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ABSTRACT
Q-mode factor analysis is investigated for its appropriateness as an analy-
tical tool in evaluating grain size data. Through use of mathematical an-
alysis and simulated data, relationships between the character of size
frequency distributions and results of Q-mode factor analysis are provided.
O-mode factor analysis can be applied to the interpretation of depositional
processes and environments only to the extent that: (a) the central
portions of size-frequency distributions reflect these processes and
environments; and (b) the data set is confined to samples representing
fairly simple physical processes and environments. The use of Q-mode
factor analysis for analyzing the interrelationships in large data sets is

therefore of limited value.



INTRODUCTION

Factor analysis is often considered a part of statistical

methodology. But in view of the fervor shown by its ad-

vocates as well as by its detractors, it is suggested

that factor analysis might better bhe classified as a

religion.

- Wallis, 1968

Analysis of the size frequency distribution (sfd) of sediments and
sedimentary rocks remains an important tool for the determination of sedi-
mentary processes and recognition of depositional enviromments despite the
varying degrees of success achieved by its application. A variety of
methods, ranging from simple bi-variate plots of 'statistical' parameters
derived from sfd, or the dissection of sfd, to complex analytical methods,
such as factor analysis, have been used by researchers.

Despite the warnings and criticism of the method (Ehrenberg, 1962;
Matalas and Reiher, 1967; Glaister and Nelson, 1974; Temple, 1978) Q-mode
factor analysis has provided useful interpretative information (Klovan,
1966; Yorath, 1967; Beall, 1970; Allen EE.§1;3.1971; Clague, 1976; Dal Cin,
1976; Chambers and Upchurch, 1979). Its application, like most of the
other techniques involving size frequency data, has been based on empirical
evidence; the results seem to make 'sense.' Exactly how the method
achieves these results from size frequency data has not been studied in
detail and that is the purpose of the present paper.

By means of mathematical analysis and simulation, we attempt to
determine relationships between characteristics of sfd and the results of
Q-mode factor analysis. Some of the fundamental questions raised are:

(1) how are differences in means of sfd resolved? (2) how are differences

in sorting resolved? and (3) what patterns emerge from the mixing together

of end-member sfd having distinct mean and sorting (among other
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statistical) values? In short, the approach is to determine what Q-mode
factor analysis will produce given some known size frequency distributions
to start with.
The general principles of Q-mode factor analysis has been
adequately described in the literature (see Armstrong, 1967; Rummel, 1967;
Joreskog et al., 1976). We will here discuss those aspects of special

importance to its use in the analysis of grain-size data.

The Data

Each sediment sample is considered to be totally described in terms of its
size frequency distribution by the weight percent of sediment contained in
each of p size classes. Geometrically, each sample can be visualized as a
vector whose coordinates on p mutually orthogonal axes are the weight
percentages. Because the sum of the weight percentages totals 100 for all
samples, the ends of the vectors are constrained to be on a p—1 dimensional

hyperplane in p dimensional space.

Similarity
Of the variety of measures which can be used to mathematically describe the
degree of similarity between pairs of samples, the cosine theta index of
Imbrie and Purdy (1964) provides several advantages. The index between
sample i and sample j, assuming p size classes, is computed from:

cosB,, = (Ep X Xjk) (%ﬁl Xik2 gil Xjkz)_O'S (1)

where X;j) 1s the amount of sediment in the kth class for sample i,



likewise for sample j.

As is evident from Equation 1, cos® simply measures the cosine of
the angle separating any two sample vectors in p space. Two aspects of
this index are worth emphasizing: (a) the denominator of the equation, in
effect, normalizes the vectors so that they are each of unit length; and
(b) the angular separation is determined solely by the proportions of
results of sediment in each size class and therefore absolute amounts of
sediment are ignored. A cos® value of 1.0 signifies perfect similarity; a
value of 0.0 signifies perfect dissimilarity.

In practice, all pairs of samples are substituted into Equation 1
and an N by N matrix of cos® values is computed (where N is the total num-
ber of samples present in the study). This matrix contains all the infor-
mation concerning the mutual similarities (and dissimilarities) between all

of the samples and is the starting point of the Q-mode analysis itself.

