112 -

Software Kinetics

#2100-12-002.01.0

SCOPE

The Field Checking System is comprised of several routines. This
section of the Design Document will provide the details for each
of the routines in the System. Each description will include the
name and function of the routine, a synopsis, input and output
parameters, return wvalues, other functions and global variables
referenced, and an algorithm. The algorithm should provide
sufficient detail such that conversion to a C language procedure

may be quick and straightforward.

S

Software Kinetics

- 113 -

2100-12-002

1.0 MARINLINE AND DISPLAY ROUTINES

1.1 Mainline .

ZRRERKRBRR KRR R R R KR R R RO R R R RO R OO KRR RRRR KRR KRR XK K

Name:
main

Function:
Frocess Operator choices from Main Menu

Synopsis:
fcs [—pl

Input Parameters:
-p @ print screen messages to Error Console
Output Farameters:

Return Values:

Functions Referenced:

inital: initialize tables and screen windows
dsperr: display error text on screen

dspscr: places menu/display and prompt on screen
edtfnt: edit blocks of data

andwin: finish up screens

exit: abort program execution

fmtspe: print data blocks

grdspc: detine gradient specifications
medctl: manipulate recording media

foraw: unset raw mode

pltmnu: create a plot

print+f: print error message on monitor

raws set terminal to raw mode

stkpri: create a stacked profile

strcmp: compare two strings for equality
syspec: detine system specifications

wgetch: get a character through a window

blobal Variables Referenced:
input_line: Input Line window of display
msg_prt: set message console print flag based on invocation of fcs

I I D B M I B I FE W D I I I M I P I I I M M I I I I I I I I I M M I I I I e

2100-12-002

e I 6 I I D M I I I I M I D I M I M I M I I M DM B M B D W M I M I I D M P I I I I M M I

Description:
Initializes Field Checking System, displays Main Menu, prompts Operator
for option and processes option until Operator quits.

filgorithm:

begin

if only one invocation argument then
set message print flag to FALSE
else it two arguments and [strcmpl shows second argument is “-p" then
set message print flag to TRUE
else
begin
call [printf] with “fcs: invalid option”
call [exitl to abort field checking system
end
call [initall to initialize tables and display windows
if error from [initall then
tall [exitl to abort +ield checking system
call frawl to unset raw mode
set input response to O
while input response not CTRL Z do
begin
call [dspscrl to display Main Menu
it error from [dspscrl then
exit
call [wgetchl to get Operator choice
case Operator choice of
call [syspecl to define system specifications
call [medctl] to control media
call [fmtspcl to print data blocks
call [pltmnul to perform plot
call [stkpril to create a stacked profile
call [grdspc] to create gradient parameters
: call [edtfntl to perform edit functions
CTRL Z: no ogperation .
default: call [dsperrl to display message “option not available"
end
call [endwinl to finish up screens
call [norawl to set terminal to noraw mode
call [printfl to backup cursor to beginning of line on exit

R s 5 S R P S

KEKKKKKRKRKKRERRRERRRRKRK R KRR R KRR KRR R KRR KRR RRR AR KRR KRR KRR KKK R KRR/

2100-12-002

1.2 Initialize System

R RR KKK KRR KKK 000K R ROk KRR ORI RO R R KRR RO RN R R KRRk ok kK

Name:
inital

Function:

Synopsis:
inital ()

tilerd:
fldink:
initscr
leaveok
refresh
rvalue:
scrollok:
subwin:
viyhdr:
viylun:
viyprm:
viysdy:
wclear:

M e I W I I I M M I M DM I P I I I I I I B M D M I e I I I I I M I I M I I M P I

Initialize global variables

Input Parameters:

Output Farameters:

air_chik_set: airborne data character-checking set
diu_chk_set: diurnal data character-checking set
iun_tbl: Logical Unit Numbers Table

