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1. Introduction 

1. INTRODUCTION 

This is the final report for DSS Research Contract No. OSC84-00472 entitled "Satellite 

Altimetry Applications for Marine Gravity". Under this contract we were supposed to do the 

following: 

• Derive the geoid from satellite altimetry data. 

• Derive the geoid from marine gravity data 

• Compare satellite altimetry data with marine gravity data. 

• Combine satellite altimetry data with marine gravimetric data. 

• Compare in detail for two test areas (Hudson Bay and Labrador Sea) the gravity fields obtained 

from satellite altimetry and marine gravimetry. 

The overall (unstated) goal has been to investigate how satellite altimetry can help in offshore 

geophysical studies conducted by means of gravity. Since (marine) gravity anomalies have been 

used for this purpose almost exclusively in the past, it was envisaged that the sea level surface 

obtained from satellite altimetry should be used to check the observed gravity anomalies or even 

predict anomalies where none exist. 

Leaving aside the difference between altimetrically derived sea level and the geoid, i.e., 

neglecting for the moment the sea surface topography (see section 2.4), the conversion of the geoid 

into gravity anomalies poses some formidable problems. Determination of point gravity anomalies 

from the geoid represents a classical ill-posed problem [Molodenskij et al., 1960; Coleman and 

Mather, 1976]-cf. section 4.3. Only some areal averages of gravity anomalies are determinable, 

and the smaller the averaged areas the less stable the inversion becomes. The conversion of satellite 

altimetry, neglecting the sea surface topography, has been done already by several people, most 

notably by Rapp [1983]. 

The idea occurred to us then that at least checking the observed marine gravity anomalies could 

be done in the "geoid space" rather than the "gravity space." It is clc.arly much more simple to 

compute the geoidal height N from ~g than the other way around. The only problem with the 

classical Stokes's convolution used for this transformation is that ~g should be available all over 

the world thus ruling out the use of pure marine gravity data. 

To remove this problem, one may carry out the Stokes convolution of ~g with the Stokes 
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1. Introduction 

kernel only over a spherical cap of a limited radius \jf-this operation we call here the truncated 

Stokes integration. The price one pays for doing this is that the truncated Stokes integration 

does not yield the full geoidal height N (above a selected reference ellipsoid) but only a partial 

contribution oN('!f)-termed here, in the absence of a better term, the truncated geoid. All that 

remains to be done is to derive such an integration kernel which, used in a convolution with (the 

altimetrically derived) geoidal height N, also gives oN('lf). 

This has turned out to be rather a tricky mathematical problem which would not have been 

solvable within the means of this contract. Fortunately, we have had at our disposal other means, 

namely the NSERC Strategic Grant "Applications of Marine Geodesy", under the auspicies of 

which we could carry out the requisite theoretical investigation. At the end we have succeeded: The 

result is shown in section 5.3. 

Intuitively, the above described approach should not only allow one to test the goodness of the 

observed marine gravity anomalies within a spherical cap of radius 'V but also provide an alternative 

tool for geophysical studies. The truncated geoid oN('lf) by itself should give a unique view of 

the density distribution within the earth. Additionally, the changes of oN('lf) in response to varying 

'V should offer yet another perspective. The uses of the geoid (instead o'f or in addition to gravity 

anomalies) for density distribution studies have increased in the recent past, particularly after it was 

realized that the different wavelengths of the geoid may have special meaning [Zlotnicki, 1984]. It 

is hoped that the technique we are here suggesting will prove equally fruitful, thus providing 

additional benefit unf orseen in the contract. 

One additional problem we have encountered while working on this project concerns the 

observed marine gravity data. The marine gravity data file has been improved by its custodian, the 

Earth Physics Branch of Energy Mines and Resources ~anada in Ottawa, several times during the 

life of this project The most up-to-date file was made available to us at the beginning of this year. 

It necessitated a recomputation of the already compiled gravimetric geoid for the eastern part of 

Canada (see section 3.3). 

Contours and spot heights are the generally accepted means for the visual representation of 

spatial data sets, covering large areas. Although contour maps can represent three-dimensional 

figures with a high degree of fidelity, the surface portrayed is not easily perceivable by the viewer. 

Geographers have long recognized this problem and introduced colour, shading, and hachuring to 
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1. Introduction 

enhance the topography. There is substantial evidence that such techniques can also be applied 

successfully to geoscience data (see, for example, Haxby et al. [ 1983 ]). Therefore, provision of 

expertise and software for digital image analysis and for display techniques using colour graphics 

forms part of this contract. 

3 



2. Basic Definitions. 

2. BASIC DEFINITIONS 

In this report we deal with three classes of earth surfaces: 

• various surf aces related to sea level; 

• reference surfaces within the ocean (isobaric, isopycnal, or others); and 

• the geoid, a particular equipotential surface of the earth's gravity field. 

In this chapter we define these surfaces and describe how they are related. We also introduce 

the two main data sources used in this report to detennine these surfaces: satellite altimetry for sea 

level, and gravity anomalies for the geoid. These data will be discussed in detail in Chapter 3. 

2.1 Sea Level 

Sea level and its variations is a very complex phenomenon. A discussion of sea level proceeds 

most conveniently by first considering a ficticious scenario. 

Consider the ocean as an undisturbed homogeneous fluid. With this statement we have 

obliterated the moon, sun, and planets; demanded that the earth's atmosphere also be a static fluid 

devoid of changing weather features; and mandated the elimination of other perturbing influences as 

well. We have left the earth's crust as it is, and the earth is still rotating. We have constructed an 

idealized sea level which is static, and spatially influenced only by variations in the earth's 

gravity field [Stewart, 1985; p. 261]. 

The actual sea level will be affected both temporally and spatially by many influences. The sea 

level surface with none of these perturbations removed is the instantaneous sea level surface. 

The "long term" average of the temporal variations in sea level at a point is a mean sea level 

for that point. "Long term" may mean one month, or one year, or longer, and ·the corresponding 

monthly mean sea levels, annual mean sea levels, and so on, will in general be different. Monthly 

means at the same point may vary typically by 0.5 m, and annual means by 0.1 m. 

Some perturbations may have static components, so that temporal averaging at a point will not 

necessarily recover our idealized sea level for that point. 

To obtain a mean sea level surface, we must establish mean sea level at a network of 

points. 
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2. Basic Definitions. 

2.2 The geoid 

The geoid is one of the equipotential surfaces of the earth's gravity field. As such, it is defined 

mathematically by the following prescription: 

W(r) = const., (2.1) 

where W stands for the earth's gravity potential. The value of the constant is selected so that this 

equipotential surface represents the mean sea level (surface) as well as possible. The idea is due to 

J.K.F. Gauss (1777-1855) who was the first to recognize the geoid as a mathematical figure of the 

earth. 

To select the "right" equipotential surface, clearly, is not a simple task, particularly because the 

mean sea level changes with both the time (epoch) to which it is referred and the period of time over 

which the sea level has been averaged. But even if the mean sea level were not varying with time, 

how would one select the appropriate constant in eqn. (2.1) to make sure that the equipotential 

surface really approximates the mean sea level? With all the modern solutions, where satellite 

determined long wavelength features make the backbone of the solution, it is a matter of a proper 

selection of scale. The scale is ca;rib"rat~d against terrestrially dete~ed heights and becomes part 

of the solution. 

2.3 Sea Surface Topography 

Sea surface topography is the departure of the actual sea surface from the geoid, or from 

the idealized sea surface defined in section 2.1. 

We can use several "actual sea surfaces", each of which will have a different sea surface 

topography associated with it. If we include all wavelengths of the spatial variations, then at any 

instant we have an instantaneous sea surface topography. 

Instantaneous sea surface topography includes features with amplitudes of up to (see for 

example, Chelton and Enfield [1985]): 

• several tens of metres from waves, 

• several metres from tides, 

• one metre from strong geostrophic currents, 

• several decimetres from atmospheric pressure variations, 

• several decimetres from wind-driven piling up effects along coastlines, 

• several decimetres from other ocean dynamic effects. 

5 



2. Basic Definitions. 

The features with the strongest temporal variations are those due to waves, tides, and 

atmospheric variations. If we use mean sea level at a network of points as our "actual sea surface," 

then most of these temporal variations (over the period used to compute the mean) will be 

eliminated, and we will have a quasi-static sea surface topography, which contains only 

semi-permanent perturbations, mainly due to ocean dynamics effects. Two other effects must also 

be taken into account: 

• Significant local and regional secular variations in sea level due to crustal motion may exist. 

• Eustatic changes (the advance or retreat of ice sheets) involve a global change in mean sea level 

of a few centimetres per century. 

We will see that satellite altimetry involves sampling over a "footprint" of a few kilometres in 

diameter. Thus the altimetrically-measured "actual sea surface" suppresses short wavelength 

features (mainly those due to waves) resulting in an associated medium and long wavelength 

instantaneous sea surface topography. Since temporal variations in sea surface topography 

remain, and altimetry does not sample the entire ocean surface simultaneously, we obtain only 

topographic point values at different instants, rather than a coherent sea surface topography. 

The temporal variations due to tides and atmospheric pressure variations can be modelled using 

a global tidal model, (usually that of Schwiderski [1980]), and meteorological records, 

respectively. An altimetrically-measured "actual sea surface" which has been corrected for tides 

and atmospheric pressure variations, results in a coherent sea surface topography which 

approximates the quasi-static sea surface topography. 

To reduce this further to obtain the idealized sea surface which we seek is a more difficult task. 

We must model the topography due to ocean dynamic effects. This is discussed in the next section. 

2.4 Dynamic Topography 

Sea surface topography features due to ocean dynamics effects are closely linked to seawater 

density variations. 

Seawater density varies with temperature (t), pressure (p), and salinity (s). Specific volume 

(a), is defined as the reciprocal of density, in units of volume per unit mass. The most general 

expression for specific volume is 

a(s,t,p) = a(35 %0, o·c, p) + 0s + 0t + 0s,t + 0s,p + 0t,p + 0s,t,p 

6 



2. Basic Definitions. 

where 

a(s,t,p) is the specific volume of a sample of water of salinity (s), temperature (t) and pressure (p ), 

a.(35 30, o·c, p) is the specific volume of an arbitrary "standard" sea water of salinity s = 35 3o, 

temperature t = 0°C, and pressure p at the depth of the sample. 

and the 8 terms represent the contributions of various combinations of s, t, and p. 

Sea water density variations are expressed in terms of the anomaly of specific volume 

(oa) 

oa = a(s,t,p) - a.(35 3o, o·c, p) = D.s,t + 8s,p + 0t,p + 8s,t,p 

where 

D.s,t = OS + ot + os,t is called the thermosteric anomaly. 

The term a.(35 30, o·c, p) expresses mainly the effect of pressure on specific volume. The 

anomaly of specific volume (oa) represents the excess of the actual specific volume of the sea 

water at any point in the ocean, over the specific volume of the "standard" sea water, and is the sum 

of six anomaly terms. The thermosteric anomaly (D. t) accounts for most of the effect of salinity s, 

and temperature, disregarding pressure. In water depths less than 1 OOO m, D. t is the major s, 

component of oa. The term 8 accounts for most of the combined effect of salinity and pressure; s,p 

the term ot,p for the combined effect of temperature and pressure; and os,t,p is usually so small that 

it can usually be neglected. 

The dynamic topography (also called geopotential thickness anomaly and dynamic 

height anomaly) between two constant pressure surfaces p = p 1 and p = p2 in the ocean is 

defined as the integral of the specific volume anomaly over the pressure surface difference [Levitus, 

1982] 
P2 

hd = f oa dp 

P1 
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2. Basic Definitions. 

A fundamental assumption in dynamic topography is that ocean dynamics effects disappear on 

a "zero" surface at which there is no motion of the water. The integral is taken from this "zero" 

surface to some other surface. Identifying this surface of no motion is the major problem of 

dynamic topography. Since this is critical to our application, it is worth reviewing in some detail. 

Several methods have been used to determine the surface of no motion, differing in the 

characteristic that is assumed to be associated with no motion [Fomin, 1964]: 

• the layer of minimum dissolved oxygen (Dietrich's method), 

• the isopycnal (constant density) layer showing minimum distortion (Parr's method), 

• computation of the vertical distribution of current velocity field based on salinity distribution 

(Hidaka's method), and 

• the isobaric (constant pressure) surface for which the gradient of dynamic depth is a minimum 

(Defant's method). 

It is clear that selecting one method to use in preference over the others is merely to select the 

assumption which appears the least subjective. Defant's method is the most widely used, and is 

used here. It should be emphasized that whatever method is used, the dynamic topography 

obtained is relative to the assumed level of no motion, and is not "absolute." 

The assumption that a surface of no motion exists is based on the belief that in the deep ocean, 

sea water velocities are negligible. Recent work indicates this may not be a valid assumption 

[Olbers and Willebrand, 1984; Wunsch, 1978]. On the other hand, averaged over several months 

and tens or hundreds of kilometres, it may be that any reference level below 1000 m may yield 

adequate dynamic topography results for many applications, particularly over short distances [Pond 

and Pickard, 1983]. Over longer distances it is likely that a surface possessing small or zero 

velocity will have a complex structure which is not consistent with selecting a single isobaric 

surface as the level of no motion [Fomin, 1964]. In the absence of compelling evidence to the 

contrary, however, we have assumed that the level of no motion is represented by a single isobaric 

surface. 

2.5 Gravity Anomaly 

Gravity anomaly is the difference between actual gravity on the geoid and normal gravity at 

the "corresponding" point on the reference ellipsoid. Depending on how the actual gravity on the 
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2. Basic Definitions. 

geoid is obtained from the observed gravity, i.e., which formula is used for the vertical gradient of 

gravity, we get different kinds of gravity anomalies. Here we will use only the free-air anomaly 

typified by the use of free-air gravity gradient: 

ag1ah = - 0.3086 mGal/m . (2.2) 

If the gravity is observed on the geoid, then all kinds of anomalies are equivalent. 

Depending on what gravity network the observed values of g are referred to, we have the 

derived gravity anomalies referred to the same network. The anomalies used here are referred to 

the International Gravity Standardization Network of 1971 (IGSN-71). 

Lastly, the gravity anomaly can be related to different reference ellipsoids through the different 

existing normal gravity formulae. In our case, the Geodetic Reference System 1980 (GRS-80) is 

used: the normal gravity on the reference ellipsoid, y~, is computed from the International Gravity 

Formula 1980: 

y
0 

= 978.0327(1 + 0.005 302 4 sin2cp - 0.000 005 8 sin22cp) Gal. (2.3) 

2.6 Satellite Altimetry 

Satellite altimetry techniques for observing the ocean surface topography have been one of the 

fundamental tools of the NASA Ocean Processes Program for more than 15 years [Tapley et al., 

1982]. Currently, two major satellite altimetry data sets exist. These are from the GEOS-3 mission 

(1975-1978), and from the SEASAT mission which was operational for three and a half months in 

1978. SEASAT and GEOS-3 raw data are available to researchers from NOAA/NESDIS [U.S. 

NRC, 1985]. 

The principle behind satellite altimetry measurements of the ocean surface lies in the fact that 

the satellite serves as a stable platform from which the radar altimeter measures the distance of the 

spacecraft above the instantaneous ocean surface, based on the travel time of short-pulse 

microwave signals. This distance measurement is an average height over the area covered by the 

radar footprint, the size of which depends upon the sea state. 

The geometry of the altimeter measurement is shown in Figure 2.1 and it relates: 

h the geodetic height of the spacecraft; 

a the measured altitude above the ocean surface; 
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2. Basic Definitions. 

N the geoidal height; 

s the height of the sea surface above the reference ellipsoid; and 

ss the dynamic sea surf ace height; 

through the expression 

ss = s - N = (h - a) - N . 

In this equation, it is assumed that the altimeter measurement (a) has already been corrected for a 

number of effects, such as (see Lorell et al. [1980]): 

(a) instrument corrections (instrument delays, altimeter off-nadir pointing errors, antenna centre of 

mass correction, residual biases, etc.); 

(b) propagation medium effects (atmospheric path length corrections due to tropospheric dry and 

wet component delay and ionospheric delay); 

(c) geophysical reductions (corrections due to solid earth and ocean tides, inverse barometer 

response of the ocean, sea state, wind pile up, etc.). 

Orbital errors (such as those due to model gravity field, atmospheric drag, solar radiation pressure) 

are assumed to have already been accounted for in the geodetic height (h) of the spacecraft. 

11 



3. Data. 

3. DATA 

In this chapter we describe the characteristics of the data sets used for the work reported in this 

report There are four types of data: 

• the marine gravity data which is to be improved and extrapolated using 

• the SEASA T satellite altimetry data, and 

• a recently-computed gravimetric geoid based on land and marine data; 

• sea surface topography data which is used to reduce the altimetry to an approximation of 

the idealized sea surface defined in section 2.1. 

3.1 Marine Gravity Data 

We used 318 579 marine gravity data points supplied by the (then) Earth Physics Branch 

(EPB) of Energy, Mines and Resources Canada [Hearty, 1986]. Figure 3.1 shows the distribution 

of this data. 

Gravity mapping of waters off eastern Canada began in 1964, and has been carried out mainly 

by the Atlantic Geoscience Centre (AGC), a division of the Geological Survey of Canada, with 

participation by EPB [EPB, 1986; pp 1-3]. 

Sea surface gravity measurements are subject to errors from the following sources [Talwani, . 

1970; Dehlinger, 1978]: 

• navigational inaccuracies 

• Eotvos effect errors 

• mislevelling of the gyro-stabilized platform 

• datum errors 

• system calibration errors 

• scale factor inaccuracies 

• vibration and thermal stress noise. 

The quality of marine gravity data depends on the position and velocity determination 

techniques used, the weather, and other factors. A conservative quality factor_ should represent the 

12 



90-1 

B 

---- 44::".:1'. 