Q-mode Analysis
Although mathematically complex, the Q-mode procedure as outlined by Miesch
(1976) relies on the rather simple notion of principal components. The
matrix of similarity coefficients is decomposed into two matrices. One,
the matrix of factor loadings, provides the coordinates of the samples in a
space of reduced dimensionality. The other, the matrix of factor scores,
provides the position of the axes used to determine the reduced space in
terms of their coordinates on the ofiginal p variables which define the
data space.

Miesch (1976) has developed a method which permits the use of the
most divergent samples as reference axes and gives their composition in

terms of the p weight percent classes used to describe the samples
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originally. For grain size analyses, then, the Miesch method attempts to:
(1) find the most different types of samples, based on their total sfd;
(2) express all other samples as mixtures of these end-member distribu-
tions; and (3) describe the composition of the end-members in terms of

their total grain—size characteristics.

ANALYTICAL APPROACH

(i) On Understanding cos®6
Because the cos® matrix of similarities contains all the information on
which Q-mode method works, it is important to establish exactly how the
cos 0 index describes similarity between grain-size distributions. We first
assume that grain-size distributions are inherently log-normal in charac-
ter; if grain-size intervals are measured in ® units we need consider
Gaussian distributions only.

Our first case is to compute cos® between two perfect Gaussian
distributions whose properties are solely determined by uj, up, o1, 02, the
respective means and standard deviations. The equation for a Gaussianl

distribution is:

xi - u 2
y, = 2u) 0 0 =) 2)
where (in terms of grain size distributions): yi is the weight of sedi-
ment in the ith @ interval and less, x4 is the 6 value, p is the mean
value, and o is the standard deviation in H units. The cos 6 index can be
considered as a correlation function between two such distributions.

Denoting the first distribution as fi(x) and the second as f,(x) it



is seen that:

cos Bz = [T fl(X) £o(x) dx] [T [fl(x)]2 dx]_o'5 [T [fz(x)]2 dX]—O.S (3)

-0

and upon integration we obtain
2
1 Cua—u2)

0«5 2 2
cosf1p = Liiglggg] e 2(01702%) (4)

012+02
It is thus apparent that cos6 is a complex, nonlinear function of the two
basic parameters of the Gaussian distributions being compared.

For the special case where the two grain size distributions
(samples) have the same standard deviation (sorting), the relationship
becomes:

Hl — W2 2

Coselz = e_ ——ET;—_J (5)

Curves generated from this equation (Fig. l)show that for a given standard
deviation, cos® decreases as differences in mean value increase. Also
evident is the fact that a pair of poorly sorted samples are designated as
being more similar than a pair of well sorted samples having the same
difference in mean values. For very well sorted samples, small differences
in mean value drastically reduce cos®6.

For the special case where the distributions have zero mean differ—
ence, the relationship becomes:

2, 29y 00°
cos 01 = (20102/ (01 027)) (6)

Figure 2, generated from this equation, shows that cos 8 is less sensitive
to contrasts in sorting between two poorly sorted distributions than it is

to two well sorted distributions.
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Fig. 2. Relationahip between COS 6 and standard deviation of
two Guassian distributions with zero mean difference.
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A set of ideal, log-normally distributed, grain-size samples was
mathematically generated for our second case, with means ranging from 0 ¢
to 4 $ in 0.5 O increments and standard deviations from 0.5 § to 2 ¢ in in-
crements of 0.5 standard deviations. There are thus 36 samples in the set.
The distributions were 'sieved' into 20 intervals between -8 ¢ and 11 §.
Fven with this degree of separation considerable deviation from an ideal
distribution has been introduced, particularly for those samples whose
means fall on a class boundary. Nevertheless, cos@ values computed from
the simulated discrete distributions differ only in the third decimal from

the theoretical cos® values derived from Equation 2.

