(James and)

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

Cruise Report

CSS HUDSON Cruise 86-027

Brian MacLean

Atlantic Geoscience Centre

Geological Survey of Canada

Bedford Institute of Oceanography

Dartmouth, N.S.

OPEN FILE DOSSIER PUBLIC

1501 GEOLOGICAL SURVEY COMMISSION GEOLOGIQUE OTTAWA CRUISE DESIGNATION: 86-027

VESSEL:

CSS Hudson

DATES:

August 26 - September 26, 1986

AREA:

Lancaster Sound, Barrow St., Viscount Melville Channel,

Wellington and Queens Ch., Austin and Byam Martin Ch.,

Hudson Strait.

RESPONSIBLE AGENCY:

Atlantic Geoscience Centre

SHIP'S MASTER:

Captains: F.W. Mauger and J. Lewis

SENIOR SCIENTIST:

Brian MacLean

PERSONNEL:

*D. Beaver, AGC

A. Bedo, MEL

*H. Boudreau, Hydrography

*B. Chapman, AGC

L. Harris, MEL

E. Head, MEL

D. Hodgson, Terrain Sci.

*A. Hunt, Univ. of Vermont

*A. Jennings, INSTAAR

P. Joannou, Polar Shelf

*W. LeBlanc, AGC

B. Loncarevic, AGC

*S. Merchant, AGC

*J. Neilson, AGC

*C. Powell, AGC

- *R. Murphy, AGC
- T. Siferd, MEL
- G. Sonnichsen, AGC
- *G. Standen, Huntec
- *A. Taylor, Terrain Sci.
- R. Taylor, AGC (2nd Senior)
- *H. Weile, AOL

*Resolute to Deception Bay, August 26 - September 26

Cruise 86-027 was carried out from CSS Hudson and commenced at Resolute Bay on August 25 and ended at Deception Bay, Quebec, on September 26, 1986.

Proposed Program Area

The proposed primary area embraced the Wellington Channel - Crozier Strait - Norwegian Bay - Belcher Channel - east Lougheed Island areas, and the Byam Martin Channel region (Figure 1).

A secondary area comprised parts of Lancaster Sound, Barrow Strait, and tributary channels to the south: Prince Regent and Peel Sounds and Admiralty Inlet, as well possibly as some follow-up studies in Jones Sound and its approaches. The secondary area was mainly an alternate if ice conditions were unfavourable in the primary program area.

Objectives

The cruise objectives were the collection of geological, geophysical, geotechnical, biological, physical, physical oceanographic, and hydrographic data as outlined below.

- (1) Geology surficial sediments: areal distribution of units, thickness, composition, geotechnical properties, post-depositional modification, geochronology, glacial and post glacial history;
 - bedrock: areal distribution of units and structure; and
 - coastal and onshore geological investigations.
- (2) Biology investigation of relationships between metabolic and feeding rates and ambient phytoplankton concentrations;

- flowmeter and CTD measurements to locate and to define physical oceanographic parameters; and
- investigate enhancement of levels of benthic biomass in regions of polynyas.
- (3) Hydrography collection of bathymetric data along all tracks.
- (4) Seabed thermal data insitu heat probe measurements and laboratory thermal conductivity measurements on sediment cores.

Methods

Geophysical data were acquired with a single channel seismic reflection system (655cm³ compressed air source and Nova Scotia Research Foundation hydrophone), Huntec high resolution deep tow seismic system, Bedford Institute of Oceanography sidescan, hull mounted 14.25 kHz echosounder (Kelvin Hughes 26B). Sediment samples were obtained with a Benthos piston corer, VanVeen grab, box and gravity corer. Biological studies included CTD measurements, water bottle casts, vertical plankton tows, and collection of seabed biota. Geothermal studies included insitu seabed measurements with a Bullard-type temperature gradiometer probe. Bottom photographs were obtained with UMEL cameras. Piston cores were split, logged, x-rayed and photographed; shearvane, thermal conductivity, and magnetic susceptibility measurements were made; and subsampling was done for texture, geotechnical properties, microfossils (and paleomagnetics on 2 cores).

Oceanographic and biological studies measured conductivity, temperature and depth with a guideline model 8770 portable CTD system. Zooplankton quantitative determinations were obtained by means of a 100 micron ring net with

a 0.5 m diameter. Zooplankton for physiological experiments were collected using a 780 micron mesh and a 0.75 m opening sampling only the top 50 m of the water column phytoplankton concentrations were sampled for the top 30 m using 5 L Niskin bottles mounted on a CTD rosette.

The primary navigational positioning system was the BIONAV integrated system interfaced to GPS Navstar (Magnavox T-Set), Transit satellite system, ship's log and gyro, and in eastern Hudson Strait, Loran C (see appendix item 3), supplemented by radar range and bearing. GPS positioning was available for two periods totalling 12 hours per day. A backup, GNS aircraft-type navigation system proved unsuitable, possibly due to antenna problems.

Ice information was obtained by means of a weather satellite imagery receiver on loan from Polar Continental Shelf Project, visual inspection and reconnaissance by a Jet Ranger 206-B helicopter and Ice Central broadcast ice charts and reports. The satellite imagery data proved to be an invaluable source of up to date regional information whereas helicopter observations provided more detailed information on a more local scale and beneath extensive cloud cover. A reconnaissance of ice conditions in the Prince Regent Inlet/Fury-Hecla Strait/northern Foxe Basin region, the proposed route to Hudson Strait and Deception Bay, was carried out by a chartered Twin Otter aircraft from Resolute.

The helicopter was also used to transfer personnel ashore for coastal and Quaternary geological investigations.

Ice Conditions

Wellington-Queens Channel region: close pack ice limited the survey in

a few areas of Wellington Channel, but conditions generally ranged from open water to open pack ice. Similar conditions prevailed in Sophia Channel.

Byam Martin Channel region: Austin and Byam Martin Channels north to the ice jam between Domett Point and Ile Vanier, and northwestern Parry Channel were covered by new ice, but which had little effect on the surveys. Large multi-year ice floes concentrated around northern and western Byam Martin Island prevented surveys in Byam Channel.

Parry, Barrow, Prince Regent, Fury-Hecla regions: concentrations of pack ice varied daily with heaviest pack being along the south sides of Viscount Melville, Barrow Strait, and western Lancaster Sound and in Prince Regent Inlet.

Unfavourable ice conditions in Prince Regent and at the western end of Fury and Hecla Strait ruled out passage to Hudson Strait via that route.

Results

Although ice conditions in the Arctic Islands in 1986 were generally worse than normal, the cruise was successful in obtaining extensive information in Wellington Channel, Byam Martin and Austin Channels and in eastern Barrow Strait as well as reconnaissance data in Sophia and northern Queens Channels, and at various localities along the north side of Parry Channel south of Melville and Bathurst Islands (Figure 2 and Table I). These areas represent active and potential oil transportation routes and thus constitute important parts of the NOGAP study area. Ice conditions rendered the Norwegian Bay - Belcher Channel - east Lougheed region inaccessible.

With the exception of parts of eastern Barrow Strait, little or no

regional marine geological data of the type acquired in 1986 previously existed for the regions surveyed during cruise 86-027. There was no information for Wellington Channel and the areas of northern Parry Channel and the data previously collected from Byam Martin - Austin Channel consisted mainly of scattered sediment samples and localized surveys along proposed pipe line routes. Parts of western Barrow Strait previously had been extensively sampled but little continuous acoustic profile data existed. In eastern Barrow Strait profiles obtained in 1986 extended and tied together previous acoustic and sample data, defined sediment boundaries and relationships, and obtained samples for determining geotechnical properties of the seabed sediments.

The following is a preliminary outline of the geological data obtained.

- Wellington Channel: surficial sediments in general are thickest in the northern part of the channel where clayey and silty sediments (some sand and gravel sized particles are also present), 2-3 m thick, overlying 5-10 m of till-like sediments occur extensively. In the southern part of the channel surficial sediments commonly total 10 m or less in thickness, but locally are up to 20 m where apparent glacial deposits locally thicken. Locally these sediments are thinly mantled by mainly silty sediments.
- 2. Byam Martin and Austin Channels: surficial sediments in this region in general are thicker than in Wellington Channel. The Quaternary section in places includes clayey and silty sediments, with sandy and gravelly components, but unstratified sediments, which appear to represent glacial deposits, are the most areally extensive, and also the thickest, up to 30 m or more (50 m observed in one locality). Moraine-like accumulations occur locally, with some possible multiple till deposits represented.

One of the acoustic profile tracks across Byam Martin Channel was along a proposed pipe line route between Melville Island and Ile Vanier.

3. Northern Parry Channel: surficial sediments range up to approximately 10 m in thickness along the north side of Viscount Melville Sound southeast of Melville Island and south of Byam Channel. As found elsewhere, deposits interpreted to be glacial material are the most widespread of the surficial sediment units. Multiple sequences of these sediments, some 20 m or more in total thickness, occur adjacent to Keen Bank near the entrance to Austin Channel. These are discontinuously mantled by thin (+1 m) clayey or silty sediment.

Clayey and silty sediments up to 5 m in thickness overlie apparent glacial till in a small basin east of Lowther island.

4. Eastern Barrow Strait: sediments in this region include thick deposits interpreted to be glacial sediments that locally appear to contain multiple till sequences and to form moraines in which thicknesses may reach 70 m. These sediments are variably overlain by up to 3 m of stratified (acoustically) sediments and up to 7 m of unstratified (acoustically), mainly clayey and silty sediments.

Surveys in northern Prince Regent Inlet were severely restricted by ice conditions but the limited data indicate 5 to 6 m of unstratified (acoustically) sediments overlying bedrock in the area surveyed. Fine textured sediments are thin and confined to areas greater than 400 m water depth.

5. En route to Deception Bay, acoustic and other geophysical data were obtained along tie lines in eastern Hudson Strait, in another area 93 km

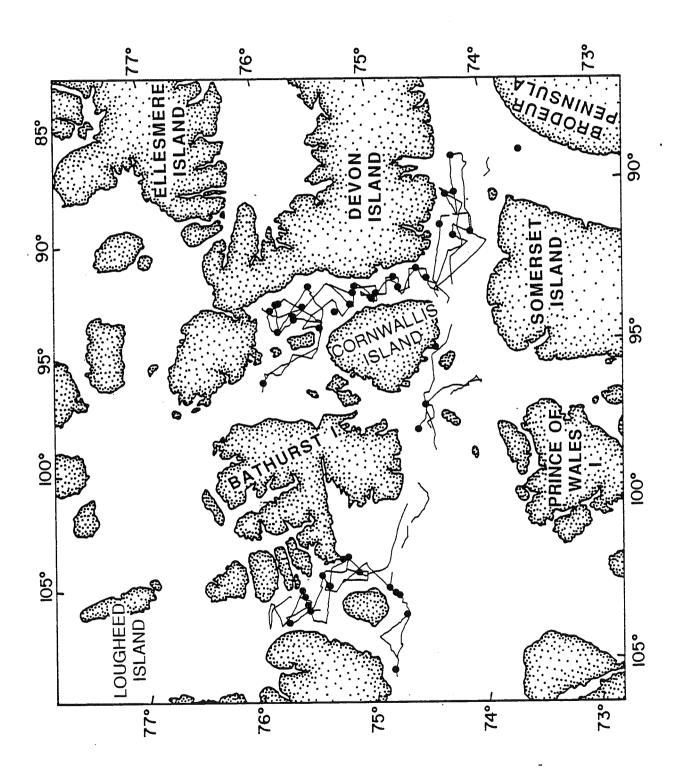
west of Cape Hopes Advance and in the western part of the Strait where the 1985 survey tracks were extended south of Nottingham Island as far west as 77°00'W.

of northern Wellington Channel was carried out on Dundas Island and near Cape Majendie, Devon Island. Beach profiles were resurveyed in the Radstock Bay and Cape Ricketts areas of Devon Island, on the north coast of Somerset Island and on Cameron and Lowther Islands. Aerial oblique video coverage of the coastline was obtained for part of the western coast of Byam Martin Island and southeastern Melville Island from near Ross Point eastward to tie, 5 km north of Robertson Point, with video data obtained in 1985 (see appendix item 1).

On shore geological investigations (D. Hodgson) of Quaternary sediments were attempted on Devon, Cameron, Byam Martin, Lowther and Dundas Islands, but for the most part these were severely hampered by the snow cover.

