| | | | LEGEN | ID AND NO | TES TO A | VCC(| DMPANY SURFICIA | L GEO | DLOGY | AND | GEOM | ORPH(| DLOGY | MAPS 96 | E, F, 106P | | | |--|--|--|--|---|--|--|---|--|---|--|--
--|--|--|--|---|--| | MAP ¹
UNIT | NAME | SURFICIAL : | DEPOSIT Estimated Thickness | LAN | DFORM
Drainage
Pattern | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | GROUND ICE | LAND ²
ZONE | Texture
U.S.D.A. | Unified
Classi-
fication | SOILS ³ Micro-relief | Depth of
thaw
cm | Drainage
(deciles) | VE
Stable | After Fire | occur*
rence | COMMENTS | | fOv | Organic veneer
(mapped mainly)
as a secondary
unit with tMp,
tMv) | Peat - typically
woody sedge peat | 20-60 cm | Shallow channels,
runs and depres-
sions; Slope
0-3° Relief to
1 m | Surface see-
page in
channels,
depressions | 0-5 | Organic veneer lies mainly within the active layer; (for ice in mineral soil below, see associated map unit). | 1 2 | woody sedge
peat over
L-C mineral
woody sedge
peat over | Pt CL-ML | Sedge -
tussocks
10-50
Sedge
tussocks | 50-100 | Poor to wet 10 | Cx-Bi-tL | Cx-Wi Cx-Bi-tL | 1 | Similar to f0; areas with mappable f0 component (+10%) should be avoided in construction of roads, pipelines etc. | | | | *(EEVV) | | | | | | 3
6N | L-C mineral woody sedge peat over L-C mineral woody sedge peat over L-C mineral | | 10-50
Sedge
tussocks
10-30 | 100-200 | Poor to wet 10 | Cx-Bi-tL | Cx-Bi-tL
Cx-Al | 1 | | | f0 | Organic
(fenland) | Peat - typically
woody sedge peat | 2-3 m | Flat to very
gently to gently
sloping, in part
with reticulate
network of low
ridges.
Slope 0-2°
Relief to 1 m | No organised
drainage;
water at sur-
face through-
out summer
months | 5-20 | Commonly unfrozen to 2+ m (see "Depth of Thaw" for respective zones) little data available on segregated ice content at greater depths. | 1 2 | Mesic sedge
peat
Mesic sedge | | 0 to
tussocky | 150 to
unfrozen
200 to | | Cx-Cott.
or
Cx-Bi-tL
Cx-Cott. | Cx-Cott. | 1 | Poor drainage, plus high compressibil and low strength of the material make it unsuitable for any type of construction. | | ÷ | | | 8 | | | | | 3
6N | Mesic sedge
peat | | Some sedge
tussocks
0 | unfrozen
unfrozen
unfrozen | Wet 10 | or
Cx-Bi-tL
Cx-Cott.
or
Cx-Bi-tL
Cx-Bi-tL | - | 2 | | | 0 | Organic
(peatland) | Peat - typically
sedge and woody
sedge peat over-
lain by sphagnum
peat | 2-4 ш | Flat to very
gently sloping,
typically with
numerous shallow
steep-sided (2-
3 m) depressions
occupied by lakes
ponds and bogs. | Depressions
interconnected
by seepage
channels | 5-20 | Commonly up to 20%, locally up to 60% segregated ice within peat; typically 30-100 cm, locally up to 3 m total thickness segregated ice in mineral soil immediately below peat. Peat in wet depressions commonly thawed | 1 | Fibric to mesic peat | Pt | Some poly-
gon trench-
es to 100cm | | | Lichen-bS | Sphagnum-Er | 1 | Subsidence of up to 1 m common, and subsidence up to 3 m possible when vegetation is removed; alternation of permanently frozen peat plateaus and thawed depressions and
water bodies presents serious problems in construction of roads, pipelines, etc material highly compressible when | | | | | | | | | to 1+ m (Zones 1,2) or
unfrozen (Zones 2,3,6N). | 3
6N | Fibric to mesic peat | Pt
Pt | num hum- mocks Some sphag- num hum- mocks Some sphag- num hum- mocks | 25-30 | | Lichen-bS bS-muss-gr Sphagnum-bS | Sphagnum-Er Sphagnum-Er Er-bS Sphagnum-Bi | 3 . | thawed. | | Ap
,gAp
i
Ap | Alluvial flood-
plain of high
energy streams | Sand, gravel in
part with silt
veneer | l-5+ m sand
and/or gravel
0 - 2 m silt | Flood plain and
low bordering
terraces scarred
by braided
channels
Slope 0-3°
Relief to 2 m | Intermittent
drainage
through
braided
channels | 0 | Permafrost lacking in
unvegetated parts of flood-
plain; elsewhere cement ice
only or locally unfrozen
(Zones 3,6M), except in
silt veneer which commonly
has 10-25% segregated ice
as thin (1 mm - 2 cm) | 0 | S+G | SM-GM | 0 | 50-200 | Imp. to well | Occasionally
flooded | Frequently* flooded | 1 | Subject to periodic flooding; constitutes potential reserve of gravel but extraction presents serious possibility of deleterious changes in stream course and downstre changes in stream regimen. | | | | | | | | | seams. | 2 | S+G
S+G | SM-GM
SM-GM | 0 | 50-200
50-200+ | imp. to well | bPo-Al-Wi | bare | 1 | | | 5.4 | Alluvial flood-
plain of low
energy streams | Fine-grained sand, silt | 3-5+ ■ | Flood plain and
low bordering
terraces,
commonly with
meander scars
Slope 0-3°
Relief to 1 m | No integrated
drainage
system;
impeded by
meander scroll
ridges
where present | 0-20 | Permafrost lacking in
unvegetated part of flood-
plain; elsewhere 10 to 25%
segregated ice by volume as
thin (1 mm - 2 cm) seams.