Return Values:
NULL_ERR = okay
negative = error encountered

Functions Referenced:

read text from a file into a table

link the tields of a display

initialize screens

set leave flag +or window

make current screen on display

read the value file for a given display
set scroll flag

create window within window

verify data character-checking set and header
verity logical unit number assignments
verify recording parameters

verity storage device specitications
clear window

Global Variables Referenced:
air_chk_set: airborne data character-checking set
diu_chk_set: diurnal data character-checking set
error_line: error line window of display
erraor_table: error text messages

2100-12-002

input_line: input line window of display
present_area: presentation area window of display
prmpt_line: prompt line window of display
prmpt_table: prompt teut messages

rec_prm: recording parameters and specifications

Description:
Initializes the Error and Frompt Tables and defines the subwindows of
the IBM-AT Monitor, initializes Recording Farameter Table, LUN Table,
storage device specifications and character—-checking sets for
Diurnal and Airborne data.

Algorithm:
begin

set return value to NULL_ERR

call [filerdl to set up error_table

if no error from [filerdl then
call [filerd] to set up prmpt_table

if no errors from [filerdl then
begin
call [linitscrl to initialize screens
call C[subwinl to define error_line
call [wclearl to clear error_line
call [leaveok] with TRUE for error_line
call [scrollokl with FALSE for error_line
call [subwinl to define input_line
call lwclearl to clear input_lins
call [leaveokl with TRUE for input_line
call [scrollokd with FALSE for input_line
call [subwinl to define prmpt_line
tall [wclearl to clear prmpt_line
call [leaveokl with TRUE for prmpt_line
call [scrollokl] with FALSE for prmpt_line
call [subwinl to define present_area
call [wclearl to clear present_area
tall [leaveokl with TRUE for present_area
call [scrollokl] with FALSE for present_area
call [refreshl with stdscr to clear display
end

i¥ no errors then
call [rvaluel to read the value file for the Recording Farameters

Display —— page i

it no errors then
begin
call [+1dlnkl to link the fields
call [vfyprml to verify and load the table

I I B D I M B I I D I I I I I I I I M I I I I D M I P I P I M I I IE M I D I M M I M I M M M

2100-12-002

I I I P I I I M M I I I I M M IE I I I M I I I I I I I I I M I I I P M I M M M M I e M I I

if

if

if

if

if

if

if

if

if

if

if

if

end
no errors then
call frvaluel to

no errors then
begin

call [41dlnkl to
call [vfyprml to
end

no errars then
call [rvaluel to

no errors then
begin

call [fldinkl to
call Lvfyprml to
end

no errors then
call [rvaluel to

no errors then
begin

call [fidink] to
call [vfylunl to
end

no errors then
call [rvaluel to

no errors then
begin

call [+1dlnkl tao
call Lviyhdrl to
end

no errors then
call [rvaluel to

no errors then
begin

call [+ldink] to
call Lvfyhdrl to
end

no errors then
call [rvaluel to

no errors then
begin

read the value file

link the fields

verify and load the

read the value ¥file

link the fields

verify and load the

read the value file

link the fields

verify and load the

read the value file

link the fields

verify and load the

read the value file

link the fields

verify and load the

read the value file

for the

table

for the

table

for the

table

for the

table

for the

table

for the

Recording Farameters
Display —— page 2

Recording Farameters
Display -- page 3

Logical Unit Number
Display

Airborne Check Set
and Header Display

Diurnal Check Set
and Header Display

Storage Device
Specifications Display

X
X
X
X
X
¥
X

call [+ldinkl to link the fields
call [vfysdvl to verify and load the table
end
return status value
end

FO0EKR KRR R AORR0R KR 30K K000 KK KKK O KKK KKK 0K R R 0K KRR ROk KO0 O XKk Rk Rk /

2100-12-002

1.2.1 Read System Prompts/Errors

ZRRERKER KRR KRR KRR R0R K00 KKK K0k K KK 3 0K K0k K kKRR 3000 XK RO KRR KRR KRR KR X

M A P D I I M D I M I I D I I M I I I I D M I I M I I I I M I I I I M D B M I M M

Name:
filerd

Function:
Read a text file

Synopsis:
filerd(file,oset,table, tut_str)