(ii) On Understanding the Q-mode Factor Analytical Solution

In our first case we compare two perfect Gaussian distributions
predetermined to be different by altering the mean and/or standard devia-
tions. Twenty nearly identical samples of each distribution were generated
by the Cornish-Fisher expansion equation (outlined in detail by Swan et
al., 1978; Kendall and Stuart, 1969, pp. 165-166). Therefore, the factor
analysis worked on 40 samples but only two distributions.

The unrotated factor matrix results in two factors accounting for
all variance in the data set (Fig. 3). The second factor separates the
distributions by the loading sign. When standard deviation is held
constant (i.e., at 1 ¢ in Fig. 3) and the difference between means (AW is
decreased, the variance (eigenvalue) accounted by the unrotated factor 1
increases with that of factor 2 decreasing proportionally. At Au <0.15,
factor 1 accounts for nearly 100% of the data variance (Fig. 3). Similar-
ly, when the mean is held constant and the difference between standard

deviations (Ao) is decreased, the variance accounted by factor 1 increases
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Fig. 3. Relationship between the difference in mean (AM ) between

two Gaussian distributions and the percentage of total
variance contributed by each eigenvalue of the two unrotated
factors.
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in the unrotated factor matrix. In both cases, when the factors are
rotated, the rotated factor matrix separates the distributions by the load-
ing values (Table 1). When Ac or Ap decreases these loading values
approach one another and become indistiguishable at Acg = 0.25 or Apu =
0.5, respectively.
Figure 4a gives the sfd of two distributions having the same mean

but different standard deviation and shows how the factor scores mirror the
N = N2 1

variance along any class interval i.e. Vk=(2 (Xi—Xi) )N~ *; where V is the
i=1

variance in the kth class; Xi is the weight of the ith sample in the

kth class, ; is the mean weight of the gth class, and N is the total

number of samples. In an attempt to circumvent this situation, the above
experiment was repeated on range transformed data (Table 1, Model 2b).
Range transformation essentially eliminates the variance along the var-
iables (class intervals). The total variance in the data set accounted for
by the rotated factor matrix is considerably lower than that of the
nontransformed data (Table 1, Model 2aii and 2b). However, the loadings
produce a better separation of the two distributions. Although the rotated
factor scores are hard to interpret, the compositional scores mimic the
original distributions (Fig. 4b).

The, 36 discrete, log-normal distributions generated above, each
with a different mean and/or standard deviation, were analyzed by O-mode.
The percent sums of squares extracted by successive factors for both the
principal components and varimax cases (Figure 5) suggest that a three-

factor solution would be optimal. Table 2 shows the goodness of fit

statistics; with three to five factors, only the middle seven grain-size
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Fig. 5. Percent sums of squares extracted by successive factors for
both principal components and varimax solutions. A three
factor solution is indicated as being sufficient.



Table 2

var.
vare.
vare.
vare.
var.
var.
vare.
vare.
vare
vare.
var.
vare
vare
var.
vare.
vare.
vare.
var.
vare.
var.

Voo~NGyUlS~WN

COEFFICIENTS OF DETERMINATION

Number of Factors

2

0.0215
0.0012
0.0124
0.0174
0.0300
0.0623
0.1537
0.4660
0.7209
0.5692
0.0000
0.5698
0.7208
0.4656
0.1535
0.0622
0.0299
0.0176
0.0112
0.0041

3

0.0258
0.0248
0.0364
0.0480
0.0718
0.1231
0.2457
0.6061
0.8310
0.6925
0.9489
0.6925
0.8310
0.6056
0.2454
0.1230
0.0717
0.0482
0.0356
0.0267

4

0.0388
0.0521
0.0658
0.0848
0.1221
0.1964
0.3536
0.7781
0.8779
0.8755
0.9489
0.8573
0.8781
0.7777
0.3531
0.1962
0.1219
0.0850
0.0650

0.0533

14

5

0.0252
0.0396
0.0568
0.0819
0.1317
0.2303
0.4245
0.8513
0.9100
0.9880
0.9479
0.9880
0.9101
0.8509
0.4241
0.2302
0.1317
0.0824
0.0562
0.0413