7. Biological studies: (E. Head) CTD profiles and water and plankton net samples were collected at stations throughout the Arctic Islands survey area. One of the striking features of the data was the contrast in results from stations of similar latitudes in Wellington and Byam Martin Channels. In the latter area, concentrations of algae were low (<lug chlorophyll per litre) and the top 50 m was characterized by a layer of cold water of low salinity, originating from the Arctic Ocean. In Wellington Channel, although the source water is the same, CTD profiles showed a well mixed water column with high concentrations of algae (>15mg)

chlorophyll per litre). The difference between the two regions is attributed to water entering Wellington Channel having to pass through Penny Strait, a shallow and turbulent area, whereas water entering Byam Martin Channel encounters no such restricted passage. This mixing is thought to cause nutrient enrichment of the surface water, which in turn accounts for the high algal concentration of Wellington Channel. Wave conditions in part were more energetic in Wellington Channel during the survey than in Byam Martin Channel where new ice had formed and sea conditions were quiescent.


8. Geothermal program: (A. Taylor) Insitu measurements were made at 8 stations with a Bullard-type temperature gradiometer probe and thermal conductivity measurements were made on 33 core sections.

The distribution of thermal conductivity values show some distinct differences among the main geographic areas examined, which appear to relate to variations in textural and geotechnical properties of the sediments.

General Comments

- 1. Sincere thanks are extended to Captain F.W. Mauger, and latterly to Captain J. Lewis, officers and crew of CSS Hudson and the cruise scientific staff for their cooperation, interest and support of the program throughout the cruise.
- 2. The Wellington Channel, Austin and Byam Martin Channel regions where extensive surveys were carried out, represent important parts of the NOGAP program area, and we were fortunate that ice conditions permitted

- this work to be achieved, considering the generally unfavourable ice conditions in the Arctic Islands region in 1986.
- 3. The lack of the IKU clam shell sampler through its loss earlier this year was a distinct handicap to sediment sampling.
- 4. Offloading of unused helicopter fuel at Resolute was not possible due to failure of the slinging hook on the helicopter.
- 5. Significant discrepancies were encountered between apparent piston core penetration and length of cores recovered, which persisted despite various adjustments and equipment changes tried. This may be a function of the sediment characteristics, but the reasons are puzzling and AGC needs to check further into this problem.
- 6. The extent of Loran-C coverage available in Hudson Strait appeared substantially more limited than during cruise 85-027.
- 7. Fuel limitations were of concern, particularly at the beginning, but favourable ice conditions and slow survey speeds in Wellington, Austin and Byam Martin Channels together with conservative usage elsewhere eased this problem.
- 8. Problems were encountered with ice in the air gun air lines; the sidescan cable was damaged near the fish and had to be cut after becoming entangled with the Huntec cable; 1 NSRF eel deteriorated in output quality after extensive use and a second, previously unused one, appeared to have substantially less sensitivity; one 100 ft SE eel section was damaged apparently through contact with the Huntec cable off Deception Bay.

INDUL I

STATION NUMBER	JULIAN DRY / TIME	LATITUDE	LONGITUDE	DEPTH (METRES)	SAMPLE TYPE	GEOGRAPHIC LOCATION	HOTES
1	2400324	75 12.20H	93 14.60U	192.0	6RRE	UELLIKGTON CHRNNEL	UAN UEEN GRAB
2	2400454	-75 12.12N	93 14.00W	193.8	CTD	WELLINGTON Channel	CTD (MEL)
3	2400523	75 12.20N	93 14.5 0U	193.8	URTER	WELLINGTON CHRNHEL	UATER (MEL)
. 4	2400537	75 12.20N	93 14.50U	193.8 P	PLANKTON	CHANNEL	PLANKTON: TOW (MEL)
5	2 1 10405	76 02.80N	93 10.00U	137.0	6RAB	CHUNNET RETTINGLON	URH UEEN GRAB
6	2410427	76 02.70N	93 10.0 0 U	143.0	CTO	UELLINGTON Channel	CID (HEL)
7	2410 4 55	76 02.60N	93 10.00W	143.0	UATER	CHANNEL	WATER (MEL)
8	2410508	76 Q2.60N	93 18.004	143.0 P	LAHKTOH -	CHANNEL	PLANKTON TOU (MEL)
9	2 1 11753	75 5 4.50 N	93 43.00U	350.0	CORE	CHANNET METITINGLON	PISTON CORE. LENGTH: 13 CM.
9TUC	2411753	75 54.50N	93 43.00 U	350.0	CORE	CHANNEL CHANNEL	TRIGGER WEIGHT CORE. LENGTH: 190 CM.
10	2411815	75 54.88N	93 49.00U	320.0 (CAMERA	UELLINGTON Channel	UMEL CAMERA
11	2411929	75 55.48N	93 41.77U	311.0	CORE	CHANNEL	PISTON CORE. LENGTH: 28 CM.
11TUC	2411929	75 55.48N	93 41.77 W	311.0	CORE	CHANNEL	TRIGGER WEIGHT CORE. LENGTH: 176 CM.
12	2412106	75 49.26N	93 22.934	265.0	CORE	WELLINGTON Channel	PISTON CORE. LENGTH: 200CM.
12TUC	2412106	75 49.26N	93 22.931	265.0	CORE	UELLINGTON Chrnnel	TRIGGER WEIGHT CORE, LENGTH: 131 CM.
13	2412154	75 49.56N	93 21.26W	265.0	CORE	CHANNET NETTINGLON	BOX CORE

				-			
STRTION NUMBER	JULIAN DAY / TIME	LATITUDE	LONGITUDE	DEPTH (METRES)	SAMPLE TYPE	GEOGRAPHIC LOCATION	HOTES
14	2412222	75 49.44N	93 20.194	265.0	CTD	WELLINGTON Channel	CTD (MEL)
15	2420 4 51	76 07.30N	93 27.00U	165.0	GRAB	WELLINGTON Channel	UAH VEEN GRAB
16	2420451	76 07.30N	93 27.00W	165.0	GRAB	WELLINGTON CHANNEL	UAN VEEN GRAB
. 17	2420530	76 07.17N —	93 26.71U	165.0	CAMERA	WELLINGTON CHANNEL	UMEL CAMERA
18	2420556	76 07.19N	93 26.04W	165.0	CID	WELLINGTON CHANNEL	CTD (MEL)
19	2420607_	76 O7.17H	93 25.831	165.0	PLANKTON	WELLINGTON CHANNEL	PLANKTON TOW (MEL)
20	2420720	76 0 1.45 N	93 12.41W	183.0	6RAB	WELLINGTON CHANNEL	URN VEEN GRAB
21	2420734	76 04.38N	93 11.65U —	143.0	GRAB	CHUNKET Nettingloй	UAN VEEN-GRAB
22	2420753	76 04.3 4 N	93 10.784	143.0	CAMERA	UELLINGTON CHANNEL	UMEL CAMERA
23	2421203	76 03.75N	94 15.50U	93.0	6RAB	WELLINGTON CHRHHEL	UAN VEEN GRAB
24	2421220	76 03.60N	94 15.00W	105.0	CAMERA	CHRHNEL	UMEL CAMERA
25	2422109	75 45 .70H	92 37.5 9 U	74.8	GRAB	UELLINGTON CHANNEL	UAN VEEH GRAB
26	2422122	75 45.59N	92 37.771	74.0	CAMERA	CHANNET	UMEL CAMERA
27	2430315	75 41.60N	94 08.50W	95.0	PLANKTON	UELLINGTON CHANNEL	PLAHKTOH TOU (MEL)
28	2430334	75 1 1.00N	94 08.50W	95.0	GRA8	UELLIH6TOH CHANNEL	UAN VEEN GRAB
29	2430343	75 4 1.00N	94 08.50W	100.0	GRAB	UELLINGTON Channel	UAN VEEN SRAB (MEL)

STATION NUMBER	JULIAH DAY / TIME	LATITUDE	LONGITUDE	DEPTH SAMPLE (METRES) TYPE		HOTES
30	2430402	75 40.80N	94 08.30W	100.0 WATER	WELLINGTON CHANNEL	WATER (MEL)
31	2430412	75 40. 90N	94 10.00W	100.0 PLANKTON	UELLINGTON CHRNNEL	PLANKTOH TOW (MEL)
32	2431552	76 13.00N	96 10.0 0 U	247.0 GRAB	QUEENS Channel	UAN UEEN GRAB
33	2 43 1620	76 13.00N	96 10.00W	247.0 PLANKTON	QUEENS Chrnnel	PLANKTON TOW (MEL)
34	2431642	76 12.25N	96 10.26W	240.0 CAMERA	QUEENS CHANNEL	UMEL CAMERA
35	2 11 1355	75 24.70N	93 26.50W	271.0 CORE -	HELLINGTON CHANNEL	PISTON CORE. LENGTH: 81 CM.
35TUC	2441355	75 24.70N	93 26.504	271.0 CORE	WELLINGTON CHANNEL	TRIGGER WEIGHT CORE. LENGTH: 150 CM.
36	2441 434	75 24.30H	93 2 5.30 U	271.0 CORE	CHANNEL	BOX CORE
37	2441507	75 2 4. 10N	93 24.10U	271.0 CTD	WELLINGTON Channel	CTD (MEL)
38	2441530	75 23.70N	93 24.454	256.0 CAMERA	HELLINGTON Channel	UMEL CRMERR
39	2441644	75 23.63N	93 21.570	252.0 PROBE	CHANNEL CHANNEL	HEAT PROBE (A. TRYLOR)
40	2441 904	75 32.79N	93 37.514	137.0 GRAB	CHANNEL	UAN UEEN GRAB
41	2441926	75 32.66H	93 37.16W	137.0 CRHERA	CHANNEL CHANNEL	UMEL CAMERA
42	2442308	75 21.80N	93 02.0 0 U	156.0 GRRB	UELLINGTON CHRHHEL	UAH UEEN GRAB
43	2442330	75 21.60N	93 01.151	165.0 CAMERA	UELLIHGTON Channel	LITEL CAMERA
44	2450024	75 21.30N	92 45.00 U	185.0 GRAB	CHANNEL	URH VEEH GRAB

						-	
	JULIAN DRY / TIME	LATITUDE	LONGITUDE	OEPTH (METRES)	SAMPLE TYPE	GEOGRAPHIC LOCATION	HOTES
45	24500 1 5	75 21.00N	92 45.30 U	207.0	CAMERA	UELLINGTON CHANNEL	UMEL CAMERA .
- 6	2450535	75 09.37N	93 04.054	146.0	CTD	CHANKET NETTINGLOH	CTO (MEL)
47	2450547	75 09.34N	93 03.98µ	146.0	PLAHKTON	CHANNEL CHANNEL	PLANKTON TOLI (MEL)
48	2 4 50613	75 09.41H	93 03.950	147.0	CTD	WELLINGTON CHANNEL	CTD (MEL)
49	2450639	75 09.21N	93 02. 45 U	147.0	CTB	WELLINGTON Channel	CTD (MEL)
50	2 1 50655	75 09.26H	93 02.694	147.0	BOTTLE	UELLINGTON Chrhnel	URTER (MEL)
51	2450706	75 09.31N	93 02.684	147.0	PLANKTON	CHANNEL	PLANKTON TOW (MEL)
52	2 4 507 4 4	75 09.40H	93 02.01W	143.0	GRAB	UELLIHGTON Channel	URN UEEN GRAB
53	2 1 50813	75 09.46H	93 D1.67W	143.8	CORE	NETTINE ON	GRAVITY CORE
54	2 45 0834	75 09.61H	93 01.159	143.0	CAMERA	WELLINGTON Channel	UMEL CAMERA
5 5	2450856	75 09.61N	93 01.151	143.0	CTB	CHUNNET Mettingloh	PLANKTON TOU (MEL)
56	2 4 51936	74 59.54N	92 32.304	174.0	GRAB	CHAHNET TELTINGION	UAH UEEN GRAB
57	2 45 2000	74 59.47H	92 32.300	174.0	CAMERA	LELLIHGTON CHANNEL	UMEL CRMERA
58	2 1 52330	74 57.50H	92 54.804	201.0	GRAB	CHAHHEL UELLIHGTOH	URN VEEN GRAB
59	2 1 52354	74 57.40N	92 54.00	J 201.0) CAMERA	CHANNEL UELLINGTON	UMEL CAMERA
. 60	2460551	74 46.98N	92 17.8 4 L	J 73.1	OTD C	CHANNEL UELLINGTON	· CTD (HEL)