Input Parameters:
file: character array of the file name to be read
oset: offset into table to zero index position
¥table: contains pointers to strings of text
ktxt_str: contains actual text strings

Output Parameters:

Return Values:
NULL_ERR = akay
GENERAL_ERR = cannot +ind specified file

Functions Reterenced:
fclose: close file for reading
fopen: open a file for reading
printf: print message on a specified device
getc: get a character from a tile
txtdec: convert text to decimal value

Global Variables Referenced:

Description:
Reads the text of a file and places the text in the table passed.

Algorithm:
begin
set return value to NULL_ERR
call [fopenl to open file
if error from [fopenl then
begin
call [printfl on stdout "fcs: cannot open file"

2100-12-002

¥ set return value to GENERAL_ERR

X end

X else

¥ begin

¥ set first text pointer and max and min codes to 0

¥ while not end-of-file do

¥ begin

X call [getcl to get a character from the file

¥ while character is not the end-of-line do

X begin

b § save the character in a temporary array

X call fgetcl] to get another character

¥ end

X skip over spaces in temporary array

¥ call [txutdec] to extract index value from temporary array
X if the index is less than the min code then

X save the index as the min code

E else if the index is greater than the max code then
X save the index as the max code

¥ skip to first gquote (") in temporary array

X save index to start of text, in table

¥ while second quote not encountered in temporary array do
X copy character from temporary array to table

¥ mark end of text in table with null character

X save index to end of text, in table

b end

X call [4closel to close the file

X end

X return status value

X end

X
X

KRR RRORR AR K KRR ROk k kKRR kKR KRRk kKRR Rk ok ok kR Rk k/

2100-12-002

1.3 Link Fields of Presentation Area

ZRRREERRERRREERR R R R KRR KRR R KRR KRR R RE KRR R R ERRRRR KRR KRR R KRR KR ERRRK R

Name:
fldlnk

Function:
Link fields on screen for cursor movement

Synopsis:
fldlnk ()

Input Parameters:
Output Farameters:

Return Values:
NULL_ERR = okay

Functions Referenced:

Global Variables Referenced:
scr: attributes and descriptions of fields on screen

Description:
Links the fields on the screen for left, right, up and down cursor
motion between fields

Algorithm:
begin
set return value to NMULL_ERR
cltear an array of flags to be used to indicate linked fields
count the number of fields on the screen
set first field to be linked as the Input Line
for each +ield of screen do
beqgin
set flag tor ¥ coordinate to NULL_FTR
set flag for y coordinate to NULL _PTR
for each tield of screen do
begin
if starting y coordinate of field is greater than the
y coordinate flag or, is equal and the starting
¥ coordinate of field is greater than or eqgual to the

I P D I I P M I D M JE I I M I I M I I M B I B I M I I M I I I I I I B I I M I I M

2100-12-002

end

¥ coordinate flag, and the field has not already been
linked then
begin
set flag for x coordinate to x coordinate for start of field
set flag for y coordinate to y coordinate for start of field
set field to link as field just examined
end
end
save as field to right, the index found as link
set field linked flag
set field to link as field Jjust linked
end
save last field linked as right-cursor index
set linked-+ield’s left link to NULL_FTR to indicate Input Line
set up the left links for all fields as the reverse of the right links
save last field linked as left-cursor index
clear an array of flags to be used to indicate linked fields
set first field to link equal to the input line
for each field of screen do
begin
set flag for X coordinate to MULL_FTR
set flag for y coordinate to NULL _FTR
for each field of screen do
begin
if starting % coordinate of field is greater than the
¥ coordinate flag or, is equal and the starting
y coordinate of field is greater than or equal to the
y coordinate flag, and the field has not already been
linked then
begin
set flag for x coordinate to x coordinate for start of field
set flag for y coordinate to y coordinate for start of field
set field to link as field Just examined
end
end
save as field to down, the index found as link
set field linked flag
set field to link as field just linked
end
save last field linked as down-cursor index
set linked-field’s up link to NULL_FTR to indicate Input Line
set up the up links for all fields as the reverse of the down links
save last field linked as up-cursor index in entry
return status value

