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1. Introduction

1. INTRODUCTION

This is the final report for DSS Research Contract No. OSC84-00472 entitled "Satellite
Altimetry Applications for Marine Gravity”. Under this contract we were supposed to do the
following:

» Derive the geoid from satellite altimetry data.

* Derive the geoid from marine gravity data.

»  Compare satellite altimetry data with marine gravity data.

»  Combine satellite altimetry data with marine gravimetric data.

+  Compare in detail for two test areas (Hudson Bay and Labrador Sea) the gravity fields obtained
from satellite altimetry and marine gravimetry.

The overall (unstated) goal has been to investigate how satellite altimetry can help in offshore
geophysical studies conducted by means of gravity. Since (marine) gravity anomalies have been
used for this purpose almost exclusively in the past, it was envisaged that the sea level surface
obtained from satellite altimetry should be used to check the observed gravity anomalies or even
predict anomalies where none exist.

Leaving aside the difference between altimetrically derived sea level and the geoid, i.e.,
neglecting for the moment the sea surface topography (see section 2.4), the conversion of the geoid
into gravity anomalies poses some formidable problems. Determination of point gravity anomalies
from the geoid represents a classical ill-posed problem [Molodenskij et al., 1960; Coleman and
Mather, 1976]—f. section 4.3. Only some areal averages of gravity anomalies are determinable,
and the smaller the averaged areas the less stable the inversion becomes. The conversion of satellite
altimetry, neglecting the sea surface topography, has been done already by several people, most
notably by Rapp [1983].

The idea occurred to us then that at least checking the observed marine gravity anomalies could
be done in the "geoid space” rather than the "gravity space.” It is clearly much more simple to

compute the geoidal height N from Ag than the other way around. The only problem with the

classical Stokes's convolution used for this transformation is that Ag should be available all over
the world thus ruling out the use of pure marine gravity data.

To remove this problem, one may carry out the Stokes convolution of Ag with the Stokes
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kernel only over a spherical cap of a limited radius y—this operation we call here the truncated
Stokes integration. The price one pays for doing this is that the truncated Stokes integration
does not yield the full geoidal height N (above a selected reference ellipsoid) but only a partial

contribution SN(y)—termed here, in the absence of a better term, the truncated geoid. All that
remains to be done is to derive such an integration kernel which, used in a convolution with (the

altimetrically derived) geoidal height N, also gives SN(W).

This has turned out to be rather a tricky mathematical problem which would not have been
solvable within the means of this contract. Fortunately, we have had at our disposal other means,
namely the NSERC Strategic Grant "Applications of Marine Geodesy", under the auspicies of
which we could carry out the requisite theoretical investigation. At the end we have succeeded: The
result is shown in section 5.3.

Intuitively, the above described approach should not only allow one to test the goodness of the

observed marine gravity anomalies within a spherical cap of radius y but also provide an alternative
tool for geophysical studies. The truncated geoid SN(y) by itself should give a unique view of
the density distribution within the earth. Additionally, the changes of SN(y) in response to varying

v should offer yet another perspective. The uses of the geoid (instead of or in addition to gravity
anomalies) for density distribution studies have increased in the recent past, particularly after it was
realized that the different wavelengths of the geoid may have special meaning [Zlotnicki, 1984]. It
is hoped that the technique we are here suggesting will prove equally fruitful, thus providing
additional benefit unforseen in the contract.

One additional problem we have encountered while working on this project concerns the
observed marine gravity data. The marine gravity data file has been improved by its custodian, the
Earth Physics Branch of Energy Mines and Resources Canada in Ottawa, several times during the
life of this project. The most up-to-date file was made available to us at the beginning of this year.
It necessitated a recomputation of the already compiled gravimetric geoid for the eastern part of
Canada (see section 3.3).

Contours and spot heights are the generally accepted means for the visual representation of
spatial data sets, covering large areas. Although contour maps can represent three-dimensional
figures with a high degree of fidelity, the surface portrayed is not easily perceivable by the viewer.
Geographers have long recognized this problem and introduced colour, shading, and hachuring to
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enhance the topography. There is substantial evidence that such techniques can also be applied
successfully to geoscience data (see, for example, Haxby et al. [1983]). Therefore, provision of
expertise and software for digital image analysis and for display techniques using colour graphics
forms part of this contract.



2. Basic Definitions.

2. BASIC DEFINITIONS

In this report we deal with three classes of earth surfaces:
. various surfaces related to sea level;
. reference surfaces within the ocean (isobaric, isopycnal, or others); and
. the geoid, a particular equipotential surface of the earth's gravity field.
In this chapter we define these surfaces and describe how they are related. We also introduce
the two main data sources used in this report to determine these surfaces: satellite altimetry for sea
level, and gravity anomalies for the geoid. These data will be discussed in detail in Chapter 3.

2.1 Sea Level

Sea level and its variations is a very complex phenomenon. A discussion of sea level proceeds
most conveniently by first considering a ficticious scenario.

Consider the ocean as an undisturbed homogeneous fluid. With this statement we have
obliterated the moon, sun, and planets; demanded that the earth's atmosphere also be a static fluid
devoid of changing weather features; and mandated the elimination of other perturbing influences as
well. We have left the earth's crust as it is, and the earth is still rotating. We have constructed an
idealized sea level which is static, and spatially influenced only by variations in the earth's
gravity field [Stewart, 1985; p. 261].

The actual sea level will be affected both temporally and spatially by many influences. The sea
level surface with none of these perturbations removed is the instantaneous sea level surface.

The "long term" average of the temporal variations in sea level at a point is a mean sea level
for that point. "Long term" may mean one month, or one year, or longer, and the corresponding
monthly mean sea levels, annual mean sea levels, and so on, will in general be different. Monthly
means at the same point may vary typically by 0.5 m, and annual means by 0.1 m.

Some perturbations may have static components, so that temporal averaging at a point will not
necessarily recover our idealized sea level for that point.

To obtain a mean sea level surface, we must establish mean sea level at a network of
points.
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2.2 The geoid

The geoid is one of the equipotential surfaces of the earth's gravity field. As such, it is defined
mathematically by the following prescription:

W(r) = const., .1)
where W stands for the earth's gravity potential. The value of the constant is selected so that this
equipotential surface represents the mean sea level (surface) as well as possible. The idea is due to
J.K.F. Gauss (1777-1855) who was the first to recognize the geoid as a mathematical figure of the
earth.

To select the "right” equipotential surface, clearly, is not a simple task, particularly because the
mean sea level changes with both the time (epoch) to which it is referred and the period of time over
which the sea level has been averaged. But even if the mean sea level were not varying with time,
how would one select the appropriate constant in eqn. (2.1) to make sure that the equipotential
surface really approximates the mean sea level? With all the modern solutions, where satellite
determined long wavelength features make the backbone of the solution, it is a matter of a proper
selection of scale. The scale is callibrated against terrestrially determined heights and becomes part
of the solution.

2.3 Sea Surface Topography

Sea surface topography is the departure of the actual sea surface from the geoid, or from
the idealized sea surface defined in section 2.1.

We can use several "actual sea surfaces", each of which will have a different sea surface
topography associated with it. If we include all wavelengths of the spatial variations, then at any
instant we have an instantaneous sea surface topography.

Instantaneous sea surface topography includes features with amplitudes of up to (see for
example, Chelton and Enfield [1985]):

. several tens of metres from waves,

. several metres from tides,

. one metre from strong geostrophic currents,

. several decimetres from atmospheric pressure variations,

. several decimetres from wind-driven piling up effects along coastlines,
. several decimetres from other ocean dynamic effects.
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The features with the strongest temporal variations are those due to waves, tides, and
atmospheric variations. If we use mean sea level at a network of points as our "actual sea surface,"
then most of these temporal variations (over the period used to compute the mean) will be
eliminated, and we will have a quasi-static sea surface topography, which contains only
semi-permanent perturbations, mainly due to ocean dynamics effects. Two other effects must also
be taken into account:

+ Significant local and regional secular variations in sea level due to crustal motion may exist.
« Eustatic changes (the advance or retreat of ice sheets) involve a global change in mean sea level
of a few centimetres per century.

We will see that satellite altimetry involves sampling over a "footprint" of a few kilometres in
diameter. Thus the altimetrically-measured "actual sea surface" suppresses short wavelength
features (mainly those due to waves) resulting in an associated medium and long wavelength
instantaneous sea surface topography. Since temporal variations in sea surface topography
remain, and altimetry does not sample the entire ocean surface simultaneously, we obtain only
topographic point values at different instants, rather than a coherent sea surface topography.

The temporal variations due to tides and atmospheric pressure variations can be modelled using
a global tidal model, (usually that of Schwiderski ['1980]), and meteorological records,
respectively. An altimetrically-measured "actual sea surface”" which has been corrected for tides
and atmospheric pressure variations, results in a coherent sea surface topography which
approximates the quasi-static sea surface topography.

To reduce this further to obtain the idealized sea surface which we seek is a more difficult task.
We must model the topography due to ocean dynamic effects. This is discussed in the next section.

2.4 Dynamic Topography

Sea surface topography features due to ocean dynamics effects are closely linked to seawater
density variations.
Seawater density varies with temperature (t), pressure (p), and salinity (s). Specific volume

(o), is defined as the reciprocal of density, in units of volume per unit mass. The most general
expression for specific volume is
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where

%s.tp) is the specific volume of a sample of water of salinity (s), temperature (t) and pressure (p),

%35 %, 0°C, p) is the specific volume of an arbitrary "standard" sea water of salinity s = 35 %o,
temperature t = 0°C, and pressure p at the depth of the sample.

and the 3 terms represent the contributions of various combinations of s, t, and p.
Sea water density variations are expressed in terms of the anomaly of specific volume

(o)

da = %s,tp) ~ %35 %, 0°C, p) = A, + SS,p + St’p + Ss’t’p
where

A, = O, + &, + O, , is called the thermosteric anomaly.
The term O35 %, 0°C, p) EXPTESSES mainly the effect of pressure on specific volume. The

anomaly of specific volume (dx) represents the excess of the actual specific volume of the sea
water at any point in the ocean, over the specific volume of the "standard" sea water, and is the sum

of six anomaly terms. The thermosteric anomaly (A, ) accounts for most of the effect of salinity
and temperature, disregarding pressure. In water depths less than 1000 m, A, is the major

component of o.. The term 3

> accounts for most of the combined effect of salinity and pressure;

the term St,p for the combined effect of temperature and pressure; and SS tp is usually so small that

it can usually be neglected.
The dynamic topography (also called geopotential thickness anomaly and dynamic

height anomaly) between two constant pressure surfaces p = p; and p = p, in the ocean is

defined as the integral of the specific volume anomaly over the pressure surface difference [Levitus,
1982]
P2
hd e f 5(1 dp .
P1
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A fundamental assumption in dynamic topography is that ocean dynamics effects disappear on
a "zero" surface at which there is no motion of the water. The integral is taken from this "zero"
surface to some other surface. Identifying this surface of no motion is the major problem of
dynamic topography. Since this is critical to our application, it is worth reviewing in some detail.

Several methods have been used to determine the surface of no motion, differing in the
characteristic that is assumed to be associated with no motion [Fomin, 1964]:
 the layer of minimum dissolved oxygen (Dietrich's method),

» the isopycnal (constant density) layer showing minimum distortion (Parr's method),
+ computation of the vertical distribution of current velocity field based on salinity distribution

(Hidaka's method), and
» the isobaric (constant pressure) surface for which the gradient of dynamic depth is a minimum

(Defant's method).

It is clear that selecting one method to use in preference over the others is merely to select the
assumption which appears the least subjective. Defant's method is the most widely used, and is
used here. It should be emphasized that whatever method is used, the dynamic topography
obtained is relative to the assumed level of no motion, and is not "absolute."

The assumption that a surface of no motion exists is based on the belief that in the deep ocean,
sea water velocities are negligible. Recent work indicates this may not be a valid assumption
[Olbers and Willebrand, 1984; Wunsch, 1978]. On the other hand, averaged over several months
and tens or hundreds of kilometres, it may be that any reference level below 1000 m may yield
adequate dynamic topography results for many applications, particularly over short distances [Pond
and Pickard, 1983]. Over longer distances it is likely that a surface possessing small or zero
velocity will have a complex structure which is not consistent with selecting a single isobaric
surface as the level of no motion [Fomin, 1964]. In the absence of compelling evidence to the
contrary, however, we have assumed that the level of no motion is represented by a single isobaric
surface.

2.5 Gravity Anomaly

Gravity anomaly is the difference between actual gravity on the geoid and normal gravity at
the "corresponding” point on the reference ellipsoid. Depending on how the actual gravity on the
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geoid is obtained from the observed gravity, i.e., which formula is used for the vertical gradient of
gravity, we get different kinds of gravity anomalies. Here we will use only the free-air anomaly
typified by the use of free-air gravity gradient:

dg/oh = - 0.3086 mGal/m . (2.2)

If the gravity is observed on the geoid, then all kinds of anomalies are equivalent.

Depending on what gravity network the observed values of g are referred to, we have the
derived gravity anomalies referred to the same network. The anomalies used here are referred to
the International Gravity Standardization Network of 1971 (IGSN-71).

Lastly, the gravity anomaly can be related to different reference ellipsoids through the different
existing normal gravity formulae. In our case, the Geodetic Reference System 1980 (GRS-80) is

used: the normal gravity on the reference ellipsoid, 'y('), is computed from the International Gravity
Formula 1980:

Y, = 978.0327(1 + 0.005 302 4 sin2¢ - 0.000 005 8 sin?2¢) Gal. (2.3)

2.6 Satellite Altimetry

Satellite altimetry techniques for observing the ocean surface topography have been one of the
fundamental tools of the NASA Ocean Processes Program for more than 15 years [Tapley et al.,
1982]. Currently, two major satellite altimetry data sets exist. These are from the GEOS-3 mission
(1975-1978), and from the SEASAT mission which was operational for three and a half months in
1978. SEASAT and GEOS-3 raw data are available to researchers from NOAA/NESDIS [U.S.
NRC, 1985].