Cement ice only in sandier
units and locally unfrozen | 0 | FSL to SiL | SM to
CL-ML | 0 | unfrozen 50 to unfrozen | Well 4 1 mp. 3 Poor 5 | wS-bPo
bPo-wS
bPo-A1-Wi | bare
bare
bare | 1 | Subject to periodic flooding; possibl occurrence of ice wedges which upon removal of vegetation will melt and produce a polygonal network of depressions. | | | | | | | | | (Zone 6N). Ice wedges in
polygonal pattern (diameter
of polygons 6-25 m) common
in Zone 2. | 3
6N | FSL to SiL | SM to
CL-ML
SM to
CL-ML
SM to | 0 0 | 100 to
unfrozen
100 to
unfrozen
200 to | Imp. 4 Poor 6 Imp. 4 Poor 6 Imp. 5 | wS-bS
Cx-tL
wB-bPo-wS
Cx-tL
bPo-wS | Wi-Al
Cx-Wi
Wi-Al
Cx-Wi | 1 2 | | | Apk | Thermokarst
alluvial flood-
plain (associ-
ated with low
energy streams
only) | Fine-grained sand, silt | 3-5+ m | Level flood-
plain, in part
with meander
scars, and with
numerous channels
and thermokarst
ponds. | Seepage to
ponds and lakes
to adjacent
streams by
connecting
channels | 20-50 | 20 to 50% segregated ice by volume in upper 2-3 m (and probably to greater depth). No data for Zone 6N. | 0 | FSL to SiL | SM to
CL-ML | Hummocks
and trench-
es 0.40 , | unfrozen
40-200+ | Mod. well 1 Imp. 4 Poor 5 | ws
ws-bs-lichen
Cx-Wi | -
-
- | 1 | Thermokarst processes active around pond margins; possible occurrence of ice wedges which upon removal of vegetation will melt and produce a polygonal network of depressions. | | | e | | | Slopes 0-3°,
short steep
slopes to 45°
Relief to 5 m | | | | 3
6N | FSL to SiL FSL to SiL FSL to SiL | SM to
CL-ML
SM to
CL-ML
SM to
CL-ML | Hummocks
0-50
Hummocks
0-20 | 100 to
unfrozen
200 to | Mod. well 2 Imp. 4 Poor 4 Mod. well 2 Imp. 4 Poor 4 Mod. well 2 Imp. 4 Imp. 4 Imp. 4 | wS
wS-bS-lichen
Cx-Wi
wS
wS-bS
Cx-tL
wS-moss
wS-bS | | 1 | | | | Alluvial
terrace of high
energy streams | Sand, gravel in
part with silt
veneer | 1-5+ m sand
and/or gravel
0-2 m silt | Level to gently
sloping terrace,
in part with
shallow channels
and steep
scarps.
Slope 0-3°, | Surface
drainage
without
integrated
drainage
system | | Cement ice only or locally unfrozen (Zones 3,6N), except in silt veneer which commonly has 10 to 25% segregated ice as thin (1 mm - 2 cm) seams. | 0 | S -SiL
(often over
gravel) | SM to
CL-ML | Hummocks
0-20 | 75-150 | Poor 4 Mod. well 3 Imp. 5 Poor 2 | wS
wS-bS-lichen
Cx-Wi | WB-WS Al-Wi Wi-Cx | 1 | Offer good construction sites where si veneer is thin; potential aggregate source. | | | | | | locally to
Relief to 5 m
greater at
scarps. | | | | 3
6N | gravel) SL-SiL (often over | SM to
CL-ML
SM to
CL-ML
SM to
CL-ML | Hummocks
0-20
Hummocks
0-20 | 100 to
unfrozen
200 to
unfrozen | Poor 2 Mod. well 3 Imp. 5 Poor 2 Mod. well 4 | wS-lichen
bS-lichen
Cx-Wi
wS
wS-bS
Cx-tL
wS-tA
wS-bPo | WS-bPo
bPo
Wi-A1
WB
WB-bS
Cx-tL
jP
tA-bS | 1 | | | 1 | Alluvial terrace
of low energy
streams | Fine-grained sand,
silt; locally
with veneer of
eolian silt or
sand | 1-10 m sand
and silt | Level to gently sloping terrace, in part with shallow channels and steep scarps. Slope 0-3°, locally to 30° | Surface
drainage
without
integrated
drainage
system | | No data for Zone 2; segregated
ice as thin (1 mm - 2 cm)
seams in Zone 3; probab
cement ice only in sand.
units in Zone 6N; absence
of naturally occurring
thermokarst on terraces | 0 | gravel) | | | | | bS-sphagnum | Wi-sphagnum | | , | | | | | | Relief to S m
greater at
scarps. | | | suggests that massive ground ice bodies are not present. | 3
6N | FSL to SiL FSL to SiL | SM to ML SM to ME SM to ML | 0 0 | 100 to
unfrozen
100 to
unfrozen
200 to
unfrozen | Poor 6 Imp. 4 Poor 6 Imp. 5 | wS-bS
Cx-tL
wB-bPo-wS
Cx-tL
bPo-wS
Cx-tL | Wi-Al
Cx-Wi
Wi-Al
Cx-Wi
Al
Cx-Wi | 1 | | | | Alluvial fans
and fan aprons | Highly variable-
silt, sand,
gravel, peat | 2-15 m | Gently to
moderately
sloping fans
and aprons.