2100-12~002

KRR RO KRR KKKk kKKK 0K KKK KOk 0k Kk kR X kR ROk kR ROk X Xk /

11

2100-12-002

1.4 Display Menu

£ 0KR KR KRR KKK KK K0k 30k R0k 0K K3 kKKK KK k0% KRR KR 30RO R R R KR KRR KRR R KRR KRR R KKK AR K

%

X Name:

¥ dspscr

X

¥ Function:

¥ present a display/menu on monitor

¥

¥ Synopsis:

3 dspscr (fileid)

X

¥ Input Parameters:

¥ tileid: numeric segment of file name containing display text
3

¥ Output Farameters:

¥

¥ Return Values:

b1 NULL_ERR = okay

¥ negative = error when reading one of template or value files
¥

¥ Functions Retferenced:

X abs: find absolute value af an integer

X box: draw & box around & window

L clrinp: clear Input Line window of display

¥ echo: turn on keyboard echoing

¥ fldink: link ftields for cursor motion

X mvwaddch: move and add character to window

X noecho: turn off keyboard echoing

X refresh: make the screen look like stdscr

X resettys reset terminal characteristics

X rtmplt: read template file ot the text for display and place in window
¥ rvalue: read the values (if any) associated with the display
X savetty: save terminal characteristics

X werase: erase window

¥ wrefresh: make screen look like window

¥

¥ Glaobal Variables Referenced:

¥ present_area: presentation area window of display
¥ prmpt_line: prompt line window of display

X error_line: error line window of display

X

¥ Description:

12

2100-12-002

Reads the requested template and value files for the display, builds
the presentation area and prompt line, and refreshes screen.

X

¥

¥

¥ Algorithm:

¥ begin

| set return value to NULL_ERR

¥ call [savettyl to save current terminal characteristics

¥ call [noechol to disable keyboard echoing

¥ call [werasel to clear the presentation area

¥ it tileid is negative then

¥ set value file id to fileid / -10

X else

X call [abs] to set value file id to positive value

X call {rtmpltl to read the static text for the display from a file
X i+ no error from [rtmpltl then

¥ begin

3 call frvaluel with flag set to read values associated with display
¥ if no negative error returned then

X begin

* i¥ status returned is NULL_ERR then

¥ call [fldlnk] to link the fields for cursor motion

X call [box]l to draw a dashed box around the Fresentation Area
X call {mvwaddchl to place a *+’ in the four corners

¥ of the Fresentation Area

X call Lwrefreshl to make the Fresentation Area on the screen
¥ call [werasel to clear the error_line window

X call [wrefreshl to make the error_line on the screen

¥ call [wrefreshl to make the prmpt_line on the screen

¥ call [clrinpl to clear Input Line window

X end

X end

X call Lfresettyl to save current terminal characteristics

X return status value

X end

X

X

KRR KRR KRR RR KK KKK KRR KKK K0k B0 KK KK Rk R R R R R RO R XK R Rk R Rk /

- 13 -

2100-12-002

i.4.1 Read Template File

ZRRRRRRRRRROO0000R R KRR 0R R 0RO R KKKk 0k K3k KK KOR K 00R OOk KR KRRk ARk R KRR Rk K ¥

X
X
X

¥
X
X
X
¥
¥
X
X
X
X
¥
b
¥
b1
X
X
¥
X
X
X
¥
X
X
L
X
X
*
¥
X
¥
¥
X
X
¥
¥
X
¥

Name:
rtmplt

Function:
Read the template file into Presentation Area

Synopsis:
rtmplt(fileid)

Input Farameters:
fileid: coded partion of file name for template file

Output Farameters:

Return Values:
NULL_ERR
GENERAL _ERR
INV_FILE_DATA_ERR

okay
no template file found for the display
invalid data in template file

o on

Functions Referenced:

dspere: display error message on screen
fclose: close file

fgets: get a line of text from a file
fopen: open file for reading

mvwaddstr: position cursor and add a string to window at coordinates
sprintf: write to a string

sscanf: get variables from a string of text

werase: clear window

Global Variables Referenced:

present_area: Fresentation Area window of display

pmt_txt: text for display prompts

prmpt_line: Prompt Line window of display

prmpt_table: pointers to text for all display prompts
Description:

Reads the template file, places prompt text in FPrompt Line, and places
text in Presentation Area window

Algorithm:

14

2100-12-002

¥ begin

X st return value to NULL_ERR

b1 call [sprintfl to build filename

¥ call [fopen] to open the template tile

X if error from [fopenl then

¥ call [dsperrl to display message “cannot open file"

L3 else

* begin

¥ while end-of-file not encountered and no errors do

¥ begin

X call [fgets] to read a line of text from template file

X call [sscantl to get start coordinates of text or prompt key
X if only one parameter returned from ({sscantl then

* begin

X it index is not valid then

¥ call [dsperrl to display message “invalid data in file"
X else

X begin

¥ call fwerasel to clear prmpt_line

X call [strncpyl to copy text to a prompt line string

X call [mvwaddstrl to position cursor % add string to window
* end

X end

E else

X begin

¥ copy text between guotes (") to

X a temporary string to be added to the screen window

X mark end of text with null character

X call [mvwaddstr] to add temporary string to the screen window
¥ end

¥ end

X call [fclosel to close the template file

¥ end

X return status value

¥ end

X

KRR R KKK %R 0Kk KKK R R0k K KKK 0 0k KKk RO XORKOOR RO ROk R kR R R kR ok /

2100-12-002

{.4.2 Read Values File

ZRRFOORRRER 00RO O KRR Rk ko0 o0k E ROk R ROk Rk

Name:
rvalue

Functiaon:
Read the value file and place text in Presentation Area if requested

Synopsis:
rvalue(fileid,dsp_flq)

Input Parameters:
fileid: coded portion of file name for value file
dsp_flg: if non—zero, then load text into Present. Area (ie. show text)

Output Farameters:
Return Values:

NULL_ERR
NO_VALUE_FILE_STS

okay
no value +ile found for the display

i

Functions Retferenced:

fclose: close file
fgets: get & line of text from a file
fopen: open file for reading

mvwaddstr: move cursor and add a string to windaw at coordinates
sprintf: wrrite to a string

sscant: scan a string for variables

strncpy: copy n characters from string 2 to string 1

Global Variables Referenced:

present_area: Presentation Area window of display
scri attributes and descriptions of fields on current screen
Description:

Reads the value file, places text in a linear array in ’scr’, and adds
the values read for the respective fields to the Fresentation Area if
display flag is set.

Algorithm:
begin
set return value to NULL _ERR

16

2100~-12-002

¥ call [sprintfl to build filename

X call [fopenl to open the value file

X if error from [fopenl then

¥ set return value to NO_VALUE FILE 8T8

X else

X begin

X set end X coordinate of ist field in field_layout to ¢ (end marker)
¥ set fld_ptr of screen to NULL_FTR (indicating Input Line)

b3 while end-of~file not encountered and no errors do

X begin

X call [fgetsl to read a line of text from value file

X call [sscanfl to get field coordinates

¥ it not four values found in string then

¥ call [dsperrl with “"missing parameter (s)"

¥ else

¥ begin

X save in field_layout the next available position of dsp_text
X copy value (less " for text) to dsp_text

¥ pad dsp_text with spaces for values not maximum length

¥ save in field_layout the last filled position of dsp_text
X set end X coordinate for the next field_layout entry to O
X if display flag set then