7 

L 
A 
l 
I 

I 1 :-y:_1:i:. :; . :·:: "ih .. 
~ I 

1 
...... :·. ~:: f\(.~~!·';.;~-\.·:~:. ! • ); ~I _ u 

D 
E r,01 

I 

li:{.i~lf {{1 1 

l 
5~ ~ ~~~'Jl<.~~;~ :1 ::J~_~::r:·<{·.~:; · ·- .~ !'lr I 

401 ,.~~ ~ ---- .., .. 
~~-~~-. i 

I 2r.o 270 2BO 290 
I 

I [ ___ _ 
300 

Fig. 3.1 

310 320 

LONGITUDE 

330 

Distribution of Marine Gravity 

I t; 

I 
I 
I 

I 
I 
I 
I 

340 330 360 37 0 



3. Data. 

worst case variability within the section of data to which it refers. The quality factor codes used for 

the marine gravity data available to us are: 

Quality Factor 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Gravity Variability 

unknown 
± 0.01 mGal 
±0.05 mGal 
±0.1 mGal 
± 0.5 mGal 
± 1 mGal 
±3 mGal 
±5 mGal 
± 10 mGal 
>± lOmGal 

The eastern Canada offshore gravity data we have used has an overall accuracy of 2.5 mGals. The 

internal consistency varies from±l to ±5 mGals [EPB, 1986; p.47]. 

Homogeneous gravity data are produced by adjustment of the gravity field data. Field data 

may have one or more of the following problems, which cause problems in adjustment: 

• Positions of the main survey lines and checks lines are not identical. 

• Gravimeter drift calibration is difficult to model due to instrument failure, mechanical shock, or 

other discontinuities between port calibration visits. 

• Due to the conservative approach taken, a lot of good data is rejected along with the bad. 

• The quality factor is only a very rough indicator of data quality. 

3.2 Satellite Altimetry 

Three different sets of SEASAT satellite altimetry data have been acquired. Two of them are in 

the form of adjusted altimetry tracks, the third one being the "raw" SEASAT altimetry data set. The 

first of the adjusted altimetry data sets was obtained from the Department of Geodetic Science of 

The Ohio State University (OSU). The second became available from NASA's Goddard Space 

Flight Center (GSFC). The SEASAT "raw" observation records were obtained from the U.S. 

National Geodetic Survey (NGS). All data sets cover the geographical area between 35°Nto 72°N 

and 260°E to 350°E. 
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The reason that we have acquired altimetry data only from the SEASAT mission is because the 

coverage, adjustment procedures, and accuracy results are superior to those obtained through the 

GEOS-3 mission. Moreover, we have chosen to acquire two adjusted SEASAT altimetry data sets 

because the adjustment procedures followed at OSU and GSFC are somewhat different. 

In the following subsections, a more detailed description of these data sets is given. 

It should be mentioned here that the techniques we have developed under the terms of this 

contract will be equally applicable to altimetry data collected by other missions. It may be a very 

interesting exercise to acquire some GEOSAT data from the U.S. military and perform similar 

analyses with these data. The TOPEX mission, now likely to take place in the 1990s, will be 

another excellent source of data to be exitited. 

l 

3.2.1 OSU altimetry data set 

The OSU adjusted SEASAT altimetry data were provided on tape containing the information 

described in Appendix A ofRapp's [1982b] analysis of SEASAT altimeter data. The adjusted sea 

surface height_s contained on the tape are referenced to the Geodetic Reference System 1980 

(GRS80) with a = 6 378 137 m and f = 1/298.257. 

The basic discussion of the OSU SEASAT altimeter data processing can be found in Rowlands 

[1981]. In his study, Rowlands carried out a primary adjustment (primary arcs) using a global 

distribution of altimetry tracks and fixing one long arc. The resultant RMS cross-over discrepancy 

after this adjustment was ±28 cm [Rapp, 1982a]. Next, these primary arcs were held fixed and 

four regional, as well as several special purpose, adjustments (local arcs) were carried out, the 

details of which can be found in Rowlands [1981] and Rapp [1982b]. The final adjusted data 

records form a data base, an edited subset of which was obtained for our study area. This subset 

consists of primary and local arcs in the North Atlantic and Hudson Bay areas and has 

approximately 142 OOO data records in all. Figure 3.2 is a plot of the subset received and shows 

the distribution of the adjusted SEA.SAT satellite tracks. 

Although the data set we received was supposed to be clean of "blunders" in the data records, 

we discovered a few "bad" records and have further edited the data set. The bad records 

corresponded either to out-of-range values of adjusted sea surface heights (ASSH), or to data 

points where positional information was wrong (outside the area of interest), or to a few data points 

where the tide information was unavailable even though the points were lying in the middle of the 

Atlantic Ocean. Thus several screening procedures were implemented before the data set was ready 
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3. Data. 

to be used. 

At this point it should be mentioned that the OSU tape also contained information about the 

standard deviations of the individual ASSHs. The standard deviations in the file range from 1 cm 

to a maximum of 25 cm, which is an artificial cutoff value. 

3.2.2 GSFC altimetry data set 

The GSFC adjusted SEASAT altimetry data set obtained contains the following information: 

revolution number, modified Julian day, fraction of day, latitude, longitude, and adjusted sea 

surface height. The data set is in the form of several files, each file covering a diamond-shaped 

geographical area. These "diamonds" are shown in Figure 3.3 One of the diamonds pertinent to 

our study area was not included in the received tape (i.e., diamond #66). 

The basic discussion of the SEASAT altimeter data processing performed at GSFC can be 

found in Marsh et al. [1984] and in Marsh and Martin [1982]. The. global SEASAT data set was 

divided into 65 diamond-shaped regi<?ns, the maximum length of an altimeter ground track within a 

region being approximately 2000 km. For each "diamond," three control passes were selected 

from the three-day repeat era: one ascending and two descending passes which crossed the 

ascending one. The ascending control pass was held fixed and only the bias terms for the two 

descending tracks were adjusted. 

A cross-over adjustment was carried out for each "diamond"; within each region the orbit error 

could be represented by a linear trend. The "diamonds" were overlapped by two to five degrees of 

arc in order to provide continuity. After the adjustment process, the RMS difference of the 

cross-over points was found to be below 20 cm [Marsh et al., 1984]. 

It should be pointed out, however, that even though all of the ASSHs are referred to the same 

ellipsoid (i.e., GRS80 ellipsoid), the common ASSHs in the overlapping "diamond" areas 

experience discrepancies sometimes of the order of 0.5 m. The reason for this is that, although the 

regional ASSHs have been computed with a high degree of precision, the absolute orientation of 

each diamond-shaped area with respect to the centre of mass of the earth is different. This 

orientation problem led us to treat the whole data set with caution. More details regarding this point 

will be found in section 3.4.4. 

The approximate total number of records contained in the merged (i.e., all "diamonds" 

received) data set is 250 OOO. As in the case of the OSU data set, further screening procedures 

were employed to eliminate the few bad records from the received GSFC data set. These bad 
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3. Data. 

records were essentially erroneous ASSH values. 

3.2.3 NGS altimeter data set 

Three tapes were received from the U.S. National Geodetic Survey, containing the original 

SEAS AT altimeter data as described in the Geophysical Data Record (GDR) in Lorell et al. [ 1980], 

covering the complete lifetime of SEAS AT. The precision of this data set is described in Tapley et 

al. [1982] . 

Since we had two adjusted altimetry data sets (OSU and GSFC), it was superfluous to perform 

the same tasks as the two above institutes had done. In addition, time constraints prevented us 

from any further consideration of processing this "raw" data set to obtain ASSHs. 

3.2.4 Comparisons and discussion on the altimetry data sets 

From the preceding discussion it should be apparent that the GSFC and the OSU data sets are 

bound to have differences. These differences arise as a result of the different geographical split of 

the global SEASAT data set and the subsequent regional cross-over adjustments performed. It is 

obvious that different lengths of satellite orbital arcs have been used to minimize the cross-over 

discrepancies in the two data sets, thus leading to different linear trend removal and different 

accuracy assessments in terms of the post-adjustment RMS of these discrepancies. Intuitively we 

can expect that the GSFC data set has a higher, but regional, accuracy than the OSU data sets. 

Another difference between the two adjusted data sets is that different atmospheric corrections 

have been applied. In addition, the modelling needed to be performed in order to attain a common 

orientation for all diamond-shaped GSFC subsets will affect the ASSHs directly. Some criteria for 

this task should be developed and assessed. While at NASA the atmospheric corrections supplied 

in the GDR have been used, OSU derived corrections from other sources [Rapp, 1982b]. 

However, this difference is less significant than the orbital bias modelling for the cross-over 

adjustment. 

It also seems to us that different earth gravity models have been used for the processing of the 

data. Earth gravity model PGS-S3 has been used by OSU, while the PGS-S4 model was used for 

the processing at GSFC. If our understanding is correct, this might have an effect on the radial 

orbital error analysis, which will be primarily reflected in the cross-over discrepancies. 
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3. Data. 

Another source of possible differences between these two data sets is the selection of the 

cross-over points utilised in the linear trend removal, and the selection of the fixed arc for the 

adjustment. This fact points to the possible existence of a bias term between the two data sets. 

At present, it seems to us that no other apparent differences exist in terms of the set of the 

applied corrections. We have not performed a quantitative analysis of the differences between the 

two data sets, but it is in our future plans to look at this problem in more detail. 

3.2.5 Gridding through bilinear surface 

A grid of mean sea surface heigh_ts was calculated for both sets of adjusted SEAS AT data. The 

function of the grid was to present the ASSH values at regularly spaced intervals of latitude and 

longitude, thus allowing for easy and fast graphical displays using either conventional surface 

representations (contour maps, three-dimensional plots) or colour graphics on a digital image 

analysis system, such as the ARIES II. 

To determine a value representative of the ASSH at each grid intersection, the data in the 

surrounding area was fit using a weighted least-squares process to a surface-modelling function, 

and a local Cartesian coordinate system. The zero-order coefficient estimated from the process was 

then used as the evaluated ASSH at the grid location. 

We have tried several surface-modelling functions starting with a bi-quadratic function in 

latitude and longitude. We found that in areas of poor data coverage and distribution, this choice 

often led to a singular normal equation matrix for the surface fit. We tried to lower the degree of 

the fitted surface, but still there were grid locations that presented the same problem as above. The 

final choice, after several trials that were carried out specifically in the Hudson Bay area, was a 

simple bilinear surface modelling function [Christou and Yazdani, 1986] 

(3.1) 

where 

(3.2) 

(3.3) 

k1, k2: being numerical constants to convert from angular to length units; 

a
0

, a 1, ~· a 3: the unknown surface coefficients to be estimated; 
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3. Data. 

$
0

, A.
0

: latitude and longitude of the jk grid point; 

<Pi' A.i: latitude and longitude of the altimetry data points in the surrounding area of the jk grid 

point; 

xi, y i: the local Cartesian coordinates of the data points; and 

Pi(xi, Yi): the associated ASSH values of the data points. 

We can then write the "observation equations" [Vani~ek et al., 1972]: 

W· P·(X· Y·) = W · a.T <I>.(x · y·) = W· h· 
1 1 1' 1 1 J J 1' 1 1 1 ' 

i=l,2, ... ,n . (3.4) 

Denoting <l>j(xi, Yi) by <I>, we obtain the "normal equations" in the form [Vanfcek et al. , 1972]: 

where 

w = diagonal ( w i) 

and the solution is 

Then, a
0 

is the sought interpolated value: 

(3.5) 

(3 .6) 

(3.7) 

Since in our approach a minimum of eight data points is required, there is a redundancy of at 

least 4, and we are able to evaluate the confidence limits of h
0 

as well. 

The grid spacing chosen was 1/6 of a degree in both latitude and longitude. A rectangular 

window was selected about each grid point having a half-width of 0.5 degrees (i.e., all data within 

the window were used to calculate the predicted value). There is the option of varying the window 

size (i.e., using a larger window) to ensure that grid values could be calculated in the regions of 

sparse data coverage. As a weighting scheme, the associated ASSH standard deviations contained 

in the input file were used with the OSU data set. It was decided to use a ±15 cm standard 

deviation [Marsh, 1985] for all ASSH in the GSFC data set. It should be noted here that this 

gridding procedure leads to a smooth surf ace. 

Due to the reasons explained in the previous sections with regard to the GSFC data set (i.e., no 

common orientation of all diamond-shaped areas), the merged and subsequently gridded data set is 

presenting problems. Thus this data set was excluded from all subsequent calculations and 
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displays. Figure 3.4 shows the computed grid of mean sea surface on a 10' x 10' grid using the 

OSU adjusted SEASAT altimetry data. In the sequel, this grid will be labelled the "OSU-grid" for 

reference purposes. 

The "OSU-grid" and its asociated standard deviation were subsequently converted in a suitable 

raster-format and transferred to a digital image analysis system ARIES IT for graphical colour 

displays and further image analysis processing technique. 

Finally, it should be mentioned that the gridding algorithm provided gridded altimetry values 

over land in waste regions. To alleviate this defect, a special masking procedure was elaborated. 

The World Data Bank IT (WDBIT) coastline [Gorny, 1977] was utilised to mask the gridding 

artifacts over land. This coastline data set was transferred to the ARIES II system where it was 

generalized to the same pixel size as the altimetry (10' x 10' grid cells) and then transferred back to 

screen the altimetric grid shown in Figure 3.4. 

3.3 UNB Gravimetric Geoid 

Recently, we compiled a fairly detailed Canadian geoid [Vanicek et al., 1986] for the Geodetic 

Survey of Canada. It covers the region of <j> e ( 42°, 70°) and A. e (220°, 317°) with the exception 

of areas where there is an insufficient gravity data coverage. The eastern part of this gravimetric 

geoid is shown in Figure 3.5. The technique we have used for the compilation relies on two kinds 

of data: 

(a) Low-order harmonic coefficients obtained from satellite orbit analysis. A (20, 20) field 

produced by Goddard Space Flight Center (GEM9) was chosen. 

(b) Terrestrial gravity data, consisting of (i) point gravity anomalies; (ii) 5' x 5' mean gravity 

anomalies; and (iii) 1 ° x 1° mean gravity anomalies. 

(i) Point gravity anomalies. 

The point gravity anomalie~ were obtained from the Earth Physics Branch, Ottawa, and the 

Atlantic Geoscience Centre, Dartmouth. This data file contained 558 565 records. 

(ii) 5' x 5' mean gravity anomalies. 

The original 5' x 5' mean gravity anomalies were supplied by the Geodetic Survey of Canada. 

It was decided to use the updated marine point gravity anomalies to compute new 5' x 5' mean 

gravity anomalies for the east coast of Canada and replace the original data in the file. The 
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computation formulae are: 

n 

~g = CL. ~gi)tn , 

i=l 

n 

h = C I, hi)/n, 
i=l 

3. Data. 

(3.8) 

(3.9) 

where ~gi is the ith gravity anomaly in the 5' x 5' cell, and hi is the ith height in the cell. The 

standard deviation of the new mean anomalies are obtained as geometrical averages: 

n 

cr ~g = ..../ (I, cr~g?)/n 
i=l 

(3.10) 

If the 5' x 5' mean gravity anomaly could not be computed directly because of sparse data 

coverage, a weighted mean recommended by Kassim [1980] was utilized: 

n n 

~gP = c I. wi ~gi) / c I. wi), (3.11) 

i=l i=l 

n n 

~ = CL. Wi hi) I ( I, Wi)' (3.12) 

i=l i= 1 

where ~gp is the predicted mean gravity anomaly, ~gi are gravity anomalies of the immediate 

surrounding cells, Wi is a weight equal to l/si where si is the distance of the ith cell from the 

prediction cell, n is the number of cells used in the prediction, and hp is the predicted mean height. 

The standard deviation of the ~gp is: 
n n 

(3.13) 
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where cr ~gp is the standard deviation of the predicted gravity anomaly. If of the eight immediately 

surrounding cells more than two are empty, then the area utilised for the prediction is expanded to 

include a second layer of surrounding cells. The prediction fails if there are more than four empty 

cells in the area utilised for prediction. In this case, the missing 5' x 5' mean gravity anomaly has 

been replaced during the geoid computation by the corresponding l 0 x l 0 mean gravity anomaly. 

(iii) 1° x 1° mean gravity anomalies. 

These data were supplied by OSU, also named "January 1983 1° x l 0 Mean Gravity 

Anomaly". 

The low-order harmonics are taken as defining a (higher order) reference spheroid. A modified 

Stokes's approach is then used to ·compute geoidal heights above this spheroid from terrestrial 

gravity. The resulting relatively short radius of integration (6 degrees) allows us to compute the 

geoidal height on a rather dense grid; in this case a 10' x 10' grid. 

It is difficult to assess objectively the accuracy of our gravimetric solution. GEM 9 is deemed 

to be accurate to about 1. 75 m (1 sigma), the accuracy of the high frequency terrestrial/marine 

gravity contribution is estimated internally to be within (5, 50) cm. Comparisons with 

"independent" solutions show the following statistics (in the sense of "standard minus UNB"): 

' Rapp 180° x 180° [Rapp, 1983] µ = 101 cm, cr = 106 cm 

Wenzel 180° x 180° [Wenzel, 1985] µ = 62 cm, cr = 95 cm 

212 Doppler points in Canada µ = 86 cm, cr = 170 cm 

cr denotes the RMS with respect to µ. 

Colour plots of the differences between the UNB geoid and the Rapp/Wenzel geoids are 

provided as external appendices. 

It seems to us that the low frequency part of the UNB geoid agrees quite well with Wenzel's 

and Rapp's solutions as well as with the SEASA T (see section 3.4.2). This should not be 

surprising since Wenzel's solution relies heavily on GEM9 and so does the OSU adjusted SEASAT 

altirnetry-at least in the final analysis. 