The principle behind satellite altimetry measurements of the ocean surface lies in the fact that
the satellite serves as a stable platform from which the radar altimeter measures the distance of the
spacecraft above the instantaneous ocean surface, based on the travel time of short-pulse
microwave signals. This distance measurement is an average height over the area covered by the
radar footprint, the size of which depends upon the sea state.

The geometry of the altimeter measurement is shown in Figure 2.1 and it relates:

h the geodetic height of the spacecraft;
a the measured altitude above the ocean surface;
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N  the geoidal height;
' the height of the sea surface above the reference ellipsoid; and

Cs  the dynamic sea surface height;
through the expression

Ls={-N=(h-a)-N.

In this equation, it is assumed that the altimeter measurement (a) has already been corrected for a

number of effects, such as (see Lorell et al. [1980]):

(a) instrument corrections (instrument delays, altimeter off-nadir pointing errors, antenna centre of
mass correction, residual biases, etc.);

(b) propagation medium effects (atmospheric path length corrections due to tropospheric dry and
wet component delay and ionospheric delay);

(c) geophysical reductions (corrections due to solid earth and ocean tides, inverse barometer
response of the ocean, sea state, wind pile up, etc.).

Orbital errors (such as those due to model gravity field, atmospheric drag, solar radiation pressure)

are assumed to have already been accounted for in the geodetic height (h) of the spacecraft.

11
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3. DATA

In this chapter we describe the characteristics of the data sets used for the work reported in this
report. There are four types of data:
» the marine gravity data which is to be improved and extrapolated using
« the SEASAT satellite altimetry data, and _
» arecently-computed gravimetric geoid based on land and marine data;
» sea surface topography data which is used to reduce the altimetry to an approximation of
the idealized sea surface defined in section 2.1.

3.1 Marine Gravity Data

We used 318 579 marine gravity data points supplied by the (then) Earth Physics Branch
(EPB) of Energy, Mines and Resources Canada [Hearty, 1986]. Figure 3.1 shows the distribution
of this data.

Gravity mapping of waters off eastern Canada began in 1964, and has been carried out mainly
by the Atlantic Geoscience Centre (AGC), a division of the Geological Survey of Canada, with
participation by EPB [EPB, 1986; pp 1-3].

Sea surface gravity measurements are subject to errors from the following sources [Talwani,
1970; Dehlinger, 1978]:

. navigational inaccuracies

. Eotvos effect errors

. mislevelling of the gyro-stabilized platform
. datum errors

. system calibration errors

. scale factor inaccuracies

. vibration and thermal stress noise.

The quality of marine gravity data depends on the position and velocity determination
techniques used, the weather, and other factors. A conservative quality factor should represent the

12
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worst case variability within the section of data to which it refers. The quality factor codes used for
the marine gravity data available to us are:

Quality Factor Gravity Variability

0 unknown

1 +0.01 mGal
2 + 0.05 mGal
3 +0.1 mGal
4 + 0.5 mGal
5 + 1 mGal

6 +3 mGal

7 +5 mGal

8 + 10 mGal

9 >% 10 mGal

The eastern Canada offshore gravity data we have used has an overall accuracy of 2.5 mGals. The
internal consistency varies from 1 to +5 mGals [EPB, 1986; p.47].
Homogeneous gravity data are produced by adjustment of the gravity field data. Field data
may have one or more of the following problems, which cause problems in adjustment:
» Positions of the main survey lines and checks lines are not identical.
*  Gravimeter drift calibration is difficult to model due to instrument failure, mechanical shock, or
other discontinuities between port calibration visits. !
» Due to the conservative approach taken, a lot of good data is rejected along with the bad.

» The quality factor is only a very rough indicator of data quality.

3.2 Satellite Altimetry

Three different sets of SEASAT satellite altimetry data have been acquired. Two of them are in
the form of adjusted altimetry tracks, the third one being the "raw" SEASAT altimetry data set. The
first of the adjusted altimetry data sets was obtained from the Department of Geodetic Science of
The Ohio State University (OSU). The second became available from NASA's Goddard Space
Flight Center (GSFC). The SEASAT "raw" observation records were obtained from the U.S.
National Geodetic Survey (NGS). All data sets cover the geographical area between 35°Nto 72°N
and 260°E to 350°E.

14
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The reason that we have acquired altimetry data only from the SEASAT mission is because the
coverage, adjustment procedures, and accuracy results are superior to those obtained through the
GEOS-3 mission. Moreover, we have chosen to acquire two adjusted SEASAT altimetry data sets
because the adjustment procedures followed at OSU and GSFC are somewhat different.

In the following subsections, a more detailed description of these data sets is given.

It should be mentioned here that the techniques we have developed under the terms of this
contract will be equally applicable to altimetry data collected by other missions. It may be a very
interesting exercise to acquire some GEOSAT data from the U.S. military and perform similar
analyses with these data. The TOPEX mission, now likely to take place in the 1990s, will be
another excellent source of data to be exlfited.

L
3.2.1 OSU altimetry data set

The OSU adjusted SEASAT altimetry data were provided on tape containing the information
described in Appendix A of Rapp's [1982b] analysis of SEASAT altimeter data. The adjusted sea
surface heights contained on the tape are referenced to the Geodetic Reference System 1980
(GRS80) with a = 6 378 137 m and f = 1/298.257.

The basic discussion of the OSU SEASAT altimeter data processing can be found in Rowlands
[1981]. In his study, Rowlands carried out a primary adjustment (primary arcs) using a global
distribution of altimetry tracks and fixing one long arc. The resultant RMS cross-over discrepancy
after this adjustment was 28 cm [Rapp, 1982a]. Next, these primary arcs were held fixed and
four regional, as well as several special purpose, adjustments (local arcs) were carried out, the
details of which can be found in Rowlands [1981] and Rapp [1982b]). The final adjusted data
records form a data base, an edited subset of which was obtained for our study area. This subset
consists of primary and local arcs in the North Atlantic and Hudson Bay areas and has
approximately 142 000 data records in all. Figure 3.2 is a plot of the subset received and shows
the distribution of the adjusted SEASAT satellite tracks.

Although the data set we received was supposed to be clean of "blunders” in the data records,
we discovered a few "bad" records and have further edited the data set. The bad records
corresponded either to out-of-range values of adjusted sea surface heights (ASSH), or to data
points where positional information was wrong (outside the area of interest), or to a few data points
where the tide information was unavailable even though the points were lying in the middle of the
Atlantic Ocean. Thus several screening procedures were implemented before the data set was ready
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to be used.

At this point it should be mentioned that the OSU tape also contained information about the
standard deviations of the individual ASSHs. The standard deviations in the file range from 1 cm
to a maximum of 25 cm, which is an artificial cutoff value.

3.2.2 GSFC altimetry data set

The GSFC adjusted SEASAT altimetry data set obtained contains the following information:
revolution number, modified Julian day, fraction of day, latitude, longitude, and adjusted sea
surface height. The data set is in the form of several files, each file covering a diamond-shaped
geographical area. These "diamonds" are shown in Figure 3.3 One of the diamonds pertinent to
our study area was not included in the received tape (i.e., diamond #66).

The basic discussion of the SEASAT altimeter data processing performed at GSFC can be
found in Marsh et al. [1984] and in Marsh and Martin [1982]. The global SEASAT data set was
divided into 65 diamond-shaped regions, the maximum length of an altimeter ground track within a
region being approximately 2000 km. For each "diamond," three control passes were selected
from the three-day repeat era: one ascending and two descending passes which crossed the
ascending one. The ascending control pass was held fixed and only the bias terms for the two
descending tracks were adjusted.

A cross-over adjustment was carried out for each "diamond"; within each region the orbit error
could be represented by a linear trend. The "diamonds” were overlapped by two to five degrees of
arc in order to provide continuity. After the adjustment process, the RMS difference of the
cross-over points was found to be below 20 cm [Marsh et al., 1984].

It should be pointed out, however, that even though all of the ASSHs are referred to the same
ellipsoid (i.e., GRS80 ellipsoid), the common ASSHs in the overlapping "diamond" areas
experience discrepancies sometimes of the order of 0.5 m. The reason for this is that, although the
regional ASSHs have been computed with a high degree of precision, the absolute orientation of
each diamond-shaped area with respect to the centre of mass of the earth is different. This
orientation problem led us to treat the whole data set with caution. More details regarding this point
will be found in section 3.4.4. '

The approximate total number of records contained in the merged (i.e., all "diamonds"
received) data set is 250 000. As in the case of the OSU data set, further screening procedures
were employed to eliminate the few bad records from the received GSFC data set. These bad
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records were essentially erroneous ASSH values.

3.2.3 NGS altimeter data set

Three tapes were received from the U.S. National Geodetic Survey, containing the original
SEASAT altimeter data as described in the Geophysical Data Record (GDR) in Lorell et al. [1980],
covering the complete lifetime of SEASAT. The precision of this data set is described in Tapley et
al. [1982].

Since we had two adjusted altimetry data sets (OSU and GSFC), it was superfluous to perform
the same tasks as the two above institutes had done. In addition, time constraints prevented us
from any further consideration of processing this "raw" data set to obtain ASSHs.

3.2.4 Comparisons and discussion on the altimetry data sets

From the preceding discussion it should be apparent that the GSFC and the OSU data sets are
bound to have differences. These differences arise as a result of the different geographical split of
the global SEASAT data set and the subsequent regional cross-over adjustments performed. It is
obvious that different lengths of satellite orbital arcs have been used to minimize the cross-over
discrepancies in the two data sets, thus leading to different linear trend removal and different
accuracy assessments in terms of the post-adjustment RMS of these discrepancies. Intuitively we
can expect that the GSFC data set has a higher, but regional, accuracy than the OSU data sets.

Another difference between the two adjusted data sets is that different atmospheric corrections
have been applied. In addition, the modelling needed to be performed in order to attain a common
orientation for all diamond-shaped GSFC subsets will affect the ASSHs directly. Some criteria for
this task should be developed and assessed. While at NASA the atmospheric corrections supplied
in the GDR have been used, OSU derived corrections from other sources [Rapp, 1982b].
However, this difference is less significant than the orbital bias modelling for the cross-over
adjustment.

It also seems to us that different earth gravity models have been used for the processing of the
data. Earth gravity model PGS-S3 has been used by OSU, while the PGS-S4 model was used for
the processing at GSFC. If our understanding is correct, this might have an effect on the radial
orbital error analysis, which will be primarily reflected in the cross-over discrepancies.
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Another source of possible differences between these two data sets is the selection of the
cross-over points utilised in the linear trend removal, and the selection of the fixed arc for the
adjustment. This fact points to the possible existence of a bias term between the two data sets.

At present, it seems to us that no other apparent differences exist in terms of the set of the
applied corrections. We have not performed a quantitative analysis of the differences between the
two data sets, but it is in our future plans to look at this problem in more detail. '

3.2.,5 Gridding through bilinear surface

A grid of mean sea surface heights was calculated for both sets of adjusted SEASAT data. The
function of the grid was to present the ASSH values at regularly spaced intervals of latitude and
longitude, thus allowing for easy and fast graphical displays using either conventional surface
representations (contour maps, three-dimensional plots) or colour graphics on a digital image
analysis system, such as the ARIES II

To determine a value representative of the ASSH at each grid intersection, the data in the
surrounding area was fit using a weighted least-squares process to a surface-modelling function,
and a local Cartesian coordinate system. The zero-order coefficient estimated from the process was
then used as the evaluated ASSH at the grid location.

We have tried several surface-modelling functions starting with a bi-quadratic function in
latitude and longitude. We found that in areas of poor data coverage and distribution, this choice
often led to a singular normal equation matrix for the surface fit. We tried to lower the degree of
the fitted surface, but still there were grid locations that presented the same problem as above. The
final choice, after several trials that were carried out specifically in the Hudson Bay area, was a
simple bilinear surface modelling function [Christou and Yazdani, 1986]

Pixp i) = O + 0y X+ O ¥+ 03 X; 5 (3.1)

" where
X; =k;(9; - 6,) (3.2)
Yi=koy-2) (3.3)

ky, k,: being numerical constants to convert from angular to length units;

Oy Oy, Oy Og: the unknown surface coefficients to be estimated;
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d,» A,: latitude and longitude of the jk grid poiflt;

o, )\i: latitude and longitude of the altimetry data points in the surrounding area of the jk grid
point; .
X;, ¥;: the local Cartesian coordinates of the data points; and

Py(x;, y;): the associated ASSH values of the data points.
We can then write the "observation equations” [Vanidek et al., 1972):

w; Py(x;, yp) = w; oij <I>j(xi, y) = w; by, i=1,2,...,n . (3.4)
Denoting <Dj(xi, y;) by @, we obtain the "normal equations” in the form [Vani&ek et al., 1972]:

OTwdoa=0Twh, (3.5)
where
w = diagonal (w;)

and the solution is
a=(@Twd)y!oTwh . (3.6)

Then, o is the sought interpolated value:

h,=0a = ASSH, . 3.7)
Since in our approach a minimum of eight data points is required, there is a redundancy of at
least 4, and we are able to evaluate the confidence limits of h as well.