¥ begin

¥ for start Y coordinate to end Y coordinate do

X begin

X call [strncpyl to copy dsp_text to temp. string

b mark the end of temp. string with a null character
X call [mvwaddstrl to position cursor and

¥ add temp. string to Fresentation Area

X end

¥ end

X move to next field of display table

¥ end

X end

X call {fclosel to close the value file

3 end

X return status value

X end

¥

X

et R e R R Pt R R P R RIS R RIS EIIISIRIIL ST V)

- 17 -

1.4.3 Change a Value in Presentation Area

ZRRO00R KRR ORRRRRKR KR K080 0K 0K 0K R OO KRR R RO OO OOROR ROk R

Name:
chgval

Function:
change a value through screen input

Synapsis:
chgval (key)

Input FParameters:
key: character value entered at terminal by Operator

Output Farameters:
Return Values:

NULL_ERR
INF_LINE_STS

okay
at Input Line window of display

Functions Referenced:

addch: add a character to stdscr
getyx: get the current (y,x) screen coordinates
move: move the visible cursor on the screen

printt: write to terminal
refresh: update the window on the screen
wrefresh: make the screen look like stdscr

Blobal Variables Referenced:
input_tine: Input Line window of screen
sCr: attributes and description of fields on current screen

Description:
fdds the character entered by Operator to the screen, and to the array
containing the values, as text, read in from +file

Algorithm:
begin
set return value to NULL_ERR
if key is CTRL C or CTRL Z then
return status value
call Lgetyx] to get the (y,x) coordinate of cursor

P I MM M I M M I I M M M M I I I I I M I I I I M I P I D M I I M I I M I DE M D M

- 18 -

2100-12-002

X if at Input Line then

X begin

X call [waddchl to add character to window

b3 call [wrefreshl to update window

¥ set return value to INP_LINE_S8TS

X end

X else

X begin

X call [addch) to add character to window

¥ if at end of X coordinate of field then

X it at end of Y coordinate of field then

b call Cmovel to place the cursor over the new character
¥ else

X call Imovel to place the cursor on the next horizontal line
X call [refreshl to make change on screen

X add character to text of display values

¥ end

X return status value

X end

¥
X

FRRRRRROORRR OO0 R KRR KRR KRR KRR RN R R R KRR KR KRR KRR KRR KR RRK S/

19

2100-12-002

1.4.4 Mave Visible Cursor

Z3ORRR KK KKK KR KR KKK Rk oK 3k 3Kk oK 3Kk 0% 3k Rk 0k 3k 0k 0Kk KK OR RO R KKk KRR ROk RR R Rk X

PE B DE B P I M M B I I I I I I I D M I D W D M M P I M I I I I M e I I P I I I I I

Name:
movesr

Function:
Move visible cursor by Uperator control

Synopsis:
movesr (key)

Input Farameters:
key: keyboard input character from Operator

Output Parameters:

Return Values:

NOT_CRSR_STS = not a cursar key

NULL_ERR okay
Functions Referenced:
addch: add a character to a window
getyx: get (y,x) coordinates
move: move to (y,x} in window
printt: write output to terminal
refreshs make screen look like stdscr
wgetch: get a character through the window

Global Variables Reterenced:
“input_line: Input Line window of display
present_area: Presentation Area window of display
scre attributes and descriptions of fields on current screen

Description: .
Verities Operator input, and moves cursor between fields as reguested

Algorithm:
begin
set return value to NULL_ERR
call [getyx] to get cursor coordinates
case key of
CTRL_Z:

- 20 -

2100-12-002

FE FE P I I I M I M I IE I I I D I I M M I D M M I I I I M I I I M I I I I M M I I M W M I M M

CTRL_C:

return status
break;

tab forward:

if not in input_line window then

begin

if the x coordinate is not greater than the end of the field then
begin
call [movel to move right one space
call [refreshl to update the screen
end

else it y coordinate is not greater than end of the {field then
begin
call [movel to move down one vertical line
call [refreshl to update the screen
end

else
call [printfl to sound the bell —— at end of field

end

break

rubout:

it ¥ is not greater than end of +ield then
begin
call [addchl to place a space at window location
place a space in the display text
end
if not in input_line window then
if % coordinate is not less than the start of the field then
call [movel to move left one space
else if y coordinate is not less than start of the +ield then
call [movel to move up to next vertical line at end of field
else
begin
call [movel to move back to start of field
NOTE: adding a character moves cursor
call fprint+] to sound the bell -- at start of field
end
call [refreshl to update the screen
break

carriage return:

set fld ptr to indicate the cursor is in the input_line window
call fmovel to move the visible cursor to the input_line window
call Crefresh] to present the cursor on the screen

break

L7 (square bracket = insert space)

if in Input Line then

21

2100-12-002

call [printfl to sound the bell -- cannot insert
else
begin
it ¥ coordinate is greater than the end of the field then
call [printfl to sound the bell -- cannot insert
else
begin

set k to end of display text for field
set i to end of field X coordinate
set i to end of field Y coordinate
set done flag to FALSE
move cursor to (i,J)
while not done do
begin
if (i,J) coordinate is (x,y) coordinate from fgetyxl then
begin
call [addchl to place a space on the screen
place a space at location k of display text
set done flag to TRUE
end
else
begin
set d_txtlkl to d_txtlk - 11 (move to right)
call [addchl to add d_txktlk]l to screen
decrement &k
if i = start of field » coordinate and j is greater
than the y coordinate from [getyx] then
begin
set 1 to end of field x coordinate
decrement j
end
else
decrement i
call Lmovel to move cursor to new (i,J)
end
end
call [movel to place cursor at original location
call [refreshl to update the screen
end
end
break
1% (square bracket = delete character)
if in Input Line then
call [printfl to sound the bell —-- cannot delete
else
begin

FE I D PE I I M M DE I M M I I M I M M I I I M I D B I I M I M I I I I I I I I I M I M M I I I

2100-12-002

PE W I P I I I I I I P I M I M I I M M I I P I M D I I M I I I D M M I I M I I B P I I M

if ¥ coordinate is greater than the end of the tield then
call [printfl to sound the bell -- cannot delete

else
begin

set k to char. position of display text +or cursor location

in field
set i to current cursor X coordinate
set i to current cursor Y coordinate
set done flag to FALSE
while not done do
begin
i¥ (i,J) coordinate is end of field coordinates then
begin
tall [addchl to place a space on the screen
place a space at location k of d_txt
set done flag to TRUE
end
else
begin
set d_txtlkl to d_txtik + 11 (move to lett)
call [addch] to add d_txtlkl to screen
increment k
if i = end of field x coordinate and Jj is less
than the end of field y coordinate then
begin
set 1 to start of field x coordinate
increment j
end
else
increment 1
call [movel to move cursor to new (i,J)
end
end
call [movel to return cursor to (x,y) location
call [refreshl to update the screen
end
end
break
ESC:
call [wgetchl to get the second part of the escape character
case second key of

back tab:
if not in input_line window then
begin

if the % coord is not less than the start of the +ield then

begin

L 4

et

2100-12-002

e B e I B B S I M M I I I I D M D I M M B I I I I I I I M I D M I M I P I P I I I I I M M I

call [movel to move left
call L[refresnl to update
end

one space
the screen

else if the y coord not less than start of the field then

begin

call fmovel to move up one line

call [retfreshl to update
end
else

the screen

call [print+l to sound the bell

break
up arrow:
if in input_line window then
set cursor movement flag to
else
set cursor movement flag to
break
down arrow:
if in ipput_line window then
set cursor movement flag to
else
set cursor movement flag to
break
lett arrow:
if in input_line window then
set cursor movement flag to
else
set cursor movement flag to
break
right arrow:
if in input_line window then
set cursor movement +lag to
else
set cursor movement +flag to
break
otherwise:
call [printfl]l to sound bell
return status value
break