Slopes 1-12° | One or more
shifting
streams
usually
present;
downslope
seepage in
poorly | | Highly variable; low in gravel,
mod. to very high in silt
(the more common case). Thin
seams in upper 2-3 m, thick
layers to 30+ cm depth.
Ice content generally lower
in coarser sediments at
head of fan than in finer | 0 | Variable;
generally
SL-SiL
Variable; | Variable
Variable | Hummocks
0-50 | 50-100+ | Imp. 6
Poor 2 | wS
wS-bS-lichen
Cx-Wi
wS-wB | Wi-Al
Wi-Al
Cx-Wi
Wi-Al-tCx | 1 | Fans subject to sudden and damaging shifts of streams; fans with high silt content are unsuitable for construction. | | | | | | | defined runs | | sediments at outer margin. | 2
3
6N | generally
SL-SiL
Variable;
generally
SL-SiL
Variable;
generally
SL-SiL | Variable
Variable | 0 | 100 to
unfrozen | Imp. 6
Poor 1
Mod. well 3
Imp. 6
Poor 1
Mod. well 3
Imp. 6 | bS-lichen
Cx-tCx-Wi
wS-wB
bS-moss
Cx-tL
tA-wS
bS-moss | Wi-Al-tCx
Cx-tCx
Wi-bPo
Wi-Al
Cx-Wi
tA
tA-wS | 1 | | | f | Alluvial fans | Gravel, sand | 2-50+ m | | One or more
shifting
streams
usually
present;
considerable
subsurface
seepage | | No data; active (bare) fans
probably unfrozen and cement
ice only in inactive
(vegetated) fans. | 0 | S+G | SM-GM | 0 | 75-150 | Mod. well 6 | bS-sphagnum Seldom flooded wS-lichen | Cx-Wi Frequently* flooded | | Fans composed of gravel offer well-
drained building sites but sudden
and damaging shifts of streams on the
fans are common; gravel fans are
good sources of aggregate; subsurface
drainage may cause difficulties in
utilization of borrow pits. | | | | ā | | | | | | 3 | S+G | SM-GM
SM-GM | 0 | 100 to
unfrozen
100 to
unfrozen | Mod. well 6
Imp. 3
Poor 1
Mod. well 8
Imp. 1 | wS-bS-lichen
Ex-tL
wS-lichen
bS-lichen
Cx-tL
wS
wS-bS
Cx-tL | bare | 1 | | | | Colluvial
complex | Colluvium
derived from
entire range of
surficial de-
posits plus bed- | 1-5+ m | Steeply sloping valley walls and scarps. Slope 12 to 45° Relief to 300 m | | 0 | | 6N 0 | Variable | - | Stripes | 30-203 | Well 4 | South aspect bare Bi-Wi tCx | North aspect* Cx-lichen tCx-Wi-sphagnum tCx-Cott. | 1 | Active stream erosion, slumping,
retrogressive-thaw flow slides, activ
layer detachment slides common;
irregularity of topography and slope
instability present major problems
for any kind of construction; | | | | rock detritus | | | | | | 2 3 | Variable
Variable
Variable | - | 0 0 | 50-300+ | Well 4
Imp. 2
Excess 4
Well 4
Imp. 2
Excess 4
Well 4 | bare Grass-wB bS-lichen bare tA-wS-wB bS-lichen Grass tA-wB-wS bS-wS | Cx bS-lichen bS-lichen Cx bS-lichen bS-lichen bS-lichen Wi-Al bS-wS bS-lichen | 1 | for any kind of construction; see comments re map unit on which colluvium is developed. | | , | Colluvial
veneer | Rock detritus,
minor glacially
transported
material | 0-2 ■ | to bedrock top-
ography | Generally
freely
drained | 0 | | 6N
0 | Variable Variable Variable | 1 | O
Solifluc-
tion lobes
and terraces
0-75 | 100 to
unfrozen
20-200 | Imp. 2 Excess 5 Well 3 Imp. 2 Well 8 Imp. 1 Poor 1 Well 8 | bS-wS wB-tA wB-wS bS-Er Cx CotttCx tCx-sphagnum | bS-lichen bare Wi-wB Bi-sphagnum | 3 | Sorted polygons, stone stripes, in part active, suggest cryoturbation; solifluction lobes on high slopes (elev. 1200+ m) of Mackenzie and Franklin Mountains indicate active | | | | | | ography
Hilly to
mountainous
Slopes to 35° | | | | | Variable
Variable
Variable | - | 0 | 200+
2000 to
unfrozen | Imp. 1 Poor 1 | wS-wB
bS-lichen
tL-bS-lix
wB-wS
wS-bS
Wi-tL
wS-wB
wS-bS
Cx-tL |
Bi-Al
Al-Wi
Wi-Cx
WB
wB-bS
Cx-Wi
tA-wB
WB-bS
Wi-Cx | 1 1 | Franklin Mountains indicate active creep of colluvial veneer. On steep undissected slopes in surficial uniti in lowland areas, where thin drift commonly masks bedrock, colluviation may affect both the drift and underlying bedrock. | | :
v | Eolian deposits | Sand, mainly
fine to medium
grained | 1-20 m | or dune ridges
within or | Mainly sub-
surface
seepage; no | 0 | No data; probably cement ice
only below active layer and
locally unfrozen; segregated | 6N