It should be noted that the total UNB gravimetric geoid is referred to the reference ellipsoid 

defined by GRS-80. Since it is computed on the 10' x 10' grid, the UNB gravimetric geoid can be 

merged with the gridded altirnetry, if such a merger is deemed desirable. 
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3.4 Sea Surface Topography 

3.4.1 Levitus's dynamic topography data 

Since a definite answer to the problem of" absolute" dynamic topography could not be given, 

we resorted to the estimation of relative dynamic topography using Levitus's specific volume 

anomalies [Levitus, 1982]. The data we have acquired is in the form of dynamic topography and it 

was supplied to us by J. Marsh [ 19 85] of the GSFC. 

This data set is based on the Levitus computed anomaly of specific volume for 33 reference 

levels of the global ocean. The product of the processing performed at GSFC is a tape that contains 

the dynamic topography for 33 reference levels (i.e., the integrated anomaly of specific volume at 

33 different reference depths) on a 1° x 1° grid covering the whole globe. 

We have selected reference level #25 (depth 1875.0 m) as the level of no motion, or better, as 

the pressure surface (1875 dbars) with respect to which we will obtain the relative dynamic 

topography. The reasons for that selection are underlying the following arguments: 

(a) It may .be claimed that an assumed level (or layer) of no motion generally lies in deep water. 

(b) There is evidence of a strong circulation in the upper North Atlantic waters (down to 

approximately 1000 m) as well as in the deep North Atlantic waters (below 2000 m, 

approximately) [Pond and Pickard, 1983]. 

(c) Montgomery [1969] suggests as an optimum reference pressure for a world steric sea level 

map the 2000 db isobar. 

(d) We have computed difference maps of dynamic topography between several reference levels 

below 1000 m depth and no significant dynamic topography differences were found (see 

Figures 3.6 to 3.8). 

(e) We wanted to have as large a geographical area as possible covered, where dynamic 

topography estimates are available to reduce our SEASAT altimetry. 

Going for deeper reference levels, it would disclose the possibility of having adequate area of 

overlap between SEASAT altimetry and Levitus's dynamic topography as close to the coastline as 

possible. 

This dynamic topography data set referenced to the 1875 dbar surface has been processed to 

become available on the same grid spacing as the altimetry gridded data, i.e., on a 10' by 10' grid. 

For that purpose, linear interpolation in two directions, of the 1 ° by 1 ° grid of Levitus 's dynamic 

topography, was applied. The 10' by 10' interpolated grid is shown in Figure 3.9. A simple 
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3. Data. 

FORTRAN 77 program was written for that purpose. First, the latitudinal grid lines were 

interpolated on 10' by 10' spacing. The resultant data set was then passed through the same 

program and the longitudinal grid lines were interpolated on 10' by 10' intervals. Fast sorting 

routines available on the IBM 370 computer facilitated the cost effectiveness and simplicity of the 

developed program. The above choice of reference level #25 is providing us with dynamic 

topography estimates in most of the North Atlantic Ocean. With regard to the Hudson Bay area, no 

dynamic topography estimates will be considered. 

3.4.2 Altimetry minus UNB geoid 

Another way of determining the SST is to subtract the geoid from the sea surface determined 

by the altimeter. This difference is shown on Figures 3.10 through 3.18 for the OSU SEASAT 

data and the UNB gravimetric geoid. A colour plot of these differences is provided as an external 

appendix to this report. The mean difference for the area covered is -0.114 m. Therms with 

respect to this mean is 0.827 m. Both the mean and therms are strongly influenced by areas of 

unreliable altimetry data in the northern part of Hudson Bay, the Hudson Strait, around Baffin 

Island, and along the coast of Greenland. Figure 3.19 depicts those areas where the estimated 

standard deviation of the gridded altimetry exceeds a value of 0.25 m. Figure 3.20 shows the 

standard deviations of the difference between the OSU SEASA T altimetry and UNB gravimetric 

geoid estimated from the individual standard deviations of altimetry and geoidal heights according 

to the law of covariance propagation. 

A second statistical analysis of the differences between the altimetry and UNB geoid was done 

by excluding the areas above <i>=62° thus virtually eliminating all areas with high SEASAT standard 

deviations. The mean difference of this reduced area of coverage was computed as +0.036 m. The 

rms with respect to this mean was 0.534 m. This agreement in the mean certainly is somewhat 

unexpected. Based on the error budget for the geoidal computation (see section 3.3), a mean 

difference of up to one metre could have been produced by the errors in the long wavelength 

features of the GEM9 spheroid alone. This, on the other hand, shows a weak point in this 

procedure: any long wavelength SST signal in the difference between the altimetry and gravimetric 

geoid may be distorted or overpowered by long wavelength computation errors. 

We recognize a long wavelength feature in the area of Davis Strait to Labrador Sea and further 

south. It can be roughly described by a half wavelength of 10 degrees and an amplitude of 0.5 
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3. Data. 

metre. Another long wavelength feature is visible in Hudson Bay. There is a remote possibility 

that this is real SST. Much more probable is that it reflects the uncertainty in the tilt of descending 

SEASAT orbital arcs coming from the cross-over point adjustment [Rapp, 1983]. If this is the 

case, the tilt may be justifiably removed at some stage. 

Superimposed on the long wavelength structures we see many very localized features in 

Figures 3.11 to 3.18. These local SST structures are very pronounced along the ridge of the 

continental shelf off the coasts of Labrador, Newfoundland, and Nova Scotia. 

The local variations are of the order of several metres over typical distances of 1 ° (-100 km). 

Neither the gravimetric geoid nor the gridded SEASAT altimetry are expected to contain errors of 

this characteristic. Thus these local structures are believed to represent changes of true local SST. 

The correlation with ocean bottom topography is very obvious: the largest variation (more than 3.5 

metres over a distance of 1°) is sitting right on Flemish Cap. 

3.4.3 Zero frequency response technique 

In 1982, Merry and V anic'ek published results of their analysis of partial point SST differences 

for several ports in eastern Canada. For their analysis they used the zero frequency response 

technique [Merry and V anit'ek, 1982] applied to a few available forcing phenomena. The results 

represent only a partial SST because not all forcing phenomena were available. Conspicuously 

missing among these phenomena are. sea currents and salinity variations. 

The ports for which the analyses were carried out are: Father's Point, Saint John, Yarmouth, 

Boutilier Point, Halifax, and Pictou (see Figure 3.21). Because of the non-availability of global 

averages for even the observed forcing phenomena (atmospheric pressure, air temperature, river 

discharge, and wind stress components), only differences of the part of the SST between pairs of 

ports could be evaluated. These are: 

Father's Point - Saint John 

Father's Point - Yarmouth 

Father's Point - Halifax 

Father's Point - Pictou 

-68mm 

-206mm 

-92mm 

-228 mm 

Boutilier Point is too close to Halifax to be mentioned separately. 
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Location of stations for zero frequency response technique. 



3. Data. 

3.4.4 Comparisons of results 

When comparing SST as determined by Levitus (section 3.4.1), the SEASAT altimetry minus 

UNB geoid (section 3.4.2), and the zero frequency response technique (section 3.4.3), we have to 

keep in mind that these SSTs do not necessarily represent the same thing. 

Levitus's dynamic topography models the long wavelength structure of the global SST. It is 

based on data collected through many years in different seasons. Levitus's SST can be computed 

for areas with a certain minimum depth. Since this depth is larger than the depth on the continental 

shelf, Levitus's SST is available only in the open ocean areas (cf. Figures 3.6 through 3.9). The 

dynamic topography is positive everywhere. Since the geoid is defined to be the mean global sea 

level, the Levitus dynamic topography differs from the SST by a positive constant. 

The SST determined by the difference between the SEAS AT altimetric sea surface and the 

UNB gravimetric geoid is obviously affected by errors in both surfaces. The characteristics of the 

altimetry errors are small long wavelength errors resulting from errors in the adjustment of the 

SEASAT orbital arcs and errors due to spurious reflections in coastal regions resulting in erratic 

behaviour of the altimetric sea surface in coastal regions. The altimetrically determined sea surface 

has a very high spatial resolution in areas of good coverage. The relative errors over distances of 

up to a few hundred kilometres are expected to be at or below the decimetre level in areas of good 

coverage. 

The errors in the gravimetrically determined UNB geoid can be separated into long wavelength 

errors of the order of about 1 m due to inaccuracies of the underlying reference spheroid (GEM9) 

and more local errors resulting from approximation in the Stokes integration process and errors in 

the gravity data used. These local errors are believed to be at or below the decimetre level over 

distances of a few hundred kilometres. The spatial resolution of the gravimetric geoid in marine 

areas depends somewhat on the spatial resolution of the gravity data used in the integration. Off the 

eastern coast of Canada, rather dense point gravity data was available mainly on and somewhat 

beyond the continental shelf areas. Outside this area of point gravity data coverage, the gravimetric 

geoid is based mainly on l 0 x l 0 mean gravity anomalies. The point gravity data will lead to a very 

high spatial resolution of the gravimetric geoid, whereas l 0 x l 0 mean gravity anomalies will limit 

the spatial resolution to features larger than some 100 km. Therefore, for the SST derived from 

altimetry and the gravimetric geoid we may expect long wavelength errors in the metre range and 

local to medium range (several hundreds of kilometres) accuracies of the decimetre level. The best 

spatial resolution will be obtained on the continental shelf. SST close to the shoreline may be 

unreliable due to errors in the altimetry. 
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3. Data. 

The zero frequency response technique results described in section 3.4.3 provided results for 

differences of SST between 5 stations located along the coast of the Maritime Provinces of Canada. 

Since Levitus's SST is available only for the open ocean areas, a comparison between these two 

techniques is ovbiously not possible. Comparing Figures 3.10 and 3.21, we see that the locations 

of Father's Point, Pictou and Saint John are not covered by the SST determined from altimetry and 

geoid. The remaining two stations are obviously located on the shore where altimetry is 

contaminated by errors. Whereas the altimetric SST is very smooth at a level of 50 to 60 cm in the 

Yarmouth region, it behaves rather erratically in the Halifax area (see Figure 3.17). Thus a 

comparison with the 11.4 cm SST difference determined by the zero fequency response technique 

seems inappropriate. 

Figure 3.22 shows the difference between Levitus's dynamic topography and SST determined 

by the difference between the altimetric sea surface and the gravimetric geoid. Because of the 

limited extension of Levitus's dynamic topography close to the coast and limitations of the 

gravimetric geoid at a longitude of 317°, the area of overlap is rather small. A statistical analysis of 

the differences gives a mean of 82 cm and an rms with respect to the mean of 54 cm. The mean of 

82 cm will contain the positive constant of Levitus's SST mentioned above and some of the long 

wavelength errors of the altimetric/gravimetric SST. The variations of the SST differences 

characterized by therms of 54 cm are as large as the variations of the altimetric/gravimetric SST 

alone (see section 3.4.2). Thus we conclude that the two types of SST discussed here show no 

significant common features in the overlapping area. 

Based on the discussion above, we further conclude that the three types of SST described in 

sections 3.4.1 through 3.4.3 complement each other by providing the best results for different 

wavelengths and different areas. 
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4. Existing Transformations. 

4. EXISTING TRANSFORMATIONS 

This section describes existing techniques for the transformation between different functionals 

of the gravitational field of the earth. For a more detailed coverage of the subject, see Vanf~ek and 

Krakiwsky [1982]. 

4.1 Description of the Gravitational Field 

The gravitational potential W at a point P with coordinates X = (x, y, z)T is 

w p = G ff f 11 x - X' w 1 p(X ') dX I • 

Earth 

(4.1) 

G is the gravitational constant and p denotes the mass density. Subtracting from W a normal 

potential U, defined by a simple analytical expression, we obtain the disturbing potential T: 

T=W-U. (4.2) 

Included in the definition of the normal potential is the assumption that it is produced by an earth 

model having the same total mass M and the same centre of mass as the actual earth. A particular 

equipotential surface of the normal potential, U = U
0

, coincides with the mean earth ellipsoid. The 

equipotential surface of the gravitational potential having the same numerical value, W = U0 , is 

called the geoid. The relation between these surf aces is depicted in Figure 4.1. 

By definition, the separation between the geoid and the ellipsoid is the geoidal undulation, 

positive if the geoid is outside the ellipsoid. All three potentials W, U, and Tare harmonic outside 

the gravitating masses, i.e., 

(4.3) 
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4. Existing Transformations. 

Because of this property, the potentials can be represented in a series expansion of solid spherical 

harmonics (outside the gravitating masses), e.g., 

00 n 

W(r, A,<)>)= GM/r L (R/r)n L Onm YnmC(<)>, A)+ ~m Ynms (<)>,A)), (4.4) 

n=O m=O 

where R is a mean earth radius, M is the total mass of the earth, Jnm and Knm are constants 

depending on the mass distribution of the earth, and 

{ 

COSmA } 

sinmA. 

(4.5) 

are orthogonal functions on the sphere. P nm(sin <)>)is a normalized associated Legendre function 

(e.g., Abramowitz and Stegun [1964]). 1)1e first subscript, n, in the expansion (4.4) denotes the 

degree of a particular gravity field constituent, the second subscript, m, denotes the order. 

Since by definition the potentials U and W are produced by mass distribution having the same 

centre and the same total mass, the disturbing potential T does not contain any constituents of 

degree 0 and 1. 

00 n 

T(r, A,<)>)= GM/r L (R/r)n I ( Jnm YnmC(<)>, A)+ ~m Ynm5(<)>, A)) (4.6) 
n=2 m=O 

The disturbing potential T and the geoid undulation N are related by Bruns's formula [Vanicek and 

Krakiwsky, 1982] 

N = T/y
0

, (4.7) 

where "{
0 

is the normal gravity at the ellipsoid (cf. Figure 4.1) 

(4.8) 

51 



4. Existing Transformations. 

The gravity anomaly ~g is defined by 

~g = er - 'V e 10 ' (4.9) 

where g is the gravity at the geoid 

g=llVWIPll. (4.10) 

The relation between disturbing potential and gravity anomaly is given by the fundamental 

gravimetrical equation of geodesy 

~g = - aT1aH + 11y ag1aH T. 
0 . 

(4.11) 

In spherical approximation (approximation error of the order 1/300), we obtain from eqns. (4.6), 

(4.7), and (4.11) 

oo n 

N(cp, A)= R L L C Jnm Y nmC(cp, /..) + ~m Y nm5(<!>, /..)) (4.12) 

n=2 m=O 

oo n 

~g(cp, /..) = 'Y L (n-1) L ( Jnm ynmC(cp, /..) + ~m ynms(cp, /..)) (4.1~) 

n=2 m=O 

with a mean gravity y. 

Equations (4.12) and (4.13) show that the transformation between geoidal undulations and 

gravity anomalies is very simple if one of the fields is known in terms of a spherical harmonic 

expansion. However, in general, we will not know the expansion coefficients and will have to 

attempt the transformation in a different way. 

4.2 Stokes's Transformation 

The Stokes transformation relates the geoidal undulation at a particular point P to the gravity 

anomalies all over the earth. 
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4. Existing Transformations. 

1t 21t 

Np = R/41t')' f S('\jl) f ~g('\jf, a) sin'\j/ da d'\j/. (4.14) 

'lf=O Cl=O 

'\jl is the spherical distance between the dummy point and the point of interest, and a denotes the 

azimuth. The integral kernel S('\j/) is known as the Stokes function, having the respresentation 

(e.g., Vani'.cek and Krakiwsky [1982]) 

S('\j/) = cosec '\jf 12 - 6 sin '\j//2 + 1 - 5 cos'\j/ - 3 cos'\j/ ln(sin '\j//2 + sin 2'\j//2). (4.15) 

The Stokes function has a singularity of the order '\j/-l at '\j/=O. The Stokes function can be 

expanded in an infinite series according to 

00 

S('\j/) =I (2n+l)/n-1 Pn(cos'\j/) (4.16) 

n=2 

with Legendre polynomials P n [Abramowitz and Stegun, 1964]. 

The representation ( 4.16) is of particular interest, if we want to determine certain frequencies of 

the geoid, i.e., certain degrees n at the expansion (4.12). Using eqns. (4.12), (4.13), (4.14), and 

( 4.16), and employing the orthogonality relations of spherical harmonics on the sphere, it can be 

shown that a term of degree n in the expansion ( 4.16) extracts only geoidal undulation of this 

degree n from the complete spectrum of ~g (eqn. (4.13)); each term of eqn. (4.16) operates as a 

band pass filter for a particular gravity field constituent 

In practical applications, these spectral properties of S('\j/) are utilized, if low degree 

constituents of N are known from other sources and the observed gravity anomalies ~g serve for 

the determination of high degree constituents of N only. A recent example of this technique can be 

found in Vani'.~ek et al. [1986]. 

Denoting 

(2n+ l)/(n-1) P nCcos'\j/) 

n=l+l 

= S('\j/)- L (2n+l)/(n-l) Pn(cos'\j/) (4.17) 

n=2 
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4. Existing Transformations. 

and 

N = N1+8Nl (4.18) 

with 

n 

N1=R I I ( Jnrn YnmC(<!>, A)+ ~ ynmS(<!>, A)) (4.19) 

n=2 m=O 

and 

00 n 

8N1=R I I ( Jnrn y nmC(<j>, A)+ ~m ynmS(<j>, A)), (4,.20) 
n=i+l m=O 

the above discussed filtering properties lead from eqn. ( 4.14) to 

7t 27t 

8N1 = Rl47ty I s1('1f) I .1g('lf, a) sin'!' d'lf da . (4.21) 
\jl=O a=O 

The primary advantage of using the integration kernel S1('1') instead of S('lf) can be seen in 

Figure 4.2. This figure depicts the graphs of S('lf) and s20('1f). It is obvious that the latter 

decreases much faster with growing spherical distance 'I' than the original Stokes function S('lf). A 

direct consequence of this is that we can truncate the integration (4.21) at some appropriately 

chosen 'If 
0 

without committing significant errors. This fact can be interpreted that the nearby 

regions contain enough information to determine the high degree part of the geoidal undulations and 

that for the low degree part, the necessary information is partially contained in the more distant 

zones. 