The grid spacing chosen was 1/6 of a degree in both latitude and longitude. A rectangular
window was selected about each grid point having a half-width of 0.5 degrees (i.e., all data within
the window were used to calculate the predicted value). There is the option of varying the window
size (i.e., using a larger window) tc ensure that grid values could be calculated in the regions of
sparse data coverage. As a weighting scheme, the associated ASSH standard deviations contained
in the input file were used with the OSU data set. It was decided to use a 15 cm standard
deviation [Marsh, 1985] for all ASSH in the GSFC data set. It should be noted here that this
gridding procedure leads to a smooth surface.

Due to the reasons explained in the previous sections with regard to the GSFC data set (i.e., no
common orientation of all diamond-shaped areas), the merged and subsequently gridded data set is
presenting problems. Thus this data set was excluded from all subsequent calculations and
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‘displays. Figure 3.4 shows the computed grid of mean sea surface on a 10' x 10' grid using the
OSU adjusted SEASAT altimetry data. In the sequel, this grid will be labelled the "OSU-grid" for
reference purposes.

The "OSU-grid" and its asociated standard deviation were subsequently converted in a suitable
raster-format and transferred to a digital image analysis system ARIES II for graphical colour
displays and further image analysis processing technique.

Finally, it should be mentioned that the gridding algorithm provided gridded altimetry values
over land in waste regions. To alleviate this defect, a special masking procedure was elaborated.
The World Data Bank II (WDBII) coastline [Gorny, 1977] was utilised to mask the gridding
artifacts over land. This coastline data set was transferred to the ARIES II system where it was
generalized to the same pixel size as the altimetry (10' x 10’ grid cells) and then transferred back to
screen the altimetric grid shown in Figure 3.4.

3.3 UNB Gravimetric Geoid

Recently, we compiled a fairly detailed Canadian geoid [Vaniek et al., 1986] for the Geodetic

Survey of Canada. It covers the region of ¢ € (42°, 70°) and A € (220°, 317°) with the exception
of areas where there is an insufficient gravity data coverage. The eastern part of this gravimetric
geoid is shown in Figure 3.5. The technique we have used for the compilation relies on two kinds
of data: )
(a) Low-order harmonic coefficients obtained from satellite orbit analysis. A (20, 20) field

produced by Goddard Space Flight Center (GEM9) was chosen.
(b) Terrestrial gravity data, consisting of (i) point gravity anomalies; (ii) 5' x 5' mean gravity

anomalies; and (iii) 1° x 1° mean gravity anomalies.

(i) Point gravity anomalies. . :

The poini gravity anomalies were obtained from the Earth Physics Branch, Ottawa, and the
Atlantic Geoscience Centre, Dartmouth. This data file contained 558 565 records.

(ii) §' x §' mean gravity anomalies.

The original 5' x 5’ mean gravity anomalies were supplied by the Geodetic Survey of Canada.
It was decided to use the updated marine point gravity anomalies to compute new 5' X 5' mean
gravity anomalies for the east coast of Canada and replace the original data in the file. The
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computation formulae are:
a
Ag= (X Ag)m, (3.8)
i=1
o
h= (T h)m, (3.9)

i=1

where Ag; is the irh gravity anomaly in the 5' x 5' cell, and h; is the itk height in the cell. The

standard deviation of the new mean anomalies are obtained as geometrical averages:

05,= V(I op, 2 . (3.10)

i=1

If the 5' x 5' mean gravity anomaly could not be computed directly because of sparse data
coverage, a weighted mean recommended by Kassim [1980] was utilized:

Ag,= (X W;Ag)/ (T Wy, 3.11)
=l i=1
hy = (2 Wih)/(Z Wy, (3.12)

i=1 i=1

where ng is the predicted mean gravity anomaly, Ag; are gravity anomalies of the immediate

surrounding cells, W;is a weight equal to 1/s; where s; is the distance of the ith cell from the
prediction cell, n is the number of cells used in the prediction, and Hp is the predicted mean height.

The standard deviation of the Kgp is:

O Zgp = V(I wi2oAg2)/(z w2) (3.13)
i=1 i=1
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where ¢ Aep is the standard deviation of the predicted gravity anomaly. If of the eight immediately

surrounding cells more than two are empty, then the area utilised for the prediction is expanded to
include a second layer of surrounding cells. The prediction fails if there are more than four empty
cells in the area utilised for prediction. In this case, the missing 5' x 5' mean gravity anomaly has
been replaced during the geoid computation by the corresponding 1° x 1° mean gravity anomaly.
(iii) 1° x 1° mean gravity anomalies.
These data were supplied by OSU, also named "January 1983 1° x 1° Mean Gravity
Anomaly".

The low-order harmonics are taken as defining a (higher order) reference spheroid. A modified
Stokes's approach is then used to compute geoidal heights above this spheroid from terrestrial
gravity. The resulting relatively short radius of integration (6 degrees) allows us to compute the
geoidal height on a rather dense grid; in this case a 10" x 10’ grid.

It is difficult to assess objectively the accuracy of our gravimetric solution. GEM 9 is deemed
to be accurate to about 1.75 m (1 sigma), the accuracy of the high frequency terrestrial/marine

gravity contribution is estimated internally to be within (5, 50) cm. Comparisons with
"independent" solutions show the following statistics (in the sense of "standard minus UNB"):

Rapp 180° x 180° [Rapp, 1983] p=10lcm, ©=106cm
Wenzel 180° x 180° [Wenzel, 1985] i =62 cm, 6=95cm
212 Doppler points in Canada K =86 cm, 6=170cm

o denotes the RMS with respect to L.

Colour plots of the differences between the UNB geoid and the Rapp/Wenzel geoids are
provided as external appendices. .

It seems to us that the low frequency part of the UNB geoid agrees quite well with Wenzel's
and Rapp's solutions as well as with the SEASAT (see section 3.4.2). This should not be
surprising since Wenzel's solution relies heavily on GEM9 and so does the OSU adjusted SEASAT
altimetry—at least in the final analysis.

It should be noted that the total UNB gravimetric geoid is referred to the reference ellipsoid
defined by GRS-80. Since it is computed on the 10' x 10’ grid, the UNB gravimetric geoid can be
merged with the gridded altimetry, if such a merger is deemed desirable.
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3.4 Sea Surface Topography

3.4.1 Levitus's dynamic topography data

Since a definite answer to the problem of "absolute” dynamic topography could not be given,
we resorted to the estimation of relative dynamic topography using Levitus's specific volume
anomalies [Levitus, 1982]. The data we have acquired is in the form of dynamic topography and it
was supplied to us by J. Marsh [1985] of the GSFC.

This data set is based on the Levitus computed anomaly of specific volume for 33 reference
levels of the global ocean. The product of the processing performed at GSFC is a tape that contains
the dynamic topography for 33 reference levels (i.e., the integrated anomaly of specific volume at
33 different reference depths) on a 1° x 1° grid covering the whole globe.

We have selected reference level #25 (depth 1875.0 m) as the level of no motion, or better, as
the pressure surface (1875 dbars) with respect to which we will obtain the relative dynamic
topography. The reasons for that selection are underlying the following arguments:

(a) It may be claimed that an assumed level (or layer) of no motion generally lies in deep water.

(b) There is evidence of a strong circulation in the upper North Atlantic waters (down to
approximately 1000 m) as well as in the deep North Atlantic waters (below 2000 m,
approximately) [Pond and Pickard, 1983].

(c) Montgomery [1969] suggests as an optimum reference pressure for a world steric sea level
map the 2000 db isobar.

(d) We have computed difference maps of dynamic topography between several reference levels
below 1000 m depth and no significant dynamic topography differences were found (see
Figures 3.6 to 3.8).

() We wanted to have as large a geographical area as possible covered, where dynamic
topography estimates are available to reduce our SEASAT altimetry.

Going for deeper reference levels, it would disclose the possibility of having adequate area of

overlap between SEASAT altimetry and Levitus's dynamic topography as close to the coastline as

possible.

This dynamic topography data set referenced to the 1875 dbar surface has been processed to
become available on the same grid spacing as the altimetry gridded data, i.e., on a 10' by 10' grid.
For that purpose, linear interpolation in two directions, of the 1° by 1° grid of Levitus's dynamic
topography, was applied. The 10' by 10’ interpolated grid is shown in Figure 3.9. A simple
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FORTRAN 77 program was written for that purpose. First, the latitudinal grid lines were
interpolated on 10' by 10' spacing. The resultant data set was then passed through the same
program and the longitudinal grid lines were interpolated on 10" by 10' intervals. Fast sorting
routines available on the IBM 370 computer facilitated the cost effectiveness and simplicity of the
developed program. The above choice of reference level #25 is providing us with dynamic
topography estimates in most of the North Atlantic Ocean. With regard to the Hudson Bay area, no
dynamic topography estimates will be considered.

3.4.2 Altimetry minus UNB geoid

Another way of determining the SST is to subtract the geoid from the sea surface determined
by the altimeter. This difference is shown on Figures 3.10 through 3.18 for the OSU SEASAT
data and the UNB gravimetric geoid. A colour plot of these differences is provided as an external
appendix to this report. The mean difference for the area covered is -0.114 m. The rms with
respect to this mean is 0.827 m. Both the mean and the rms are strongly influenced by areas of
unreliable altimetry data in the northern part of Hudson Bay, the Hudson Strait, around Baffin
Island, and along the coast of Greenland. Figure 3.19 depicts those areas where the estimated
standard deviation of the gridded altimetry exceeds a value of 0.25 m. Figure 3.20 shows the
standard deviations of the difference between the OSU SEASAT altimetry and UNB gravimetric
geoid estimated from the individual standard deviations of altimetry and geoidal heights according
to the law of covariance propagation.

A second statistical analysis of the differences between the altimetry and UNB geoid was done

by excluding the areas above ¢=62° thus virtually eliminating all areas with high SEASAT standard
deviations. The mean difference of this reduced area of coverage was computed as +0.036 m. The
rms with respect to this mean was 0.534 m. This agreement in the mean certainly is somewhat
unexpected. Based on the error budget for the geoidal computation (see section 3.3), a mean
difference of up to one metre could have been produced by the errors in the long wavelength
features of the GEM9 spheroid alone. This, on the other hand, shows a weak point in this
procedure: any long wavelength SST signal in the difference between the altimetry and gravimetric
geoid may be distorted or overpowered by long wavelength computation errors.

We recognize a long wavelength feature in the area of Davis Strait to Labrador Sea and further
south. It can be roughly described by a half wavelength of 10 degrees and an amplitude of 0.5
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Fig. 3.12: SEASAT altimetry minus UNB geoid.
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3. Data.

metre. Another long wavelength feature is visible in Hudson Bay. There is a remote possibility
that this is real SST. Much more probable is that it reflects the uncertainty in the tilt of descending
SEASAT orbital arcs coming from the cross-over point adjustment [Rapp, 1983]. If this is the
case, the tilt may be justifiably removed at some stage.

Superimposed on the long wavelength structures we see many very localized features in
Figures 3.11 to 3.18. These local SST structures are very pronounced along the ridgb of the
continental shelf off the coasts of Labrador, Newfoundland, and Nova Scotia.

The local variations are of the order of several metres over typical distances of 1° (~100 km).
Neither the gravimetric geoid nor the gridded SEASAT altimetry are expected to contain errors of
this characteristic. Thus these local structures are believed to represent changes of true local SST.
The correlation with ocean bottom topography is very obvious: the largest variation (more than 3.5
metres over a distance of 1°) is sitting right on Flemish Cap.

3.4.3 Zero frequency response technique

In 1982, Merry and Vani¢ek published results of their analysis of partial point SST differences
for several ports in eastern Canada. For their analysis they used the zero frequency response
technique [Merry and Vani&ek, 1982] applied to a few available forcing phenomena. The results
represent only a partial SST because not all forcing phenomena were available. Conspicuously
missing among these phenomena are sea currents and salinity variations.

The ports for which the analyses were carried out are: Father's Point, Saint John, Yarmouth,
Boutilier Point, Halifax, and Pictou (see Figure 3.21). Because of the non-availability of global
averages for even the observed forcing phenomena (atmospheric pressure, air temperature, river
discharge, and wind stress components), only differences of the part of the SST between pairs of
ports could be evaluated. These are:

Father's Point - Saint John - 68 mm
Father's Point - Yarmouth - 206 mm
Father's Point - Halifax -92 mm
Father's Point - Pictou -228 mm

Boutilier Point is too close to Halifax to be mentioned separately.

44



e

\
g E
%////

U/
o

= L)
2

a

\\

v

f

>
=
==




3. Data.

3.4.4 Comparisons of results

When comparing SST as determined by Levitus (section 3.4.1), the SEASAT altimetry minus
UNB geoid (section 3.4.2), and the zero frequency response technique (section 3.4.3), we have to
keep in mind that these SSTs do not necessarily represent the same thing.

Levitus's dynamic topography models the long wavelength structure of the global SST. Itis
based on data collected through many years in different seasons. Levitus's SST can be computed
for areas with a certain minimum depth. Since this depth is larger than the depth on the continental
shelf, Levitus's SST is available only in the open ocean areas (cf. Figures 3.6 through 3.9). The
dynamic topography is positive everywhere. Since the geoid is defined to be the mean global sea
level, the Levitus dynamic topography differs from the SST by a positive constant.

The SST determined by the difference between the SEASAT altimetric sea surface and the
UNB gravimetric geoid is obviously affected by errors in both surfaces. The characteristics of the
altimetry errors are small long wavelength errors resulting from errors in the adjustment of the
SEASAT orbital arcs and errors due to spurious reflections in coastal regions resulting in erratic
behaviour of the altimetric sea surface in coastal regions. The altimetrically determined sea surface
has a very high spatial resolution in areas of good coverage. The relative errors over distances of
up to a few hundred kilometres are expected to be at or below the decimetre level in areas of good
coverage. .