STRTION NUMBER	JULIAH DRY / TIME	LATITUDE	LONGITUDE	DEPTH SAMPLE (METRES) TYPE	GEDGRAPHIC LOCATION	HOTES
61	2 1 60608	74 46.86N	92 17.87U	72.0 PLANKTON	WELLINGTON CHRNNEL	PLAHKTON TOW (MEL)
62	2460628	74 46.86N	92 17.991	73.0 GRAB	WELLINGTON CHRNNEL	URN UEEN GRAB
63	2460652	74 46.86N	92 17.99U	73.0 CAMERA	UELLINGTON CHANNEL	UMEL CAMERA
64	2461008	74 41.80N	92 40.504	137.0 GRAB	UELLINGTON CHRNNEL	UAN UEEN GRAB
65	2461029	74 41.80N	92 40.50 U	137.0 CAMERA	WELLINGTON CHANNEL	UMEL CAMERA
66	2470413 -	74 25.10N	91 18.00W	165.0 CTD	BARROW STRAIT	CTD (MEL)
67	2470427	74 25.00K	91 15.80W	165.0 GRAB	BARROW Strait	UAN UEEN GRAB
68	2470438	74 25.10N	91 18.00W	165.0 CTD	BARROU Strait -	CTD (MEL)
69	2470449	74 25.10N	91 18.0 0 U	165.0 PLANKTON	BARROU Strait	PLAHKTOH TOU (MEL)
70	2470510	74 25.00N	91 19.0 0 U	165.0 BOTTLE	BARROU Strait	NATER (MEL)
71	2470516	74 25.00N	91 19.00W	165.0 PLANKTON	BARROW STRAIT	PLANKTON TOW (MEL)
72	2481624	74 45.55H	97 04. DO U	287.0 CBRE	U. BARROU Strait	PISTON CORE. LENGTH: 262 CM.
72146	2481624	74 45.55N	97 0 4.00 U	287.0 CORE	U. BARROU STRAIT	TRIGGER WEIGHT CORE. LENGTH: 161 CM.
73	2481645	74 45.74H	97 83.62 u	276.0 PLANKTON	U. BARROU Strait	PLANKTON TOW (MEL)
74	2 1 81658	74 45.78H	97 03.261	275.0 CTD	U. BARROU STRAIT	CTD (MEL)
75	2481731	74 45.69N	97 03. 49 U	279.0 CORE	U. BARROU STRAIT	BOX CORE

STATION NUMBER	JULIAN DRY / TIME	LATITUDE	LONGITUDE		GEOGRAPHIC LOCATION	HOTES
76	2 1 81833	74 45.74N	97 03.21W	278.0 PROBE	U. BARROU STRAIT	HEAT PROBE (A.TAYLOR)
77	2481917	74 45.72N	97 03.74W	278.0 CORE	U. BARROU - STRAIT	PISTON CORE. LENGTH: 305 CM.
78	2500213	75 4 7.90N	103 57.04	166.4 GRAB	BYAM MARTIN CHANNEL	UAN UEEN GRAB
79 —	2500236	75 47.40N	103 57.4W	166.4 CRMERA	BYAN MARTIN CHANNEL	UMEL CRMERA
80	2500257	75 47.40H	103 58.2U	166.4 CTD	BYAM MARTIN CHRNNEL	CTO (MEL)
81	2500308	75 47.80N	103 57.5W -	173.0 PLANKTON	BYAN MARTIN CHANNEL	PLANKTON TOW (MEL)
82	2500323	75 47.80N	103 57.51	173.0 CTD	BYAN MARTIN Chrhnel	CTD (MEL)
83	2500331	75 47.80N	103 57.54	173.0 PLANKTON	BYRM MARTIN Channel	PLANKTON TOW (MEL)
84	2500351	75 4 7.80 N	103 58.54	183.0 CTD	BYAN MARTIN Channel	CTD (MEL)
65	2500402	75 47.80N	103 58.51	184.0 PLANKTON	BYAM MARTIN CHANNEL	PLAHKTON TOU (MEL)
86	2502029	75 49.16N	103 59.94	182.9 CORE	BYAM MARTIH CHANNEL	PISTON CORE. LENGTH: 253 CM.
34138	2502029	75 49.16N	103 59.9W	182.9 TRIGGER	BYAM MARTIN CHANNEL	TRIGGER WEIGHT CORE: LENGTH 103 CM.
87	2502048	75 48.88N	103 59.14	182.9 PROBE	BYAM MARTIN CHANNEL	HEAT PROBE (A. TRYLOR)
88	2502134	75 48.60N	103 58.54	183.0 CORE	BYAM MARTIN Channel	BOX CORE
89	2502229	75 46.18N	104 11.2U	170.0 CORE	BYRM MARTIN CHANNEL	PISTON CORE. LENGTH: 201 CM.
89TUC	2502229	75 46.18N	104 11.2W	170.0 TRIGGER	BYRM MARTIN CHANNEL	TRIGGER WEIGHT CORE, LENGTH: 140 CM.

THREE 1

PAGE 7

STATION NUMBER	JULIRN DRY / TIME	LATITUDE	LONGITUDE	DEPTH SAMPLE (METRES) TYPE	GEOGRAPHIC LOCATION	HOTES
90	2510128	75 1 3.60N	104 28.51	150.0 GRAB	BYAM MARTIN CHANNEL	URN UEEN GRAB
91	2510201	75 44.50M	184 31.54	150.0 CAMERA	BYAM MARTIN CHANNEL	UNEL CAMERA
92	2510219	75 44.36N	104 29.51	150.0 PLANKTON	BYFM MARTIN CHANNEL	PLANKTON TOW (MEL)
93	251 0241	75 44.32H	104 29.5W	150.0 CTD	BYAM MARTIN CHANNEL	CID (MEL)
94	251 0708	75 52.82N	105 14.54	214.0 PLANKTON	BYAM MARTIN CHANNEL	PLANKTOR TOW (MEL)
95	2510728	75 52.81N	105 14.50	214.0 GRAB	BYAM MARTIN CHANNEL	URK VEEN SRAB
96	2510750	75 52.30N	105 13.64	220.0 CRMERA	BYAM MARTIN Channel	UMEL CRMERA
97	2511752	75 25.07N	102 37.64	165.0 GRAB	BYAM MARTIN CHANNEL	URM UEEN GRRB
98	2511813	75 25.05N	102 36.94	166.0 CORE	BYRN MARTIN Channel	PISTON CORE. LENGTH: 182 CM.
981UC	2511813	75 25.05N	102 36.9W	166.0 CORE	BYRM MARTIN Channel	TRIGGER WEIGHT CORE. LENGTH: 117 CM.
99	2511931	75 25.07H	102 34.7 µ	166.0 GRAB	RUSTIN CHANNEL	UAN UEEN GRAB
100	2512111	75 27.75H	102 40.94	210.0 CORE	AUSTIK Channel	PISTON CORE. LENGTH: 244 CM.
1001UC	2512111	75 27.75H	102 40.94	210.0 CORE	RUSTIN CHRNNEL	TRIGGER WEIGHT CORE. LENGTH: 78 CM.
101	2512134	75 27.60H	102 41.0W	210.0 CTD	RUSTIH CHRNNEL	CTD (MEL)
102	2512154	75 27.53H	102 40.74	210.0 CORE	AUSIIH Channel	BOX CORE
103	251 2229	75 27.75N	102 41.20	201.0 CORE	RUSTIN Channel	PISTON CORE. LENGTH: 341 CM.

				-			
STATION NUMBER	JULIAH DAY	LATITUDE	LONGITUDE	DEPTH (METRES)		6EDGRAPHIC LOCATION	HOTES
103TUC _	251 2229	75 27.75H	182 41.2 U	201.0	CORE	RUSTIN CHRNNEL	TRIGGER WEIGHT CORE. LENGTH: 35 CM.
104	2520103	75 18.50N	103 06.SJ	152.0	GRAB	RUSTIN CHRNNEL	UAN VEEN GRAB
105	2520130	75 18.10N	103 04.54	152.0	CAMERA	RUSTIN CHANNEL	UMEL CAMERA
106	2520149	75 18.10H	103 04.5U	152.0		AUSTIN CHANNEL	CTD (MEL)
107	2520204	75 18.10N	103 04.5W	152.0	PLANKTON	AUSTIH Channel	PLANKTON TOW (MEL)
108	2520226	75 18.80N	103 04.04	152.0	CTD	AUSTIN Channel	CID (HET)
109	2520235	75 18.80N	103 04.0U	152.0	PLANKTON	RUSTIN Channel	PLANKTON TOW (MEL)
110	2520247 —	75 18.80H	103 04.0W	152.0	PLANKTON	AUSTIN Channel	PLANKTON TOW (MEL)
111	2521204	75 33.00N	103 41.50	97.0	GRAB	AUSTIN Chrnnel	UAN UEEN GRAB
112	2521227	75 33.80H	103 42.2W	110.0	CAMERA	RUSTIH Channel	UMEL CAMERA
113	2521438	75 37.80H	103 21.84	271.0	CORE	AUSTIN Channel	PISTON CORE. LENGTH: 356 CM.
113TUC	2521438	75 37.80N	103 21.8U	271.0	CORE	AUSTIN Channel	TRIGGER WEIGHT CORE, LENGTH: 161 CM.
114	2521535	75 37.70N	103 21.9U	267.0	CTD	AUSTIN Channel	CTD (MEL)
115	2521625	75 37.80N	103 21.04	267.0	CORE	AUSTIN Channel	PISTON CORE. LENGTH: 65 CM.
115TUC	2521625	75 37.80N	103 21. 0 U	267.0	CORE	AUSTIH Channel	TRIGGER WEIGHT CORE. LENGTH: 145 CM.
116	2521712	75 38.15H	103 21.2W	267.0	PROBE	RUSTIN CHANNEL	HEAT PROBE (A. TRYLOR)

INDEL

STATION HUMBER	JULIAH DRY / TIME	LATITUDE .	LONGITUDE	DEPTH (METRES)	SAMPLE TYPE	GEOGRAPHIC LOCATION	HOTES
117	25217 4 7	75 37.97H	103 20.9U		CORE	AUSTIK CHANNEL	BOX CORE
118	2522239	75 42.60N	104 42.70	260.0	CORE	AUSTIN Channel	PISTON CORE. LENGTH: 70 CM.
1191UC	2522239	75 42.60N	= 104 42.7U	260.0	CORE	RUSTIN CHANNEL	TRIGGER WEIGHT CORE. LENGTH: 165 CM.
119	2522314	75 42.00N	104 43.50	260.0	PROBE	BYAN MARTIN CHANNEL	HEAT PROBE (A. TAYLOR)
120	2532121	74 52.50N	106 24.84	70.0	FRAB	VISCOUNT MELVILLE	URN UEEH GRAB
121	2532150	74 53.13N	106 23.7U	70.0	CAMERA	VISCOUNT MELVILLE	UMEL CAMERA
122	2540548	74 50.25N	104 25.4W	179.0	CTD	VISCOUNT MELVILLE	CTD (MEL)
123	2540605	74 50.22H	104 25.14	179.0	PLANKTON	VISCOUNT MELVILLE	PLANKTON TOU (NEL)
124	2540628	74 50.31N	104 25.0U	179.0	CTD	UISCOUNT MELVILLE	CTD (MEL)
125	2540636	74 50.41H	104 24.94	179.0	PLANKTON	VISCOUNT MELVILLE	PLANKTON TOU (MEL)
126	2540855	74 55.84N	103 47.3U	82.0	GRAB	VISCOUNT MELVILLE	UAN UEEN GRAB
127	2540929	74 55.92N	103 47.0U	82.0	CRMERA	VISCOUNT MELVILLE	UMEL CAMERA
128	2541012	74 57.80N	103 43.0W	88.0	GRAE	VISCOUNT MELVILLE	UAN UEEN GRAB
129	2541038	74 57.60N	103 43.0U	88.0	CAMERA	VISCOUNT MELVILLE	UMEL CAMERA
130	2541126	75 00.95N	103 34. <i>2</i> U	150.0	CORE	VISCOUNT Melville	GRAVITY CORE. LENGTH: 110 CM.
131	2550254	74 49.80X	97 55.00W	135.0	6RAB	BARROU STRAIT	URN UEEN GRAB