Since the kernel function S1('1') in eqn. (4.21) blocks the low degree part of the gravity field, 

this part may be subtracted from .1g beforehand without changing the integration result. Denoting 

(cf. eqn. (4.13)) 
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4. Existing Transformations. 

00 n 

8D.g1(q>, A.) = y I. (n-1) I. ( Jnm YnmC(q>, A)+ ~ YnmS(q>, A)) 
n=l+l m=O 

n 

= D.g(q>, A.) - y I. (n-1) L ( Jnm YnmC(q>, A)+ Knm Ynm5C<P, A)) (4.22) 

D=2 m=O 

we obtain from eqn. (4.21) 

1t 21t 

oN1 = R/47ty f Sl('\jf) f 8D.g1('\jf, a) sin'\j/ d'\j/ da . (4.23) 

'1'=0 CI=O 

The replacement of D.g by 8D.g1 becomes mandatory if we truncate the integration at some 'If 0 < 

7t. In this case, the spherical harmonics are no longer orthogonal in the integration domain, and the 

filter properties of the integration kernel S1('\j/) discussed above are lost, at least partially. 

When evaluating eqns. (4.14) or (4.23), we may choose to integrate first along the parallels 

'\j/=const Denoting the average gravity anomaly along '\j/=Constant by 

21t 

D.g('\j/) = 1/27t f D.g('\jf, a) da 
CI=O 

21t 

8 D.g1('1f) = l/27t f 8 D.g1('tf, a) da 
CI=O 

we obtain from eqns. (4.14) and (4.23) 

1t 

Np=Rly f F('lf) D.g('\j/) d'\j/ 

'lf=O 

1t 

8Npl = R!y f pl('V) 8 D.gl('\jf) d'\j/ 

'lf=O 
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with 

F('\jf) = 112 sin'\jf S('\jf) 

Fl('\jf) = 1/2 sin'\jf sl('\jf) 

4. Existing Transformations. 

(4.28) 

(4.29) 

A graph of F('\jf) is shown in Figure 4.3. It can be seen that the singularity of S('\jf) for '\jf=O 

has been compensated for by sin'\jf (eqn. (4.28)). This figure illustrates again that a truncation of 

the integration (4.26) leads to rather large errors in N, since F('\jf) has considerable power in the 

long wavelength constituents. 

A comparison of F('\jf) with F20('\jf) and F90('\jf) in Figure 4.4 shows that the removal of the 

long wavelength constituents leads to a rapid decrease of the kernel for growing spherical distance 

'\jf. Thus any truncation at '\jf 
0 

< 7t will give, for eqn. ( 4.27), smaller truncation errors than for eqn. 

(4.26). 

4.3 Molodenskij's Transformation 

The Molodenskij transformation [Molodenskij et al., 1960] can be viewed as the inverse of the 

Stokes transformation discussed in the previous section. It relates the gravity anomaly at a certain 

point P to the geoidal undulations all over the earth. 

1t 21t 

~gp = - y!R Np+ y/4?tR I M('\jf) f (N('\jf ,a)-Np) sin'\jf d'\jf da. (4.30) 

'lf=O a=O 

The integration kernel is given by 

M('\jf) = - 114 cosec3 '\jf/2 , (4.31) 

and, therefore, has a singularity of the order of 'V-3 at '\jf =0. It can be expanded in a series of 

Legendre polynomials (e.g., Mather et al. [1976]) according to 
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4. Existing Transformations. 

00 

M('\j/) = L n(2n+l) Pn(cos'\j/) . (4.32) 

n=O 

This series expansion is valid for '\jl > 0. However, the series ( 4.32) is not convergent in the 

ordinary sense and cannot be used to replace eqn. ( 4.31) in numerical computations. Closely 

related to this property of the series expansion is the instability of the Molodenskij 

transformation. Changing the geoidal undulation N('\jf', a') at some point ('\jf', a') by a small 

increment dN leads to 

Mgp = (a~gp)/(aN('\jf', a') dN 

and differentiating eqn. (4.30), we obtain 

Mgp = - y/l67tR sin'\j/' cosec3 '\j/'/2 dN . 

(4.33) 

(4.34) 

Obviously, a small increment dN leads to large changes in ~gp for small '\j/1

• This instability of 

Molodenskij's transformation has prevented its application for numerical computations. It will, 

however, be used in section 5 .3 for analytical derivations leading to a different approach for the 

transformation from geoidal undulations to gravity anomalies. 

4.4 Rapp's Application of Least-Squares Collocation 

Rapp [1983], in his computation of 1° x 1° and 5° equal area mean gravity anomalies, has 

chosen to use the least-squares colloc'tion. He evaluates the averages using sea surface heights 

referred to the GEM9 reference spheroid uncorrected for SST. These heights, 8H, are selected to 

cover the block for which the average 8 ~g (referred to GEM9 spheroid) is sought plus a 2° wide 

strip around it. The formula used is 

(4.35) 

where 

C ollg,8N is the cross-covariance matrix between the anomalies and geoidal heights, both 
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4. Existing Transformations. 

ref erred to GEM9 reference ellipsoid, 

C0N,8N is the auto-covariance matrix of the geoidal heights, and 

cr A are the standard deviations of the altimeter measurements. 

The standard deviation cr ~g of the mean anomaly is then evaluated from the following 

expression: 

(4.36) 

where 

crot.g 2 is the expected mean square value referred to the GEM9 spheroid. 

Using this approach, Rapp predicted 34 973, 1·x1 ·mean anomalies with an average standard 

deviation of 5.1 mGal. The agreement of Rapp's predictions with terrestrial predictions is quite 

reasonable. Of the 34 973 values, 11 235 terrestrial values have standard deviations of 15 mGal or 

smaller. Out of this subset, only- 38 disagreed with the SEASAT-derived values by more than 40 

mGal. A total of 17 356 terrestrial values have standard deviations no larger than 99 mGal. From 

this subset, 379 disagreed with the SEASAT-derived values by more than 40 mGal. 
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5. The Truncation. 

5. THE TRUNCATION 

This section deals with truncated Stokes's integration and integral forms of geoidal undulation. 

Its goal is the derivation of mathematical tools for the local comparison of gravity and satellite 

altimetry, in terms of both gravity anomalies and geoidal undulations. 

In these derivations, we will also consider a known long wavelength gravity field in terms of a 

spherical harmonic expansion of the disturbing gravitational field (eqn. (4.6)) to be known up to 

some degree /. 

Spherical harmonics gravitational field representations have been compiled up to degree 180 

[Rapp, 1981] and 200 [Wenzel, 1985]. However, the estimated standard deviations of the 

potential coefficients Jnm and ~indicate that the coefficients are rather poorly determined for 

n> 100. Therefore, we have decided to adopt only the coefficient up to degree l=90 as being known 

for our purposes. 

The following section 5 .1 describes the spheroidal Stokes integration within a local area. In 

this approach, only marine gravity data from the neighbourhood of the point of interest is used. 

Thus the resulting integral contains only local features. This integral sh~uld not be confused with 

the geoid. Firstly, all long wavelength features are missing since a corresponding spherical 

harmonic expansion of the gravity field has been removed from the input data. Secondly, the 

integration is truncated at a very small spherical distance and thus even the high frequent part of the 

gravity field is only partially represented in the integral. Stokes's integration requires continuous 

input data within the area of integration. Since the marine gravity data is available only in discrete 

points or tracks, a technique for quasi-analytical integration over sparse data is developed in section 

5.2. The main contribution to the problem of comparing altimetry and marine gravity can be found 

in section 5.3. It describes the derivation of an integral kernel that extracts from a geoidal surface 

(as determined from altimetry) the same integral form as the above mentioned truncated spheroidal 

Stokes's integration. The comparison between truncated spheroidal Stokes's integration and the 

integration with the new kernel over the altimetric surf ace is expected to show how well altimetry 

and gravimetry agree locally. Since this is a new derivation, we describe in detail all the problems 

encountered in our work and their solutions. Section 5.4 describes the procedure implemented for 

the numerical integration over gridded altimetry data. 
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5. The Truncation. 

5.1 Partial Stokes's Integration 

The transformation of gravity anomalies ~g into geoidal undulations (section 4.2) requires an 

integration all over the earth. 

For practical applications, this integration usually has to be truncated at some radius \jf 
0 

because 

• gravity data is not available all over the earth, and 

• the computing burden is too large for complete integration. 

Especially for the inverse transformations, described in section 5.3, we are interested in keeping the 

truncation radius \j/
0 

as small as possible. As will be seen in section 5.3, the radius \jf 0 is related to 

the truncation radius <j>
0 

for integration on altimetry derived geoidal heights. To enable this 

altimetry integration to give results close to the coast line, we have to keep the radius <j>
0 

of 

integration as small as possible. 

For a truncation radius \jf 0, we obtain, from eqn. (4.14) 

'Vo 27t 

oN1·'1'o = R/47t"( f S(\jf) f o~g1(\jf, a) sin\jf d\jf da (5.1) 
'lf=O cx.=O 

Integrating first with respect to the azimuth a, we obtain 

'Vo 

oN1•'1'o = R/y f F(\jf) o ~g1(\jf) d'Jf (5.2) 
'lf=O . 

with 

F(\jf) = 112 sin\jf S(\jf) (5.3) 

and 
21t 

0 ~g1 = l/27t f o~g1(\jf, a) da. (5.4) 
cx.=O 
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5. The Truncation. 

To perform the integration (5.1) and (5.2), continuous data ot::,.gl is required within 'l'~'I' 
0

. 

5.2 Numerical Integration Over Sparse Data 

In the marine environment, we will usually not find continuous coverage of ot::,.g's in 'l'~'I' 
0

. 

We may, in extreme cases, end up with just one track of gravity observations within the integration 

area. 

To facilitate an integration over this sparse data distribution, we may fit an analytical surface to 

the data and use the surface coefficients in the integration. 

A particular surface representation in polar coordinates \jf, a is 

J 

ot::,.g1(\jf, a) = I ai ~ I (bj cosja + dj sinja) (5.5) 

i=O j=O 

Performing the integration with respect to the parameter a according to eqn. (5.4), we obtain 

I 

8 t::,.g1('1') = I b0 ai ~ = I ci ~ . (5.6) 

The a dependence has disappeared due to the orthogonality of the trigonometrical functions in the 

interval (0, 27t). 

In order to keep the numerical effort as small as possible, we may directly fit a curve 8 t::,.g1(\jl) 

to the 8t::,.g1(\jf, a) by disregarding their azimuth dependence. 

Having determined a set of coefficients Ci representing the radial dependence of 8t::,.g1, we can 

perform the integration with respect to the variable 'I'· Instead of evaluating the kernel F(\jl) using 

eqns. (5.3) and (4.17), we approximate it in the area of interest by a simple algebraic polynomial 
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F('Jf) = I, hi ~ . 
i=O 

5. The Truncation. 

(5.7) 

This approximation procedure avoids the repeated numerical evaluation of eqn. ( 4.17) during a 

numerical integration and, moreover, facilitates an analytical integration of eqn. (5.2). 

Inserting eqns. (5.6) and (5.7) into eqn. (5.2), we obtain 

'l'o J 

oNl,\lf o = R/y f (I, hi 'Vi) (I, cj ~) d'Jf. (5.8) 

'lf=O i=O j=O 

Integrating eqn. (5.8) gives finally the partial geoidal undulation from truncated Stokes's 

integration in terms of the curve coefficients Ci and the truncation radius 'JI 
0 

I J 

8Nl·'l'o = R/y I, I, (hi Cj)/(i+j+ 1) 'V 
0
i+j+l . 

i=O j=O 

(5.9) 

The approximation (5.7) has to follow two objectives: the degree of the polynomial should be 

as small as possible to save computation time during the evaluation of eqn. (5.9), and the 

polynomial degree must be high enough to avoid any significant errors due to the approximation. 

In the present context, the function F('Jf) will be used for 'V 
0 
<2.5° only. The result of the 

integration, 8Nl,\lfo, will be of the order of several metres. Thus the polynomial approximation 

(5.7) should be accurate to 10-3 in the interval OS'JIS2.5° to avoid integration errors larger then 

several millimetres. From Figure 4.4 we see that ~he F('Jf) is close to + 1 in this interval. 

Therefore, we require an approximation accuracy ~f 1·1 o-3 in both the absolute and the RMS 

sense. We can evaluate the value F(O) by perfonning some limit operations on eqn. ( 4.29) to 

obtain 

F(O) = 1 . (5.10) 

To guarantee optimal accuracy for 'Jf=O, we fix the coefficient h0 in eqn. (5. 7) a priori. The other 

coefficients hi are detennined from a least-squares curve fit to numerical values computed from 
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eqn. ( 4.29). A polynomial of degree six was found to fulfill the accuracy requirements stated 

above. 

The coefficients for this polynomial are listed in Table 5.1. These coefficients require a 

polynomial evaluation with 'JI in units of degrees. 

TABLE 5.1 

Coefficients of approximating polynomial. 

0 
1 
2 
3 
4 
5 
6 

h· I 

1.000 00 
0.390 33 

-0.961 70 
2.343 08 

-3.372 95 
2.485 83 

-0.726 34 

For the~e values, the approximation errors remain within ± 1 o-3. The RMS of the 

approximation errors is 0:24* 1 o-3. 

5.3 The "Truncation" Kernel 

5.3.1 Truncated Stokes's integration contribution from altimeter data 

Geoidal undulations N can be computed from (observed) gravity anomalies ~g by means of 

Stokes's integration (e.g., VaniC'ek and Krakiwsky [1982]): 

7t 27t 

N = Rf( 41t')') f S('Jf) f ~g('Jf, a) da sin'J' d'Jf . (5.11) 

If for any reason the integration is restricted to a spherical cap of radius 'JI 
0

, the resulting truncated 

Stokes's integration gives 
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5. The Truncation. 

'l'o 21t 

N'l'o = R/(47t')') f S('Jf) f ~g('Jf, a) da sin'Jf d'Jf, (5.12) 

with 

R being the mean radius of the earth 

y the mean gravity at the earth's surface 

'JI, a the spherical coordinates. 

Any integration (eqn. (5.11) or (5.12)) is inherently restricted to an accuracy of 1/300 because of 

spherical approximations. In a marine environment, we may have gravity anomaly observations 

~g and "observed" geoidal undulations N from altimetry. If the ~g's are processed according to 

eqn. (5.12), we look for a way to compare the resulting N'l'o with the observed altimetric N. 

Especially we search for an operator F that gives N'l'o if applied to N: 

N'l'o = F(N('Jf, a)). (5.13) 

To derive this operation, we recall several derivations and equations that can be found in modern 

textbooks on physical geodesy. 

5.3.1.1 Molodenskij's truncation coefficients 

If we want to extend the integration domain of eqn. (5.12) over the complete sphere without 

changing the result N'l'o, we replace the Stokes function S('Jf) by S'l'o('Jf), defined by 

S'I' o('Jf) = { 

S('Jf) , 

(5.14) 

0 

and write formally 
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5. The Truncation. 

1t 21t 

N'l'o = R/(47t"() f S'l'o('\jf) f ~g('\jf, a) da sin'\jf d'Jf. (5.15) 
'\jf=O cx.=O 

The Stokes function can be represented by 

00 

S('Jf) = L (2n+l)/(n-1) Pn(cos'\jf), (5.16) 

n=2 

with Legendre's polynomial P n of degree n. S('Jf) can also be represented in a Legendre series 
expansion 

00 

S'l'o('\jf) = L. (2n+l)/2an('Jf0) Pn(cos'\jf) 

n=O 

with 

and the Molodenskij truncation coefficients 

1t 

Qn('Jf 0) = f S('\jf) Pn(cos'\jf) sin'\jf d'Jf. 
'\jf='\jfo 

(5.17) 

(5.18) 

(5.19) 

The coefficients Qn('Jf 0) can be evaluated numerically using recurrence relations, the most efficient 

of which seems to be the algorithm of Paul [ 1973]. 

5.3.1.2 Molodenskij integration 

Equation (5.11 )..can be envisaged as an integral equation for ~g; the solution of this equation 

can be written according to Molodenskij et al. [1962]: 
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5. The Truncation. 

~g( '\jf, a) = - y/R N( '\jf, a) + 

7t 27t 

+ y/(47tR) f f M( '\jf, '\jf, a, a)(N('\jf, a) - N( '\jf, a) sin'\jf d'\jf da, (5.20) 
V=O a=O 

where 

M( '\jf, '\jf, a, a) = M(~) = - 1/4 cosec3(~/2) (5.21) 

and ~ is the spherical distance between ( 'V, a) and ('\jf, a). It is also possible to derive an 

expansion in Legendre polynomials for M(~): 

M(~) = I. n(2n+l) P0(cos~) (5.22) 

n=O 

This series is not converging in the ordinary sense and is not well suited for numerical 

computations. However, its use in the following derivations will prove useful because of the 

orthogonality properties of Legendre polynomials in (0, 7t). 

5.3.1.3 Derivation of the F-operator 

Replacing the ~g values in the truncated Stokes integration (5.15) by Molodenskij's formula 

(5.20) we obtain 

7t 27t 

N'l'o = l/47t f f S('\jf)[- N('\jf, a)+ 

7t 27t 

+ l/47t f f M('\jf, '\jf,a, a)(N( '\jf, a) - N('\jf,a))sin 'I'd \jf d a]sin\j/d\j/da. (5.23) 
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5. The Truncation. 

Using elementary operations, replacing the integration kernels Sand M by their series expansions 

(5.17) and (5.22), respectively, and utilizing the orthogonality of Legendre polynomials in (0, 7t), 

we succeed in transforming eqn. (5.23) to 

1t 21t 00 

N'l'o = 1/47t f f [I (2n+l)/2 (n-l)an(\j/
0
)Pn(cos\j/)]N(\jf,a)sin\j/d\j/da. (5.24) 

'lj/=0 a=O n=O 

Replacing an by eqn (5.18) we get from eqn. (5.24) 

1t 21t 00 

N'I' o = 1/47t f f I (2n+ l)P nCcos\j/)N(\jf,a) sin\j/ d\j/ da (5.25) 

'11=0 a=O n=2 

7t 27t 00 

-1/47t f f I (2n+l)/2 (n-l)Qn('1'
0
)P nCcos\j/)N(\jf,a) sin\j/ d\j/ da. 