The errors in the gravimetrically determined UNB geoid can be separated into long wavelength
errors of the order of about 1 m due to inaccuracies of the underlying reference spheroid (GEM9)
and more local errors resulting from approximation in the Stokes integration process and errors in
the gravity data used. These local errors are believed to be at or below the decimetre level over
distances of a few hundred kilometres. The spatial resolution of the gravimetric geoid in marine
areas depends somewhat on the spatial resolution of the gravity data used in the integration. Off the
eastern coast of Canada, rather dense point gravity data was available mainly on and somewhat
beyond the continental shelf areas. Outside this area of point gravity data coverage, the gravimetric
geoid is based mainly on 1° x 1° mean gravity anomalies. The point gravity data will lead to a very
high spatial resolution of the gravimetric geoid, whereas 1° x 1° mean gravity anomalies will limit
the spatial resolution to features larger than some 100 km. Therefore, for the SST derived from
altimetry and the gravimetric geoid we may expect long wavelength errors in the metre range and
local to medium range (several hundreds of kilometres) accuracies of the decimetre level. The best
spatial resolution will be obtained on the continental shelf. SST close to the shoreline may be
unreliable due to errors in the altimetry. '
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The zero frequency response technique results described in section 3.4.3 provided results for
differences of SST between 5 stations located along the coast of the Maritime Provinces of Canada,
Since Levitus's SST is available only for the open ocean areas, a comparison between these two
techniques is ovbiously not possible. Comparing Figures 3.10 and 3.21, we see that the locations
of Father's Point, Pictou and Saint John are not covered by the SST determined from altimetry and
geoid. The remaining two stations are obviously located on the shore where altimetry is
contaminated by errors. Whereas the altimetric SST is very smooth at a level of 50 to 60 cm in the
Yarmouth region, it behaves rather erratically in the Halifax area (see Figure 3.17). Thus a
comparison with the 11.4 cm SST difference determined by the zero fequency response technique
seems inappropriate.

Figure 3.22 shows the difference between Levitus's dynamic topography and SST determined
by the difference between the altimetric sea surface and the gravimetric geoid. Because of the
limited extension of Levitus's dynamic topography close to the coast and limitations of the
gravimetric geoid at a longitude of 317°, the area of overlap is rather small. A statistical analysis of
the differences gives a mean of 82 cm and an rms with respect to the mean of 54 cm. The mean of
82 cm will contain the positive constant of Levitus's SST mentioned above and some of the long
wavelength errors of the altimetric/gravimetric SST. The variations of the SST differences
characterized by the rms of 54 cm are as large as the variations of the altimetric/gravimetric SST
alone (see section 3.4.2). Thus we conclude that the two types of SST discussed here show no
significant common features in the overlapping area. .

Based on the discussion above, we further conclude that the three types of SST described in
sections 3.4.1 through 3.4.3 complement each other by providing the best results for different
wavelengths and different areas.
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4. Existing Transformations.

4. EXISTING TRANSFORMATIONS

This section describes existing techniques for the transformation between different functionals
of the gravitational field of the earth. For a more detailed coverage of the subject, see Vaniéek and
Krakiwsky [1982].

4.1 Description of the Gravitational Field

The gravitational potential W at a point P with coordinates X = (x, y, z)T is

Wp=G [I] | X-X'|'1pX")dX'. (4.1)
Earth

G is the gravitational constant and p denotes the mass density. Subtracting from W a normal
potential U, defined by a simple analytical expression, we obtain the disturbing potential T:

T=W-U. (4.2)

Included in the definition of the normal potential is the assumption that it is produced by an earth
model having the same total mass M and the same centre of mass as the actual earth. A particular

equipotential surface of the normal potential, U = U, coincides with the mean earth ellipsoid. The

equipotential surface of the gravitational potential having the same numerical value, W = U, is

called the geoid. The relation between these surfaces is depicted in Figure 4.1.
By definition, the separation between the geoid and the ellipsoid is the geoidal undulation,

positive if the geoid is outside the ellipsoid. All three potentials W, U, and T are harmonic outside
the gravitating masses, i.e.,

VU=V*W=V2T=0. 4.3)
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4. Existing Transformations.

Because of this property, the potentials can be represented in a series expansion of solid spherical
harmonics (outside the gravitating masses), e.g.,

WEA ) =CMr T ®Ro)® T Upy Yol AN+ Ky Yo S @A),  (4.4)

n=0 m=0

where R is a mean earth radius, M is the total mass of the earth, J - and K . are constants

depending on the mass distribution of the earth, and

?nmc(‘p, A) cos mA
' = Pyn(sin ¢) (4.5)
Y, 50, 1) sin m\

are orthogonal functions on the sphere. ?nm(sin ¢) is a normalized associated Legendre function

(e.g., Abramowitz and Stegun [1964]). The first subscript, n, in the expansion (4.4) denotes the
degree of a particular gravity field constituent, the second subscript, m, denotes the order.

Since by definition the potentials U and W are produced by mass distribution having the same
centre and the same total mass, the disturbing potential T does not contain any constituents of
degree 0 and 1.

TeA$)=CMr T ®RO" T (I, Yo f0,A) + Kooy Yo 50, A) (4.6)
n=2 m=0

The disturbing potential T and the geoid undulation N are related by Bruns's formula [Vanicek and
Krakiwsky, 1982]

N=Tn,, (4.7)

where ¥, is the normal gravity at the ellipsoid (cf. Figure 4.1)

1,=1VU| 1. (4.8)
P

(o)
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4. Existing Transformations.

The gravity anomaly Ag is defined by

Ag = g - YO ’ (4'9)
where g is the gravity at the geoid

g=||VW PII. (4.10)

The relation between disturbing potential and gravity anomaly is given by the fundamental
gravimetrical equation of geodesy
Ag=-0T/dH + 1/y dg/0H T . (4.11)

In spherical approximation (approximation error of the order 1/300), we obtain from eqns. (4.6),
(4.7), and (4.11)

NG, M=R I T (Jp Yol M+ Ky Y056, 3) (4.12)
n=2 m=0

Ago M= T 1) T (T, Youf@ M)+ K Y 5(0,0) (4.13)
n=2 m=0

with a mean gravity ¥.

Equations (4.12) and (4.13) show that the transformation between geoidal undulations and
gravity anomalies is very simple if one of the fields is known in terms of a spherical harmonic
expansion. However, in general, we will not know the expansion coefficients and will have to
attempt the transformation in a different way.

4.2 Stokes's Transformation

The Stokes transformation relates the geoidal undulation at a particular point P to the gravity
anomalies all over the earth.
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4. Existing Transformations.

T 2xn .
Np=Ri4ny | Sy [ Ag(y, o)sinydady. (4.14)
y=0 =0

v is the spherical distance between the dummy point and the point of interest, and o denotes the

azimuth. The integral kernel S(y) is known as the Stokes function, having the respresentation
(e.g., Vani¥k and Krakiwsky [1982])

S(y) = cosec W/2 - 6 sin Y/2 + 1 - 5 cosy - 3 cosy In(sin /2 + sin 2y/2). (4.15)

The Stokes function has a singularity of the order \|I'1 at y=o. The Stokes function can be
expanded in an infinite series according to

S(y) =X (2n+1)/n-1 P,(cosy) (4.16)
n=2
with Legendre polynomials P, [Abramowitz and Stegun, 1964].

The representation (4.16) is of particular interest, if we want to determine certain frcquencles of
the geoid, i.e., certain degrees n at the expansion (4.12). Using eqns. (4.12), (4.13), (4.14), and
(4.16), and employing the orthogonality relations of spherical harmonics on the sphere, it can be
shown that a term of degree n in the expansion (4.16) extracts only geoidal undulation of this

degree n from the complete spectrum of Ag (eqn. (4.13)); each term of eqn. (4.16) operates as a
band pass filter for a particular gravity field constituent.

In practical applications, these spectral properties of S(y) are utilized, if low degree

constituents of N are known from other sources and the observed gravity anomalies Ag serve for
the determination of high degree constituents of N only. A recent example of this technique can be
found in Vani¥ek et al. [1986).

Denoting
S‘y) = T (@n+1)/(n-1) P (cosy)
n=l+1
1
= S(¥)- ¥ (2n+1)/(n-1) P (cosy) 4.17)
N=2

53



4, Existing Transformations.

and
N =N/ + 8N/ (4.18)
with
l n . . .
Nl=R T I (I, Y500+ K Y,.56,1) (4.19)
n=2 m=0
and
N=RZT I (T, Y, £00+ K Y, S 21), (4.20)
n=l+]1 m=0

the above discussed filtering properties lead from eqn. (4.14) to

T 2n .
SN'=Ridny | Shy) | Agy, o) siny dy da. (4.21)
y=0 a=0

The primary advantage of using the integration kernel Sl(\y) instead of S(y) can be seen in
Figure 4.2. This figure depicts the graphs of S(y) and S20(y). It is obvious that the latter

decreases much faster with growing spherical distance  than the original Stokes function S(y). A
direct consequence of this is that we can truncate the integration (4.21) at some appropriately

chosen y_ without committing significant errors. This fact can be interpreted that the nearby

regions contain enough information to determine the high degree part of the geoidal undulations and
that for the low degree part, the necessary information is partially contained in the more distant
zones.

Since the kernel function S{y) in eqn. (4.21) blocks the low degree part of the gravity field,

this part may be subtracted from Ag beforehand without changing the integration result. Denoting
(cf. eqn. (4.13))
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4. Existing Transformations.

8Ag0, ) =y T @) T (T Yo S0, 0+ K Y, 50,1)

n=l+1 m=0
=Agd, M) -7 I @1) X(Jpm Y0, A) + K YS9, 4))  (4.22)
n=2 m=0

we obtain from eqn. (4.21)

T 2n
N'=Riany | S'oy) | 8aghy, o) siny dy da . (4.23)
y=0 o=0

The replacement of Ag by dAg! becomes mandatory if we truncate the integration at some <

7. In this case, the spherical harmonics are no longer orthogonal in the integration domain, and the

filter properties of the integration kernel S’(\y) discussed above are lost, at least partially.
When evaluating eqns. (4.14) or (4.23), we may choose to integrate first along the parallels

y=const. Denoting the average gravity anomaly along y=constant by

2
Agtw)=12n | Ag(y, o) do (4.24)

o=0

2n
§ Aglwy=12x | & Aglty, o) da (4.25)
a=0

we obtain from eqns. (4.14) and (4.23)

[

Np=Ry [ Fy) Ag(y)dy (4.26)
y=0

SNp!=Riy | Fly)d Aghy) dy 4.27)
y=0
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with
F(y) = 1/2 siny S(y) (4.28)

Fl(y) = 1/2 siny S'(y) - (4.29)

A graph of F(y) is shown in Figure 4.3. It can be seen that the singularity of S(y) for y=0
has been compensated for by siny (eqn. (4.28)). This figure illustrates again that a truncation of

the integration (4.26) leads to rather large errors in N, since F(y) has considerable power in the
long wavelength constituents.

A comparison of F(y) with F2°(\|f) and F9°(\|I) in Figure 4.4 shows that the removal of the
long wavelength constituents leads to a rapid decrease of the kernel for growing spherical distance

Y. Thus any truncation at y < © will give, for eqn. (4.27), smaller truncation errors than for eqn.
(4.26).

4.3 Molodenskij‘_s Transformation

The Molodenskij transformation [Molodenskij et al., 1960] can be viewed as the inverse of the
Stokes transformation discussed in the previous section. It relates the gravity anomaly at a certain
point P to the geoidal undulations all over the earth.

s 2n
Agp=-YRNp+y4rR [ Muy) | N(y,0)-Np) siny dy do. (4.30)
\V-O a=0
The integration kemel is given by
M(y) = - 1/4 cosec3 y/2, (4.31)

and, therefore, has a singularity of the order of \v'3 at y=0. It can be expanded in a series of
Legendre polynomials (e.g., Mather et al. [1976]) according to
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4, Existing Transformations.

M(y)= I n(2n+1) P (cosy). . @432
n=0

This series expansion is valid for ¥ > 0. However, the series (4.32) is not convergent in the
ordinary sense and cannot be used to replace eqn. (4.31) in numerical computations. Closely
related to this property of the series expansion is the instability of the Molodenskij

transformation. Changing the geoidal undulation N(y', &) at some point (', ') by a small
increment dN leads to

dAgp = (9Agp)/(AN(Y', &) dN (433)
and differentiating eqn. (4.30), we obtain

dAgp = - Y/161R siny’ cosecd y'/2 dN . (4.34)

Obviously, a small increment dN leads to large changes in Agp for small y'. This instability of

Molodenskij's transformation has prevented its application for numerical computations. It will,
however, be used in section 5.3 for analytical derivations leading to a different approach for the
transformation from geoidal undulations to gravity anomalies.

4.4 Rapp's Application of Least-Squares Collocation

Rapp [1983], in his computation of 1° x 1° and 5° equal area mean gravity anomalies, has
chosen to use the least-squares colloction. He evaluates the averages using sea surface heights

referred to the GEM9 reference spheroid uncorrected for SST. These heights, 8H, are selected to

cover the block for which the average & Ag (referred to GEM9 spheroid) is sought plus a 2° wide

strip around it. The formula used is

3Ag = Capg sn(Can oy + diag(c,2)) 8H, (4.35)

where

Csag,sn is the cross-covariance matrix between the anomalies and geoidal heights, both
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referred to GEM9 reference ellipsoid,

Csn s is the auto-covariance matrix of the geoidal heights, and

O, are the standard deviations of the altimeter measurements.

The standard deviation ¢ g of the mean anomaly is then evaluated from the following

expression:

Ssag? - O 252 = Crag,sn(Con,sn + diag(0,2)! Can sag » (4.36)

where

s Ag2 is the expected mean square value referred to the GEM9 spheroid.