6

0.1050
0.2125
0.2400
0.2960
0.3928
0.5461
0.7568
0.9349
0.9524
0.9885
0.9479
0.9885
0.9520
0.9436
0.7549
0.5443

0.3915

0.2955
0.2391
0.2106

7

0.1494
0.2967
0.3345
0.4107
0.5358
0.7274
0.9487
0.9761
0.9995
0.9989
0.9997
0.9889
0.9995
0.9762
0.9486
0.7277
0.5389
0.4118
0.3350
0.2958

8

0.3205
0.5068
0.5585
0.6343
0.7454
0.3691
0.9744
0.9834
0.9991
0.9991
0.9997
0.9990
0.9991
0.9872
0.9724
0.8578
0.7291
0.6181
0.5409
0.4911

9

0.4456
0.6841
0.7393
0.8174
0.9192
0.9898
0.9966
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9965
0.9899
0.9198
0.8195
0.7400
0.6853
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classes show appreciable coefficients of determination (i.e. explained
variation divided by the total variation). Only the $ classes between -1
and 5 are actually contributing to the analysis. The low coefficients of
the remaining classes reflect the very small variances associated with
classes in the tails of the distributions. Communalities for a three-
factor solution range from 0.7026 to 0.9990. Thus, even with errorless
input data, considerable distortion is present in the factor analysis
results.

A plot of the normalized varimax factor components for the three-
factor case is shown in Figure 6. The typical 'horse-shoe' pattern caused
by a closed data set is evident.

Factor I contains high loadings for samples with means of 0.0 and
0.5; Factor II contains high loadings for samples with means of 3.5 and
4,0; Factor III has a single high loading for the sample with a mean of 2.0
and a standard deviation of 0.5.

The most divergent samples are determined to be (0,0.5), (2,0.5),
and (4,0.5) with the first number referring to the mean, the second the
standard deviation. A plot using these samples as reference axes is shown
on Figure 7. The 'horse-shoe' shape is again evident. Samples with the
same standard deviation are arranged along arcs subparallel to the line
joining (0,0.5) to (4,0.5). Samples with the same mean are arranged on
arcs subparallel to the perpendicular of the line joining (0,0.5) to
(4,0.5) which extends to (2,0.5).

Although each sample used in this analysis represents a perfect
log-normally distributed sediment, the usual interpretation of this diagram
would consider them to be mixtures of three end-member samples (0,0.5),

(2,0.5), and (4,0.5) (i.e., Klovan, 1966). Because many samples plot out-



Fig.

1le

NORMALIZED VARIMAX FACTOR COMPONENTS ON
SIMULATED GRAIN-SIZED DISTRIBUTIONS

Normalized varimax factor components on simulated sfd. Sample
points are identified by a two member code; the first describes
the mean value, the second, the standard deviation. Heavy lines

join samples with equal standard deviations, broken lines join
samples with equal means.
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COMPOSITION LOADINGS ON SIMULATED
GRAIN-SIZE DISTRIBUTIONS

Fig. 7. Composition loadings on simulated sfd. Symbols as in Figure 6.
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side the positive triangle defined by these three samples (due to their
negative loadings), it is apparent that a simple additive mixing model is
not appropriate. Sample (1,0.5), for example, is a mixture of 72.47% of
sample (0,0.5), 45.74% of sample (2,0.5), and -18.60% of sample (4,0.5).
The compositional scores of the three end-members for the three-
factor solution have their mean and standard deviation preserved, but are
distorted with numerous negative values of composition. Clearly, a three-
factor model is not a satisfactory solution; however, experiments with more
factors do not materially improve the situation and there are no good a

priori reasons for using a higher order factor solution.

(iii) O-mode factor Analysis of Distribution Mixtures
To clarify the mixing model approach, a series of grain-size distributions
were constructed by mixing together various proportions of particular end-
members (see Table 3). The first mixture model used two distributions,
(4.5,0.5) and (6.5,1.0), as end-members (Table 3, Model 3a). Two factors
account for 99% of the variance in the data set. The factor scores of the
rotated matrix approximate the original end-member populations A and B
(Fig. 8A,B). The squared factor loadings of the rotated factor matrix
(times 100 for percentage values) give the approximate mixing ratios (Table
4; the loadings as indicators of mixing ratios are improved upon oblique
rotation, see Clarke, 1978). When the experiment was repeated with all six
mixtures but no end members, the rotated factor loadings were nearly the
same (Table 4).The compositional scores gave nearly the same end-members
although none were present in the original data set (Fig. 8A,B).