STATION NUMBER	JULIAN DAY / TIME	LATITUDE	LOHGITUDE	DEPTH SAMPLE (HETRES) TYPE	GEOGRAPHIC LOCATION	HOTES
132	2550306	74 49.80N	97 56.00 U	135.0 CTD	BARROU STRAIT	CTD_ (MEL)
133	2550313	74 49.80N	97 55.50W	135.0 PLANKTON	BARROW STRAIT	PLANKTON TOW (MEL)
134	2550330	74 49.50N	97 56.00W	135.0 CID	BARROU Strait	CTD (MEL)
135	2550343	74 49.50N	97 56.00W	135.0 PLANKTON	BARROU Strait	PLANKTON TOW (MEL)
136	2552335	74 39.40N	95 0 3.90 U	110.0 CIB	BARROU Strait	CTB (MEL)
137	2552351	74 39.20N	95 03.05U	112.0 PLANKTON	BARROU Strait	PLANKTON TOW (MEL)
138	2560015	74 39.20N	95 D2.60U	112.0 CTD	BARROU Strait	CTD (MEL)
139	2570531	74 31.50N	90 53.30U	216.0 CTD	BARROU Strait	CTB (MEL)
140	2570540	74 31.60N	90 53.70W	216.0 PLANKTON	BARROU Strait	PLANKTON TOW (MEL)
141	2570604	74 31.60N	90 53.70W	216.0 CTD	BARROU STRAIT	CTD (MEL)
142	2570614	74 31.70N	90 54.5 0 W	216.0 PLANKTON	BARROU Strait	PLANKTON TOW (MEL)
143	2570703	74 32.10H	90 55.804	216.0 GRAB	BARROW Strait	UAH UEEN GRAB
144	2571632	74 15.56N	91 14.214	330.0 CORE	LANCASTER Sound	PISTON CORE. LENGTH: 438 CM.
144TUC	2571632	74 15.56H	91 14.21W	330.0 CORE	LANCASTER Sound	TRIGGER WEIGHT CORE. LENGTH: 166 CM.
145	2571653	74 15.53N	91 13. 11 11	330.0 CID	LANCASTER Sound	CTO (MEL)
146	2571728	74 15.58N	91 12.89U	330.0 CORE	ERST BARROU STRAIT	BOX CORE

STATION HUMBER	JULIAN DRÝ / TIME	LATITUDE	LONGITUDE	DEPTH	SPMPLE TYPE	GEDGRAPHIC LOCATION	NOTES .
147	2571803	74 15.67N	91 11.34U	330.0	PROBE	EAST BARROW STRAIT	HERT PROBE (A.TRYLOR) -
148	2580424	74 20.27H	88 34.531	332.0	GRAB	BARROU Strait	UAN UEEN GRAB
149	2580456	74 20.33N	88 36.D4U	332.0	CAMERA	BARROW Strait	UMEL CAMERA
150	2580519	74 20.34N	-8837.16U	325.0	CTD	BARROM Strait	CTD (MEL)
151	2580530	74 20.35N	88 37.60U	325.0	PLANKTON	BARROU STRAIT	PLANKTON TOU (MEL)
152	25805 1 5	7 1 20.35N	88 38.131	325.0	CTD	BARROU STRAIT	CTD (MEL)
153	2580555	74 20.39H	88 38.57U	325.0	PLANKTON	BARROLI STRALT	PLANKTON TOW (MEL)
154	2581808 —	74 22.01H	89 51.264	329.0	<u>c</u> ore	LANCASTER _ SOUND	PISTOM CORE. LENGTH: 621 CM.
154TUC	2581808	74 22.01H	89 51.26W	329.0	CORE	LANCASTER Sound	TRIGGER WEIGHT CORE. LENGTH: 156 CM.
155	2581829	74 22.09N	89 51.21W	329.0	CTD	LANCASTER Sound	CTD (MEL)
156	2581848	74 22.11%	89 51.154	329.0	PLANKTON	LANCASTER Sound	PLANKTON TOW (MEL)
157	2581908	74 22.11N	89 51.364	329.0	CORE	LANCASTER Sound	BOX CORE
158	2581937	74 22.09N	89 50.78U	329.0	PROBE	LANCASTER Sound	HEAT PROBE (R. TRYLOR)
159	2582106	74 26.55N	89 52.5DW	287.0	CORE	LANCASTER Sound	PISTON CORE. LENGTH: 375 CM.
159TUC	2582106	74 26.55H	89 52.50 U	287.0	CORE	LAHCASTER Sound	TRIGGER WEIGHT CORE. LENGTH: 115 CM.
160	25821 4 5	74 26.53N	89 51.51W	287.0	PROBE	LANCASTER Sound	HEAT PROBE (A. TAYLOR)

STATION Number	JULIAN DRY / TIME	LATITUDE	LONGITUDE	DEPTH SAMPLE (METRES) TYPE	GEOGRAPHIC LOCATION	NOTES	
*************************************	Chariful and a state of the sta					***	
161	2582228	74 26.40H	89 51.40U	289.0 CAMERA	LANCASTER Sound	UMEL CAMERA	-
162	2611254	73 44.08N	88 44.20U	404.0 PISTON	PRINCE	PISTON CORE	LENGTH:137 CM

APPENDIX

1. Coastal Studies in the central Queen Elizabeth Islands (R.B. Taylor) AREA OF OPERATIONS

Coastal zone sites along western Devon, Dundas, Somerset, Cameron and Lowther Islands (Fig. 1) within the central Queen Elizabeth Islands, District of Franklin, N.W.T.

DATES OF OPERATION

August 25 - September 18, 1986.

OBJECTIVES

- 1. To revisit and resurvey beach profile stations which were established in the early 1970's to determine net morphological changes over an 8 to 16 year period.
- 2. To determine the presence of new storm ridges along the modern beach and relate them to the size, spacing and age of similar beach deposits across the raised sequence.
- 3. To determine the distribution of ice push deposits across the modern and raised beach sequences; and correlate the severity and character of the ice push deposits to specific time periods and the magnitude of processes forming them.
- 4. To examine and map the distribution and thickness of nearshore sediments at selected beach profile sites where the geology and ice conditions are appropriate.
- 5. To extend the aerial video coverage of the coastlines in the Arctic

Islands, for environmental and management planning and for scientific research.

BASE OF OPERATIONS

Ground and aerial surveys were completed from the research vessel CSS Hudson using a Bell 206B helicopter CG-XMH on floats. The research was conducted in conjunction with GSC Project 820050 - Geology of Arctic Island Channels - B. MacLean, Chief Scientist and other staff from the Atlantic Geoscience Centre and Doug Hodgson, Geological Survey of Canada.

SUMMARY OF OPERATIONS

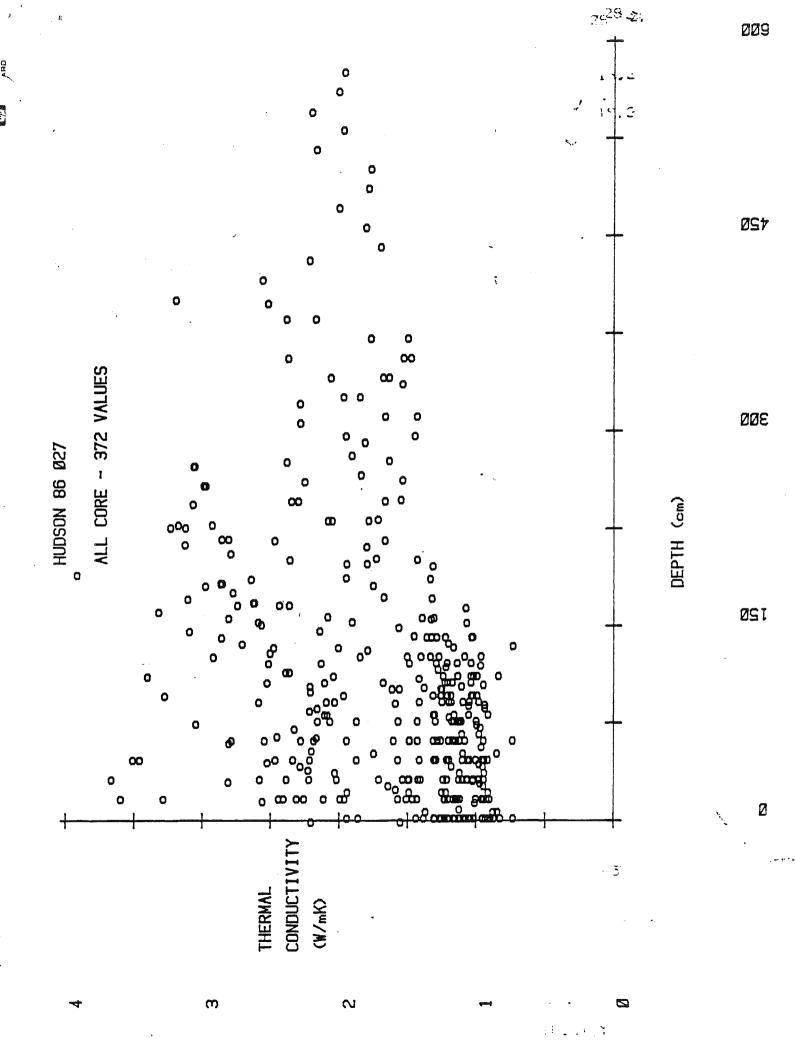
Following our arrival at Resolute Bay on August 26, 1986, we boarded CSS Hudson which was anchored in Resolute Harbour. The transfer of most of our gear was completed by personnel from Polar Continental Shelf earlier in the day but the rest was transferred with personnel, by barge, by roughly 1900 hours ADT. The remainder of the day was spent getting equipment set up and personnel settled in their new quarters. The ship sailed out of Resolute Bay that evening but did not begin survey lines until the next day; coastal surveys did not commence until August 29.

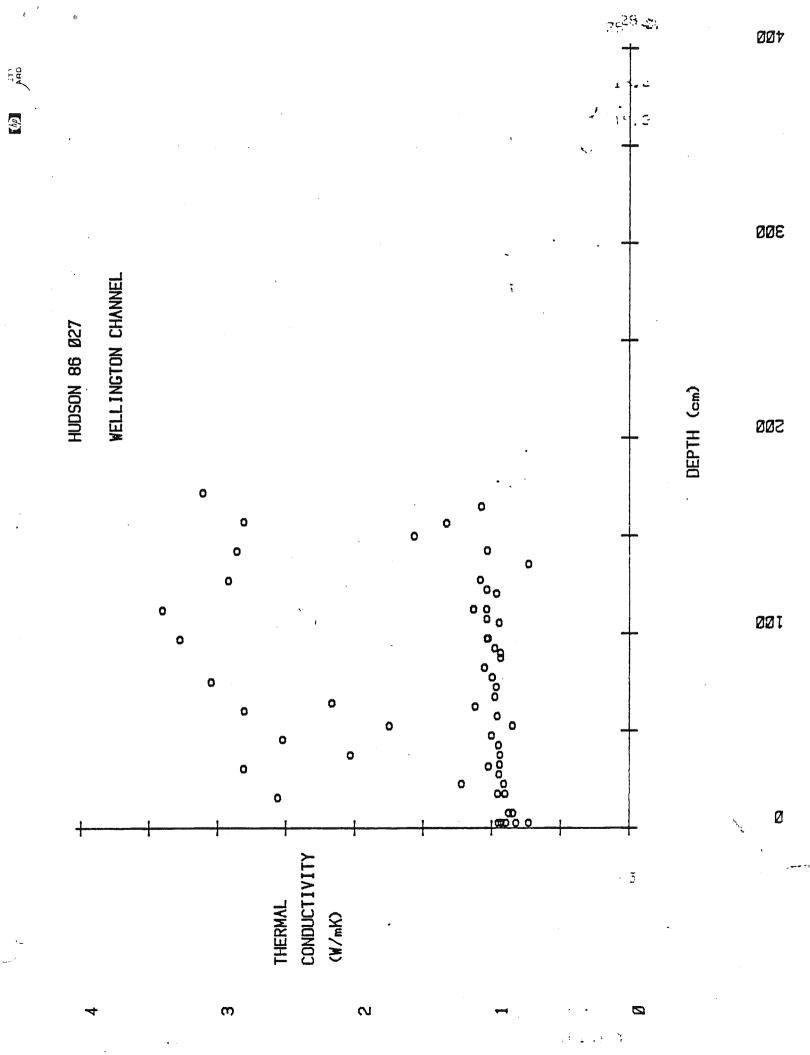
August 29, 1986. Departed the ship at 0915 ADT by helicopter to conduct a reconnaissance of the shores of northern Wellington Channel. Brief stops were made at the south coast to examine the beach morphology and at the top of the plateau on the northeastern peninsula of Dundas Island to search for glacial striae. Snow cover prevented an extensive examination of the rock