Using this approach, Rapp predicted 34 973, 1° x 1° mean anomalies with an average standard
deviation of 5.1 mGal. The agreement of Rapp's predictions with terrestrial predictions is quite
reasonable. Of the 34 973 values, 11 235 terrestrial values have standard deviations of 15 mGal or
smaller. Out of this subset, only 38 disagreed with the SEASAT-derived values by more than 40
mGal. A total of 17 356 terrestrial values have standard deviations no larger than 99 mGal. From
this subset, 379 disagreed with the SEASAT-derived values by more than 40 mGal.
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5. THE TRUNCATION

This section deals with truncated Stokes's integration and integral forms of geoidal undulation.
Its goal is the derivation of mathematical tools for the local comparison of gravity and satellite
altimetry, in terms of both gravity anomalies and geoidal undulations.

In these derivations, we will also consider a known long wavelength gravity field in terms of a
spherical harmonic expansion of the disturbing gravitational field (eqn. (4.6)) to be known up to
some degree /.

Spherical harmonics gravitational field representations have been compiled up to degree 180
[Rapp, 1981] and 200 [Wenzel, 1985]. However, the estimated standard deviations of the

potential coefficients Tnm and -Knm indicate that the coefficients are rather poorly determined for

n>100. Therefore, we have decided to adopt only the coefficient up to degree /=90 as being known
for our purposes. ‘
The following section 5.1 describes the spheroidal Stokes integration within a local area. In

this approach, only marine gravity data from the neighbourhood of the point of interest is used.

Thus the resulting integral contains only local features. This integral should not be confused with

the geoid. Firstly, all long wavelength features are missing since a corresponding spherical
harmonic expansion of the gravity field has been removed from the input data. Secondly, the
integration is truncated at a very small spherical distance and thus even the high frequent part of the

gravity field is only partially represented in the integral. Stokes's integration requires continuous
input data within the area of integration. Since the marine gravity data is available only in discrete

points or tracks, a technique for quasi-analytical integration over sparse data is developed in section

5.2. The main contribution to the problem of comparing altimetry and marine gravity can be found
in section 5.3. It describes the derivation of an integral kernel that extracts from a geoidal surface

(as determined from altimetry) the same integral form as the above mentioned truncated spheroidal
Stokes's integration. The comparison between truncated spheroidal Stokes's integration and the

integration with the new kernel over the altimetric surface is expected to show how well altimetry
and gravimetry agree locally. Since this is a new derivation, we describe in detail all the problems

encountered in our work and their solutions. Section 5.4 describes the procedure implemented for
the numerical integration over gridded altimetry data.

62



5. The Truncation.

5.1 Partial Stokes's Integration

The transformation of gravity anomalies Ag into geoidal undulations (section 4.2) requires an
integration all over the earth.

For practical applications, this integration usually has to be truncated at some radius / because

. gravity data is not available all over the earth, and
. the computing burden is too large for complete integration.
Especially for the inverse transformations, described in section 5.3, we are interested in keeping the

truncation radius Y, as small as possible. As will be seen in section 5.3, the radius v, is related to
the truncation radius ¢ for integration on altimetry derived geoidal heights. To enable this

altimetry integration to give results close to the coast line, we have to keep the radius ¢, of

integration as small as possible.

For a truncation radius y, . we obtain, from eqn. (4.14)

Yo 2n
SNWo=Ridny | Sy | 8Aghy, o) siny dy da. (5.1)
y=0 o=0

Integrating first with respect to the azimuth ¢, we obtain

‘

Yo
SNWo=Riy | F(y) 8 Aghty) dy (5.2)
y=0 .
with
F(y) = 172 siny S(y) (5.3)
and
2n
§ Agl=12n | 8Agi(y, o) da. (5.4)
a=0
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To perform the integration (5.1) and (5.2), continuous data 8Ag’ is required within Yy

5.2 Numerical Integration Over Sparse Data

In the marine environment, we will usually not find continuous coverage of dAg's in Ysy,.

We may, in extreme cases, end up with just one track of gravity observations within the integration
area.

To facilitate an integratibn over this sparse data distribution, we may fit an analytical surface to
the data and use the surface coefficients in the integration.

A particular surface representation in polar coordinates V, o, is

i J
Saghy, 0= T ay' I (bjcosjc+d, sinjr) (5.5)
i=0 j=0

-

Performing the integration with respect to the parameter o according to eqn. (5.4), we obtain

I 1
§ g =3 boavi= I . (5.6)
i=0 i=0

The o dependence has disappeared due to the orthogonality of the trigonometrical functions in the
interval (0, 2x).

In order to keep the numerical effort as small as possible, we may directly fit a curve d Zg’(w)
to the 8Agl(\y, o) by disregarding their azimuth dependence.

Having determined a set of coefficients C; representing the radial dependence of dAgl, we can

perform the integration with respect to the variable . Instead of evaluating the kernel F(\y) using
eqns. (5.3) and (4.17), we approximate it in the area of interest by a simple algebraic polynomial
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I .
Foy)= T byl (5.7

i=0

This approximation procedure avoids the repeated numerical evaluation of eqn. (4.17) during a
numerical integration and, moreover, facilitates an analytical integration of eqn. (5.2).
Inserting eqns. (5.6) and (5.7) into eqn. (5.2), we obtain

Y, I J
SNWo=RAy | (I hv) (Z ¢¥)ay. (5.8)
w=0 i=0 j=0

Integrating eqn. (5.8) gives finally the partial geoidal undulation from truncated Stokes's

integration in terms of the curve coefficients C; and the truncation radius y_

I J .
NWo=RY I = (b Cpli+j+1) i+l . (5.9)
i=0 j=0

The approximation (5.7) has to follow two objectives: the degree of the polynomial should be
as small as possible to save computation time during the evaluation of eqn. (5.9), and the
polynomial degree must be high enough to avoid any significant errors due to the approximation.

In the present context, the function F(y) will be used for \y°<2.5° only. The result of the

integration, SN4¥o, will be of the order of several metres. Thus the polynomial approximation
(5.7) should be accurate to 10°3 in the interval 0<y<2.5° to avoid integration errors larger then

several millimetres. From Figure 4.4 we see that the F(y) is close to +1 in this interval.
Therefore, we require an approximation accuracy of 1:10°3 in both the absolute and the RMS
sense. We can evaluate the value F(0) by performing some limit operations on eqn. (4.29) to
obtain

FO)=1. (5.10)

To guarantee optimal accuracy for y=0, we fix the coefficient h, in eqn. (5.7) a priori. The other

coefficients h; are determined from a least-squares curve fit to numerical values computed from
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eqn. (4.29). A polynomial of degree six was found to fulfill the accuracy requirements stated
above.

The coefficients for this polynomial are listed in Table 5.1. These coefficients require a

polynomial evaluation with \ in units of degrees.

TABLE 5.1
Coefficients of approximating polynomial.
i h;
0 1.000 00
1 0.390 33
2 -0.961 70
3 2.343 08
4 -3.372 95
5 2.485 83
6

-0.726 34

For these values, the approximation errors remain within +10-3. The RMS of the

approximation errors is 0:24%10°3.

5.3 The "Truncation" Kernel

5.3.1 Truncated Stokes's integration contribution from altimeter data

Geoidal undulations N can be computed from (observed) gravity anomalies Ag by means of
Stokes's integration (e.g., Vani€ek and Krakiwsky [1982]):

14 2n
N=R/@4ry) | S(v) | Ag(y,o)dasinydy . (5.11)
y=0 o=0

If for any reason the integration is restricted to a spherical cap of radius y, the resulting truncated

Stokes's integration gives
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Yo 2n
NVo=R/4ry) | Sty | Ag(y, o) dasiny dy, (5.12)
y=0 a=0

with
R being the mean radius of the earth
v the mean gravity at the earth's surface

y, o the spherical coordinates.

Any integration (eqn. (5.11) or (5.12)) is inherently restricted to an accuracy of 1/300 because of
spherical approximations. In a marine environment, we may have gravity anomaly observations

Ag and "observed" geoidal undulations N from altimetry. If the Ag's are processed according to
eqn. (5.12), we look for a way to compare the resulting N¥o with the observed altimetric N.
Especially we search for an operator F that gives N¥o if applied to N:

NV¥o = FN(y, ) . : T (5.13)
To derive this operation, we recall several derivations and equations that can be found in modern
textbooks on physical geodesy.
5.3.1.1 Molodenskij's truncation coefficients

If we want to extend the integration domain of eqn. (5.12) over the complete sphere without

changing the result N¥o, we replace the Stokes function S(y) by S¥o(y), defined by

S(W) ] \V S \Vo
SYo(y) = (5.14)
0 s V>,

and write formally
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] 2n
N¥o=R/@dny) | SYo(y) | Ag(y,o)dosinydy. (5.15)
\|I=0 a=0

The Stokes function can be represented by

S(y) = £ (2n+1)/(n-1) Py(cosy), (5.16)

n=2

with Legendre's polynomial P, of degree n. S(y) can also be represented in a Legendre series
expansion

SYo(y)= T (2n+1)2 o (y,) P (cosy) (5.17)

n=0
with '
@, () =- Quly,) if n < 2

o, (W) = 2/(n-1) - Quy) if n 2 2 (5.18)

and the Molodenskij truncation coefficients

n

Q)= [ S(y)P,(cosy) siny dy . (5.19)
=y,

The coefficients Qn(\Vo) can be evaluated numerically using recurrence relations, the most efficient

of which seems to be the algorithm of Paul [1973].

5.3.1.2 Molodenskij integration

Equation (5.11) can be envisaged as an integral equation for Ag; the solution of this equation
can be written according to Molodenskij et al. [1962]:
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Ag( ¥, @)=-YRN( VY, o)+

b4 2n
+Y@rR) | | My, vy, o, 0Ny, ) -N( y, o) sinydyda,  (5.20)
v=0 a=0
where
M( vy, ¥, o, &) = M(B) = - 1/4 cosec3(B/2) (5.21)

and P is the spherical distance between ( _\;-l, @) and (y, o). It is also possible to derive an
expansion in Legendre polynomials for M(B):
M@) = X n(2n+1) P (cosP) . (5.22)
n=0

This series is not converging in the ordinary sense and is not well suited for numerical
computations. However, its use in the following derivations will prove useful because of the
orthogonality properties of Legendre polynomials in (0, 7).

5.3.1.3 Derivation of the F-operator

Replacing the Ag values in the truncated Stokes integration (5.15) by Molodenskij's formula
(5.20) we obtain

b3 2n

NVo=1/4n [ | §(\l;)[- N(y, o) +

\.V=0 o=0

T 2%

+14n | | MGy, w0, )N( v, o) - N(y,o))sin wd yd olsinydyde.  (5.23)

y=0 a=0
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Using elementary operations, replacing the integration kernels S and M by their series expansions
(5.17) and (5.22), respectively, and utilizing the orthogonality of Legendre polynomials in (0, &),
we succeed in transforming eqn. (5.23) to

T2 e
NYo=1/4n | [ [T (0+1)2 @-1)e ()P (cosy)IN(y,0)sinydydo . (5.24)
y=0 o=0 n=0

Replacing o by eqn (5.18) we get from eqn. (5.24)

T 2% oo

NYo=1dn | [ I @2n+1)P (cosy)N(y,0) siny dy do (5.25)
y=0 a=0 n=2
T 2 e
an [T 2 (20+1)2 (0-1)Qq(W, )P, (cosy)N(Y, o) simy dy dat .
y=0 a=0 n=0

Since the geoidal undulations do not contain any harmonics of degree 0 and 1, we can neglect the
first two terms in the second summation. Furthermore, we note that the kernel :

K,=@n+1)P, (5.26)

is a reproducing kernel for harmonics of degree n. Thus we write for eqn. (5.25)

T 2n
NVYo=N-172 | RY(y)12n | Ny, o) da siny da (5.27)
’ y=0 a=0

with the new kernel function

R¥o(y) = T (20+1)/2 (0-1)Q (W )P, (cosy) . (5.28)

n=2

Equation (5.27) relates the "observed” geoid undulations N to the result of a truncated Stokes's

integration with spherical cap y . It is the relation sought for according to eqn. (5.13).
Yo
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5.3.2 Evaluation of the kernel function RYo(y)

The series representation of the kernel function in Legendre's polynomials

RYo(y) = T ((2n+1)(n-1))2 Qu(,) Py(cosy) (5.29)

n=2

is not suitable for a numerical evaluation for two reasons.

(1) The series is not convergent in the ordinary sense, i.e.,
N
lim Sy, Sy= 2 ((2n+1)(n-1))2 Q, P, (5.30)
N~yoe n=2

is not finite. To overcome this problem, special summation techniques have been used, called
Cesaro summation [Lanzano, 1982, pp. 129 ff; Hobson, 1931, pp. 347 ff]. The Cesaro
summation technique has been implemented on the SE/UNB HP 1000 minicomputer. Using
double precision word length, numerical instabilities occurred for summations with upper limit N >
5000. Several tests indicated that for an accurate result the Cesdro summation had to be extended at
least to N = 20 000. Thus the Cesaro summation technique had to be abandoned. However, this
technique gave some insight into the shape of the kernel function and exhibited another
disadvantage.

(2) The kernel function R¥o(\y) behaves rather erratically when approaching the argument ¥,

(see Figure 5.2). From our numerical experience we cannot call this behaviour a singularity, as all
numerical values remained finite. However, this strange behaviour is probably somehow
connected to the non-convergence of the Legendre series (5.29).