The second mixture model generated and mixed three distributions

(Table 3, model 4; Fig. 9). Three factors account for 100% of the data



19

0°e="41
¢ 3 0°0®s
Le°  L0° 26° D A4lE= 3 ge®  ¥&° 9r° 2 IL =3 01 m.almb ‘0
£
m.om" n
0*e=2y
z z 0°0=%3s
o . ° m ob - o _ . - ob - €
[43 L1 9¢ Z0e= 3 ¢y~ 8¢ (4] q 2€T= 3 0ot mm.oumb q
g y=Crt
grg=Ty
1 1 ge0="¥s
e ° o ©, — ° o ® o, e (4
61 86° 01° V 20¢e=13 10 S9 9L vV 7208= F £ o1 m.ouﬂo v seanixtm snyd
m.muH; siaquay pug =21yl (q
.2 4 Y FINNE
L6° €2 H [A'N 66° H ot g6* + VI* = H
g8 AR e 9%° 9 g.° + VE* =0
£Le 99° 4 co° 66° q 01 49° + Vy° = 4
£9° 9L° d c0°~ "66° d o1 g5° + v¢* = 4
6¢° 16° « 1€~ G6° a 01 € + v.° =«
0¢e 86° O 16° - G8° 0 o1 a1°* + V6* =0
0°1=C0
66° 01° d &quum 69 GL® q NmHnNm [4 ot m.onNn ‘q
g=0="0
. . . 1 . . . 1 ¢ sexnixtw snyd
£l 66 V  4is='3F 86~ 18 ¥  7208="3 - Z ot m.qua; v s1oquey pug omI (®
& 3 & [
suotzelndod pPOXIH °¢
Surpeor TeO1dL3 aoueraea 3Juiproy TEOTdL] 9OUBTIBA SJI03IOBJ
103083 103083 1891 so1dmeg ad43
Jo *ON 3O °ON  uorINgIaisIqg 2d£31 TopoR

XTIIB[ J03oBg poieloy

XTI3e}] a03loevy peleloaun

‘¢ °IqeL



20

6C° 81° ¥6°

gg® 9%° 08° A p: 01 o8° +VZg® = 1%
62° %8° ¢&¥° [ 91° ¢gg°- €6° r 01 26° + Vg° =T
¢ €6° S1° 1 90°- €6°~ ¥8° I 9 g¢° + V8° =1
oy° [8° 0¢° H 20°— 8E°=—~ T6° H 19 2¢° + |
4Z2° + ¥V9° =H
6%° ¢€L° 6%° O €0° ¥1°- 66° 9 S oy +
gz° + vy°* =23
96 6% [9°* 4 80° G¢1I° 86° d 01 09° +
gz +Vve* = 4
gL [y I8t H #1°- G1° 86° il 01 og +
) g6° + V¢* =14
¥8° L¥* 8T gc°- 80° T6° Q 01 8° + Vi° =
Sutpeol TEOTdL3 souptaea 3Buipeol TeoTd4l DOUBTIBA SI010BJF .
I1030B3 103087 TE9a so1dueg adf3
Jo *ON- 3O °ON uoTINqIIAISIQ ad4£1 TopoW
XTalel 103oed poleioy XTI3eR I010BJ polelOoau]

(p,3u0d) *g 9IQEL



21

- A'
35 (A END MEMBER DISTRIBUTIONS PRESENT
( END MEMBER DISTRIBUTIONS ABSENT
30}
§‘1 25¢ g-
>..
(&
& 20t
>
(@]
[TH;
&
I5t
10}
5 L
O 1 1 1 Iy 1 I 1
0 .5 1.0 1.5 2.0 2.5 3.0 35
GRAIN SIZE (¢)