0 | | | | | | | | | Offers restricted well-drained sites within large areas of poorly drained sandier units of Lp,Lpk; subject to wind erosion when vegetation mat is removed. Gulleying commonly occurs | | | | | | | organised
drainage | | ice highly probably in
subjacent glaciolacustrine
silts where eolian deposits
occur within areas of Lp. | 2 | LS-S | SP | 0 | 50 to
unfrozen | Imp. 2 | tA-wS
wS-wB
bS-tL-Cx | tA
wB
tL-Wi | 1 | removed. Outleying commonly occurs upon removal of the vegetation mat is areas where eolian sand forms a thin veneer over ice-rich till or lacustrine sediments. | | i,cLp
Lp | Glaciolacus-
trine plain | Glaciolacustrine
silt and clay,
minor sand; | 1-20+ m
silt and
clay, minor | sloping
Slope 0-2° | Surface
seepage
through | 0-20 | Commonly 10 to 25% (5-15% in Zones 3,6N) segregated ice as thin (1 mm - 2 cm) | 6N
0 | LS-S | SP | 0 | 70 to
unfrozen | | tA-wS
wS-bPo
bS-sphagnum | jP
tA-bS
Wi-sphagnum | 2 | Active-layer detachment slides,
followed by development of retro-
gressive-thaw flow slides, common
on colluvial slopes (CX) developed | | Lp
,c,sLp | | discontinuous
organic cover | sand | | fen-filled
depressions | | seams in upper 1-3 m;
segregated ice as reticulate
network to 40% (to 25% in
Zone 6N) by volume, or thick
tabular bodies of nearly
pure ice at greater depth
(no data for Zone 6N). | 2 | SiL-SiC SiL-SiC | CL-ML to
ML
CL-ML to
ML
CL-ML to | Hummocks
20-60
Hummocks
20-75 | 50-90 | Imp. 4 Poor 6 Imp. 5 Poor 5 | wS-bS-lichen
bS-CX
bS-lichen-tCx
bS-tL-tCx
bS-lichen
tL-bS-CH | wB-wS-Wi
Wi-Al
wB-Wi
Wi-tL
bS-lichen
rL-Wi Co | 1 | on this unit (and on lesser areas of steep slope not mapped as Cx), especially following fire or other disturbance of vegetation. Gulley commonly results even on gentle slopes upon removal of vegetation due to combined hydraulic and thermal erosion and disruption of the drainage network. | | | Glaciolacus-
trine thermo-
karst plain | Glaciolacustrine
silt and clay,
minor sand;
discontinuous | 1-20+ m
silt and
clay, minor
sand | sloping,
numerous
shallow thermo- | Seepage
centripetal
to ponds
and lakes, | 25 | As si,cLp | 6N
0 | SiL-SiC | CL-ML to
ML | Hummocks
0-30 | 50-200 | Imp. 5
Poor 5 | wB-wS
bS-moss | bS-wB
bS-Wi | 1 | Thermokarst processes active
around pond margins; active-layer
detachment slides, followed by
development of retrogressive-thaw
flow slides, common on colluvial | | | | organic cover | | and ponds
Slope 0-5°
Relief to 6 m | intermittent
seepage
through
fen-filled
depressions
between
ponds and
lakes | | | 2 | SiL-SiC | CL-ML to
ML
CL-ML to
ML | Hummocks
20-75
Hummocks
0-50 | 50-150+ | Mod. well 2
Imp. 5
Poor 3
Mod. well 2
Imp. 5
Poor 3 | wS-wB-bS
bS-lichen-tCx
bS-tL-tCx
wS-bS-moss
bS-lichen
bS-sphagnum | wS-wB
wS-wB-Wi
tCx-Wi-tL
wB-wS
wB-bS-Al
tL-Wi | 3 | slopes (Cx) developed on this unit (and on lesser areas of steep slope not mapped as Cx), especially following fire or other disturbance of vegetation. Gulleying is common even on gentl slopes upon removal of vegetation | | i,stp | Glaciolacus-
trine plain | Glaciolacustrine
sand and silt
commonly over-
lying glacio- | 2-30+ m
sand and
silt
3-15+ m | sloping
Slope 0-2°
Relief to 3 m | Surface
seepage
through
fen-filled | 0-20 | Commonly 10-25% segregated ice as thin (1 mm - 2 cm) seams, but segregated ice rare in sand; locally in | 6N
0 | SiL-SiC | CL-ML to
ML | Humnocks
0-20 | 80-201 | Mod. well 2
Imp. 5
Poor 3 | wS-moss
bS-moss
bS-moss-Er | tA-wB
bS-wB-Er
Wi-Bi | 2 | Active-layer detachment slides, followed by development of retrogressive-thaw flow slides, common on colluvial slopes (Cx) developed on this unit (and on | | Lp
.si
i,c
Lp | | lacustrine silt
and clay;
discontinuous
organic cover | silt and
clay | | depressions
and subsurface
seepage in
sandier areas | | Zone 6N cement ice only
or unfrozen to depth of
2-5 m. | 2 | FSL to SiL | SM to ML | Hummocks
0-30 | 50-200 | Mod. well 2
Imp. 4
Poor 4 | tA-wS-wB
bS-lichen
tL-bS-Cx | wS-wB
bS-wB
tL-Wi-Cx | 3 | lesser areas of steep slope not
mapped as Cx), especially
following fire or other
disturbance of vegetation.