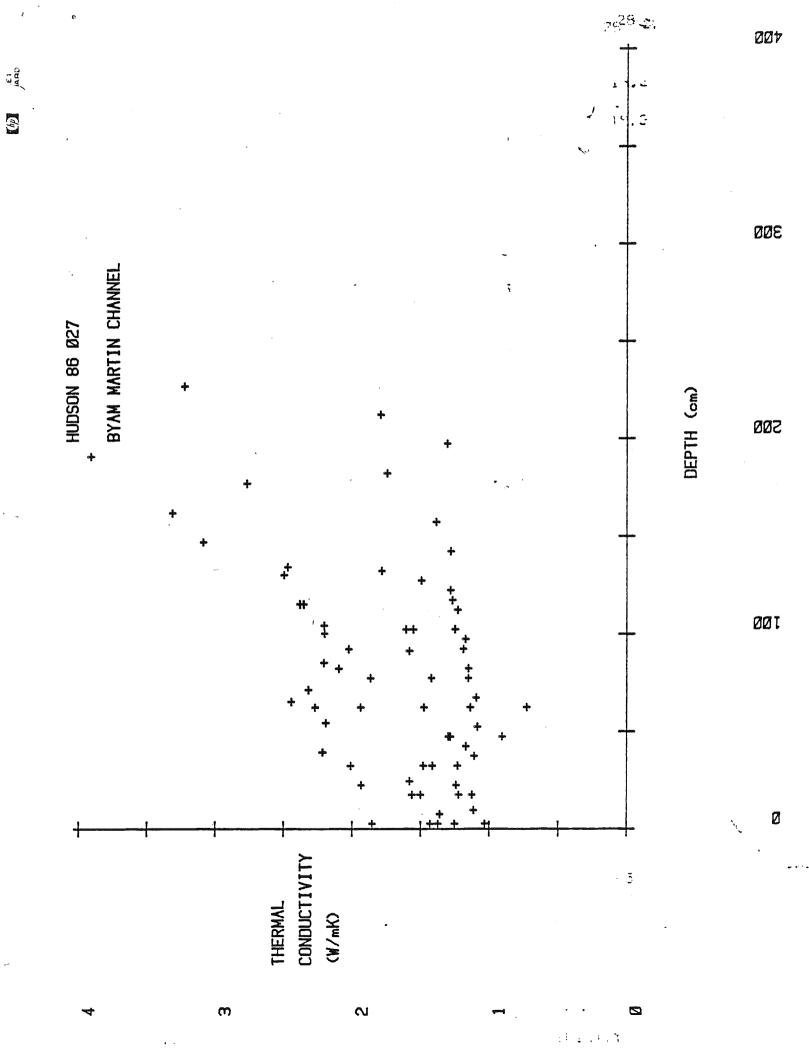
surfaces which were severely weathered by solutional and gyrogenic processes. No striae were observed. A beach profile station and survey of the raised beach sequence to 25 m asl was completed at the gravel beach just east of Cape Majendie, Devon Island. Returned to the ship by 1430 ADT.

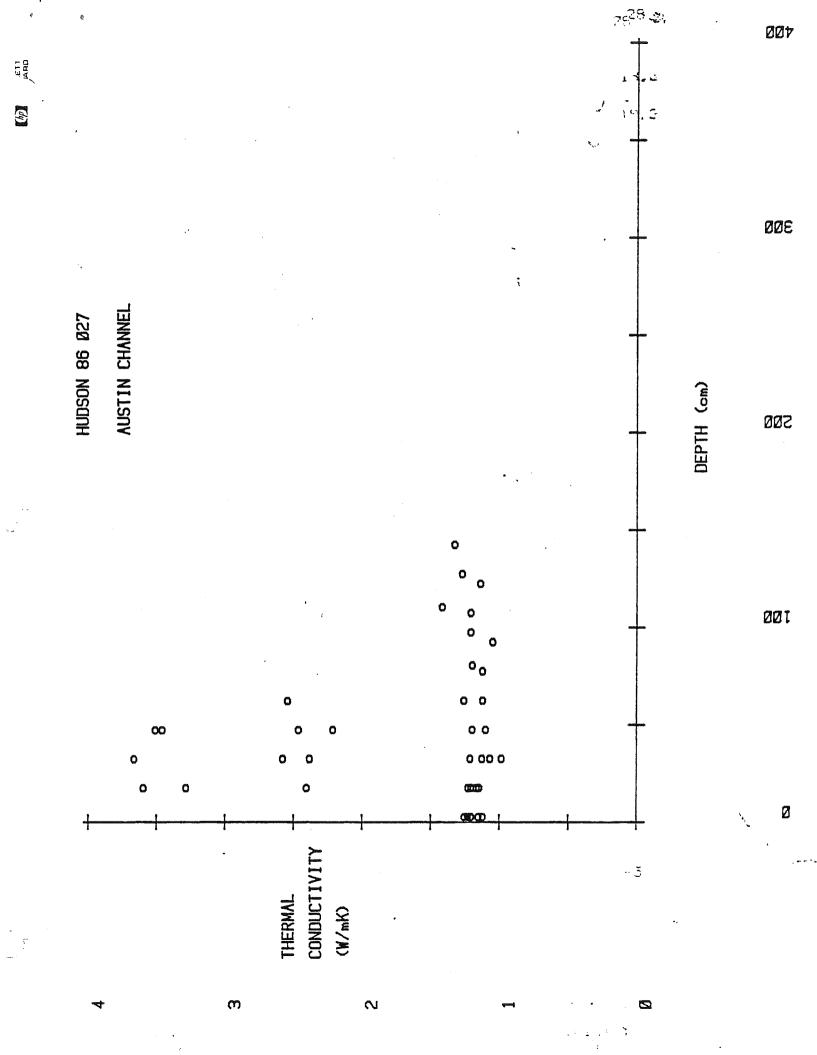
September 2, 1986. Depart the ship at 1300 ADT on route to Radstock Bay and Cape Ricketts, Devon Island where numerous beach profile stations existed. Established in 1969 and 1970, these profiles had been last surveyed in 1981. Five profiles were surveyed along the western shore of Radstock Bay between Caswall Tower and Cape Liddon and one was at Cape Ricketts. Helicopter returned to the ship at 1910 ADT.

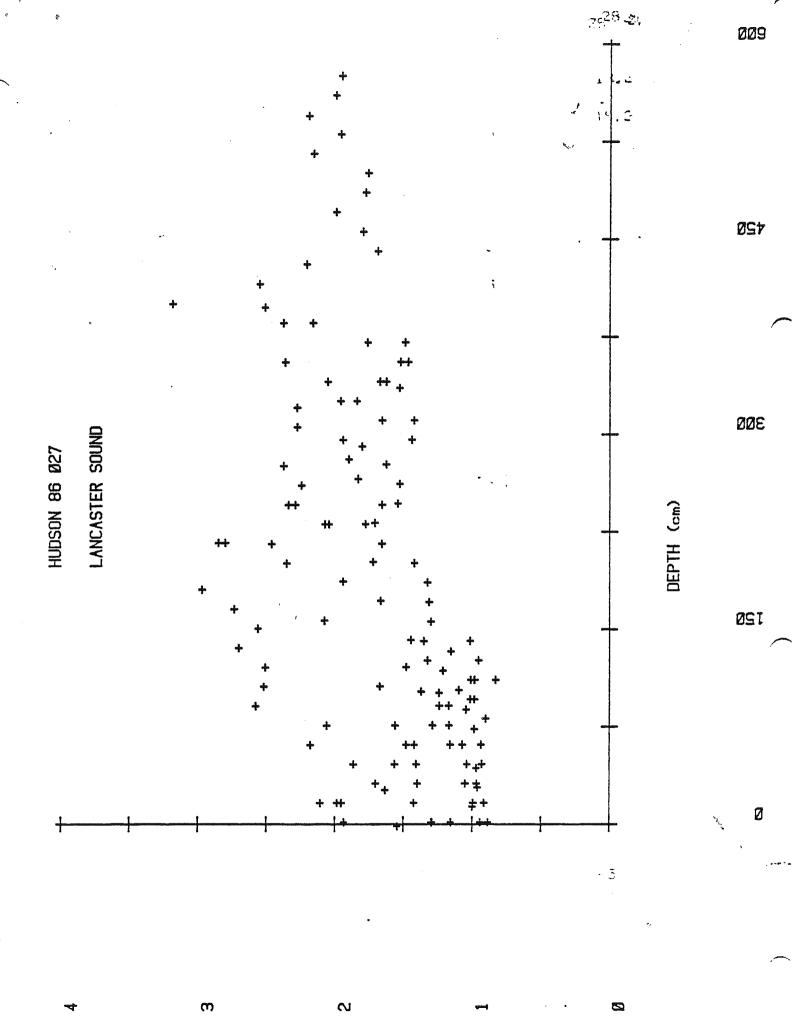
September 3, 1986. Departed for Somerset Island at 1310 ADT. Following a brief scan of the sea ice conditions toward Prince Leopold Island, the helicopter flew west to beach profile stations located just to the west and 5 km east of Cape Rennell as well as stations between Irvine and Garnier Bays. A total of five profiles were resurveyed before returning to the ship at 1915 ADT.

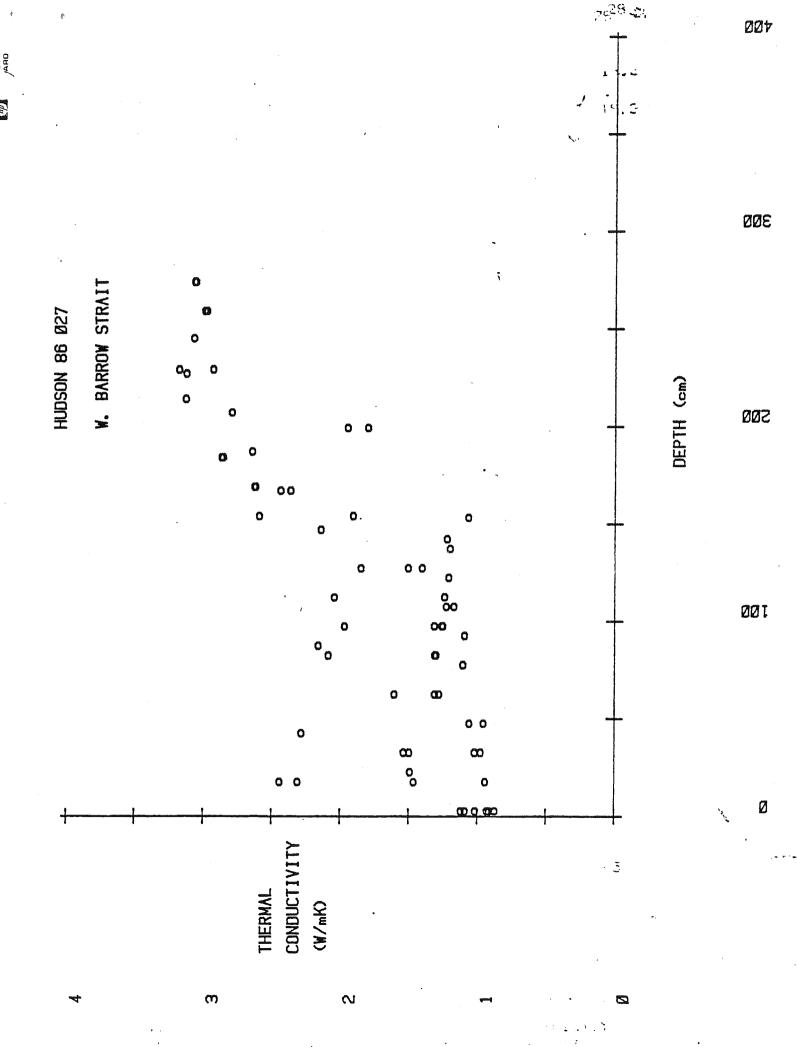

September 9, 1986. Departed the ship at 1245 ADT on route toward Cameron Island to examine ice conditions along the northern channels and complete beach surveys. Two beach profiles were surveyed, one near Cape Clerk at the SE corner of Cameron Island and the other was at Cape Kennedy at the SW corner of the island. Other profiles located along southern Cameron Island could not be found because of snow and ice cover. New sea ice covered most