'lj/=0 a=O n=O 

Since the geoidal undulations do not contain any harmonics of degree 0 and 1, we can neglect the 

first two terms in the second summation. Furthermore, we note that the kernel 

~ = (2n + 1) Pn (5.26) 

is a reproducing kernel for harmonics of degree n. Thus we write for eqn. (5 .25) 

7t 27t 

N'l'o = N - 1/2 f R'l'o(\jl) l/27t f N(\jf, a) da sin\j/ da (5.27) 

with the new kernel function 

00 

R'l'o(\j/) =I (2n+l)/2 (n-l)Qn(\j/
0
)Pn(cos\j/). (5.28) 

n=2 

Equation (5.27) relates the "observed" geoid undulations N to the result of a truncated Stokes's 

integration with spherical cap \j/
0

. It is the relation sought for according to eqn. (5.13). 
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5. The Truncation. 

5.3.2 Evaluation of the kernel function R 'V o('lf) 

The series representation of the kernel function in Legendre's polynomials 

00 

R'l'o('\j/) = I. ((2n+l)(n-1))/2 Qn('\j/
0

) P n(cos'\j/) (5.29) 

n=2 

is not suitable for a numerical evaluation for two reasons. 

(1) The series is not convergent in the ordinary sense, i.e., 

N 

lim SN , SN= I. ((2n+l)(n-1))/2 Qn P n (5.30) 

n=2 

is not finite. To overcome this problem, special summation techniques have been used, called 

Cesaro summation [Lanzano, 1982, pp. 129 ff; Hobson, 1931, pp. 347 ff]. The Cesaro 

summation technique has been implemented on the SE/UNB HP 1000 minicomputer. Using 

double precision word length, numerical instabilities occurred for summations with upper limit N > 

5000. Several tests indicated that for an accurate result the Cesaro summation had to be extended at 

least to N = 20 000. Thus the Cesaro summation technique had to be abandoned. However, this 

technique gave some insight into the shape of the kernel function and exhibited another 

disadvantage. 

(2) The kernel function R'l'o('\j/) behaves rather erratically when approaching the argument \If 0 

(see Figure 5.2). From our numerical experience we cannot call this behaviour a singularity, as all 

numerical values remained finite. However, this strange behaviour is probably somehow 

connected to the non-convergence of the Legendre series (5.29). 

5.3.2.1 · Regularization of the kernel function 

For the evaluation of R'l'o('\j/) we write formally 

(5.31) 

with 

71 



1000 

0 

-1000 

72 

0 . 10° 

~ 
Figure 5.2: The kernel function R 0 (~) 



5. The Truncation. 

(5.32) 

We look for a function f('\jl, '\j/
0

) of "simple" analytical structure that can be incorporated into the 

series expansion (5.29) for R'l'o('\jl) according to 

00 

R'l'o('\jl)*f('\jf,'\j/
0

) = T'l'o('\jl) = L (2n+l)/21n('Jf
0

) Pn(cos'\jl) (5.33) 

n=O 

and leads to convergence in the ordinary sense for the expansion (5.33). 

As we do not know in advance which function f('\jf, '\jl 
0

) to choose, this is a trial and error 

process. Here we do not describe all the errors but proceed directly to the successful trials. 

With 

f ('\jf, '\jf 
0

) = COS'\jl - COS'\jl 
0 

, (5.34) 

we obtain from eqns. (5.33) and (5.31) 

00 

T'l'o('\jl) = L (2n+ 1 )/2 (n-1)Qn('l'
0
)P nCcos'\jl)( COS'\jl - COS'\jl 

0
) 

n=2 

= L (2n+ 1)/2 (n-l){Qn('l' 
0
)P n(cos'\jl)COS'\jl - COS'\jl 

0 
Qn('l' 

0
)P n(cos'\jl)}. (5.35) 

n=2 

We evaluate the first term in the brackets using (cf. Ben-Menahem and Singh [1981]) 

X·P1(x) = 1/(2/+l)((l+l)Pz+l + l P1_1) 

and obtain, after reorganizing, the summation 

00 

+ L (2n+l)/2 {(n(n-2))/(2n+l) Qn_1('\jl
0

) + (n(n+l))/(2n+l) Qn+l('\j/
0

) 

n=2 
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5. The Truncation. 

00 

T'l'o('I') = Q2('!'0)P1(cos'I') + I (2n+l)/2 ~('1'0) Pn(COS'I'). (5.38) 

D=2 

Comparing the coefficients of this expansion (see Figure 5.3a) with those of the original series 

(5.29) (see Figure 5.3b), we observe that the coefficients of T'l'o('I') series decrease rapidly with 

increasing degree of expansion, whereas in the series expansion for R'l'o('I') the coefficients 

increase with n. This rapid decrease of the coefficients of the T'l'o('I') series expansion results in 

ordinary convergence for this series. A plot of the "regularized" kernel T'l'o('I') is shown in Figure 

5.4. For this plot, the series (5.37) was truncated at the degree N = 300; all numerical values 

obtained at this truncation level have converged to better than 1*10-5. 

5.3.2.2 Test of the kernel R 'I' 0('1') 

Assume the geoidal undulations N are given in an expansion of surface spherical harmonics 

00 

N('I', a) = I, Nn('I', a) , (5.39) 
n=2 

where n is the degree of the spherical harmonics. The gravity anomalies of the same gravity field 

are given by 

~g('I', a)= y/R I (n-1) Nn('I', a). (5.40) 
n=2 

The Stokes integration ·applied to eqn. (5.40) within a spherical cap of radius 'I' 
0 

can be written 

'l'o 27t 

N'l'o = R/(4rry) f S('I') f ~g('I', a) da sin'!' d'I', (5.41) 
'lf=O Cl=O 
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5. The Truncation. 

where we have chosen the spherical coordinate system ('JI, a) to be centred at the point of 

evaluation. Equation (5.41) can be evaluated using an expansion of the Stokes function S('Jf) in 

Legendre's polynomials (e.g., Vani~ek and Krakiwsh.-y [1982]) 

00 

S ('JI) = L (21+1 )/ (/-1) p z( COS'Jf) 
1=2 

(5.42) 

and an expansi.on of the surface harmonics Nn('lf, a) in associated Legendre's functions Pr(cos'Jf) 

and trigonometric functions according to 

n 

Nz('Jf, a)= I. Pr(cOS'Jf)(er Cosma+ sr sinma). (5.43) 

m=O 

Inserting eqn. (5.43) in eqn (5.41) and performing the integration with respect to a, the 

orthogonality of the trigonometric functions in (0, 21t) gives 

2~ 00 

1/21t f ~g('Jf, a) da ~ yfR L (n-1) en o · p n O(COS'Jf) 

tt=O D=2 
(5.44) 

= yfR L (n-1) en p n(COS'Jf). 
D=2 

Equations (5.42) and (5.44) in eqn. (5.41) gives 

'l'o oo 

(5.45) 

If the integration is extended over the interval (0, 1t), the orthogonality relation of Legendre's 

polynomials 

1t 

f Pz(COS'Jf) Pn(COS'Jf) sin'Jf d'Jf = 2/(2n+l) on/ 

'1'=0 
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5. The Truncation. 

gives 
00 

For 'If 
0 

< 1t, we exchange 

with 

'Vo 7t 

f S('lf) f('lf) sin'!' d'lf = f S('lf) f('lf) sin'!' d'lf 

( S('lf) ' 'I'~ 'Vo 

S('lf) = ~ 
l 0 'lf>'lf0 • 

S is evaluated in Legendre's polynomials according to eqn. (5.17) 

00 

S('lf) = L (2n+l)/2 an('lf
0

) Pn(cos'lf) 

n=O 
with 

an= 2/(n-1) - Qn, n ~ 2. 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

Using now eqns. (5.48), (5.50) and (5.51) in eqn. (5.45), we obtain (again exploiting the 

orthogonality relations) 

00 

N'l'o = I. (1 - (n-1)/2 Qn('lf
0
)) Cn. (5.52) 

n=2 

For 'If 0 = 1t, all truncation coefficients Qn(1t) vanish and eqn. (5.52) reduces to eqn. (5.47). For 

'If 
0 
=0, the truncation coefficients are 

Qn(o) = 2/(n-1) 

and, therefore, 

(5.53) 
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5. The Truncation. 

Once truncation coefficients Qn('lf 0) have been computed, eqn. (5.52) provides an excellent 

method to check the results of numerical integration procedures for specific gravity field 

constituents en of degree n. 

Figure 5.5 shows reference values computed from eqn. (5.52) for n=2,3,. .. ,200, using only 

one coefficient en different from zero. This coefficient of degree n was given the value 1, i.e., the 

integration in (0, 7t) according to eqn. (5.47) gives the integral value N1C = 1. Figure 5.5 should be 

interpreted in the following sense: For any gravity field constituent of degree n, which leads to a 

geoidal undulation of 1 m at the point of evaluation, the truncated Stokes's integration gives the 

value N'l'o. In the example shown in Figure 5.5, the truncated Stokes's integration estimates a 

geoidal undualtion of 1.4 m for a gravity field constituent of degree n = 50. 

As the integration with the newly derived kernel R'l'o(\j/) applied to the geoidal undulation 

computes the result of the truncated Stokes's integration, the N'l'o(n) values of Figure 5.5 can be 

used as a reference. 

Using the geoidal undulations (5.39), the surface spherical harmonics (5.43), the kernel 

evaluation (5.33), (5.31), we can write for the integration formulae derived in section 5.3.1: 

1t 

N'l'o=N-1/2 f T'V o(\j/) * [ COS\j/ - COS\j/ 
0
r l * 

'lf=O 

21t 00 

* 1/27t f L. Nz('lf, a) sin\j/ da d'lf . (5.54) 

a.=O 1=2 

The integration with respect to a gives (cf. eqn. (5.44)) 

21t 00 00 

(5.55) 

leading to 
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5. The Truncation. 

1t 00 

N'V 0 = N - 112 I T'V o('Jf) [ COS'Jf - COS'Jf or 1 L CnP n ( COS'Jf) sin'Jf d'Jf . (5.56) 

D=2 

Equation (5.56) has been discretized for the numerical integration 

00 

(5.57) 

with · 

and I is a suitably chosen number of intervals. T'Vo('Jf) is an approximation of T'Vo('Jf) using the 

first 300 term in the series expansion (5.38). As previously described for the Stokes integration, 

the numerical integration (5.57) was again done for single gravity field constituents of degrees 2 

through 200. The result of these integrations are undistinguishable from those shown in Figure 5.5 

in the scale of that figure. Therefore, we plot in Figures 5.6 and 5.7 the absolute and relative 

deviations of the numerical integration results from the true values given in eqn. (5.52). These 

results are based on an interval width of 6.'Vr = 0.1*27t/180°. 

5.3.2.3 Accuracy considerations 

The error of the test integration results as shown in Figures 5.6 and 5.7 can be due to two 

reasons: 

• insufficient accuracy when approximating the integral numerically; 

• insufficient accuracy when evaluating the kernel function according to eqn. (5.37). 

5.3.2.3.1 Accuracy of the numerical integration 

The numerical integration procedure used here is a simple quadrature method according to 
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5. The Truncation. 

Figure 5.8. The integral value is approximated by a finite sum of rectangles; for well-behaved 

functions, the error of this procedure depends mainly on the interval width ~'I'· Figure 5.9 shows 

the results for integrations with ~'I'= 0.2°, ~'I'= 0.1°, and ~'I'= 0.5°. Obviously, there is no 

appreciable difference in the error curves of these integrations. 

The function to be integrated here, however, is not as well behaved as shown in Figure 5.8. 

Recalling eqn. (5.56) and the shape of the regularized kernel T'l'o('Jf), the function to be integrated 

here looks as shown in Figure 5.10. 

The symmetrical singularity dominating for 'If close to \jf 
0 

is introduced by the ( COS'Jf-COS'Jf 
0
t l 

term. Any non-symmetric arrangement of the integration intervals ~'I' with respect to the symmetry 

line of the singularity will cause large errors. 

Figure 5.11 shows errors of the integration result if we shift the subdivision of the total 

integration interval by small amounts. The nodal points of the error curve remain unchanged by 

this procedure; thus we can artificially remove the error for the "no shift" case by introducing small 

shifts. 

Figure 5 .12 shows results for deliberate shifting; for a shift of 0.0025°, the integration error 

becomes negligibly small. Although this procedure leads to error-free integration results, it should 

not be used for two reasons: Firstly, there is no known mathematics or physics behind this 

procedure; and, secondly, the "correct" shift would have to be determined for every 'I' 
0 

on an 

experimental basis. We conclude this subsection with the result that the errors in the integral 

values, as shown in Figures 5.6 and 5.7, are not due to the numerical evaluation of the integrals. 

However, methods have been found to remove these errors by using some unfounded tricks in the 

numerical integration procedure. 

5.3.2.3.2 Accuracy of the kernel function 

All computations described so far were based on an evaluation of the regularized kernel T'l'o('Jf) 

in terms of Legendre's polynomial up to degree 300. We evaluate now the Legendre series (5.38) 

up to degrees N=200, N=500, N=800 and compare the integration errors with those for N=300 

used so far. The result presented in Figure 5 .13 clearly indicates that there is an error in the 
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5. The Truncation. 

statement in section 5.3.2.1 of this report. We stated in that section that all values of the kernel 

expansion truncated at degree 300 had conv_erged to 10-5. It was found upon closer inspection that 

the convergence is not that good for 'I' < 5°. However, from Figure 5.13, we see that for any 

gravity field constituent of degree n > 20, the recovery of the truncated Stokes's integration by 

means of the new kernel is better than 5%, if we evaluate the Legendre series (5.38) up to degree 

500. According to Kaula's rule of thumb [Kaula, 1966], the coefficients Cn of the terrestrial 

gravity field behave roughly as 

en - ± 10-5;n2. (5.58) 

That relates to the amplitudes Tn of the corresponding potential field constituents according to 

Tn - ± GMIR · 10-5;n2. 

Potential field constituents relate to geoidal undulations according to 

Nn = l/yTn 

and with 

'Y= GMIR2 

we obtain~ from eqns, (5.59) and (5.60) 

Nn - ± 64 m · n-2 

Nn - < ± 0.2 m for n > 20 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

indicating that a 5% integration accuracy is good for± 1 cm in recovered geoidal height constituent 

of degree n > 20. 

Figures 5.11through5.13 show two nodal points for the error curves at n - 68 and n - 148. 

These nodal points indicate that the error in the recovery of a gravity field constituent of degree 68 

or 148 is zero, independent of the quality of our computation (Figure 5.13). The underlying reason 

is rather simple: Spherical harmonics of degree 68 and 148 have nodal lines at a spherical distance 

of 2°, see Figure 5.14. This leads to extremal contributions for the truncated Stokes's integration 

(cf. Figure 5.5), but the contribution to the integral value (5.57) is zero at the singular point 'lf=\jf 
0

. 

This indicates that the integration error discussed in this section results mainly from inaccuracies in 

the kernel function evaluation for 'I' = 'I' 
0

. 
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5. The Truncation. 

5.3.2.4 Improvement and stabilization of the numerical integration procedure 

Summarizing the preceding sections, we can state: 

(a) the integrant in eqn. (5.56) has a simple singularity for \jf=\jf 0; 

(b) the integral value is finite; 

(c) any geoid constituent of degree n, whose value is zero for \jf=\jf 0, does not produce any 

integration error, independent of the slope of this geoid constituent at \jf=\jf 0 (Figures 5.13 

and 5.14). 

(a) and (b) indicate that we have treated the integration rather clumsily up to now, and (c) gives us 

some hint on how to treat it better. 

Figures 5.13 and 5.14 show that no integration error occurs, if all gravity field constituents in 

the integration (5.56) are zero for \jf=\jf 0. (Of course, the actual gravity field coefficients Cn are not 

zero!) 

We recall the original form of the integration kernel, eqn. (5.29) 

00 

R'l'o(\jf) = I. ((2n+l)(n-1))/2Qn(\jf0) P nCcos\jf). 

n=2 

The orthogonality of Legendre's polynomials in (0, 7t) gives 

7t 

f R 'I' o(\jf) sin\jf d\jf = 0 . 
'\j/=0 

Thus we can write 

7t 21t 7t 

N(\j/0) f R'Vo(\jf) sin\jfd\jf = l/27t f N(\jf
0

, a) da f R'l'o(\jf) sin\jf d\jf 

00 7t 

90 

(5.63) 

(5.64) 

(5.65) 



5. The Truncation. 

Since the mean geoid undulation N('Jf 0) for 'JI 0 is independent of 'JI, we can write 

7t 00 

112 f R'l'o('Jf) I. en p n(COS'lf o) Sin'Jf d'Jf = 0' (5.66) 

'lf=O n=2 

and replacing R 'I' o('Jf) by 

R 'I' o('Jf) = T'I' o('Jf)( COS'Jf - COS'Jf 0r l 

we obtain 

7t 00 

(5.67) 

Adding eqn. (5.67) to eqn. (5.56), we get 

7t 

N'l'o = N - 1/2 f T'l'o('Jf) ( N('Jf) - N('Jf 0))/(cos'Jf- COS'Jf 0) Sin'JI d'Jf (5.68) 

'lf=O 

27t 

N('Jf) = L CnP n(cos'Jf) = l/27t f N('Jf, a) da . (5.69) 

n=2 a.=O 

It remains to be shown that the integrant in eqn. (5.68) now remains finite for 'JI --7 'JI 0. Since the 

kernel T'l'o('Jf) is well behaved, this reduces to an examination of the function 

(5.70) 

Using eqn. (5.69), we rewrite eqn. (5.70) 

00 00 

D=2 n=2 
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With 

COS'\j/ = X , 

we write 

5. The Truncation. 

and a Taylor expansion of P nCX) at X = X0 gives 

00 

F nCX, XO) = I. 1/i! caip n(X))/dXi I (X-Xo)i-l . 

i=l X=Xo 

(5.72) 

(5.73) 

Since all derivatives of Legendre's polyno~als are finite, we have shown with eqn. (5.70) through 

eqn. (5.73) that the integrant in eqn. (5.68) remains finite for 'JI~ 'JI 
0

. 