Rotational slope failures (S)
common along banks of larger
streams where sand and silt is
thicker than 10m. Gulleying is
common even on gentle slopes | | | Glaciolacus-
trine thermo-
karst plain | Glaciolacustrine
sand and silt
commonly over-
lying glacio- | 2-30+ m
sand and
silt
3-15+ m | | Seepage
centripetal
to ponds and
lakes, inter- | 25 | As s,silp | 6N
0 | FSL to SiL | SM to ML | Hunmocks
0-20 | 80-200+ | Mod. well 2
Imp. 4
Poor 4 | tA-wS-wB
bS-moss
bS-moss-Er | wS-wB
bS-wB-Er
Wi-Bi | 3 | upon removal of vegetation. Thermokarst processes active around pond margins; active-layer detachment slides, followed by development of retrogressive-tham flow slides, common on colluvial | | , s i Lpk
i , c | | lacustrine silt
and clay;
discontinuous
organic cover | silt and
clay | karst lakes
and ponds
Slope 0-5°
Relief to 6 m | mittent
seepage along
fen-filled
depressions
between ponds
and lakes | | | 3 | FSL to SiL | SM to ML | Hummocks
10-40 | 50-2004 | Mod. well 2
lmp. 6
Poor 2 | wS-wB
bS-lichen
tL-bS-Cx | wS-wB-A1
bS-wB
tL-Wi-Cx | 3 | slopes (Cx) developed on this
unit (and on lesser areas of
steep slope not mapped as Cx),
especially following fire or
other disturbance of vegetation.
Rotational slope failures (S)
common along banks of larger
streams where sand and silt is
thicker than 10m. Gulleying is | | Lb | Glaciolacus-
trine beach | Sand, minor gravel | 1-3 m
exception-
ally to 15 m
(see | | Drainage
mainly
subsurface | 0 | No data; probably cement ice only and locally unfrozen in Zone 6N. | 6N
0 | FSL to SiL | SM to M1 | Hummocks
0-20 | 80-200+ | Mod. well 3
lmp. 4
Poor 3 | tA-wS-wB
bS-moss
bS-moss-Er | wS-wB
bS-wB-Er
Wi-Bi | 3 | common even on gentle slopes upon removal of vegetation. Offers restricted well-drained sites at margins of larger areas of poorly drained units of Lp,Lpk; locally in the Norman hells area thin beach deposits have probably been derived | | | | | comments) | | | | , | 2 3 | S to FS | SM to SW | 0 | 70 to
unfrozen | Well 6 Imp. 3 Poor 1 | tA-wS
wS-bPo
bS-sphagnum | jP
tA-bS
Wi-sphagnum | 1 | from reworking of underlying
glaciofluvial sands and gravels
(probably kame terraces). | | Lb | Glaciolacus-
trine beach | Gravel, minor sand | 1-3 m
exception-
ally to 15 m
(see | Ridges and
terraces
Slope to 15°
Relief to 5 m | Drainage
mainly
subsurface | 0 | No data; probably cement ice only. | 0 · | S to FS | SM to SW | , | 70 to
unfrozen | Well 6 Imp. 3 Poor 1 | tA-wS
wS-wB
bS-tL-Cx | tA
wB-bS
tL-Wi | 1 | Offers good but restricted construc-
tion sites; in the Norman Wells are:
thin beach gravels have probably be-
derived from reworking of underlyin;
glaciofluvial gravels (probably kam | | | | | comments) | | | | | 3 | S-G | SW-GW | 0 | Unfrozen | Well 7 Imp. 5 | tA-wS
wS-wB | t A
wB | 1 | Terraces). Beach gravels (and the
underlying glaciofluvial gravels)
are a good source of aggregate. | | Gp
, gGp
Gp | Glaciofluvial plain | Sand, gravel,
locally with
veneer of colian
silt or sand;
locally silt, | 2-30+ m | Flat to gently
sloping
Slope 0-2°
Relief to 5 m | Drainage
mainly
subsurface;
locally with
seepage | 0-5 | Typically cement ice only;
absence of permafrost
common in Zone 6N; segregated
ice may be present within
silt and below peat in | 6N
0 | G+S | GW-SW | - Hummocks
0-10 | 50-150
75-150 | Well 5 Imp. 4 Poor 1 Well 5 Imp. 4 | Bi
Bi-Wi
tCx-sphagnum
WS-lichen
bS-lichen . | Cx
Wi
TCx
WB-Wi-wS
WS-bS-Wi | 1 | Offers good construction sites; maj
source of aggregate where material
gravel rather than sand or in
channels which may contain peat and
ice-rich silt. Where unit grades in
units Lp.lpk, the surface deposit | | Gt
,gGt
Gt | Glaciofluvial
terrace | peat in channels | | Interrupted by
shallow channels
and low scarps
Relief to 10 m,
exceptionally
to 30 m | along channels | | channels. | 3 | G+S | GW-SW | Hummocks
0-10 | 75-150+
150 to
unfrozen | Poor 1 | tL-Bi-Cx wS bS-wS-lichen bS-tL-Cx wS bS-wS bS-wS bS-tL-Cx | Cx-Bi wS-wB-grass wS-bS-wB Cx-tL wS-wB wS-bS-wB Cx-tL | 1 | is typically sand rather than grave
and may be underlain by ice-rich
silt. | | Gh
, gGh
Gr | Hummocky, ridged
glaciofluvial
deposits (in-
cludes eskers
and esker | Gravel, sand | | Hummocks and
ridges, relief
to 40 m
Slope 5-15° | Drainage
mainly
subsurface | 0 | Typically no segregated ice in well drained sites (absence of permafrost locally in Zone 6N), but segregated ice may be | 6N
0 | G+S
G+S | GW-SW | 0 | 150 to
unfrozen
50-150+ | Well 7 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 | tA-wS
tA-bS-Wi
bS-moss-Er | JP
WB-jP-Wi
bS-moss | 1 | Offers good construction sites;
major source of aggregate where
material is gravel rather than
sand. | | , gGr | complexes) | | | | | | present in association
with silt layers beneath
depressions. | 2 | G+S
G+S | GW-SW GW-SW | 0 | 150+ 150 to unfrozen 200 to | Well 8 1mp. 2 Well 7 1mp. 2 Poor 1 Well 7 | wS
bS-wS-lichen
tA-wS
bS-wS
bS-tL-Cx | WS-WB-grass
WS-WB-bS
WS-WB-WB-WS-bS
Cx-tL | 1 | | | мр л
мл
мр | Moraine plain | Glacial till -
typically clay,
silt, minor
sand and gravel.