5.3.2.1 - Regularization of the kernel function

For the evaluation of RVo(y) we write formally

RYo(y) = R¥o(y) * £y, ¥) * £y, ) (5.31)
with
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foy, w) * Flw, v = 1. (5.32)
We look for a function f(y, y,) of "simple" analytical structure that can be incorporated into the

series expansion (5.29) for RVo(y) according to

RYo(W)*(y,y,) = TVo(w) = I (2n+1)72 t,(y,) Py(cosy) (5.33)

n=0

and leads to convergence in the ordinary sense for the expansion (5.33).

As we do not know in advance which function f(y, ¥) to choose, this is a trial and error
process. Here we do not describe all the errors but proceed directly to the successful trials.
With
f(w, ) = cosy - cosy,, , (5.34)
we obtain from egns. (5.33) and (5.31)

2 (2n+1)/2 (n- 1)Q, (W )Py (cosy)(cosy - cosy,)

B=2

TVo(y)

o0

= Y (2n+1)/2 (n-1){Q (¥ )Py (cosy)cosy - cosy, Qp (W )P, (cosy)}. (5.35)

n=2

We evaluate the first term in the brackets using (cf. Ben-Menahem and Singh [1981])
XPyx) = VQ2I+1)((+1)P; 1 +IPpy) (5.36)

and obtain, after reorganizing, the summation N

TVo(y) = Qa(¥ )Py (cosy)

+ 2 (20+1)/2 {(n(n-2))/(2n+1) Qn-1(¥y) + (n(m+1))/(2n+1) Q1 (W)

n=2

- (n-1) cosy,, Qn(\yo)} P (cosy) (5.37)
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TVo(y) = Qy(y )Py (cosy) + Y (o+1)2 ty(W,) Pylcosy) . (5.38)

n=2

Comparing the coefficients of this expansion (see Figure 5.3a) with those of the original series
(5.29) (see Figure 5.3b), we observe that the coefficients of T¥o(y) series decrease rapidly with
increasing degree of expansion, whereas in the series expansion for R¥o(y) the coefficients
increase with n. This rapid decrease of the coefficients of the T¥o(y) series expansion results in

ordinary convergence for this series. A plot of the "regularized" kemnel TVo(\y) is shown in Figure
5.4. For this plot, the series (5.37) was truncated at the degree N = 300; all numerical values

obtained at this truncation level have converged to better than 1*1073.

5.3.2.2 Test of the kernel RYo(y)

Assume the geoidal undulations N are given in an expansion of surface spherical harmonics

oo

N(y, )= X Ny(y, a), (5.39)

n=2

where n is the degree of the spherical harmonics. The gravity anomalies of the same gravity field
are given by

Ag(y, ) =YR T (a-1) Ny, o). (5.40)

n=2

The Stokes integration applied to eqn. (5.40) within a spherical cap of radius , can be written

Yo 2x
NYo=R/(4ry) | S(y) [ Agy, o) dasinydy, (5.41)
y=0 a=0
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where we have chosen the spherical coordinate system (y, o) to be centred at the point of

evaluation. Equation (5.41) can be evaluated using an expansion of the Stokes function S(y) in
Legendre's polynomials (e.g., Vaniéek and Krakiwsky [1982])

S(y) = X (2i+1)/(I-1) P)(cosy) (5.42)
l=2

and an expansion of the surface harmonics N, (, o) in associated Legendre's functions P;™(cosy)
and trigonometric functions according to
n

Ni(y, @) = X P/(cosy)(C/m cosma + S;™ sinmay) . (5.43)

m=0

Inserting eqn. (5.43) in eqn (5.41) and performing the integration with respect to «, the
orthogonality of the trigonometric functions in (0, 27) gives

2r )
12n | Ag(y,)da 2yR T (n-1) C,° P %cosy)
o=0 ' n=2
(5.44)
=yR X (n-1) C, P (cosy).
n=2
Equations (5.42) and (5.44) in eqn. (5.41) gives
WO oo oo
N¥o=172 | I QI1)/(-1)Pfcosy) I (n-1)C,P (cosy)sinydy.  (5.45)
y=0 I=2 n=2

If the integration is extended over the interval (0, x), the orthogonality relation of Legendre's
polynomials

T
| Py(cosy) Py(cosy) siny dy = 2/(2n+1) 5, (5.46)
V-O
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gives

Nt=N= % C,. (5.47)

n=2
For v, < m, we exchange

Yo

T
[ Sty foy)singdw= |  S(y) f(y) siny d (5.48)
y=0 y=0 -
with
[ Sw) ., wsy,
Sy = A (5.49)

Lo , wsy,.

S is evaluated in Legendre's polynomials according to eqn. (5.17)

el

S(w)= I (n+1)2 & () Py(cosy) (5.50)
n=0
with
aO’ al =" QO(\VO » Ql(wo) -

(5.51)
o =2/(n-1) - Q,,n22.

Using now eqns. (5.48), (5.50) and (5.51) in eqn. (5.45), we obtain (again exploiting the
orthogonality relations) ‘

NVYo=3 (1-(n-1)/2 Q¥ N C, - (5.52)

n=2

For Y, =T, all truncation coefficients Q () vanish and eqn. (5.52) reduces to eqn. (5.47). For

V=0, the truncation coefficients are

Qu(0) = 2/(n-1) (5.53)

and, therefore,
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N°=0.

Once truncation coefficients Q,(y,) have been computed, eqn. (5.52) provides an excellent
method to check the results of numerical integration procedures for specific gravity field
constituents C of degree n.

Figure 5.5 shows reference values computed from eqn. (5.52) for n=2,3,...,200, using only
one coefficient C,, different from zero. This coefficient of degree n was given the value 1, i.e., the
integration in (0, ) according to eqn. (5.47) gives the integral value N™ = 1. Figure 5.5 should be
interpreted in the following sense: For any gravity field constituent of degree n, which leads to a
geoidal undulation of 1 m at the point of evaluation, the truncated Stokes's integration gives the

value N¥o. In the example shown in Figure 5.5, the truncated Stokes's integration estimates a
geoidal undualtion of 1.4 m for a gravity field constituent of degree n = 50.

As the integration with the newly derived kernel RYo(y) applied to the geoidal undulation
computes the result of the truncated Stokes's integration, the N¥o(n) values of Figure 5.5 can be
used as a reference. :

Using the geoidal undulations (5.39), the surface spherical harmonics (5.43), the kernel
evaluation (5.33), (5.31), we can write for the integration formulae derived in section 5.3.1:

. .
NV¥o=N-1/2 J TV¥o(y) * [cosy - cosy_]'L *
y=0

2n oo .
*12n | I Ny, o) siny dady. (5.54)
o=0 [=2

The integration with respect to a gives (cf. eqn. (5.44))

2 oo oo .
12r | I Nfy,)da= ¥ C, P (cosy) (5.55)
o=0 =2 n=2

leading to
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T oo
NYo=N-1/2 [ TVo(y)lcosy - cosy I’ T C P (cosy) siny dy . (5.56)
y=0 n=2
Equation (5.56) has been discretized for the numerical integration

I o
N¥o=N-12 T TVo(y)[cosy;-cosy ]! T C,P(cosy) siny; dy;  (5.57)

j=1 n=2
with
Ay =2n/1

v, = (- 12) Ay,

and I is a suitably chosen number of intervals. T‘l’o(\y) is an approximation of T¥o(y) using the
first 300 term in the series expansion (5.38). As previously described for the Stokes integration,
the numerical integration (5.57) was again done for single gravity field constituents of degrees 2
through 200. The result of these integrations are undistinguishable from those shown in Figure 5.5
in the scale of that figure. Therefore, we plot in Figures 5.6 and 5.7 the absolute and relative
deviations of the numerical integration results from the true values given in eqn. (5.52). These

results are based on an interval width of Ay, = 0.1*27/180°.

5.3.2.3 Accuracy considerations

The error of the test integration results as shown in Figures 5.6 and 5.7 can be due to two
reasons:

+ insufficient accuracy when approximating the integral numerically;

+ insufficient accuracy when evaluating the kernel function according to eqn. (5.37).

5.3.2.3.1 Accuracy of the numerical integration

The numerical integration procedure used here is a simple quadrature method according to
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Figure 5.8. The integral value is approximated by a finite sum of rectangles; for well-behaved
functions, the error of this procedure depends mainly on the interval width Ay. Figure 5.9 shows

the results for integrations with Ay = 0.2°, Ay = 0.1°, and Ay = 0.5°. Obviously, there is no
appreciable difference in the error curves of these integrations.
The function to be integrated here, however, is not as well behaved as shown in Figure 5 8.

Recalling eqn. (5.56) and the shape of the regularized kernel TVo(y), the function to be integrated
here looks as shown in Figure 5.10.

The symmetrical singularity dominating for y close to  is introduced by the (cosuf—cOS\]lo)‘1

term. Any non-symmetric arrangement of the integration intervals Ay with respect to the symmetry
line of the singularity will cause large errors.

Figure 5.11 shows errors of the integration result if we shift the subdivision of the total
integration interval by small amounts. The nodal points of the error curve remain unchanged by
this procedure; thus we can artificially remove the error for the "no shift" case by introducing small
shifts.

Figure 5.12 shows results for deliberate shifting; for a shift of 0.0025°, the integration error
becomes negligibly small. Although this procedure leads to error-free integration results, it should
not be used for two reasons: Firstly, there is no known mathematics or physics behind this

procedure; and, secondly, the “correct” shift would have to be determined for every v on an

experimental basis. We conclude this subsection with the result that the errors in the integral
values, as shown in Figures 5.6 and 5.7, are not due to the numerical evaluation of the integrals.
However, methods have been found to remove these errors by using some unfounded tricks in the
numerical integration procedure.

5.3.2.3.2 Accuracy of the kernel function

All computations described so far were based on an evaluation of the regularized kernel TVo(y)
in terms of Legendre's polynomial up to degree 300. We evaluate now the Legendre series (5.38)
up to degrees N=200, N=500, N=800 and compare the integration errors with those for N=300
used so far. The result presented in Figure 5.13 clearly indicates that there is an error in the
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5. The Truncation,

statement in section 5.3.2.1 of this report. We stated in that section that all values of the kernel
expansion truncated at degree 300 had converged to 10°5. It was found upon closer inspection that

the convergence is not that good for y < 5°. However, from Figure 5.13, we see that for any
gravity field constituent of degree n > 20, the recovery of the truncated Stokes's integration by
means of the new kernel is better than 5%, if we evaluate the Legendre series (5.38) up to degree

500. According to Kaula's rule of thumb [Kaula, 1966], the coefficients C, of the terrestrial
gravity field behave roughly as
C, ~+10%m2. | (5.58)
That relates to the amplitudes T, of the corresponding potential field constituents according to
T,~+GMR - 10°5/m2. (5.59)
Potential field constituents relate to geoidal undulations according to

N, =IAT, ‘ (5.60)
and with

¥= GM/R2 (5.61)
we obtain, from eqns, (5.59) and (5.60)

N,~+64m-n2

N,~<+0.2mforn>20 (5.62)

indicating that a 5% integration accuracy is good for = 1 cm in recovered geoidal height constituent
of degree n > 20.

Figures 5.11 through 5.13 show two nodal points for the error curves at n ~ 68 and n ~ 148. '
These nodal points indicate that the error in the recovery of a gravity field constituent of degree 68
or 148 is zero, independent of the quality of our computation (Figure 5.13). The underlying reason -
is rather simple: Spherical harmonics of degree 68 and 148 have nodal lines at a spherical distance
of 2°, see Figure 5.14. This leads to extremal contributions for the truncated Stokes's integration

(cf. Figure 5.5), but the contribution to the integral value (5.57) is zero at the singular point y=y,..

This indicates that the integration error discussed in this section results mainly from inaccuracies in

the kernel function evaluation for y =y .
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5.3.2.4 Improvement and stabilization of the numerical integration procedure

Summarizing the preceding sections, we can state:

(a) the integrant in eqn. (5.56) has a simple singularity for y=y;
(b) the integral value is finite;

(c) any geoid constituent of degree n, whose value is zero for Y=y , does not produce any

integration error, independent of the slope of this geoid constituent at y=y_ (Figures 5.13

and 5.14).
(a) and (b) indicate that we have treated the integration rather clumsily up to now, and (c) gives us
some hint on how to treat it better.
Figures 5.13 and 5.14 show that no integration error occurs, if all gravity field constituents in

the integration (5 .56) are zero for y=Yy . (Of course, the actual gravity field coefficients C; are not

zero!)
We recall the original form of the integration kernel, eqn. (5.29)

RYo(y) = T ((n+1)(m-1))/2 Qu(y,) Py(cosy) . (5.63)

n=2

The orthogonality of Legendre's polynomials in (0, ) gives

T

| RVYo(y)sinydy=0. : (5.64)
y=0

Thus we can write

T 2n T
N(v,) | R¥o(y)sinydy =12n | N(y, o)da | RVo(y)siny dy
y=0 a=0 y=0
oo T
= 3 C,Pycosy,) | RYo(y)sinydy=0. (5.65)
n=2 W-O
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5. The Truncation.

Since the mean geoid undulation ﬁ(wo) for vy, is independent of y, we can write

T oo
12 R¥o(y) I C,P,(cosy,)sinydy=0, (5.66)
\y-O n=2

and replacing RYo(y) by

R‘Vo(\l{) = T"’O(W)(COS\V - COSWO) ot

we obtain
T

12 ] TVYo(y)(cosy - coswo)'1 2 C P (cosy ) sinydy =0. (5.67)

w:o D=2

Adding eqn. (5.67) to eqn. (5.56), we get

n

NYo=N-1/2 | TY(y) ( N(y)- Ny ))(cosy - cosw,) siny dys (5.68)
\VSO
oo 2n
N(y)= T CP(cosy)=12n [ N(y, a)da . (5.69)
n=2 a=0 .