The measures described in this section improve the error characteristics and the stability of the 

numerical integration dramatically. 

Figures 5 .15 and 5 .16- show the error of the numerical integration using the stabilized 

integrator (5.65) and a kernel T'l'o('\j/) developed up to degree N = 800. Thus the error plans should 

be compared to the "best curves" of Figure 5.13. 

For low degree gravity field constituents (n < 20), the improvement is better than two orders of 

magnitude; for higher degree constituents, the improvement is still better than one order of 

magnitude. 

The reason for the zig-zag behaviour of the error curve is unknown; as the errors are below any 

reasonable threshold, it is unnecessary to investigate this further. 

The rather large integration errors shown in Figure 5.13 are completely due to the fact that we 

computed explicitly the singular integrant and eliminated this singularity by ~.µmerical integration, 

i.e., summation of the (almost) singular integrant. Any error in the numerical evaluation of the 

kernel was in this way very strongly amplified and resulted in large integration errors. 

The same reason is underlying the error.curves shown in Figure 5.17. Any small error 

introduced· by a slightly asymmetric evaluation of the kernel function with respect to the singular 

point results in large integration errors. As the stabilized integrator has no singular integrant, a shift 

of the integration intervals with respect to 'JI 
0 

does not result in integration errors different from 

those shown in Figure 5.15. 
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5. The Truncation. 

5.3.3 Computational problems 

Altimetry data is not available all over the globe, and to limit the computational burden we want 

to limit the integration domain to a spherical cap of some radius <!> 0 ( <!> 0 > 'l' 0): 

<i>o 

N'+'o,<l>o = N - 1/2 f T'+'o('lf) ( N('lf) - N('lf 0))/(cOS'lf - COS'lf 0) sin'!' d'lf. 

'lf=O 

(5.74) 

For gravity field constituents up to degree n = 200, and several radii <!> 0 = 10°, 20°, 30°, 60°, 90°, 

120°, eqn. (5.74) has been evaluated. Results are plotted in Figure 5.18. It can be seen that results 

obtained for <!> 0 = 10°, 20°, 30°, are totally unacceptable. Results for <!> 0 = 60°, 90°, 120°, are 

closer to the true values (<!>0 = 180°), but their errors are still too large. We see two nodal points for 

the error curves, i.e., for two gravity field constituents, we get the correct result independent of the 

integration boundary <j>
0

. The two nodal points appear at the same place as in Figure 5.13. We also 

observe in Figure 5 .18, that all integration errors change their sign between <!> = 60° and <!> 0 = 90°. 

Because of the structure of the error curves (nodal points), we can expect to have an errorless 

integration for some 60° < cp
0 

< 90°. Do we have anything special between 60° and 90°? By 

expecting the regularized kernel function T'+'o('lf) (Figure 5.4), we find a maximum for 'l' - 71.5°. 

Trying this value for the limit of the integration domain, <j>
0

, we obtain the results plotted in Figure 

5.19. This figure is an overlay of the exact values (<j>
0 

= 180°) and those obtained for <j>0 = 71.5°. 

Only for very low degree gravity field constituents we see a difference between the two curves. All 

high-degree constituents are almost completely recovered. 

The results shown in Figure 5.19 have been double checked by integrating eqn. (5.74) in 71.5° 

< 'l' ~ 180°. Results are shown in Figure 5.20 and prove that there is only a small contribution for 

low-degree gravity field constituents. 

From Figures 5.19 and 5.20, we learn that integration up to the first positive maximum of the 
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5. The Truncation. 

kernel function T'Vo('\jf) gives reasonable results for high-degree gravity field constituents. The 

function T'Vo('\jf) is obviously dominated by low-degree constituents (cf. Figure 5.1). Since we 

cannot expect to obtain a reasonable result for low-degree gravity field constituents from any local 

integration, we may think of removing the low-degree harmonics from the kernel function. Thus 

we obtain from eqn. (5.27) 

with 

1t 

N1·'Vo = N1 - 1/2 J R1'Vo('\jf) N('Jf) sin'\jf d'Jf 

'lf=O 

R1'Vo('\jf) = I (2n+l)/2 (n-1) Qn('Jl
0

) Pn(cos'\jf). 

n=l+l 

(5.75) 

Regularizing this 'spheroidal' kernel R1'Vo('\jf) according to the derivations of section 5.3.2.1, we 

obtain 

(5.76) 

with 

T1'Vo('\jf) = I (2n+l)/21n('Jf
0

) Pn(cos'\jf) + 

n=l+l 

(5.77) 

and 1n('Jf 0) according to eqns (5.37) and (5.38). This kernel T1'Vo('\jf) has been computed for 1=20, 

and its shape is shown in Figure 5.21. The prpmising results obtained when integrating up to the 

first maximum of the kernel T'Vo('\jf) (<j>
0 

- 71.5°) led to an integration with T20'Vo('\jf) up to <!>
0
=8.3°, 

the first positive maximum of T20'Vo('\jf). 

The results of this integration are shown in Figure 5.22. For degrees l > 40, the gravity field 

constituents are recovered remarkably accurately by using the truncated integration up to <j>
0 

= 8.3°. 
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5. The Truncation. 

The differences between the exact values and the truncated integration results may be due to slight 

errors in the computation of cp
0

• We conclude: 

Integration with the 'spheroidal' kernel T20'Vo up to its first maximum (<j>
0 

= 8.3°) 

gives acceptable results for gravity field constituents of degree l > 40. For T 10 'Vo, 

the constituents of degree l > 20 are recovered when integrating up to <j>
0 

= 13.5° 

(cf. Figure 5.23) . 

If we look at the plot of the 'spheroidal' kernel T20'Vo(\jf) in Figure 5.21 we see a behaviour 

incompatible with Figure 5.3a, which shows the coefficients of the series expansion for T'l'o. A 

closer inspection of eqn. (5.77) shows that the kernel T1'Vo(\jf) is dominated by the term 

(l+l)/2 {/ Qz+n<'1'
0

) P1(cos'Jf) - (l-1) Q1(\jf 0) Pzn(cos\jf)}. (5.78) 

This fact becomes obvious if we plot the first part of eqn. (5.77) only 

-
T20'Vo('Jf) =I (2n+l)/2 ~(\j/0) Pn(cos'Jf). (5.79) 

n=l+ l 

Figure 5.24 shows the rapid diminishing of this part of the kernel T20'Vo(\jf). However, since eqn. 

(5.78) is part of the kernel, we cannot simply neglect it but must look for ways to minimize it 

Since 

P z(-1) - P l+ 1 (-1) = ± 2 , (5.80) 

the effect of eqn. (5.23) at 'JI= 7t can be minimized by 

(5.81) 

Equation (5.81) determines a radius \jf 
0 

of truncation for the Stokes integration that minimizes the 

influence of the term (5.78) on the distant zones of the kernel T1'Vo(\jf). 

For 1=20, we obtain from eqn. (5.81) 

'Jf 0 = 2.936°. (5.82) 
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5. The Truncation. 

Using this '\jl 
0

, we obtain a T 20 'l'o('Jf) shown in Figure 5 .25. 

Comparing Figure 5.25 with Figure 5.21, we see 

• the dominating term eqn. (5.78) has been dramatically reduced; 

• the shape and size of the kernel for small 'I' is not very much different; the first maximum has 

been shifted from <)>
0 

= 8.3° to <)>
0 

= 10.2°. 

Integrating with this kernel, once in the interval (o, 7t) and once up to <!>
0 

= 10.2°, we obtain the 

results shown in Figure 5.26. Comparing Figures 5.26 and 5.22, we see that (besides a change of 

the general shape of the response function) the main result of minimizing the term (5. 78) is a 

removal of the discontinuity of the response function in the frequency domain! This is an 

interesting fact, but has no significance for our derivations, since it is related to the response 

function of the non-truncated integration. 

The comparison of Figures 5.26 and 5.22 exhibits another feature: the interval of poor 

approximation (20 < l < 40) in Figure 5.22 has been reduced to (20 < l < 30) in Figure 5.26. This 

tendency suggests that we may get even better approximations with a truncated integration, if the 

kernel is computed for a larger Stokes's truncation radius '\jf 0. 

The previously described tests were again performed for '\jf 0=3.5°. As expected, the term 

(5.78) again dominates the plot (cf. Figure 5.27), and the first positive maximum is shifted to about 

12.2°. As can be seen from Figure 5.28, now the errors resulting from truncation of the first 

maximum of the kernel function are almost invisible at the figure's scale. Thes.e errors are plotted 

in Figure 5.29. These error curves are based on an integration with the 'spheroidal' kernel 

T20'1'o('\jl) up to the exact maximum of the kernel function <)>
0 

= 12.2107°.; .. It is obvious that the 

errors of all recovered gravity field constituents above degree 20 are less than 2%. 

5.3.4 Selection of kernel functions for numerical applications 

For use on real altimetry data in selected test areas; the following problems have been 

considered. For the purpose of checking the marine gravity data through Stokes's integration and 

comparison with the corresponding quantity obtained from integration over altimetry data, an 
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5. The Truncation. 

integration radius as small as possible would be desirable. This would enable us to identify certain 

very small .spatial areas of possible disagreement and thus indentify faulty gravity or altimetry 

measurements. On the other hand, the altimetric surface used in the integration is locally rather 

smooth, partly due to the gridding algorithm described in section 3.2.5. That means that for very 

small integration radii, the altimetric surface within the integration domain will be mainly flat 

without any remaining structure. This fact leads to a lower limit for the choice of an integration 

radius. It can be shown that the integration on the right-hand side of eqn. (5.74) yields zero, if the 

geoid N (represented by the altimetric surface) is a plane surface, i.e., no information can be 

extracted from this type of surface. 

For the purpose of this contract, we decided to work with two kernel functions T 901 • and 

T900.5° and to discuss the integration results in comparison with spheroidal Stokes's integration 

using the Stokes kernel within the truncation radii of 1° and 0.5°, respectively. The corresponding 

truncation radii for the T kernels are 3.640 35° and 2.984 97°, respectively. 

5.4 Numerical Integration Procedure for the Truncation Kernel 

The altimetry derived partial geoidal height oN A is given by (see, for instance, eqn. (5.74)) 

<l>o 

N'l'o,<i>o = N - 112 f T'l'o('\jf)( N('\jf) - N('\jf 0))(cos'\jf- cos'\j/0rl sin'\jf d\jf, 

'lf=O 

(5.83) 

where T'l'o(\jf) is the truncation kernel, '\jf is the geocentric angle between the point of interest and 

the 'dummy' point, '\jf 0 is the Stokes radius of integration, and N('\jf), N('\jf 0) are the mean geoidal 

heights (reduced for long wavelength geoidal undulations) of the 'dummy' points which are \jl±d\jf 

and \jf 0±d\jf respectively, away from the point of interest 

For the numerical integration of eqn. (5.83), the area around the point of interest up to a 

maximum radius <j>0 is divided into rings of thickness .D.'\jf, as is shown in Figure 5.30. The rings 
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5. The Truncation. 

are arranged in such a way that one of them will have a mean radius of 'If 0. Consequently, the 

mean radius of the circular area around the point of interest, as well as the thickness of the outer 

ring, will be less, in general, than Do'lf. Consequently, eqn. (5.83) can be written as: 

NRINGS 

N'l'o,<l>o = N - 112 I. Ti( N('lfi) - N('lf
0
))(cos'\jfi - cos'lf 0t1 sin'\jfi D.'lfi, 

i=l 

(5.84) 

where NRINGS is the number of rings around the point of interest, and i is the ring index. 

Since '\jf 0, <!>
0

, 'l'i• and D.'\jfi have predetermined constant values, and by setting 

Ri = 112 Ti(cos'lfi - cos'lf 0r1 sin'lfi D.'lfi , 

eqn. (5.84) then becomes 

NRINGS 

N'l'o,<l>o = N - I, ~{ N('lfi) - N('lf 0)}. 

i=l 

(5.85) 

(5.86) 

For computational speed, the different values of~ are stored and N('\jf 
0

) is evaluated initially 

for a specified point of interest and kept constant throughout the integration. N('lfi) is evaluated for 

each ring for a specified point of interest. Equation (5.86) indicates that the numerical integration is 

equivalent to a linear filter in the altimetric geoid domain with Ri being the transfer function. 

5.5 Determination of Mean Gravity Anomalies from Altimetry 

According to the derivations in sections 5.1 and 5.3, the result of the integration over the 

geoidal heights (altimetry) is equal to the corresponding truncated Stokes's integration over gravity 

data (cf. eqn. (5.1)) 
'l' 0 21t 

8N1•'1'o,<l>o = R/(41t"() f S('lf) f oD.g1('1f, a) sin'\jf d'lf da (5.87) 
'lf=O Cl=O 
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5. The Truncation. 

The mean gravity anomaly, 8 tJ.g1, in the integration area, 'V~'V 
0 

(not to be confused with the mean 

gravity along a constant radius, as used in eqn. (5.2)), is by definition constant within 'V~'V 
0

. This 

means that eqn. (5.87) can be inverted to yield mean gravity anomalies within 'V~'V 
0 

according to 

'l'o 21t 

8 tJ.g1 = 8N1·'1'o,<l>o · 47t')'/{R f S(\jf) f sin\jf d\jf dcx} 
'lf=O cx.=O 

'l'o 

= 8N1·'1'o,<l>o · 47t')'/{R f F(\jf) d\jf} = C'l'o · 8N1·'1'o,<l>o . 

'lf=O 

(5.88) 

Obviously, the conversion factor is a constant depending only on the truncation radius \jf 
0

: 

'l'o 

C'l'o = 47ty {R f F(\jf) d\jf}-1 . (5.89) 

5.6 Test of the Integration Programs 

To verify the theoretical derivations of the last sections and to assess the accuracy of our 

approach, a geoidal surf ace and the corresponding gravity anomalies were computed, using only 

the spherical harmonic coefficients of degree 91 of the Wenzel [1985] expansion. Both the geoidal 

height and the gravity anomalies were evaluated on a 1 O' grid covering an area of 10° by 5°. 

The result of a truncated Stokes's integration over the gravity anomalies is shown in Figure 

5.31. The corresponding truncation integration over the geoidal heights gave results shown in 

Figure 5.32. At the scale of these figures, the main difference between the results seems to be that 

the Stokes integration gives a slightly smoother surf ace. Plotting the difference between the two 

integration results in Figure 5.33 reveals a small systematic error proportional to the integration 

result. This error amounts to about 5% and is attributed to the combined effects of kernel 

approximation and data discretization. 
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6. Applications 

6. APPLICATIONS 

For application of the derived mathematical relations between geoidal surface and gravity 

anomalies to real data, two test areas were selected according to the research contract. Both test 

areas have an extension of 5° and 10° in latitude and longitude, respectively. The location of the 

test areas is shown in Figure 6.1. The Labrador Sea area was chosen to cover some of the local 

variations of sea surface topography, as discussed in section 3. 

6.1 Input Data 

Marine gravity data for Hudson Bay and the Labrador Sea (see section 3.1) was reduced for a 

spherical harmonic expansion of the gravity field up to degree 90 using \Venzel's [1985] set of 

coefficients. The Hudson Bay test area is more or less completely covered by gravity 

measurements. The lower left part of the Labrador test area is on land. Obviously, no marine 

gravity data is available in this part. 

The input for integration with the 'truncation' kernel is primarily the altimetric surface 

interpolated on a 10' x 10' grid, according to section 3.2.5. The integrator requires data within a 

certain radius <j>
0 

around the point of interest. To facilitate the integration in coastal regions, the 

altimetric surface had to be augmented by the UNB gravimetric geoid, also available on the 1 O' x 

10' grid. The merging of the two data sets required a decision on where to use which set. The first 

obvious choice would be to merge the two data files along the coastline. Unfortunately, the 

altimetry is rather unreliable in the coastal areas, as explained in section 3.4.2. Thus we decided to 

draw -the merging line along latitude/longitude lines, somewhat off the coast as shown in Figure 

6.2. The exact location of the merging line was chosen to coincide as well as possible with the 

lines of zero difference between the gravimetric geoidal heights and the altimetric sea surf ace 

heights (see section 3.4.2). Thus large discontinuities in the merged surface were avoided. Figure 

6.3 shows a contour plot of the combined geoid-altimetry· surface. This surface was subsequently 

reduced for long wavelength components using the Wenzel [1985] spherical harmonic expansion 

up to degree 90. A colour plot of the reduced geoidal surface is attached as an external appendix to 

this report. 
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6. Applications 

6.2 Hudson Bay Results 

Figures 6.4 and 6.5 show results pertaining to integrations with Stokes's truncation radius 

'JI 
0
=1 ° in units of centimetres. The Stokes integration in Figure 6.4 shows very detailed structures 

in the eastern part reflecting mainly the local variations in gravity. Comparing this figure with EPB 

[1980], we see a mimicing of the relative gravity variations in Hudson Bay. This is obviously a 

consequence of the very localized integration. Both plots show flat local highs and lows in the 

western and middle part of the test area and rather large anomalies along the eastern boundary. 

The integration with the truncation kernel for the same area is shown in Figure 6.5. The blank 

in the top part is due to empty areas in the input data file (see Figure 5.3). Clearly, the match of the 

two surfaces is quite good, not only as far as the basic shape is concerned but also as far as the 

amount of detail portrayed. It is encouraging to see that, apparently, the altimetric surface used for 

the 'truncation' contains enough high frequency information (wavelengths shorter than 100 km) as 

to be comparable with that contained in the collected marine gravity. There seems to be, however, 

an overall positive bias in the Stokes integration compared to the 'truncation' integration. 