Locally up to | tMp: 2-20 m
tMv: 0-3 m
tMpv: 1-20 m | Flat to gently
sloping (0-3°)
except as
indicated by
the slope | Downslope
seepage in
shallow sub-
parallel
runnels | 0-5 | Commonly 10-25% segregated ice as thin (1 mm - 2 cm) irregular discontinuous seams in upper 2-3 m. Thicker (10 cm to 3+ m) | 6N
0 | CL-L | CL to ML | Hummocks
20-60 | unfrozen | Mod. well 2 Imp. 4 Poor 4 | tA-bS-Wi
bS-moss-Er | wB-jP-Wi
bS-moss | 3 | Potential subsidence on removal of vegetation typically less than I m (but note that unit may have up to unmapped fo or pO, and that locally ice content at depth may be high); because of drainage by numerous sub- | | | | 90% > 2 mm | | superscript Relief to S m | | | ice lenses at depth locally in Zones 1,2, rare in Zone 3. Unfrozen ground common in Zone 6N where permafrost is controlled by exposure, elevation, drainage, and/or organic cover. | 3 | CL-L | CL to ML | Hummocks
10-40
Hummocks
0-30 | 50-150 | Mod. well 2
1mp. 5
Poor 3
Mod. well 2
1mp. 5
Poor 3 | bS-wS-wB
bS-lichen
tL-bS-Cx-A1
wS-bS-bPo
bS-lichen
tL-bS-Cx | WS-WB-BS WS-WB-Wi Cx-A1 WB-WS-A1 bS tL-Wi-Cx | 3 | parallel runnels, roads or berms
normal to slope direction require
numerous culverts to avoid impoundme
of surface water. | | Mp 1
My 1
Mpv 1 | Moraine plain | Glacial till | tMv ¹ : 0-3 m
tMpv ¹ : 1-20 m | 3-8° Slope ² | Downslope
seepage in
shallow sub-
parallel | 0-5 | As tMp | 6N
0 | CL-C | CL to ML | Hummocks
0-20
Hummocks
20-75 | 80 to
unfrozen
50-150 | Mod. well 3 lup. 4 Poor 3 | wS-tA-wB
wS-tA
bS-moss-Er
wS-lichen
bS-wS-lichen
tL-bS-Cx | | 1 | Potential subsidence on removal of vegetation typically less than 1 m; potential for creep of active layer, especially in slope category ² . Because of drainage by numerous subparallel runnels, roads or berms | | Mv ² | | | tMp ² : 2-20 m
tMv ² : 0-3 m | 8-12 | runnels | | | 3 | CL-SiC
(locally
some L) | ML-CL | Hummocks
20-60
Hummocks
0-30 | 50-150 | Mod. well 5 Imp. 4 Poor 1 Well 4 Imp. 4 Poor 2 | bS-wS-wB
bS-lichen
bS-tL-Cx
wS-bS-wB
bS-lichen
tL-bS-Cx | Cx-A1-Wi
WS-WB-bS
WS-bS-Wi
Cx-tl
WB-WS-A1
bS
tL-Wi-Cx | 1 | normal to slope direction require numerous culverts to avoid impoundme, of surface water. | | t Md | Drumlin
moraine plain | Glacial till | 2-30+ m | Moraine plain
with individual
drumlins, to
fluted moraine | Parallel seep-
age or streams
in fluted
moraine, to | | No data; segregated ice
may be present in clay
or silt tills but only
cement ice in gravelly | 6N 0 | CL | CL | Hummocks
0-20 | 80 to
unfrozen | Weil 4
Imp. 4
Poor 2 | wS-tA-wB
wS-tA
bS-moss-Er | tA-jP-wB
bS-tA-wi
bS-Er | 2 | Similar to tMp; crests of drumlins and drumlinoid ridges typically we drained, intervening depressions poorly drained; construction of rosetc. easier parallel to than normal to orientation of drumlins. local | | | | 8 | | plain
Slope 2-15°
Relief to 60 m | moraine, to
trellis patter
or deranged
drainage in
moraine plain
with drumlins | | cement ice in gravelly
tills in crests of
drumlins in Zone 6N;
intervening depressions
probably contain
segregated ice in
association with silt
layers. | 3 | GL-CL | GC-CL
GC-CL | Hummocks
0-30
Hummocks
0-30 | 50-150
50-200
80 to | Well 3
Imp. 4
Poor 3
Well 3
Imp. 4
Poor 3
Well 4 | bS-wS-wB
bS-lichen
bS-tL-Cx
wS-wB-bPo
bS-lichen
tL-bS-Cx
wS-tA-wB | wS-wB-bS
wS-wB-Wi
Cx-tL
wB-wS-A1
bS
tL-Wi-Cx | 1 1 | to orientation of drumlins. Local on Fort Norman map sheet (96C) drumlinoid ridges are probably composed of ice-moulded Tertiary bedrock with a thin veneer of till. | | t Man
t , gMan | Subdued hum-
mocky moraine | Glacial till,
minor gravel | 5-30 m | Broad hummocks
10 to 30 m high
100 to 500 m
across
Slopes to 10° | Deranged;
centripetal
to local
depressions | 5-30 | Commonly up to 10%,locally up to 40% (probably less in Zone 3) segregated ice as thin (1 mm - 2 cm) irregular discontinuous seams in | 0
1 | CL-L (locally some G) CL-L (locally some G) | CL to ML (some GC | 0-20 Hummocks 30-00 Hummocks | 80 to
unfrozen
50-75 | | wS-tA
bS-moss-Er
CotttCx
tCx-sphagnum | bS-tA-Wi
bS-Er | 1 | Summits of broad hummocks typically well drained, similar to tMp; lower slopes and intervening depressions may have high ice content, with potential for subsidence of server metres on removal of vegetation. | | | | | | ou 10" | | | discontinuous seams in upper 2-3 m. Thicker (10 cm to 3+ m) ice lenses common in Zones 0, 1, locally in Zone 2, rare in Zone 3. | 3 | | CL to ML