It remains to be shown that the integrant in eqn. (5.68) now remains finite for y — Y. Since the

kemel TV¥o(y) is well behaved, this reduces to an examination of the function

Fty, W) = ( N(w) - N(yp) / (cosy - cosy,) . (5.70)

Using eqn. (5.69), we rewrite eqn. (5.70)

oo o0

FWw) = 3 CFyWiw) = S Cy(Py(cosy)-Py(cosy (cosy-cosy) . (5.71)

n=2 n=2
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5. The Truncation.

With
cosy=X ,
we write
Fo(X, Xo) = @y(X) - PyX V(X - X,) (5.72)

and a Taylor expansion of P (X) at X = X gives

F X, Xy = T li! @P,X))/eX! X-X ). (5.73)
i=1 X=X,

Since all derivatives of Legendre's polynomials are finite, we have shown with egn. (5.70) through

eqn. (5.73) that the integrant in eqn. (5.68) remains finite for y — /.

The measures described in this section improve the error characteristics and the stability of the
numerical integration dramatically.
Figures 5.15 and 5.16-show the error of the numerical integration using the stabilized

integrator (5.65) and a kemel TY¥o(\) developed up to degree N = 800. Thus the error plans should
be compared to the "best curves" of Figure 5.13.

For low degree gravity field constituents (n < 20), the improvement is better than two orders of
magnitude; for higher degree constituents, the improvement is still better than one order of
magnitude.

The reason for the zig-zag behaviour of the error curve is unknown; as the errors are below any
reasonable threshold, it is unnecessary to investigate this further.

The rather large integration errors shown in Figure 5.13 are completely due to the fact that we
computed explicitly the singular integrant and eliminated this singularity by numerical integration,
i.e., summation of the (almost) singular integrant. Any error in the numerical evaluation of the
kernel was in this way very strongly amplified and resulted in large integration errors.

The same reason is underlying the error curves shown in Figure 5.17. Any small error
introduced by a slfghtly asymmetric evaluation of the kernel function with respect to the singular
point results in large integration errors. As the stabilized integrator has no singular integrant, a shift

of the integration intervals with respect to y does not result in integration errors different from

those shown in Figure 5.15.
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5. The Truncation.

5.3.3 Computational problems

Altimetry data is not available all over the globe, and to limit the computational burden we want
to limit the integration domain to a spherical cap of some radius ¢,(¢, > ¥,):

%
N¥o%o=N-1/2 ] TYo(y) ( N(y)- N(y_))/(cosy - cosy,) siny dy . (5.74)
y=0

For gravity field constituents up to degree n = 200, and several radii 0, = 10°, 20°, 30°, 60°, 90°,

120°, eqn. (5.74) has been evaluated. Results are plotted in Figure 5.18. It can be seen that results
obtained for o, = 10°, 20°, 30°, are totally unacceptable. Results for ¢o = 60°, 90°, 120°, are
closer to the true values (¢, = 180°), but their errors are still too large. We see two nodal points for
the error curves, i.e., for two gravity field constituents, we get the correct result independent of the
integration boundary ¢. The two nodal points appear at the same place as in Figure 5.13. We also
observe in Figure 5.18, that all integration errors change their sign between ¢ = 60° and ¢ = 90°.
Because of the structure of the error curves (nodal points), we can expect to have an errorless

integration for some 60° < ¢ < 90°. Do we have anything special between 60° and 90°? By

expecting the regularized kernel function T¥o(\y) (Figure 5.4), we find a maximum for y ~ 71.5°.

Trying this value for the limit of the integration domain, ¢y We obtain the results plotted in Figure

5.19. This figure is an overlay of the exact values (¢, = 180") and those obtained for ¢, = 71.5°.

Only for very low degree gravity field constituents we see a difference between the two curves. All
high-degree constituents are almost completely recovered.
The results shown in Figure 5.19 have been double checked by integrating eqn. (5.74) in 71.5°

<y < 180°. Results are shown in Figure 5.20 and prove that there is only a small contribution for
low-degree gravity field constituents.
From Figures 5.19 and 5.20, we learn that integration up to the first positive maximum of the
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5. The Truncation.

kernel function TVo(\y) gives reasonable results for high-degree gravity field constituents. The

function TYo(y) is obviously dominated by low-degree constituents (cf. Figure 5.1). Since we
cannot expect to obtain a reasonable result for low-degree gravity field constituents from any local
integration, we may think of removing the low-degree harmonics from the kemel function. Thus
we obtain from eqn. (5.27)

©
NWo=N;-12 [ R¥o(y) N(y)siny dy (5.75)
y=0

with

R¥o(y)= X (2n+1)/2 (n-1) Qn(W,) Pylcosy) .

n=/+1

Regularizing this 'spheroidal’ kernel R;¥o(y) according to the derivations of section 5.3.2.1, we
obtain

R¥o(y) = 1/(cosy - cosy,) T¥o(y), (5.76)
with

TVo(W)= T (20+1)/2 t,(y,) Pp(cosy) +

n=l+1

+ (1)2 {1+ Q1 (W) Py(cosy) - (1) QU Py, (cosy)} (5.77)

bad

and t () according to eqns (5.37) and (5.38). This kernel T ¥o(y) has been computed for /=20,

and its shape is shown in Figure 5.21. The promising results obtained when integrating up to the

first maximum of the kernel TVo(y) (¢, ~ 71.5°) led to an integration with T,,Yo(y) up to ¢0=8.3°,

the first positive maximum of T,o¥o(y).
The results of this integration are shown in Figure 5.22. For degrees { > 40, the gravity field

constituents are recovered remarkably accurately by using the truncated integration ﬁp to ¢, = 8.3°.
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5. The Truncation.

The differences between the exact values and the truncated integration results may be due to slight

errors in the computation of ¢,,. We conclude:

Integration with the 'spheroidal' kernel Tpy¥o up to its first maximum (¢, = 8.3%)
gives acceptable results for gravity field constituents of degree I > 40. For Ty¥o,

the constituents of degree / > 20 are recovered when integrating up to ¢, = 13.5°
(cf. Figure 5.23).

If we look at the plot of the ‘spheroidal’ kernel T,y¥o(y) in Figure 5.21 we see a behaviour

incompatible with Figure 5.3a, which shows the coefficients of the series expansion for T¥o. A

closer inspection of eqn. (5.77) shows that the kernel T;¥o(y) is dominated by the term

(+1)2 {1 Q. (W) Pycosy) - (-1) Qi) Ppp(cosy)} . (5.78)
This fact becomes obvious if we plot the first part of eqn. (5.77) only

Tyo¥o(W) =T  (2n+1)/2 ty(y,) P (cosy) . (5.79)

n=l+1

-

Figure 5.24 shows the rapid &iminishing of this part of the kernel T,,Vo(y). However, since eqn.

(5.78) is part of the kernel, we cannot simply neglect it but must look for ways to minimize it.
Since

P(-1)-P 4 (-D)=%2, (5.80)
the effect of eqn. (5.23) at W = © can be minimized by

1Qu 1wy + (-1) Qy ) =0. (5.81)
Equation (5.81) determines a radius Y of truncation for the Stokes integration that minimizes the

influence of the term (5.78) on the distant zones of the kernel T;Vo(y).
For I=20, we obtain from eqn. (5.81)

v, = 2.936" . (5.82)
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5. The Truncation.

Using this y/, we obtain a Ty¥o(y) shown in Figure 5.25.
Comparing Figure 5.25 with Figure 5.21, we see
» the dominating term eqn. (5.78) has been dramatically reduced;

 the shape and size of the kernel for small y is not very much different; the first maximum has

been shifted from ¢ = 8.3° to ¢ = 10.2".

Integrating with this kemel, once in the interval (o, 7) and once up to ¢ = 10.2°, we obtain the

results shown in Figure 5.26. Comparing Figures 5.26 and 5.22, we see that (besides a change of
the general shape of the response function) the main result of minimizing the term (5.78) is a
removal of the discontinuity of the response function in the frequency domain! This is an
interesting fact, but has no significance for our derivations, since it is related to the response
function of the non-truncated integration.

The comparison of Figures 5.26 and 5.22 exhibits another feature: the interval of poor
approximation (20 < / < 40) in Figure 5.22 has been reduced to (20 </ < 30) in Figure 5.26. This
tendency suggests that we may get even better approximations with a truncated integration, if the

kernel is computed for a larger Stokes's truncation radius .

The previously described tests were again performed for \Vo=3.5°. As expected, the term
(5.78) again dominates the plot (cf. Figure 5.27), and the first positive maximum is shifted to about
12.2°. As can be seen from Figure 5.28, now the errors resulting from truncation of the first
maximum of the kernel function are almost invisible at the figure's scale. These errors are plotted
in Figure 5.29. These error curves are based on an integration with the 'spheroidal’ kernel

TooVo(y) up to the exact maximum of the kernel function ¢o =12.2107"... . Itis obvious that the

errors of all recovered gravity field constituents above degree 20 are less than 2%.

5.3.4 Selection of kernel functions for numerical applications
For use on real altimetry data in selected test areas; the following problems have been

considered. For the purpose of checking the marine gravity data through Stokes's integration and
comparison with the corresponding quantity obtained from integration over altimetry data, an
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5. The Truncation.

integration radius as small as possible would be desirable. This would enable us to identify certain
very small spatial areas of possible disagreement and thus indentify faulty gravity or altimetry
measurements. On the other hand, the altimetric surface used in the integration is locally rather
smooth, partly due to the gridding algorithm described in section 3.2.5. That means that for very
small integration radii, the altimetric surface within the integration domain will be mainly flat
without any remaining structure. This fact leads to a lower limit for the choice of an integration
radius. It can be shown that the integration on the right-hand side of eqn. (5.74) yields zero, if the
geoid N (represented by the altimetric surface) is a plane surface, i.e., no information can be
extracted from this type of surface.

For the purpose of this contract, we decided to work with two kernel functions T901' and

T900-5’ and to discuss the integration results in comparison with spheroidal Stokes's integration

using the Stokes kernel within the truncation radii of 1° and 0.5°, respectively. The corresponding
truncation radii for the T kernels are 3.640 35° and 2.984 97°, respectively.

5.4 Numerical Integration Procedure for the Truncation Kernel

-

The altimetry derived partial geoidal height 8N is given by (see, for instance, eqn. (5.74))
%
N¥odo=N-1/2 | TYo(y)( N(y)- Ny ))cosy - cosy ) L sinydy,  (5.83)
\|l-0
where TYo(\y) is the truncation kernel, v is the geocentric angle between the point of interest and

the 'dummy’ point, Y, is the Stokes radius of integration, and I_\I'(\y), FI(\;IO) are the mean geoidal

heights (reduced for long wavelength geoidal undulations) of the 'dummy' points which are ytdys

and y *dy respectively, away from the point of interest.

For the numerical integration of eqn. (5.83), the area around the point of interest up to a

maximum radius ¢ is divided into rings of thickness Ay, as is shown in Figure 5.30. The rings
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5. The Truncation.

are arranged in such a way that one of them will have a mean radius of . Consequently, the

mean radius of the circular area around the point of interest, as well as the thickness of the outer
ring, will be less, in general, than Ay. Consequently, eqn. (5.83) can be written as:

NRINGS
N¥o=N-12 3 Ty N(yp- N(y,))(cosy; - cosy,) ] siny; Ay, , (5.84)

i=]

where NRINGS is the number of rings around the point of interest, and i is the ring index.

Since Y, 9, ¥;, and Ay; have predetermined constant values, and by setting

R; = 1/2 Ty(cosy; - cosy )L siny; Ay, , (5.85)
eqn. (5.84) then becomes
NRINGS
N¥o%=N- T R{ Ny)- Ny} (5.86)

i=l

For computational speed, the different values of R; are stored and ﬁ(wo) is evaluated initially

for a specified point of interest and kept constant throughout the integration. ﬁ(wi) is evaluated for
each ring for a specified point of interest. Equation (5.86) indicates that the numerical integration is

equivalent to a linear filter in the altimetric geoid domain with R; being the transfer function.

5.5 Determination of Mean Gravity Anomalies from Altimetry

According to the derivations in sections 5.1 and 5.3, the result of the integration over the
geoidal heights (altimetry) is equal to the corresponding truncated Stokes's integration over gravity
data (cf. eqn. (5.1))

VYo 2
SNWWobo=Ri(4my) | Sy) | 8Aghy, o) siny dy da . (5.87)
y=0 a=0 .
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5. The Truncation.

The mean gravity anomaly, 8 Agl, in the integration area, Y=y, (not to be confused with the mean
gravity along a constant radius, as used in eqn. (5.2)), is by definition constant within y<y,. This

means that eqn. (5.87) can be inverted to yield mean gravity anomalies within y<y  according to

Vo 2%
5 Ag! =8NWodo-4ny{R [ S(y) | sinydyda}
y=0 a=0
Yo
= 8NMVoto - 4my{R [ F(y)dy} = CY¥ - NHVobo . (5.88)
y=0

Obviously, the conversion factor is a constant depending only on the truncation radius y/:
Vo

CY¥o=4ny{R | F(y)ady}!. : (5.89)
y=0

5.6 Test of the Integration Programs

To verify the theoretical derivations of the last sections and to assess the accuracy of our °
approach, a geoidal surface and the corresponding gravity anomalies were computed, using only
the spherical harmonic coefficients of degree 91 of the Wenzel [1985] expansion. Both the geoidal
height and the gravity anomalies were evaluated on a 10' grid covering an area of 10° by 5°.