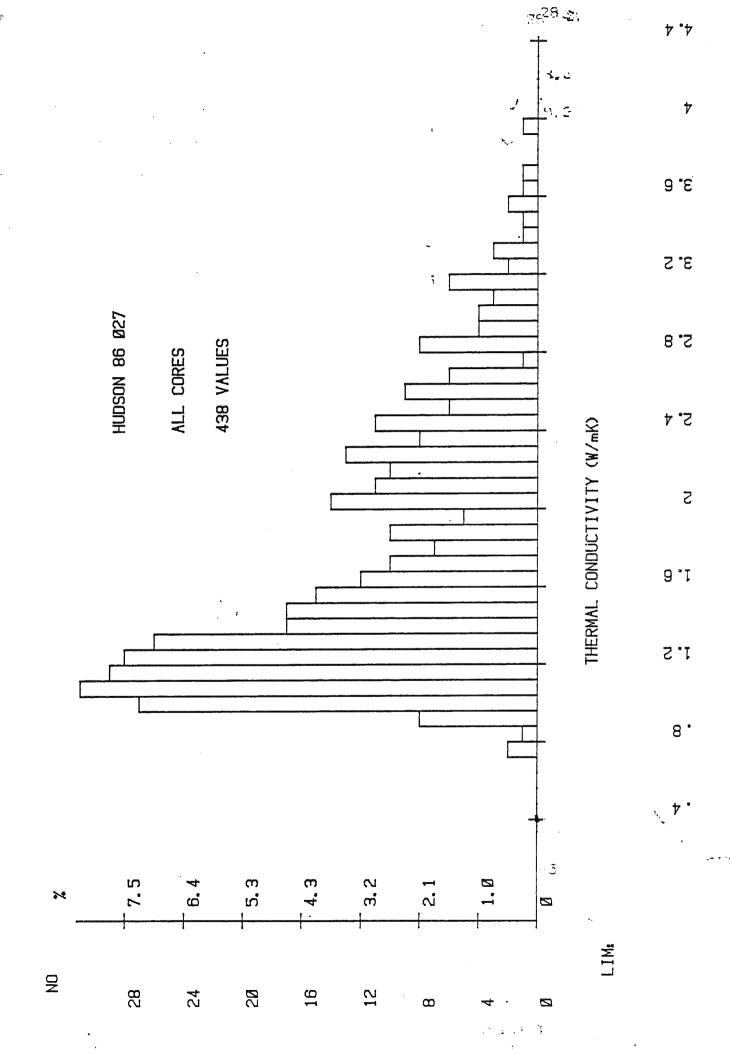

of the inter island channels and near shore it was thick enough to support a person, i.e. 3-4 cm. The only large open water area was along the centre of Arnott Strait. Even the passage cut through the Strait a few days earlier by the oil tanker ARCTIC had closed and refrozen. Land was too snow covered to conduct Quaternary geological surveys. Returned to the ship at 1600 ADT. An ice reconnaissance flight was run down Byam Channel and a couple of field stops were completed on northern Byam Martin Island to examine the surficial sediments. Helicopter returned to CSS Hudson at roughly 2100 ADT.

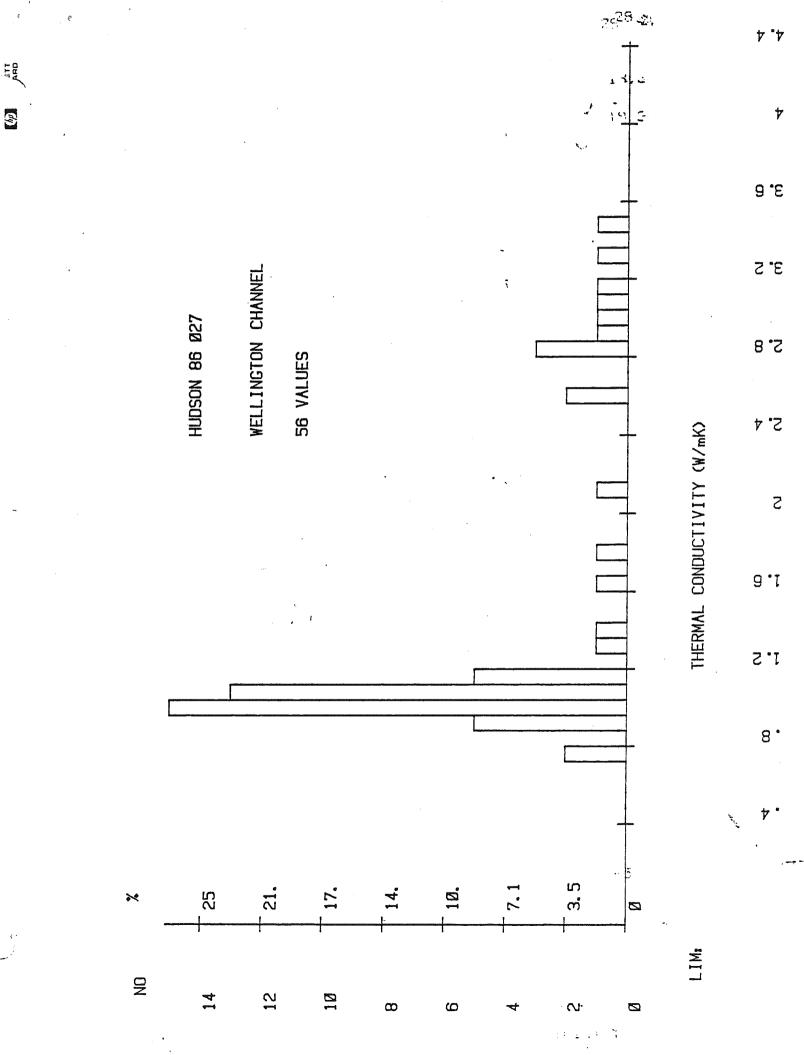

September 10, 1986. A bright sunny day and minimum snow cover on southern Melville Island presented an opportunity to finally complete some aerial oblique video coverage of the coastline. Departed ship at 1530 ADT and began video photography at 1600 just to the west of Ross Point, southern Melville Island. Video coverage was continuous alongshore to a position 5 km north of Robertson Point, eastern Melville Island (1650 ADT) which was the southern limit of the coastal video coverage completed along Melville Island during 1985 (Project 820050, GSC Open File 1298). An attempt was made to obtain video imagery along the shoreline of western Byam Martin Island however due to excessive snow cover only the section between May Cove and Kay Point was completed.

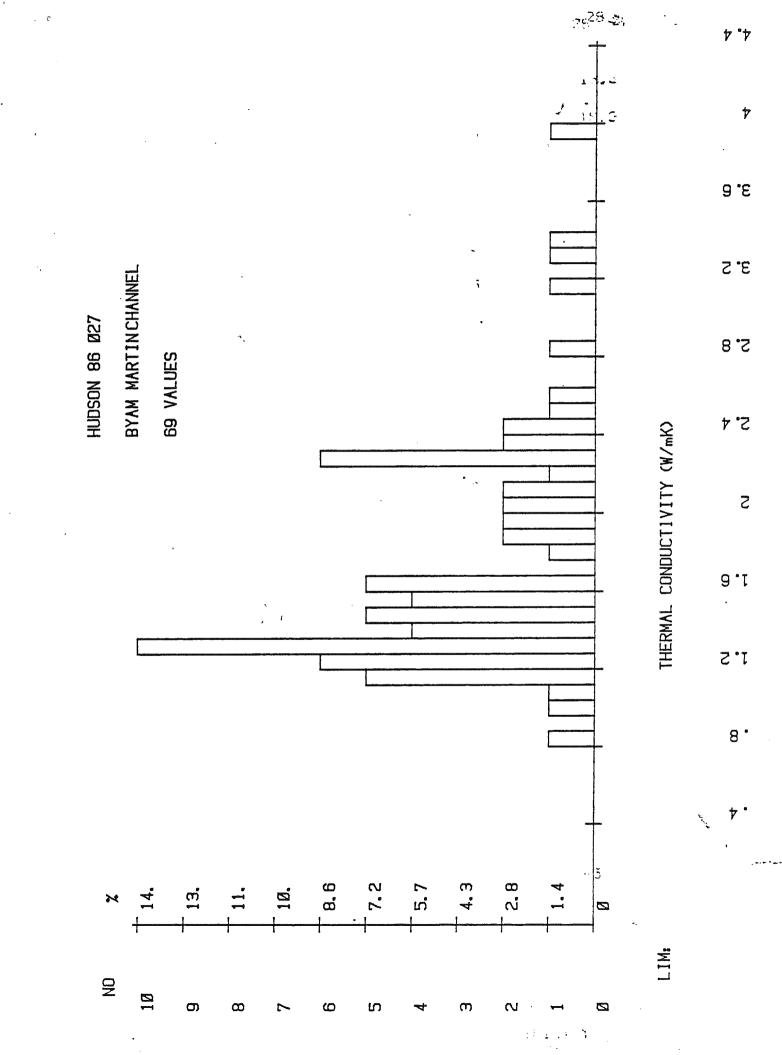

September 12, 1986. Flew from CSS Hudson at 0945 ADT to Lowther Island in overcast snowy conditions, air temperature -4°C. Completed surveys of two beach profiles and extended them upslope to 20 m asl. Snow cover particularly in the swales hampered surveys and the search for dateable material.


Brief searches were made for striae on the upper bedrock slopes of the Island but with no success. Returned to the ship at 1430 ADT.