(some GC | Hummocks
20-60 | 50-150 | | bS-wS-wB
bS-lichen
bS-tL-Cx
wS-bS-bPo
bS-lichen | | 1 | regetation. | | t, gMn | listanios by
moraine | Glacial tili,
minor gravel | 15-50+ m | Individual to coalescent hummocks 15 to 50+ m high; Slopes to 20°, | Deranged,
centripetal
to local
depressions | 0-15 | upon topographic postion;
crests of prominent hummocks
and ridges well-drained and | 6N 0 | GL-CL
(local gradeposits)
GL-CL
(local gradeposits) | GC-GM
/el to CL | Hummocks
0-60 | 50-150 | Mod. well a limp. b Poor 2 M.well-well Imp. 4 Poor 1 | Cott, -ttx | wB-wS | 1 | Crests of prominent ridges and
hummocks offer restricted good
construction sites. Ice content
and potential for subsidence may b
high in depression. | | tMr
t,gMr | Ridged moraine | Glacial till,
minor gravel | 15-50+ m | Slopes to 20°,
exceptionally 30°
Individual and
compound straight
to sinuous ridges
15 to 50+ m high;
Slopes to 20°,
exceptionally 30° | | | and ringes well-drained and
ice-free to depths of
2-5 m; lower slopes as for
tMm. | 3
6N | GL-CL
(local gradeposits) GL-CL
(local gradeposits) | GC-GM | Hummocks
0-50
Hummocks
0-30 | 50-120 | - | 6 wS-wB-bS
bS-lichen
bS-tL-Cx
wS-wB-bPo
bS-lichen | WS-WB
WS-WB-Wi
Cx-tL
WB-WS-A1
bS-Er
tL-Wi-Cx | 1 | - | | g,t M h | Hummocky
moraine (in-
cludes hummocky
ablation morain | e) silty till | 15-50+ ■ | Individual to coalescent hummocks 15 to S0+ m high; Slopes to 20°, exceptionally 30° | Mainly
subsurface | 0 | Segregated ice only present where material is clay or silt till; probably cement ice only in gravels; crests of prominent hummocks and ridges well-drained and | 0 | LG-L | GM to SM | 0-30 | 50-90 | Well 6 1mp. 3 Poor 1 Well 6 Imp. 3 Poor 1 | Bi-Cx
CotttCx
tCx-sphagnum
wS-lichen
bS-wS-lichen
tL-bS-Cx | wS-wB
wB-wS-Wi-Al
Cx-tL | | Crests of promenent ridges and hummocks commonly well drained and offer restricted good construction sites; major source of aggregate where material is gravel rather than bouldery till, clay or silty till. | | g,tMr | Ridged moraine
(includes
-reyusse
fillings) | Bouldery glacial
till, gravel,
minor clay or
silty till | 15-50+ m | Individual and compound straight to shutous ridges 15 to 50 m high; Slopes to 20°, exceptionally 30° | | | ice-free to depths of 2-5 m;
segregated ice in silt and
clay filled depressions. | 3
6N | LG-L
LG-L | SM to SM | | 50-150
50 to
unfrozen | Well 7 lap, 2 Poor 1 Well 7 lap, 2 Foor 1 | wS-wB-bS
bS-lithen
bS-tL-Ca
wS-wB-tA
wS-wB
bS-moss-Er | wS-wB
wS-wH-WI
Cx-tL
jP-wB
bS-tA-Wi
bS-Er | 1 | | | R | Bedrock | Tertiary
conglomerates,
sandstones,
shales. Cre-
taceous sand-
stones, shales. | | Mainly prominent
ridges, scarps
and hills
developed on
resistant sand-
stones, | Generally
freely
drained but
with some
poorly draine
depressions | 0
d | No records of segregated ice,
but possibility of ice in
joints and fracture zones;
segregated ice may be
present in silt filled | 0 | Variable
Variable | - | 0 | - | Fxcess 7 imp. to Poor 2 Excess 8 imp. to Poor 2 | tCx-sphagnum
bare to
scattered
wB-A1-bS
bS-tL-Cx | bare bare Cx-Wi-tL | 3 | Carbonate rocks of Paleozoic age provide suitable material for riprap and crushed aggregate; sandste and shales of laperial Formation readily rippable to provide fill; shales, especially bentonitic shales of Cretaceous age, subject | | | | Paleozoic sand-
stones,
carbonates, shale
evaporites,
quartzites. | s | quartites and carbonates | depressions | | depressions. Ice-filled
fractures observed locally
in sandstone in Zone 1,
probable also in Zones 0,2,3;
thin ice lenses possible in
shales near surface in Zones
5 to 1; thin seems of ice
observed in weakly consoli-
dated Tertiary siltstone in | 3
6N | Variable
Variable | - | 0 | - | Excess Imp. to Poor Excess Imp. to Poor | WB-A1-DS
DS-tL-Cx
Scattered
WB-WS | Scattered WB-D-S Cx-Wi-tL Bare to Scattered WB bS-Wi | 1 | to mussive slides; weakly-cemented
conglomerates of Tertiary age are
a major source of aggregate. | | tMp ¹ - (component of the total a 49-25t, the unit component tot | Genetic Cate O - organic A - alluvial C - colluvia E - eolian G - glaciofl M - morainal S - slumped R - bedrock e Superscri map unit designate Genetic category dof morainal (glaci