The result of a truncated Stokes's integration over the gravity anomalies is shown in Figure
5.31. The corresponding truncation integration over the geoidal heights gave results shown in
Figure 5.32. At the scale of these figures, the main difference between the results seems to be that
the Stokes integration gives a slightly smoother surface. Plotting the difference between the two
integration results in Figure 5.33 reveals a small systematic error proportional to the integration
result. This error amounts to about 5% and is attributed to the combined effects of kernel
approximation and data discretization.
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6. Applications

6. APPLICATIONS

For application of the derived mathematical relations between geoidal surface and gravity
anomalies to real data, two test areas were selected according to the research contract. Both test
areas have an extension of 5° and 10° in latitude and longitude, respectively. The location of the
test areas is shown in Figure 6.1. The Labrador Sea area was chosen to cover some of the local
variations of sea surface topography, as discussed in section 3.

6.1 Input Data

Marine gravity data for Hudson Bay and the Labrador Sea (see section 3.1) was reduced for a
spherical harmonic expansion of the gravity field up to degree 90 using Wenzel's [1985] set of
coefficients. The Hudson Bay test area is more or less completely covered by gravity
measurements. The lower left part of the Labrador test area is on land. Obviously, no marine
gravity data is available in this part.

The input for integration with the ‘truncation’ kernel is primarily the altimetric surface
interpolated on a 10" x 10' grid, according to section 3.2.5. The integrator requires data within a

certain radius ¢ around the point of interest. To facilitate the integration in coastal regions, the

altimetric surface had to be augmented by the UNB gravimetric geoid, also available on the 10' x
10" grid. The merging of the two data sets required a decision on where to use which set. The first
obvious choice would be to merge the two data files along the coastline. Unfortunately, the
altimetry is rather unreliable in the coastal areas, as explained in section 3.4.2. Thus we decided to
draw the merging line along latitude/longitude lines, somewhat off the coast as shown in Figure
6.2. The exact location of the merging line was chosen to coincide as well as possible with the
lines of zero difference between the gravimetric geoidal heights and the altimetric sea surface
heights (see section 3.4.2). Thus large discontinuities in the merged surface were avoided. Figure
6.3 shows a contour plot of the combined geoid-altimetry surface. This surface was subsequently
reduced for long wavelength components using the Wenzel [1985] spherical harmonic expansion
up to degree 90. A colour plot of the reduced geoidal surface is attached as an external appendix to
this report.

115



116

P YO =

X
e

| P
. =1 YR, R b
B vt = 5 By T
- B! b 1 Yok | bz | .
. Ta =
4 l b i AW\!. 0 o N
i T~ A = DN O£ oS r—
Fi w ] e =
P o 1 SR "y . D - 3
& = c&v h ) . \lm-. w.u” uJ\n 5 ‘ultf ..v\ )
....... Lre T ¥ 3 P A D2 Y N B & >
Arres & o) B m fled s .U...Pjh..... -~ L3P
i . i 7 e n IR o il O i I S
by LN
AN

_—

B R
o L\
/

T
<1u
CAY

\,-\J '?CD.

NRI:a

%

:

= :;’ (I/L\O a

) ..n . \«’.w_‘
vm..vld...,nan ' !'.“L \&.;\
{.& ] ) M!uw n) D = ; _ ¥

: _/Qw\u i o) AUM W = I et N
WL R AN AT 1=t B R
N SN A N o e I s g W B W L R SoRSE
e Lo e | A NEra 1§l
3 M\_ fWMN i T.. M\.# lmi.\_ s o .M ) _r . 4 h:/t.\ mﬁ?
Lo P .. Qi 1) =) - ! | ) ) : —~ D .:... T “..
i = P 2 ik
o | M
fwu _ : o \Wrda
: " 1 L~

\gs

L\\\/
D

S~

=i

L4

g

42°

318°

Location of test areas in Hudson Bay and the Labrador Sea.

FIG. 6.1:

265°



318°

N
4

_ - -, e T Id .

o == L Y T T

- A aw gho il PN s | SE )

R e S : n\ - iy / om. . @F».ro[wu a 1o ;

y/‘,. < : N P Al 1 :uuM%!éawMMv e
= [ . u 5 JHEAD N~ P - ..V ~
I TEE N G 0N S0 AW A DAY

Q. % S o7 = x o= ....~.‘/<.J.. 74 2 . .mm..szmu. A e
p— . r.w i 73 3 Mﬂ f .m..\.mum ﬂxj = ‘-m.g 1‘1\."

N9

a8
D1
A
I~

D

) CER:
b oy e

g
(T

o

R

Tkl
g1 %1 M ;

/,_-:'.}‘J.j
¢
¢

)

- e, UU. .1

= S i e Muymuﬂ T = s 9
. S ik - 7 > S
Y7 .”......r...._,y \(....IM,J& o T N g IREE

SN LY S, 3 N

~7 ’NIM(Q» <1 4 N \.‘. ....... '.Q‘_ ~& J...«; .r.L

i f M : , = = — 3

pi

. Altimetry

X %

O

A
{
(R4

T

|

—_— -

—te -

A S U O

St NE

Altimetry

Merging of altimetric sea surface and gravimetric geoi

FIG 6.2:

42°

265°



trv

Merged Grav. Geoid and SEASAT Altlime

4

minute grid )

10 x 10
Reference Ellipsoid GRSH0

(

1m

Contour [nterval

Pl

MAAAMAAAAMS AAMLALAL AL ALY Raastasl

™
~
-
<

R0.67

Gaanlansaataanianss an

=
e
N
<

a44.67

263

Merged gravimetric geoid and SEASAT altimetry.

6.3:

FIG.



6. Applications

6.2 Hudson Bay Results

Figures 6.4 and 6.5 show results pertaining to integrations with Stokes's truncation radius

V,=1" in units of centimetres. The Stokes integration in Figure 6.4 shows very detailed structures

in the eastern part reflecting mainly the local variations in gravity. Comparing this figure with EPB
[1980], we see a mimicing of the relative gravity variations in Hudson Bay. This is obviously a
consequence of the very localized integration. Both plots show flat local highs and lows in the
western and middle part of the test area and rather large anomalies along the eastern boundary.

The integration with the truncation kernel for the same area is shown in Figure 6.5. The blank
in the top part is due to empty areas in the input data file (see Figure 5.3). Clearly, the match of the
two surfaces is quite good, not only as far as the basic shape is concerned but also as far as the
amount of detail portrayed. It is encouraging to see that, apparently, the altimetric surface used for
the ‘truncation’ contains enough high frequency information (wavelengths shorter than 100 km) as
to be comparable with that contained in the collected marine gravity. There seems to be, however,
an overall positive bias in the Stokes integration compared to the ‘truncation’ integration.

To compare the two results better, we have plotted the difference of the two surfaces (Figure .
6.6). Now the overall positive bias in the Stokes integration shows quite clearly. Realizing thata
constant error of 1 mGal in the gravity data produces a change of 12 cm in the Stokes integration
with radius of 1°, this positive bias would indicate an average bias in the gravity data of the order of
about 1 to 5 mGal (in the absence of any bias in the altimetry) in the western part of this area of
Hudson Bay. We note that differences of several decimetres may be caused by random

(uncorrelated) errors in the marine gravity. For the typical case of an average density of Ag values
of 5' and their standard deviation of 5 mGal, the standard deviation of the Stokes integration would
be 20 cm.

There is a sizeable localized negative difference of 1.2 m in the eastern part of Hudson Bay. It
appears that it might be caused again by a local (within the 1° integration cap) bias of about 10
mGal in the marine gravity, although this hypothesis is difficult to sustain when we realize that the
anomalous difference is outside the area of altimetry.

Just how much of this difference could be reflecting the presence of the SST in the altimetry is
difficult to evaluate. The effect of merging the geoid with the altimetry, however, can be seen
along the seams (shown in Figure 6.6 by — — — lines—cf. Figure 6.2) where rather abrupt
steps of up to several decimetres can be discerned. The effect of random (uncorrelated) errors in
the (gridded) altimetry is less than 7 cm in the Hudson Bay test area. These errors do not affect the
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6. Applications

comparison in a significant way.

We should note that any longer wavelength differences between the two solutions (wave
number 91, 92, ...) may be coming from the inaccuracy of the truncation kernel used in the actual
convolution which manifests itself particularly in the low frequency domain (cf. section 5). These
differences, however, should be of the order of one decimetre or less.

For the integration radius of 0.5°, the situation is very similar. The Stokes integration (Figure
6.7) and the ‘truncation’ integration (Figure 6.8) show the same features as well as the same
amount of detail. Obviously, the altimetric surface possesses enough high frequency information
to match the marine gravity information content.

The difference surface (gravity-altimetry) displayed on Figure 6.9 agrees with the 1.0°
integration radius difference surface in broad features but differs in detail as one might expect. If
these differences were caused by biases in marine gravity (here 1 mGal bias causes a 6 cm effect in
the ‘truncation’ integration) then the change from one difference surface to the other would reflect
the change in these biases from 1° cap averaging to 0.5° cap averaging.

Here, again, the role of SST is difficult to assess. But once more, the seams between altimetry
and the gravimetric geoid are visible, causing steps of several decimetres.

To see if anything can be learned from the difference between 1° radius truncation and 0.5°
rad_iué truncation, the difference surface was generated (Figure 6.10). It is interesting to note that
this surface is relatively smooth (wavelength of 100 km and longer) and it mimics, with a negative
sign, the shape of the higher order geoid constituents (cf. the external appendix: geoid-(Wenzel (90,
90) field) two-colour plot)). It probably represents the contribution of deeper seated density
anomalies so that the smaller radius truncated geoid (Figure 6.8) reflects the more localized (more
focused) contribution of density anomalies located closer to the surface of the earth. This
hypothesis, however, has to be tested in an area where the subsurface density distribution is
relatively well known.

6.3 Labrador Sea Results

Figures 6.11 and 6.12 show results pertaining to the integration with Stokes's truncation
radius 1°. The Stokes integration over gravity anomalies in Figure 6.11 shows again detailed
structures of local gravity variations and compares quite well with the gravity maps [EPB, 1980].
Especially pronounced are the large positive anomalies along the ridge of the continental shelf and
local lows at about (54.5°, 307.5%) and (55.5°, 304.5%). The corresponding truncation integration
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6. Applications

result shown in Figure 6.12 remodels all the main features but shows also differences in the areas
around (55°, 306°) and (53°, 308°). The structure of the discrepancies becomes more obvious in
the plot of the differences between Stokes's integration and the truncation integration in Figure
6.13. We see a general positive bias of 74 cm and extremal values of 2 m. The large differences
are approximately colocated with the maxima of the Stokes integration shown in Figure 6.11, but
they are not proportional to these. In contrast to the Hudson Bay results, here only small
distortions seem to be caused by the merging of the gravimetric geoid and altimetric surface. The
merging line is indicated by the broken line in Figure 6.13.

Results for the truncation radius Y, = 0.5° are shown in Figures 6.14 and 6.15. Again the

general agreement is good, but the rather large differences at several locations already seen in
Figure 6.13 persist. The mean difference is +85 cm and extremal values are about +210 cm.

Comparing the plot of the differences for y_ = 0.5° (Figure 6.16) with those for y = 1.0°

(Figure 6.13) we see that the size of the features shown shrinks when reducing the integration
radius. This is most obvious in the upper left corner of the plots and at the maximum differences at
about (55°, 306°). In the upper left corner, only a rather small area remains above the 1.0 m level
after reducing the truncation radius. The second feature mentioned above dissolves into several
separate features. This is seen as a consequence of the focusing effect, i.e., reducing the
comparison to less input data points. The plot of the differences between truncation integrations

“

with ¥ = 1.0° and y_ = 0.5° is shown in Figure 6.17. This figure depicts a more detailed

structure than the corresponding plot for Hudson Bay although the range of the differences is more
or less the same. The more localized structure may be due to the rougher input data along the ridge
of the continental shelf (cf. Figure 6.3).
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7. Utilization of Digital Image Analysis and Display Techniques.

7. UTILIZATION OF DIGITAL IMAGE ANALYSIS
AND DISPLAY TECHNIQUES

7.1 Objectives

The overall goal of the work, as stated in Chapter 7 of the contract, was the

Provision of expertise and software for digital image analysis and for display
techniques using colour graphics, as part of Items 1 to 6 where applicable, and as
an extension of them.

Specific operations proposed were:

1)
2)
3)
4)
5)
6)
7

8)
9
10)

11)
12)

13)

representation of contours and raw or gridded data by colour coding;

display of data set overlays in colour composite and using colour mixing;

superimposition of processing flags on data sets;

mutual registration of data sets from different sources;

resampling raster data to change the pixel size for display purposes;

relief shading of data with directional illumination;

gridding data using interpolation which exploits data trends (principal component
transformation);

manipulation of large images as collections of smaller images;

compression and decompression of image data (for storage, input, output);

Fourier filtering of image data (e.g., for cross-correlation, for cross-spectral techniques to
analyse the relationship of bathymetry/elevation to gravity);

derivation of horizontal and vertical gradients, second derivatives (e.g., Laplacian);
correlation of anomalies using associated geophysical data like magnetic and gravity anomalies
(e.g., searching for regions of preselected amplitude ranges for several parameters, using
eigen-pictures in which pixels are presented by vectors associated with amplitudes of
parameters defining the axes, comparing pseudo-gravity anomalies derived from magnetic
anomalies using Poisson's relation);

multiple image operations (e.g., addition, subtraction, ratios).
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7. Utilization of Digital Image Analysis and Display Techniques.

7.2 Method of Approach

BIO and the contractor own a different type of data processing facility which does not permit a

direct transfer of operational procedures. This impediment was recognized in the contract by the

clause:

Differences between the contractor's and the scientific authority's image analysis
and graphics systems (and continuing development of this capability at AGC)
make direct transfer of software problematic. Specification of the means of
transfer must be decided within the spirit of the contract through mutual agreement
between the contractor and the scientific authority.
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