To compare the two results better, we have plotted the difference of the two surfaces (Figure . 

6.6). Now the overall positive bias in the Stokes integration shows quite clearly. Realizing that a 

constant error of 1 mGal in the gravity data produces a change of 12 cm in the Stokes integration 

with radius of 1°, this positive bias would indicate an average bias in the gravity data of the order of 

about 1 to 5 mGal (in the absence of any bias in the altimetry) in the western part of this area of 

Hudson Bay. We note that differences of several decimetres may be caused by random 

(uncorrelated) errors in the marine gravity. For the typical case of an average density of .0.g values 

of 5' and their standard deviation of 5 mGal, the standard deviation of the Stokes integration would 

be 20 cm. 

There is a sizeable localized negative difference of 1.2 m in the eastern part of Hudson Bay. It 

appears that it might be caused again by a local (within the 1° integration cap) bias of about 10 

mGal in the marine gravity, although this hypothesis is difficult to sustain when we realize that the 

anomalous difference is outside the area of altimetry. 

Just how much of this difference could be reflecting the presence of the SST in the altimetry is 

difficult-to evaluate. The effect of merging the geoid with the altimetry, however, can be seen 

along the seams (shown in Figure 6.6 by - - - lines--cf. Figure 6.2) where rather abrupt 

steps of up to several decimetres can be discerned. The effect of random (uncorrelated) errors in 

the (gridded) altimetry is less than 7 cm in the Hudson Bay test area. These errors do not affect the 
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6. Applications 

comparison in a significant way. 

We should note that any longer wavelength differences between the two solutions (wave 

number 91, 92, ... ) may be coming from the inaccuracy of the truncation kernel used in the actual 

convolution which manifests itself particularly in the low frequency domain (cf. section 5). These 

differences, however, should be of the order of one decimetre or less. 

For the integration radius of 0.5°, the situation is very similar. The Stokes integration (Figure 

6.7) and the 'truncation' integration (Figure 6.8) show the same features as well as the same 

amount of detail. Obviously, the altimetric surface possesses enough high frequency information 

to match the marine gravity information content. 

The difference surface (gravity-altimetry) displayed on Figure 6.9 agrees with the 1.0° 

integration radius difference surface in broad features but differs in detail as one might expect. If 

these differences were caused by biases in marine gravity (here 1 mGal bias causes a 6 cm effect in 

the 'truncation' integration) then the change from one difference surface to the other would reflect 

the change in these biases from 1 ° cap averaging to 0.5° cap averaging. 

Here, again, the role of SST is difficult to assess. But once more, the seams between altimetry 

and the gravimetric geoid are visible, causing steps of several decimetres. 

To see if anything can be learned from the difference between 1° radius truncation and 0.5° 

raqius truncation, the difference ~urface was generated (Figure 6.10). It is interesting to note that 

this surface is relatively smooth (wavelength of 100 km and longer) and it mimics, with a negative 

sign, the shape of the higher order geoid constituents (cf. the external appendix: geoid-(Wenzel (90, 

90) field) two-colour plot)). It probably represents the contribution of deeper seated density 

anomalies so that the smaller radius truncated geoid (Figure 6.8) reflects the more localized (more 

focused) contribution of density anomalies located closer to the surf ace of the earth. This 

hypothesis, however, has to be tested in an area where the subsurface density distribution is 

relatively well known. 

6.3 Labrador Sea Results 

Figures 6.11 and 6.12 show results pertaining to the integration with Stokes's truncation 

radius 1 °. The Stokes integration over gravity anomalies in Figure 6.11 shows again detailed 

structures of local gravity variations and compares quite well with the gravity maps [EPB, 1980]. 

Especially pronounced are the large positive anomalies along the ridge of the continental shelf and 

focal lows at about (54.5°, 307.5°) and (55 .5°, 304.5°). The corresponding truncation integration 
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6. Applications 

result shown in Figure 6.12 remodels all the main features but shows also differences in the areas 

around (55°, 306°) and (53°, 308°). The structure of the discrepancies becomes more obvious in 

the plot of the differences between Stokes's integration and the truncation integration in Figure 

6.13. We see a general positive bias of 74 cm and extremal values of 2 m. The large differences 

are approximately colocated with the maxima of the Stokes integration shown in Figure 6.11, but 

they are not proportional to these. In contrast to the Hudson Bay results, here only small 

distortions seem to be caused by the merging of the gravimetric geoid and altimetric surf ace. The 

merging line is indicated by the broken line in Figure 6.13. 

Results for the truncation radius 'l'o = 0.5° are shown in Figures 6.14 and 6.15. Again the 

general agreement is good, but the rather large differences at several locations already seen in 

Figure 6.13 persist. The mean difference is +85 cm and extremal values are about +210 cm. 

Comparing the plot of the differences for 'I' 
0 

= 0.5° (Figure 6.16) with those for 'I' 
0 

= 1.0° 

(Figure 6.13) we see that the size of the features shown shrinks when reducing the integration 

radius. This is most obvious in the upper left comer of the plots and at the maximum differences at 

about (55°, 306°). In the upper left comer, only a rather small area remains above the 1.0 m level 

after reducing the truncation radius. The second feature mentioned above dissolves into several 

separate features. This is seen as a consequence of the focusing effect, i.e., reducing the 

comparison to less input data points. The plot of the differences between truncation integrations 

with 'I' 
0 

= 1.0° and 'I' 
0 

= 0.5° is shown in Figure 6.17. This figure depicts a more detailed 

structure than the corresponding plot for Hudson Bay although the range of the differences is more 

or less the same. The more localized structure may be due to the rougher input data along the ridge 

of the continental shelf (cf. Figure 6.3). 
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7. Utilization of Digital Image Analysis and Display Techniques. 

7. UTILIZATION OF DIGITAL IMAGE ANALYSIS 

AND DISPLAY TECHNIQUES 

7.1 Objectives 

The overall goal of the work, as stated in Chapter 7 of the contract, was the 

Provision of expertise and software for digital image analysis and for display 
techniques using colour graphics, as part of Items 1 to 6 where applicable, and as 
an extension of them. 

Specific operations proposed were: 

1) representation of contours and raw or gridded data by colour coding; 

2) display of data set overlays in colour composite and using colour mixing; 

3) superimposition of processing flags on data sets; 

4) mutual registration of data sets from different sources; 

5) resampling raster data to change the pixel size for display purposes; 

6) relief shading of data with directional illumination; 

7) gridding data using interpolation which exploits data trends (principal component 

transformation); 

8) manipulation of large images as collections of smaller images; 

9) compression and decompression of image data (for storage, input, output); 

10) Fourier filtering of image data (e.g., for cross-correlation, for cross-spectral techniques to 

analyse the relationship of bathymetry/elevation to gravity); 

11) derivation of horizontal and vertical gradients, second derivatives (e.g., Laplacian); 

12) correlation of anomalies using associated geophysical data like magnetic and gravity anomalies 

(e.g., searching for regions of preselected amplitude ranges for several parameters, using 

eigen-pictures in which pixels are presented by vectors associated with amplitudes of 

parameters defining the axes, comparing pseudo-gravity anomalies derived from magnetic 

anomalies using Poisson's relation); 

13) multiple image operations (e.g., addition, subtraction, ratios). 
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7 .2 Method of Approach 

BIO and the contractor own a different type of data processing facility which does not permit a 

direct transfer of operational procedures. This impediment was recognized in the contract by the 

clause: 

Differences between the contractor's and the scientific authority's image analysis 
and graphics systems (and continuing development of this capability at AGC) 
make direct transfer of software problematic. Specification of the means of 
transfer must be decided within the spirit of the contract through mutual agreement 
between the contractor and the scientific authority. 

According to the above guidelines, work on the contract proceeded in the following steps: 

1) A comparative study of the two data processing systems was undertaken by means of 

hands-on experience and a review of the operator's manual, to identify operational and 

structural differences. 

2) Problems and special needs associated with the processing of the data in question were 

identified and appropriate action taken. 

3) General procedures were compiled for the implementation of the operations detailed in section 

7.1. 

4) Computer programs were developed for operations not available on the BIO facility. 

5) The data sets available for or generated within this contract were processed in the contractor's 

facility, according to the operations proposed by the Scientific Authority and detailed in 

section 7 .1. This processing was done subject to the limitations in variety, type, and size of 

the data sets. The results of this process were transferred to and stored in the BIO facility to 

serve as examples of the desired operations. 

7.3 Comparison of the Two Image Processing Facilities 

The data processing facility installed at BIO is the EASI/P ACE (Expert Analysis System 

Interface/Pattern Analysis and Classification Expert) software that operates on a DEC VAX/VMS 

750 hardware. It was developed by Perception Computing Inc. ofDownsview, Ontario. 

The contractor's facility is a Dipix Systems Ltd. ARIES II (Applied Resource Image 

Exploitation System) software that operates on a DEC LSI 11123 hardware. 
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EASI/P ACE is in many ways similar to ARIES II in its operating procedure and structure. A 

principal difference between the two is in the hierarchical nature of the EASI/P ACE operating 

environment. EASI links the operator to PACE image analysis tasks via menu-prompts and a 

Parameter File, much like OIS in ARIES, to alleviate programming requirements. However, no 

EASI/P ACE Parameter File equivalent exists on ARIES. 

EASI/P ACE parameters are global, unlike ARIES parameters, thus easing the tedious job of 

specifying parameters when repeating a task. 

EASI/PACE does not have batch tasks like ARIES, with associated batch and queue files, to 

execute several processing tasks simultaneously or during off-hours. 

EASI/PACE has a Procedure Level which acts like a fourth-level language, allowing the user to 

set up a sequence of pre-defined tasks that can be invoked as if it were a single-function task. This 

capability is missing in ARIES II, which is menu driven and presents a variety of options in each 

pass through a task. 

No distinction exists between image and non-image files in EASI/P ACE. It has, however, a 

more convenient graphics file handling approach by regarding both themes and graphics as 

bitmaps. An EASI/P ACE inconvenience is the way images are loaded onto disk and into video 

display. The operator must assign space on disk and in video, whereas ARIES handles much of 

this requirement. EASI/P ACE displays are limited to the screen size. In ARIES the size of the 

video memory is the limiting factor, and the opertor can roam in the image even in zoom one. 

The software packages of both facilities serve essentially the same purpose and can produce 

similar results. There is, however, a difference in the variety of processing operations available 

and in the procedures that must be followed. 

7.4 Preprocessing Operations 

Two basic requirements imposed by both processing facilities are that: 

• the data must be in a gridded or rasterized format, and 

• it must be stored as a positive eight bit integer per grid cell, commonly referred to as a pixel. 

Both the GSFC 1 and the OSU sea surface heights are stored in profiles. Therefore, an 

interpolation procedure was developed and coded to rasterize these data sets (see section 3.1.4). 

The grid cell size chosen was 10 minutes of arc in geographic coordinates. Therefore, a shift of 

+100 m was applied to convert the whole range into positive values in units of metres , then a 
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multiplication factor of 100 was employed to convert all positive values from metres to centimetres. 

Geoidal and adjusted sea surface heights ran.ged from -60 metres to + 70 metres in the study 

area and were stored in one centimetre increments. Therefore, a shift of+ 100 m and a scale factor 

of 1/66 was applied, then rounded to the nearest integer to obtain all positive values and to fit the 

data within the eight bit (0 to 255) operating range. Each increment now represented a 66 cm 

change in height, which resulted in a substantial generalization. To partially alleviate this problem, 

new software was developed for operations which yield results in a range considerably narrower 

than that of the original data. These routines can handle values of any magnitude. The results are 

then reformatted into the eight bit pixel range for display purposes. (See section 7.6 for further 

particulars.) 

Finally, the record length and the block size of each data set was changed to a dimension 

compatible with the input requirements of image processing systems. 

7.5 Operational Procedures 

Both the EASI/P ACE and the ARIES II softwares were designed primarily for the processing 

and analysis of digital image data. However, both are capable of handling any data subject to the 

requirements and limitations stated in section 7.4. The method of approach is to select the 

particular processing task(s) from the software-package which can perform a desired operation with 

acceptable results. Therefore, in answering the questions raised in the contract, the image 

processing activities which best fit a desired operation are described in general terms. Based on 

this explanation, a person familiar with the EASI/P ACE system can identify the proper PACE task. 

In many instances, the required PACE tasks are listed as a guide. The contractor's three visits to 

BIO were insufficient to become intimately familiar with PACE. In fact, the analyst in charge was 

herself unsure of several aspects of the operation. 

1. Representation of contours by colour coding. This can be achieved, in an elementary 

way, by the pseudo-colour display option DCP>PO. The 0 to 255 data range will be displayed in 

36 system assigned colours. The colours approximately represent a seven unit contour interval. 

Contouring with user assigned colours and interval can be achieved with density slicing. 

ARIES has a black and white and a colour density slicing option. PACE tasks THR, data base 
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image to bitmap THR.esholding, used in conjunction with LUT, image enhancement via Look-Up 

Table, perform the same operations. 

2. Display of data sets in colour composites and colour mixing. This is provided by 

the multi-channel route of image display: DCP>ID 1 2 3 which superimposes image planes 1, 2,3 

in the order of red, green, and blue. 

A user defined pseudo-colour display of a single channel data can be created by defining a set 

of three colour-transformation functions for the three primary colours. The single channel data 

must then be mapped through these functions into three channels and displayed by DCP>ID 1 2 3. 

STR, data base image contrast STRetching, LUT, data base Look-Up Table transformation ,are the 

most likely tasks to use. 

3. Superimposition of processing flags. This requires that the flags be stored in a bitmap, 

which can be created by THR, data base image to bitmap THR.esholding. In ARIES this can also 

be achieved by the image classification and annotation tasks. Tasks SCC, Single-Class 

Classification of image data, MCC, Multi-Class Classification of image data, followed by MAP, 

encode data base bitmaps in image channel (theme MAP creation) are the likely operations to use. 

It was not possible to obtain sufficient information on these tasks during the visits to BIO. 

4. Mutual registration of data sets. This is a geometric registration problem which can be 

solved with task GCA, Ground Control point Acquisition (image to image). It must be followed 

by a resampling of the data. Probability task IRG, data base Image Recreation serves this purpose, 

but this could not be confirmed. 

5. Resampling raster data to change the pixel size. This is an integral part of geometric 

registration and is a fundamental operation in any digital image analysis system. PACE must also 

have this capability and probability task IRG performs this function. 

6. Relief shading with directional illumination. This task is not available in either image 
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processing facility and a program to perform this operation was developed by the contractor (see 

section 7.6 ). 

7. Gridding data using interpolation. Neither system has the necessary software included 

to perform this operation. A program, using bilinear surface polynomial, was developed by the 

contractor (see section 3.1.4). The principal component transformation referred to under item 7 in 

section 7.1 can be performed by task HOT, data base image transforms: HOTelling, tasseled cap, 

etc., but this operation is not associated with gridding. 

8. Manipulation of large images as collection of smaller images. This is probably 

possible via the task MER, MERge data base vector segments. 

9. Compression and decompression of image data. This is not normally done in image 

processing system since most operations require direct access files. 

The data should be stored in direct access files, rather than in sequential files, to perform image 

processing and display operations in an efficient manner. Therefore, it is not feasible to use 

compression and decompression techniques. 

10. Fourier filtering. This is performed with task FIT, Fast Fourier Transform. 

11. Derivation of horizontal and vertical gradients. This can be realized with spatial 

filtering. Task FLT, data base image spatial FiLTering has a number of preset low-pass, 

high-pass, and directional filters which can be convolved with the data base. Provision also exists 

for constructing user specified filter kernels. 

12. Correlation of anomalies using associated geophysical data, etc. This can be 

accomplished with a variety of tasks depending on the nature of the correlation. MCC, the 

Multi-Class Classsification and ARI, two-channel data b.ase image ARithmetic tasks appear the 
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most useful. In ARIES, correlation matrices and area statistics can also be generated. The 

contractor was unable to ascertain whether this is also possible in PACE. 

13. Multiple image operations. These are performed through task ARI, referred to above. 

7.6 New Computer Programs 

The following computer programs were written as part of the contract 

1. AS: Record Assembler. The record length of the input data to image processing systems 

must be equal to the number of pixels along one line. In other words, each line in the data set is a 

separate record. In AS, the output from the interpolation (gridding) program is re-assembled to 

satisfy this requirements. An optional scaling operation is also included which degrades data to the 

eight bits per pixel. 

2. MT: Tape Format. This program writes the data to tape in a format which is compatible to 

:MIB, the tape read and file creation task used at BIO. 

3. FA: Differencing. In this program the arithmetic difference between two data sets is 

computed, pixel by pixel. It runs without the restriction of the eight bits per pixel range. Input to 

FA should be in a format generated by AS, without the scaling option. FA includes a scaling to 

eight bit pixels. 

4. IL: Directional Illumination. The function of this program is to enhance the data by 

analytical relief shading operations. Relief shading is the creation of a three-dimensional 

impression by employing variations in light and dark. It is based on the principle that the lighting 

of a three-dimensional form will result in varying amounts of illumination on the varying slopes. 
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The method described by Yoeli [1965] and Woodham [1980] was used, whereby the illuminance 

of a surface area element is taken proportional to the cosine of the angle between the light ray and 

the normal to the area element. In other words, the illuminance varies with the direction of the 

illumination and the orientation of the surface. The direction of the illumination in turn is a function 

of the elevation angle of the light source and its azimuth. Both variables are controlled interactively 

during the execution of the program. 

The input should be in a format generated by AS, without scaling. The output from IL is 

scaled to eight bit pixel. 

5. IV: Inverting. Image processing operations assume that the origin of a data set is at the top 

left pixel. IV inverts a data set about the x-axis, whereby linen becomes line 1, line n-1 becomes 

line 2, and so on. 