Fig. 8. Compositional score results of the two mixed distributions
(Model 3a, Table 3) when the original end members were present
in the data set, and absent.
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Table 4. Two Population Problem

Generated Factor Loading Ratio (12 x 100)
Population Mixing Ratio End Members Present End Members not Present

A 100:0 98:2 -

B 0:100 1:99 -

C 90:10 96:4 94:6
D 70:30 83:15 81:18
E 50:50 58:40 58:42
F 40:60 43:54 41:58
G 30:70 27:72 26:74

H : 10:90 5:94 4:94
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END MEMBER DISTRIBUTION

CUMULATIVE FREQUENCY (%)

MIXTURE DISTRIBUTION

0 5 10 15 20 25 30 35 a0
GRAIN SIZE (¢)

Fig. 9. Log-probability plot of typical distributions from Model 3b,
Table 3, the three mixed distributions.
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variance. The three rotated factors each account for approximately 33% of
the data variance and the varimax scores indicate that each factor corres-
ponds to one of the three end member distributions; again whether or not
the original data set included end member data. Mixing ratios calculated
from the varimax loadings (Table 5) indicate that an orthogonal rotation is
no longer satisfactory for systems as complex as three end member mix-
tures. Figure 10 indicates part of the problem. The factor model appears
only to designate an end member distribution from its central mode. Thus
these modal size intervals are over—compensated in the compositonal scores
and cause a reduction in score values over the same size intervals in the
remaining end members (Figure 10).

The fact that only the central grain size classes carry much weight
in the analysis means valuable information on the character of the tails of
the distribution does not contribute significantly in the computation of
gsimilarity. To demonstrate this point, all possible mixtures of three end-
members (0, 0.5; 2, 0.5; 4, 0.5) in 0.l incremental values were analyzed by
Q-fact. The results are shown on Figure 11. The mixtures are perfectly
resolved in terms of their mean and standard deviations. That is, given
the compositions of the end members and the mixing proportions, the mean
and standard deviation of these mixtures can be perfectly predicted in
terms of their position on the factor plot. However, it is not a unique
solution. One point on the factor plot can represent samples with quite
different grain size characteristics. They will both, however, represent
the same proportional mixture of the end members. For instance, a log—-
normal sample (3.5, 2.0) falls very close to a 1:4:5 mixture on the three
end-member factor plot, and a log-normal sample (1.5, 1.0) plots close to a

4:6:0 mixture (Fig. 11), yet the corresponding curves are not very similar
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Table 5. Three Population Problem
Generated Factor Loading Ratio (12 x 100)
Population Mixing Ratio End Members Present End Members not Present
A 100:0:0 1:96:4 -
B 0:100:0 3:85:13 -
c 0:0:100 0:14:85 -
D 20:80:0 22:52:26 17:73:10
E 20:50:30 22:52:26 16:54:30
F 20:20:60 76:16:9 68:19:13
G 40:20:40 52:24:24 44:27:29
H 60:20:20 76:16:9 68:19:13
I 80:20:0 86:10:2 82:14:05
J 50:0:50 71:8:20 64:11:26
K 20:0:80 21:14:64 15:16:69
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(Fig. 12). The attempt to circumvent the situation through use of range
transformation was not successful in that the same inconsistencies emerged

as in the untransformed three factor solution.

(iv) Data sets with both mixtures and non-mixed distributions
Data input into Model 3a (Table 3) was used with the addition of two unre-
lated distributions (Fig. 13, Table 6, Model 4). Four factors resulted,
one for every type of distribution excluding those that are mixtures of the
two end-member distributions. There are some noteable similarities and
differences between Model 3a (Table 3) and Model 4 (Table 6). The end-
member factors of the rotated factor matrix account for less variance in
Model 4; the factor loadings, however, are nearly identical. Non-mixed
distribution I (of Model 4) has significantly higher rotated factor
1oadings than non-mixed distribution J, the numerical difference being due
to distribution I having more easily recognized marker variables (class
intervals). Distribution J is nearly hidden within the mixed distributions
(Fig. 13).