if in the input_line window then

up field af entry table

up link ot current field

down field of entry table

down link of current field

left field of entry table

lett link of current field

right field of entry table

right link of current field

call [movel to move the cursor to the input line

else

call L[movel to move to the field indicated by cursor movement

flag

- 24 -

call {retreshl to move the cursor in the Fresentation Area
break

2100-12-002

X default:

b set return value to NOT CURSOR STATUS
b1 return status value

X end
X

X

FRROORRRR RO RO RO OO OO RO R KR XK KRR KRR RRRRR/

25

2100-12-002

1.4.5 Save Presentation Area Field Values

ZRRRRRNRKRR000RK R RRRKKOCK KRR 00000000000 R RO DOk KRR R0k g

Name:
wvalue

Function:
Write screen values to disk file

Synopsis:
wvalue(fileid)

Input Farameters:
fileid: coded portion of file name to be written

Output Parameters:
Return Values:

NULL_ERR
GENERAL_ERR

okay
cannot open file

Functions Referenced:
dsperr: write error message on monitor
fclose: close file
fopen: open +ile for writing
fputs: put string in file
sprintf: print to a string
strien: +ind length of a string

Global Variables Referenced:
sCr: attributes and descriptions of fields on current screen

Description:
Writes the modified values to the dsp###f.val file for the current display

Algarithm:
begin
set return value to NULL_ERR
call [sprintfl to build filename
call [+openl] to open the value file
if error from [fopenl then
call [dsperr] with GENERAL_ERR

else

P I M I I I I I M e M M I M I I M I I M M P I I I M I I I I I I B I I I I D M

2100-12-002

X begin

b while not all +fields have been saved in file do

¥ begin

X call [sprintf] to save start y,x end y,x coordinates in
¥ : temporary string and place quote (") at end

¥ call [strlienl to find length of temporary string

¥ copy field text to temporary string

X add a guote (") to the temporary string

¥ add an end-of-line character to temporary string

¥ call [fputs] to move temporary string to value file

X end

X call [fclosel to close file

X end

X return status value

¥ end

X

FORRR KRR KR KK R oKk o kKK KKK Kok K k3K ok ok Kk R Kk KRk R RO KORR KRR KRR Rk kR KRk kX /

27 -

2100-12-002

1.5 Display Error/Status Message

AERRERRORKORR KRR KRR KRR K000 R KRR 00 R KRR0K0K K0k 8 5000 0K E R R KK O0OR KRR OO R R KRR KX Rk

I M I W I P I I M I I M I I D M B I I I M I I I I I I M M I I I I I M I M I W M I

Name:
dsperr

Function:
Display an error/status message

Synapsis:
dsperr (err_code, index)

Input Farameters:
err_code: unsigned index into error table containing text messages
index: field on screen containing error

Output Farameters:

Return Values:
err_tode = error code of message displayed
GENERAL_ERR = err_code not valid table index
NOTE: GENERAL_ERR will also be returned if this is the
err_code passed

Functions Referenced:

ioclos: close device for input/output
iocopen: open a device for input/output
iowrit: write to a device

move: MOVE CUrsor On screen

refresh update screen

waddstr: add string to window
werase: erase window

wrefresh: refresh window of display
wstandend: reverse video off
wstandout: reverse video on

blobal Variables Referenced:
error_line: window of display containing error/status messages
err_txt: text for error messages
error_table: pointers to text of error/status messages
input_line: window of display used for keyboard input
lun_tbl: table mapping physical to logical devices
msg_prt: print display messages to error console flag

_'28...

2100-12-002

sCr: fields of text and data currently displayed on monitor

Description:
The text for the error message is added to the window and presented
on the display, and on the printer if reguested

Algorithm:
begin
i+t error_code is greater than top end of error_table or
less than bottom end of error_table then
set return value to GENERAL_ERR
else

begin

tall [werasel to erase the error window

copy the error message to a temporary buffer

call [wstandoutl to highlight error message

call [waddstrl] to add text to window

call [wrefreshl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>