7.7 Examples 

Data sets GSFC-1, OSU, and GEM-9 were processed in the contractor's Dip,ix ARIES II 

facility to demonstrate the utilization of digital image analysis and display techniqu~s and to provide 

examples for the evaluation of the utility of processing techniques. 

The following is a listing of the name and description of the files created with a short 

explanation of the processing techniques employed. Reference is made to the operations listed in 

section 7 .1. 

1. GCAFFGEM9. Black and white display of GEM-9 geoid. 

2. GCAFFOHIO. Black and white dissplay of OSU sea surface heights. 

3. GCAFFNASl. Black and white display of GSFC-1 sea surface heights. 

4. GCAFFSTND. Black and white display of the standard deviations of the OSU sea surface 

heights. 

Files 1 to 3 were produced by applying a constant shift of + 100 m and a multiplication factor of 

100 to convert the gridded data to positive integers in units of centimetres. The range of values in 

the above files is from 40 to 235. Each increment corresponds to a change of 0.666 m in height. 

The standard deviations are stored in 5 cm increments. These files can be displayed as a black and 
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white image on the video monitor of any image analysis sytem, using readily available image 

display tasks. 

5. GCAFFCORl, GCAFFCOG 1 and GCAFFCOB 1. Colour density sliced OSU sea surface 

heights. 

6. GCAFFCNRl, GCAFFCNGl and GCAFFCNBl. Colour density sliced GSFC-1 sea surface 

heights. 

In each case the total range of the data was sliced into 32 levels of equal spacing and then a 

different colour was assigned to each slice. A slice represents approximately 4.0 m change in 

height. For display purposes, a separate file is required for each primary colour. These examples 

demonstrate operation #1. 

7. GCAFFPOR2, GCAFFPOG2 and GCAFFPOB2. Pseudo-colour display of OSU sea surface 

heights. 

Transformation functions were applied to create an image file for each of the primary colours. 

A pseudo-colour image appears when the three files are displayed as a colour composite. This is an 

example of operation #2. 

8. GCAFFDON. Difference of OSU and GSFC-1 sea surface heights (OSU-GSFC). 

9. GCAFFD012. Difference of OSU sea surface heights and GEM-9 geoidal heights. 

10. GCAFFDN12. Difference of GSFC-1 sea surface heights and GEM-9 geoidal heights. 

These files were created with the differencing task FA (see section 7.6) and serve as an 

example for operation #13. 

11. GCAFFHOTL, GCAFFHOBR, GCAFFHOTR and GCAFFHOBL. Analytical relief shading 

enhancements of the OSU sea surface heights. Assumed direction of illumination is from the 

north-west, south-east, north-east, and south-west, respectively, at an elevation angle of 30°. 

12. GCAFFDITL, GCAFFDITR, GCAFFDIBR and GCAFFDIBL. Analytical relief shading 

enhancements of OSU and GEM-9 difference (file GCAFFD012). Same illumination parameters 

as for item 11. 

13. GCAFFHGTR. Analytical relief shading enhancement of GEM-9 geoidal heights. Assumed 

direction of illumination is from the north-east at 30° elevation angle. 

The above files were generated by task IL and demonstrate operation #6. 

14. GCAFFPDOR, GCAFFPDOG and GCAFFPDOB. Pseudo-colour enhancement of 

differences between OSU and GEM-9 data (file GCAFFD012). 

Same explanation as for item 7. 

15. GCAFFSTD2. Classification and colour coding of the standard deviations of the OSU sea 

surface heights (file GCAFFSTND) into the following ranges: 
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blue: 0.8 cm - 1.6 cm 

magenta: 1.6 cm - 2.5 cm 

cyan: 2.5 cm - 4.5 cm 

green: 

red: 

4.5 cm - 12.5 cm 

larger than 12.5 cm 

This is a theme file (bitmap) produced by the parallelepiped classification task which can be 

displayed by itself or superimposed on the GCAFFOHIO image. The 'searching for regions of 

preselected amplitude range' which forms part of operation #13 is illustrated. 

16. GCAFFGEOL. Zero height line for GEM-9 data. 

17. GCAFFOHOL. Zero height line for OSU data. 

18. GCAFFNAOL. Zero height line for GSFC-1 data. 

19. GCAFFDOGO. Lines of zero difference between OSU and GEM-9 data. 

20. GCAFFDONO. Lines of zero difference between OSU and GSFC-1 data. 

21. GCAFFDNGO. Lines of zero difference between GSFC-1 and GEM-9 data. 

22. GCAFGRZD. A geographic coordinate grid at 2.5° spacing. 

· The above items are theme files (bitmaps) produced by classification which can be 

superimposed in colour coding on appropriate data sets. They serve as examples for operation #3. 

23. GCAFFCOS2. Coastline. 

This is a generalized version of the North American coastline, resarnpled to fit the pixel size of 

the other data sets, colour coded, and converted into a theme file (bitmap). It demonstrates 

operations #4 and #3. 

All files listed in this section have been installed in the image processing system at BIO. 

7.8 Evalu·ation of the Examples 

In this section, the visual appearance and potential information content of data displays, 

produced by various techniques, are compared. No attempt is made to interpret the displays from a 

geoscience stand point. 

A gray scale display of unenhanced data sets is not very useful since the general trend of the 

geoidal and sea surf ace heights is barely visible. It shows a gradual change from large negative 

values in the Hudson Bay area to large positive values in mid-Atlantic Ocean. Local undulations of 

a few metres are not discernible with the human eye at the 66 cm gray scale increments. This is 
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especially so towards the lower and upper ends of the gray scale, due to a non-linear response of 

the vidicon tube of the display monitor. 

Density slicing provides an accentuated view of the changes in surface heights, especially when 

colour coding is introduced. Unfortunately, the contour-like slices create the impression of 

step-like changes. Pseudo-colour composites prove more useful. They preserve the impression of 

the global change in the surface heights and, at the same time, also depict major local undulations. 

The relief shading enhancement creates the most dramatic effect. Since the slope map is 

computed from the original data set at one centimetre increments, local anomalies become clearly 

visible. Furthermore, by changing the direction of the illumination, undulations with different 

orientation could be viewed. 

The difference images are also generated from the original data sets whereby small variations 

between the two surfaces are clearly visible. 
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8. CONCLUSIONS 

The primary goal of this contract report was the investigation of possibilities to extract gravity 

field information from satellite altimetry to check and/or replace marine gravity observations. Since 

altirnetry refers to the sea surface and not to an equipotential surface of the gravity field (geoid), we 

have first summarized in section 2 the definitions of all quantities involved in the relation between 

altimetry and gravity. 

Several data sets were acquired to facilitate the investigations. Marine gravity was made 

available by Energy, Mines and Resources Canada in the form of single point data for Hudson Bay 

and the North Atlantic, mainly on the Canadian continentaf shelf. Three different SEASAT 

altimetry data sets were acquired from the Ohio State University, the Goddard Space Flight 

Center, and the U.S. National Geodetic Survey. The OSU data was found to be best suited for our 

research since, for the areas of interest, it was corrected for tides and orbital errors in a consistent 

way. The GSFC altimetry was not adjusted in a consistent way, and the NGS altimetry consisted 

of more or less raw data. Gridding algorithms have been developed to interpolate sea surface 

heights on a regular geographic grid from measurements along satellite tracks. A gravimetric 

geoid was computed based on satellite derived potential coefficients, point gravity anomalies, and 

mean gravity anomalies. For the North Atlantic regions, 5' x 5' mean gravity anomalies had to be 

computed from the point gravity data. 

Sea surface topography has been computed in three different ways. The Levitus dynamic 

topography was found to represent mainly global features off the continental shelf. The SST as 

determined as the difference between the altirnetry sea surface and the gravimetric geoid was shown 

to be most accurate for features of local and regional extensions in the case of the continental shelf. 

Long wavelength features are distorted by errors in both the altimetry and the gravimetric geoid. 

Several very pronounced anomalies in this SST were detected along the ridge of the continental 

shelf. These anomalies· certainly deserve more research, especially in determining their causes. 

The SST obtained from the zero frequency response technique was restricted to points along the 

coastline. The altimetric/gravirnetric SST is unreliable in these areas due to spurious reflections 

from the land. The main conclusion regarding the SST is that the three methods discussed 

represent different features in different areas. They should be seen as complementing each other. 

Section 4 discussed the transformation between different functionals of the gravity 

field of the earth, mainly the equipotential surface (geoid) and the gravity anomaly. It was shown 
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that the direct transformation of geoidal heights into gravity anomalies as given by Molodenskij's 

integration is a numerically unstable problem, i.e., small changes in the geoidal heights may 

produce very large changes in the gravity anomaly result. 

Section 5 contains the main mathematical contribution of this report. A kernel function, called 

the truncation kernel, is derived for the computation of partial spheroidal Stokes's contributions 

by integrating over geoidal heights in a local area. This technique can be used to compare integrals 

over gravity anomalies with integrals over geoidal heights in local areas. The integrals are 

numerically stable even for small integration areas. Some non-standard mean gravity anomalies can 

be derived from the integral over geoidal heights simply by multiplying with a conversion factor 

given in eqn. (5.89). It should be emphasized that this technique is completely new, and that it has 

been developed particularly for this research contract. 

Section 6 contains applications of the 'truncation integration' in the two test areas: Hudson 

Bay, and the Labrador Sea. For these applications, the SEA SAT altimetry was augmented by the 

UNB gravimetric geoid for coastal and land areas to facilitate truncation integrations all over the test 

areas. No SST was subtracted for the marine regions. For each area, integrations were performed 

with Stokes's truncation radii of 0.5° and 1°. The comparison of Stokes's and the truncation 

integrations show that the technique developed for this contract is feasible. 

The differences between the two results are compatible with possible regional biases in marine 

gravity data. For both the 1 ° and 0.5° integration caps, the spectral content of both the truncated 

Stokes and truncated altimetric geoid appear to be about the same, showing-at least at this level of 

resolution-that the altimetry possesses enough high-frequency information for meaningful 

comparison with marine gravity. 

This conclusion is based, so far, solely on visual inspection. A more formal answer to the 

question of spectral content would have to be obtained through a formal analysis of the two kinds 

of results. This would call for the development of a formalism (e.g., double Fourier trigonometric 

series, averaging of one-dimensional spectra along different ·directions) and a time investment 

incongruent with the present contract 

Generally, the results of 'truncating' the altimetric geoid are intuitively pleasing and should be 

considered good. The magnitude of the truncated geoid, even when it is referred to a (90, 90) 

field, is sizeable, and the sensitivity to regional biases in gravity is quite high. To further develop 

this tool, it would be advisable to derive truncation kernels corresponding to integration radii of less 

than 0.5°, i.e., 'JI 
0 

= 1/3 °, 0.25°, 0.1 °, to establish to what extent the 'truncated' geoid can be 

'focused' to very local features of the gravity field. 

Discussing the spectral content, there is another aspect which should be clarified. This is the 
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relation between the 'truncated' geoid computed here and a 'spectral window' (combination of 

certain harmonics in the development of the gravity field into spherical harmonic functions) in 

higher frequencies . From a visual inspection, there appears to be some correspondence between 

these two ways of treating the geoid. Understanding this correpondence would go a long way in 

the understanding and physical interpretation of the 'truncated' geoid. This understanding, 

however, is beyond the scope of this project. 

Section 7 deals with the utilization of digital image analysis and display 

techniques. This investigation has confinned that digital image analysis systems are valuable 

tools for manipulating and displaying such data. The interpretability of displays created in this 

manner is superior to that of contour maps. Most of the data processing can be accomplished with 

the existing software packages of such systems. A skilled image analyst, in close collaboration 

with a geoscientist, can generate the desired results. Unfortunately, the constraint imposed by the 

eight bit pixel often requires that the data be degraded. This loss in spatial resolution can be offset, 

to a certain extent, by the introduction of colour and various other enhancements. Analytical relief 

shading is especially effective. It depicts localized, low-amplitude undulations of the surface. It is 

important that data processing operations which yield a range of values considerably narrower than 

that of the original data sets be performed on the undegraded data. Most image processing 

packages cannot handle pixel values larger than eight bits, therefore, customized software is needed 

for this purpose. Such a program was written for the differencing and analytical relief shading. 

The three data sets available for the experiments were insufficient to demonstrate all operations 

proposed under this contract. Nevertheless, sufficient evidence was provided to prove the utility of 

digital image analysis and display techniques to marine geodesy. 

Turning now to the as yet unanswered specific questions of the contract, we can offer the 

following answers: 

(i) What is the best level of agreement between the observed marine gravity and 

altimetrically-derived gravity? The comparison is done in the 'geoid space' by comparing the 

'truncated' altimetric geoid with the truncated Stokes integration over marine gravity. The 

differences are plotted in Figures 6.6 and 6. 9 for the two areas of interest, and they seem to indicate 

that regional biases over 1 • and 0.5° caps of up to 10 mGal may exist in the observed marine 

gravity. It is doubtful whether by shrinking the (integration) cap further better accuracy than some 

5 mGal can ever be expected in the bias detection. 

(ii) What level of confidence can be put on altimetrically-derived geoid for filling in data 

gaps in marine gravity coverage, and over gaps of what size? The altimetrically-derived sea surface 

has a very good short wavelength accuracy (standard deviation of about 5 cm) and this accuracy is 

retained by the 'truncated' geoid. To what extent this surface is representative of the geoid depends 
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on the SST which is poorly known. Assuming that the SST is predominantly of a long wavelength 

character, the truncated geoid referred to a (90, 90) reference field would be relatively insensitive to 

SST effects. On the other hand, the truncation kernel, as developed here, is inaccurate for wave 

numbers just above 90 and thus medium wavelength errors of the order of 10 cm may creep in. 

Further, the smaller the truncation radius, the less sensitive the truncated geoid is to regional gravity 

biases (\jf
0 

= 1°: 1 mGal ... 12 cm, \jf
0 

= 0.5°: 1 mGal ... 6 cm). The 'Stokesian average' ~g* over 

a 1° cap can be obtained to an accuracy of some 2 mGal, over 1/2° cap to some 4 mGal, etc. 

(iii) How well can we bridge the coastal gap between marine and land surveys by 

interpolation using satellite-derived gravity? Unfortunately, not very well, since altimetry data are 

weak along coastlines as well due to contamination from land reflections. Even when an accurate 

gravimetric geoid is used, the coastal zone remains a problem. It seems to us that this problem 

could be more readily solved in the 'geoid space' than the 'gravity space'. In the 'geoid space', the 

problem reduces to the development of an algorithm for realistic merging of altimetric sea surface 

with gravimetrically derived geoid. Attempts along these lines are now being made at UNB under 

the terms of an NSERC operating grant. 

(iv) What are the spectral characteristics of different data sets? This question has been 

answered, to a large extent, earlier in this section. The tricky part of this question concerns the 

'raw' altimetry data in the satellite track form. How does one define a spectral characteristic of 

two-dimensional anisotropic data? We feel that only the gridded data can be investigated spectrally, 

and the suggestions given above would then pertain. 

(v) How realistic is the predicted error of the altimetrically-derived gravity? This question 

has been basically answered under (ii). Generally, the larger the area over which the 'Stokensian 

average' ~g* is computer the better the accuracy that can be realistically obtained. 
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PROGRAM IL: DIRECTIONAL ILLUMINATION 

Given a raster digital file and an assumed light source, the program creates a file of terrain 

reflectance values. The azimuth, the elevation angle of the light source, and the pixel size are inputs 

to the program. The prompts for running the program with sample answers are as follows: 

1. Enter name of input file: (INPUT.DAT) 

2. Enter number of rows: (211) 

3. Enter number of columns: (541) 

4. Enter grid spacing: (50) 

5. Enter azimuth of the light source in deg, min, sec: (45,0,0) 

6. Enter elevation angle in deg,min,sec: (20,0,0) 

7. Do you wish to use previously calculated reflectance values if 

slope is within 5% (YIN) (N) 

8. Enter name of output file: (OUTPUT.DAT) 

PROGRAM FA: DIFFERENCING 

This program calculates the difference of two VMS files. The option in the program allows the 

creation of an image file for display with proper offset and scale values. The input to the program 

is two files, and the output is either an image file scaled, or a VMS file. The step by step procedure 

is as follows: 

1. Enter name of input file (Fl): (FI.DAT) 

2. Enter name of input file (F2): (F2.DAT) 

3. Enter number of rows: (211) 

4. Enter number of columns: (541) 

5. Do you wish to create the pixel file (YIN)? 

6. Enter name of output file: (OUT.DAT) 

7. Enter minimum value for the difference: (-20) 

8. Enter maximum value for the difference: (20) 
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PROGRAM AS: RECORD ASSEMBLER 

This program assembles a number of records into one record. It is necessary for creating a 

master file in which each line is a separate record, as required by programs IL and FA. Step by 

step procedure is as follows: 

1. Enter name of input file: 

2. Enter number of records: 

3. Enter number of columns: 

4. Do you wish to create the image file (YIN)? 

5. Enter name of output file 

6. Enter number of records per line for assembly: 

7. Please enter the scale factor: 

PROGRAM IV: INVERTING 

(INPUT.DAT) 

(11605) 

(541) 

(OUTPUT.DAT) 

(55) 

(0.01) 

This program inverts data about the x-axis. This means that the last record of the input data 

becomes the first record of the output data. 

1. Enter name of input file: (INPUT.DAT) 

2. Enter number of records: (11.605) 

3. Enter number of columns: (541) 

4. Enter name of output file: (OUTPUT.DAT) 

PROGRAM NT: TAPE FORMAT 

This program writes the image file (8 bits) onto a tape which is compatible with the :MLB 

format. 

1. Enter name of input file: 

2. Enter number of rows: 

3. Enter number of columns: 
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(INPUT.DAT) 

(211) 

(541) 



4. Enter the number of channels: 

5. Enter a title for data: 

6. Enter the channel descriptor: 

Appendix A 
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