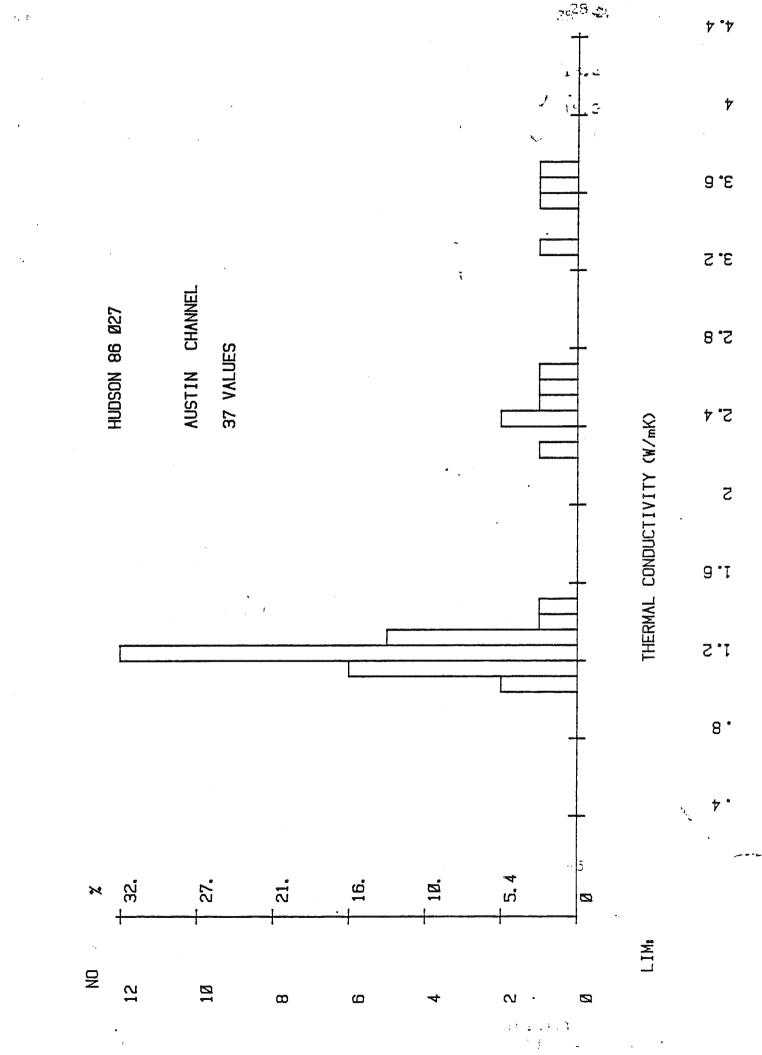


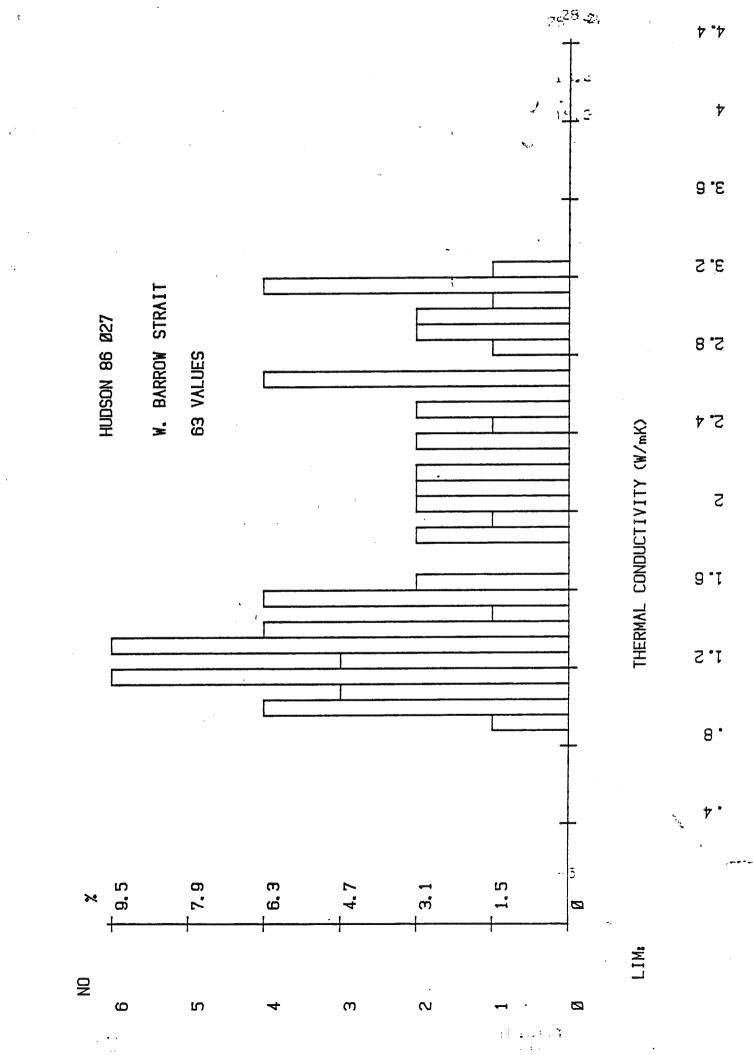




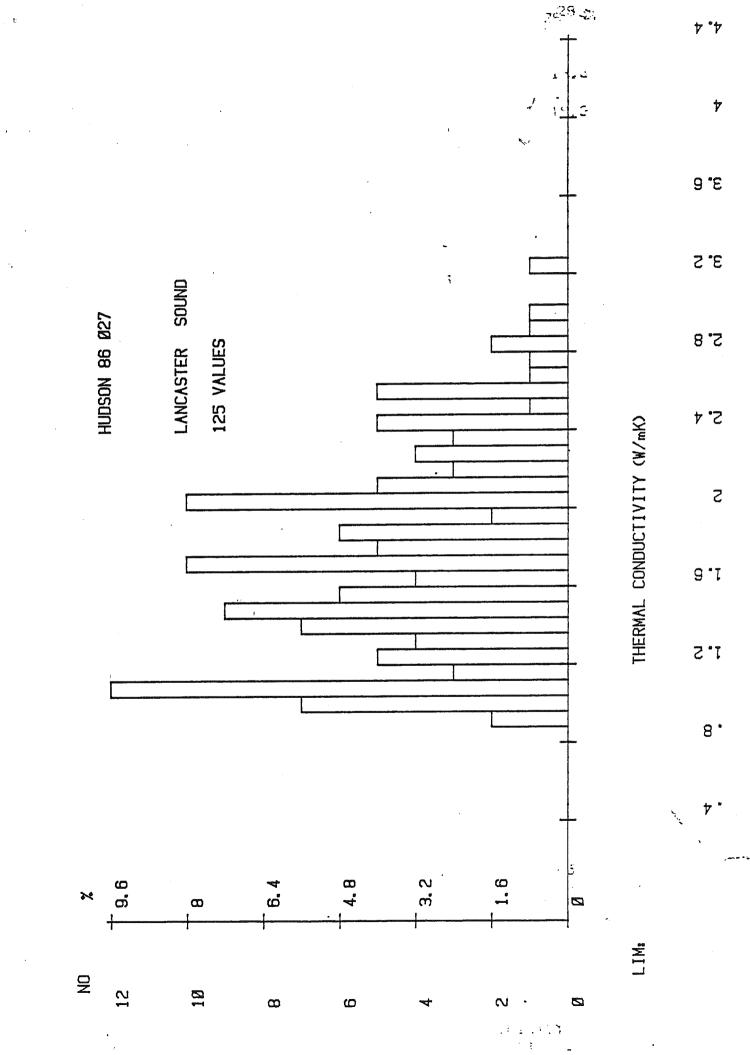


TIZ OHA

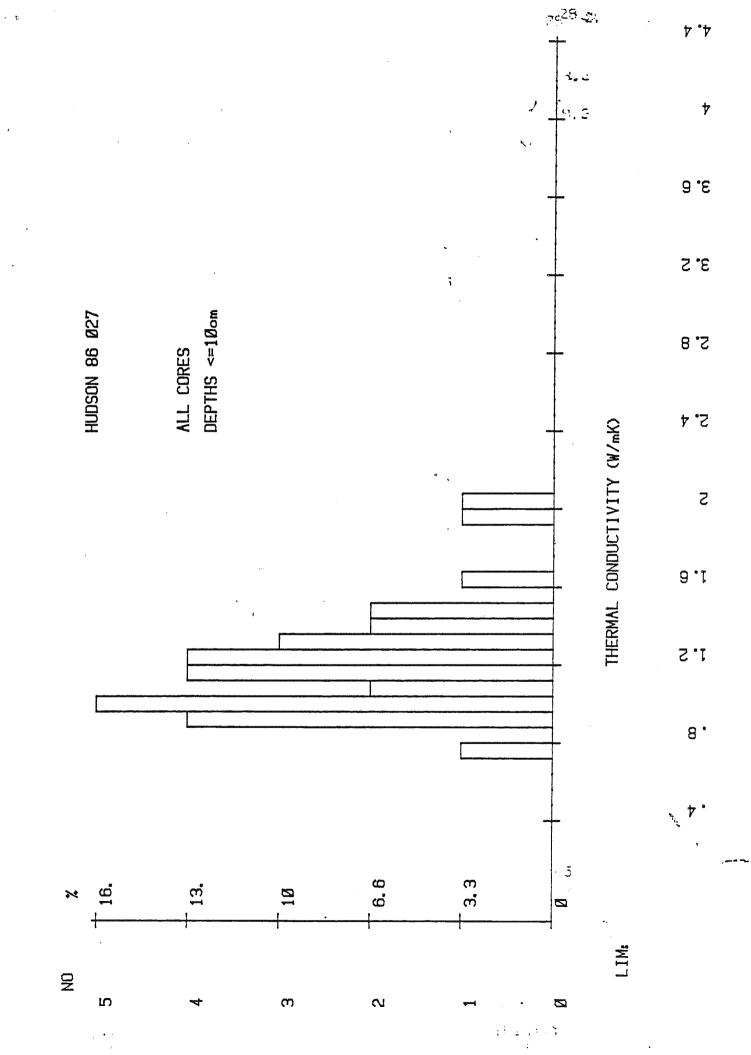

 (d_i)



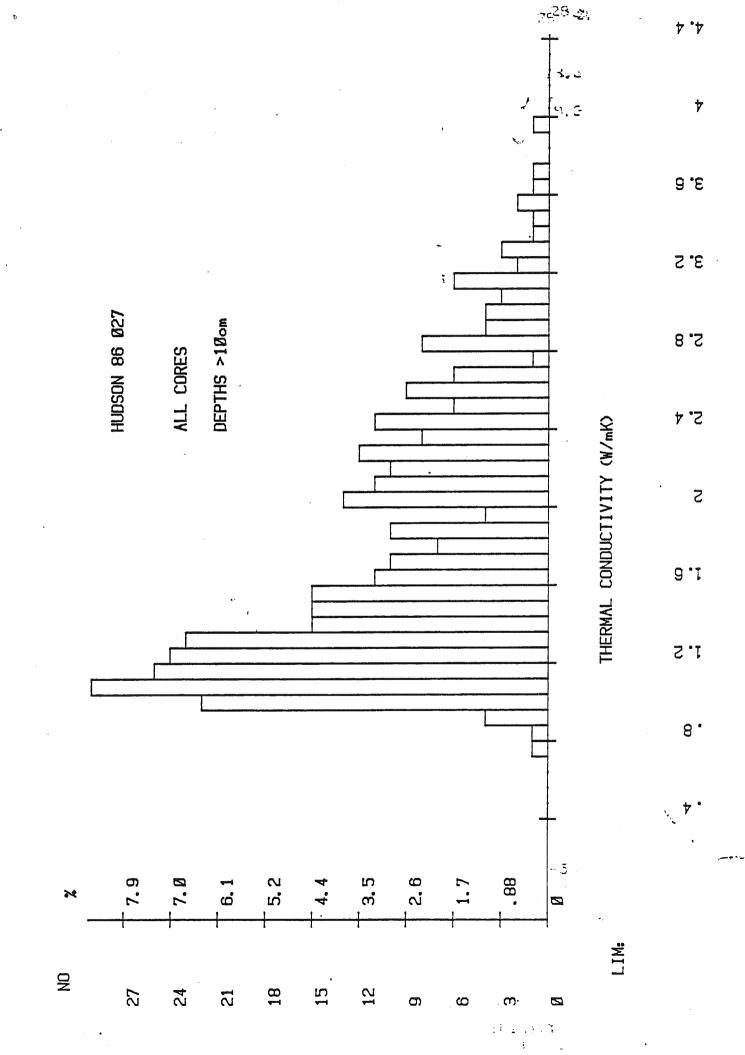
ETT ARD


14

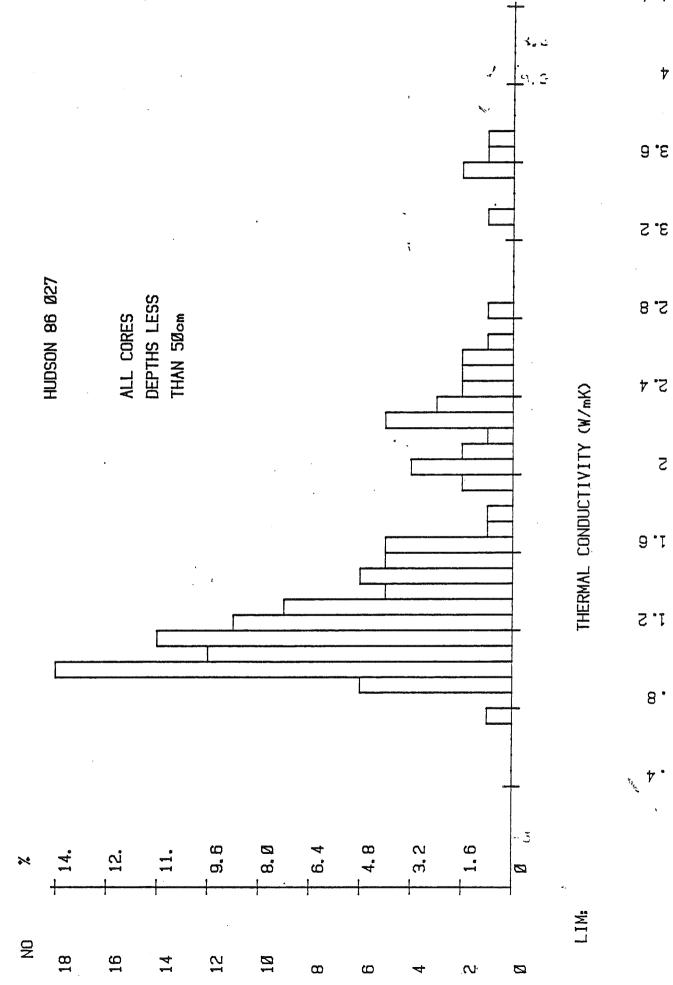
(hp)