When additional non-mixed distributions are added to Model 4 fac-
tors, they have smaller eigenvalues (or factor variance) and this decreases
the chance of getting true compositional scores. Factors that have

accountable variance of less than 5% have unrealistic compositional scores.

SUMMARY
1. C0S6 is a complex, non linear function of the means and standard
deviations of Gaussian grain size distributions (eqn's. 4, 5, 6). COS
0 is more affected by differences that occur between well-sorted)

samples than those between poorly sorted samples.
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The Q-mode factor solution can be used to separate distributions with
Ao >0.25 and for Ap >0.5. It concentrates on similarities and differ-
ences involving only the central portions of the distributions and
thus effectively classifies samples on the basis of mean and standard
deviation only.

Q-mode factor analysis provides a mixing model for the interpretation
of grain size distributions whether such a solution is applicable or
not,.

When not applicable, the composition factor scores reflect only the
standard deviation along the class intervals between the different
distributions, and not the original sample compositions.

When applicable, the factor scores of the rotated matrix approximate
the original end member distributions, even if the original data set
only contained mixtures and no end member distributions. If the
original data set is complex (i.e., contains mixtures of 3 or more
end-members) the compositional scores begin to show marked deviations
from the actual end member distributions.

Consequently Q-mode factor analysis can be an effective method of dis-
secting mixtures of sediments. The squared factor loadings of the
rotated factor matrix give the approximate mixing ratios, but the
accuracy decreases with increasing complexity: i.e., when 3 or more
end-members, or extraneous distributions are included in the data set.
When a data set contains mostly (>50%) distributions resulting from
the mixing of end-members, other extraneous distributions which are
not part of the mixing model do not interfere with the end-member sol-
ution to the mixture distributions. Other factors, accounting for

little variance in the data, appear to be related to each of the
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non-mixed distributions. However, when the accountable variance per
factor is less than 5%, these factors produce unrealistic composi-
tional scores.

6. There is no unique place on a factor plot of a given size frequency
distribution. Grain size distributions only similar in the central
portions of their frequency distribution will be interpreted as being
the same, even if one is generted as a mixture of end-member distribu-

tions and another is a perfect Gaussian distribution.

IMPLICATIONS FOR REAL DATA SETS
The results of Q-mode factor analysis can be applied to the interpretation
of depositonal processes and environments of deposition only to the extent
that: (1) the central portions of sediment distributions (i.e., as given
by mean and standard deviation) reflect these processes and environments;
and (2) the data sets are confined to samples that delimit only certain
simple physical processes or environment(s).

It is these a priori conditions that constrain the value of Q-mode
factor analytical interpretation. In many coastal areas, depositional
environments are complex, with energy contributions from fluvial, tidal and
wave processes. Many shelf environments are a mixture of sediments deposi-
ted from recent processes and those comprised of erosional surfaces of
exposed paleoenvironments. Even some single process environments can show
no distinguishable trend in the central portion of grain size distribu-
tions; i.e., suspended sediments collected with depth from the breaking
wave environment (Kennedy et al., 1981).

Yet it has been demonstrated that trends in the central portion of

size distributions are prevalent in some sedimentary environments (e.g.,
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surficial sediments collected down-inlet in fjords, Syvitski and MacDonald,
1982; many other environments, McLaren, 1981), It does, however, seem
counter productive to have to test whether Q-mode factor analysis is
applicable to one's data when the normal reason for its use is to simplify
the variance in large data sets.

The study of suspended sediments in terms of vertical or horizontal
flux may be a realistic environment to apply Q-mode factor analysis. Many
studies have already demonstrated the trends in size distributions of sus-—
pended particulate matter, both with.depth, time or distance from a source
(Syvitski and Murray, 1981; Kranck, 1981; Clarke, 1978; Yamamoto, 1976).

In conclusion, Q-mode factor analysis of size frequency data has
distinct limitations to real world data. Caution in its use is very much
stressed, and we suggest that all indiscriminate use of the technique be

avoided.,
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