textural modifier is till, a mixture morphologic modifi superscript "" in between 3 and 8° Genetic category do of alluvial origin textural modifier consists of silt w gravel morphologic modifi (i.e. above the fi wear of two or mor delineated at the ination is tMp and reas is shown firs combination is st ses 24-54, the coss s than 5% are ign | v - ver p - pli l t - te d - dn vial s - st m - ro. h - hu r - ric k - ke or lau f - fai c - ch x - con y-con 2 slope (8-12°) rs is illustrated by esignator "W" indicar al) origin """ indicates that ti of clay, silt, sand er "p" indicates the dicates that the sur esignator "A" indicar indicates that the sur esignator "A" indicar esignator "A" indicar indicates that the sur esignator "A" indicar g indicates tha ith significant sand er "t" indicates tha ith significant sand er "t" indicates tha ith significant sand er "t" indicates tha oodplain level of th ixed Units e map units are too map scale, mixed uni pf0; the unit compr t, where the seconda own as thp-pf0; where mbination is shown a ored. | mane the following e tes that the unit the surficial mand gravel size surface has a slope tes that the unit the surficial mate and gravel size surface is a place has a slope tes that the unit the surficial mate and gravel size surface is a place has a slope tes that the unit the surficial content, overly the area is a e nearest stream small to be the secondary unit comprise the secondary secondary unit comprise the secondary secondary unit comprise the secondary sec | vial) vial) xamples: t is erial s ain t is material ing terrace) | | | 2. INDEX I (Similar vegetal Compiled by W. 4. VEGI Data compiled b8 - black spruce (Piosa mariana w8 - white spruce (Piosa glauca) wB - white birch (Betula necalas B1 - dwarf birch (Betula necalas B1 - dwarf birch (Betula recina) W1 - willow (Salix sp.) A1 - aider (Almas sp.) | Pettapieco Dan and s a | ground ice conce and S. C. 2 126 941 40 120 120 120 120 120 120 12 | of zone) | 124° 63° 3 | | | Draina, soil fo | Data clief is estimated ge is estimated eatures. 70 50 SANDY SANDY CLAY LOAM ND SANDY LOAM | so s | Soils d by W. Pettapiece e mineral surfaces. ombination of topographical, vegetal and Sand - 2.0 to 0.05 mm diameter Silt - 0.05 to 0.02 mm diameter Clay - smaller than 0.002 mm d SILTY CLAY V LOAM SILT LOAM SILT LOAM SILT LOAM SILT LOAM SILT LOAM | | Escarpments Glacial lim Shoreline: Moraine rid Backwall sc Backwall sc Esker: The school of sch | approximassumed approximassumed bedrock: unconsolidated or without under it: arp (bedrock) of incomposition carp (retrogressive) carp (retrogressive) carp (retrogressive) carp (incomposition (incompositi | ediments (with lying bedrock): -thaw flow slide): A ce movement inferred ce movement not infer gravel): | from form: | | | | Al - alder (Almus sp.) tA - trembling aspen (Populus tr bPO - balsam poplar (Populus ba Cx - sedge (Carex sp.) tCx - sedge tussock (Carex sp.) tCxt cotton grass (Eriophorum Lichen - Cladonia sp., Cetraria Sphagnum - Sphagnum sp. Er - Ericacue (Lodum sp., Cha Stable/After fire categories repl Frequently flooded for alluvial u aspect for colluvial units. This m Scann | nap ha ed veriduction | s been resion of the | oled/
North | nal map. | | fine-grained solis Corre-grained solis (sore than half of material is smaller than \$200) (sore than half of material is larger than \$200) | Sinds (more than half of connectraction (more than half of connectraction (more than half of is smaller than 84 sieve site) is inter than 84 sieve site) is inter than 84 sieve site) (siquid limit < 50) Sands with fines Clean sands (tangents) | Group Well | D.A. TEX Typical I-graded graded and mintures rely graded avector and title or no ty gravels, it mintures yey gravels ay mixtures i-graded ands, rittle rly graded ands, little res ands, little res ands, relations rganic clay doum plastic ays, sandy ays, lean c ays, lean c rganic silts lity clays o | Classification criteria for coarse-grained soils and in the coarse-grained soils and coarse-grained soils are gravels, instances, fines are coarse-grained coarse-graine |