CAD I

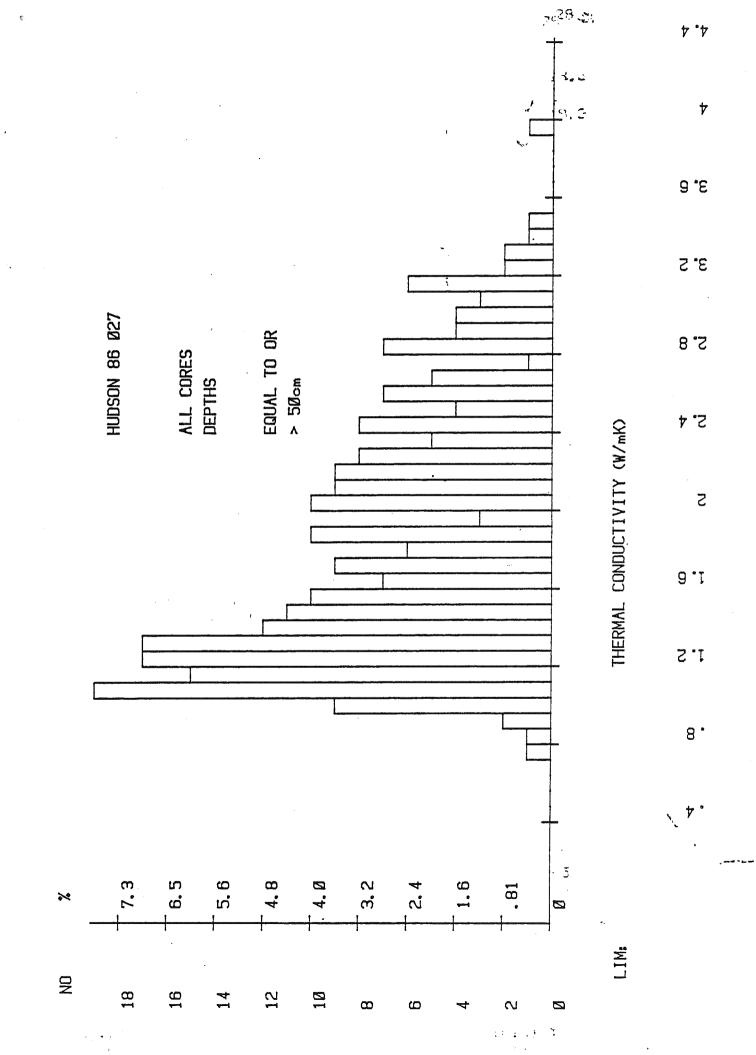

21.2 ARD

(hp)

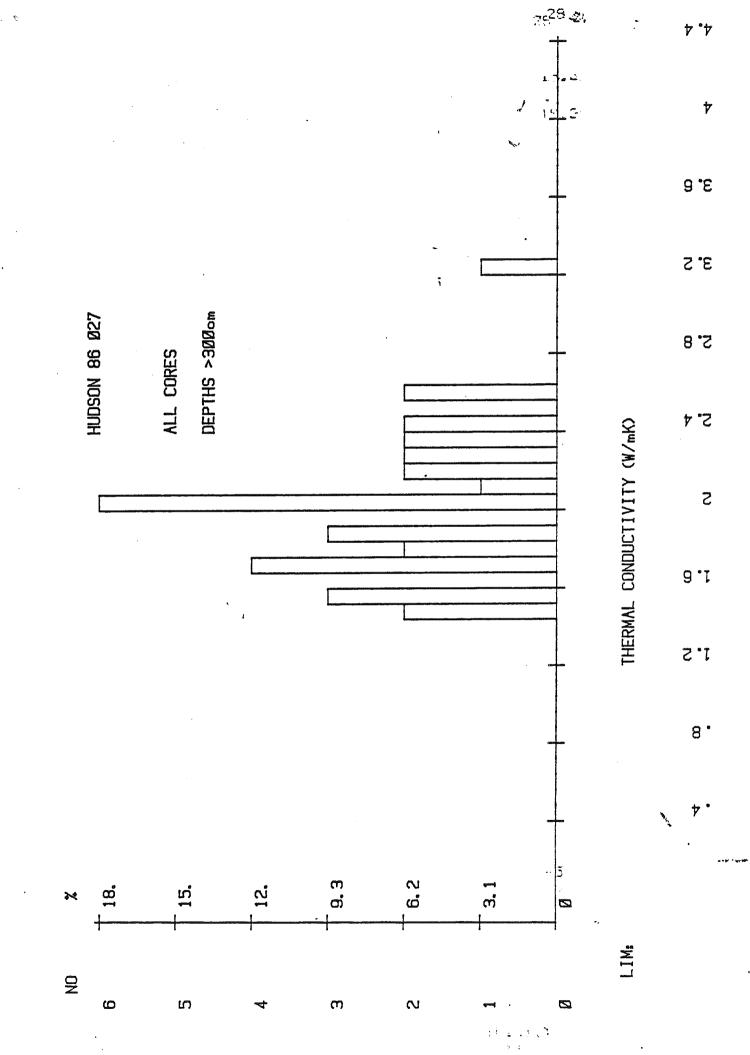


APD

(dy)



(yb)



140

7628 2

dy

NP.

2. Geothermal Program (A. Taylor)

In the Geothermal program, 8 stations were occupied with a Bullard-type temperature gradiometer probe and thermal conductivity measurements were made on 33 core sections.

The Bullard heat flow probe is capable of measuring precise sediment temperatures at 8 thermistor positions along a 1.6cm diameter, 3m long probe in the sediments. The temperature gradient so obtained is combined with thermal conductivities measured on a nearby core to yield an estimate of terrestrial heat flow. This parameter is related to the crustal geology although transient effects such as seasonal changes in bottom water temperature or migration of pore water in the sediments may be detected due to their thermal effect on the deeper sediments.

At four of the eight stations occupied with the Bullard probe, recording level on the reel-to-reel tape was too low for further processing on the ship. At the remaining stations, record quality was satisfactory. At two of these latter stations, it appears that the probe had not penetrated the bottom or had fallen over after partial penetration. This may arise from difficulty in penetrating the generally coarse-grained, clast-filled sediments. Such a situation is suspected upon retrieval if there is only a partial mud smear along the length of the probe; and upon data analysis if a near isothermal gradient is measured.

A good gradient determination was made at station 147 in East Barrow Strait. Further analysis is required to correct for possible transient influences, but the measured gradient is rather high, about 80mK/m. The average thermal conductivity at nearby core station 144 is 1.03W/mK (watts

per metre Kelvin) to 1.5m (trigger core); conductivities appear to increase with depth in the piston core and are somewhat higher (near 2W/mK at 3m measured depth). Considering the possible uncertainty in depth actually sampled by the piston corer, this data suggests a provisional terrestrial heat flow for the station of at least $80mW/m^2$ (i.e. 80×1.03). This is consistent with generally high heat flows measured at onshore wells throughout the Arctic Archipelago.

Thermal conductivity measurements were made generally at 15cm intervals on all but a couple of cores. In all, 438 individual readings were made (see tables), although 10% of these were repeats. Measurements were made by a computer-controlled data acquisition system using the needle probe method. These probes are less than a millimetre in diameter, about 6cm long and contain a heating element over the full length. A thermistor inside the same probe measures the rise in temperature due to the heater. When inserted into sediment, the rate of temperature rise is related to the thermal conductivity of the sediment.

Thermal conductivity of sediments is controlled largely by the conductivity of the matrix material and of water; the value for water is 0.6W/mK. Values for the solid components may be much higher. Hence, thermal conductivity is an additional geotechnical parameter that is sensitive to water content and matrix properties.

On Hudson 86-027, thermal conductivities ranged from about 0.8 to 4W/mK, contrasting to values 0.7 to 1.3 in deep sea sediments and 1.3 (average) in upper sediments from the outer Beaufort Shelf. The high values are undoubtedly related to the granularity and incidence of clasts. Further correlation

with detailed core descriptions and other geotechnical measurements will be most interesting.

In reference to the attached graphs, a number of points stand out:

- 1. Of the 438 determinations, 27% are greater than 2W/mK. The distribution diagram has a principal peak around 1W/mK, with a prominent tail to higher values and a secondary peak at 2W/mK. When all values are plotted against depth, a tendency for conductivity to increase with depth is noted. This would suggest a decreasing water content and compaction, perhaps also a lithology variation. The effect is less pronounced if the nominal depths assigned to the piston cores are low.
- 2. The distribution of thermal conductivity values show some distinct differences in the major geographic areas sampled. Values in Wellington Channel peak around 1.0W/mK, while in Byam Martin Channel, there is a broader peak around 1.3W/mK with a substantial tail to higher conductivity. This suggests a finer textured sediment in the former area. Values in Barrow Strait and Lancaster Sound fall on a broad distribution between 1.0 and more than 2.5.
- 3. Similar comparisons were made with various depth intervals. Thermal conductivities at assigned depths less than 10cm peaked between 1.0 1.3W/mK, with no tail beyond 2.0; while for depths greater than 10cm, a long tail appeared in the distribution diagram to over 3W/mK. This reflects the generally soft, uniform sediments noted in the upper few centimetres of each core.
- 4. Observations during the core retrieval operations suggest that the piston core has been not sampling the upper sediment section. Further evidence

of this may be seen in the thermal conductivity values; at several stations (e.g. station 86) the conductivity-depth profile for the piston core mirrors that of the trigger weight core but appears more shallow than the trigger weight profile. At other stations (e.g. stations 12, 77, 99 and 154) there is no particular correlation between piston core and trigger weight core conductivities, but the former are distinctly higher in value than the latter. Both observations suggest the piston cores may have been assigned depths 30 - 50cm too shallow (station 86); or a metre or more (stations 12, 77, 99 and 154) because the higher conductivities are more appropriate for deeper horizons.

A. General

The primary survey positioning system was Bedford Institute's BIONAV integrated navigation system. The secondary system was ship's radar, augmented with a rented GNS (Omega) receiver in "stand-alone" mode.

Positions were obtained from BIONAV approximately 60% of the time with an accuracy of ±35 metres with GPS. The remainder of the time, except for two days when Loran was available, positions were obtained using ship's radar. The GNS was unable to properly track stations and was not used.

Navigation data was logged on BIONAV disc files at 1 min. intervals and on CIGAL (Dr. Loncarevic's development system) at 10 sec. intervals.

B. BIONAV

BIONAV was interfaced to the following inputs:

- Magnavox T-set (GPS Navstar).
- 2. TRANSIT satellite receiver.
- Ship's log/gyro.
- 4. Loran LC408 receiver (2).

The navigation programs were set up to accept GPS Navstar whenever four satellites were available and positional errors computed to be less than 20 metres in both latitude and longitude. This provided positions for slightly less than eight hours each day. During the first week, programs were modified to accept three satellites, making GPS available twelve hours per day with the accuracy only slightly reduced (25 metres) for the remainder of the cruise.

Between times of GPS coverage, BIONAV positions were obtained by dead-reckoning (using ship's log/gyro) updated by Transit satellite. This was unsatisfactory when in even very light ice because of large unpredictable errors in log reading. Later in the cruise (third week), when in ice-free waters, this normally provided positioning to an accuracy of \pm 350 metres. The accuracy of dead reckoning deteriorated to as much as \pm 2 naut. mi. in currents approaching 2 knots.

Loran signals from Fox Harbour, Labrador, and Angissoq, Greenland, were acquired just south of Cape Dyer, at ranges of slightly over 600 miles.

Loran was then used to position the ship between times of GPS coverage.

Estimated accuracy was + 200 metres.

As range from Fox Harbour increased to over 700 naut. mi., with a combination of very low signal strength and rapidly changing land path, Loran positions became extremely unstable with shifts of \pm 0.3 naut. mi. being observed. At this point it was decided to discontinue Loran for BIONAV positioning.

C. GNS (Omega)

A GNS receiver was leased from Polar Shelf, the intention being to supplement observations during periods when GPS Navstar was not available. This receiver did not function as expected and its use was discontinued.

The cause was not determined; however, it was suspected that the antennae was at fault, e.g. when electrically grounded as recommended, an unacceptable interference was seen on ship's radiotelephone equipment.

D. Radar

Radar positioning was available 95% of the time, and was used when neither GPS nor Loran was available. Quality of positions varied with availability of good targets at short range (less than 6 miles) to poor targets at long range.

Estimated positional accuracy of radar while on survey was \pm 0.1 naut. mi. to \pm 0.4 naut. mil.

Radar positions were monitored and superceded by Transit satellite positions when available.