| | | · | | | LEGEND AN | ID NO | TES TO ACCOMPANY SURFIC | IAL GE | OLOGY AND | GEOM(| ORPHOLOG | Y MAPS | 106 l, J, | к, м, н, о | · | | V. | |------------------------------|---|--|---|--|---|---------------------------------------|---|----------------|---|----------------------------------|--|--|---|--|--|--------------|---| | MAP ¹
UNIT: | NAME | SURFICIAL
Material | DEPOSIT Estimated Thickness | LAMDPO | RM Drainage Pattern | Water | GROUND ICE | LAND 2
ZONE | Texture
U.S.D.A. | Unified
Classi- | SOILS 3 Micro- relief | Depth
of thaw | Drainage
(deciles) | VEGETA
Stable | TION After Fire | V of
Zone | COMMENTS' | | föv | Organic veneer
(mapped mainly
as a secondary | Peat - typically woody sedge peat | 20-60 ca | runs and
depressions; | Surface seepage in channels, depressions | | Organic veneer lies mainly within the active layer; (for ice in mineral soil below, see associated map unit). | 0 | woody sedge | fication Pt CL-ML | cm
Sedge
tussocks | 50-120 | Poorly to wet 10 | Sedge-Bi-tL | Sedge-Bi | 5 | Similar to fO; areas with mappable fOv component (+10%) should be | | | unit with Mp,
Mv) | | | Slope 0-3°
Relief to 1 m | | | | 2 | L-C mineral woody sedge peat over L-C mineral woody sedge | CL-HL
Pt | 10-50
Sedge
tussocks
10-50
Sedge | | Poorly to wet 10 | Sedge-Bi-tL | Sedge-Bi-tL
Sedge-Bi-tL | 5 | avoided in construction of roads,
pipelines, etc. | | f 0 | Organie
(fonland) | Post - typically | 2-3 m | | No organised | 5-20 | Commonly unfrozen to 2+ m (see "Depth of Thaw" for respective | 0 | peat over
L-C mineral | CL-TML Pt | tussocks
10-30 | 150 to | wet 10 | Sedge-cotton- | Sedge cotton- | 3 | Poor drainage, plus high compress-
ibility and low strength of the
material make it unsuitable for | | | (reniam) | woody sedge peat | , | sloping, in part
with reticulate | drainage;
water at sur-
face through-
out summer
months | , | zones) little data available
on segregated ice content at
greater depths | 2 | Mesic sedge
peat Mesic sedge
peat | Pt | tussocky None Some sedge | un-
frozen
200 to
un- | | grass or
Sedge-Bi-tL
Sedge-cotton-
grass or | grass | 10 | any type of construction. | | | | | , 1 | Slope 0-2* Relief to 1 m | | | Commonly up to 20%, locally up | 3 | Mosic sedge
pent
Fibric to | Pt | tussocks
0
Polygon | frozen
Un-
frozen
20-30 | Wet 10 | Sedge-Bi-tL
Sodge-cotton-
grass or
Sedge-Bi-tL | | 10 | | | PO | Organic
(peatland) | Peat - typically
sedge and woody
sedge peat over-
lain by sphagnum
peat | 2-4 m | Flat to very
gently sloping,
typically with
numerous shallow
steep-sided (2- | Depressions
interconnected
by seepage
channels | S-20 | to 60% segregated ice within
peat; typically 30-100 cm,
locally up to 3 m total thickness
segregated ice in mineral soil
immediately below peat. Peat | 1 | Fibric to mesic peat | Pt | trenches to
100 cm
Some poly-
gon trenches
to 100 cm | | imper-
fectly 10 | Lichen-
Sphagnum
Lichen-bS | Sphagnum-Er
Sphagnum-Er | 3 | Subsidence of up to 1 m common, and subsidence up to 3 m possible, when vegetation is removed; alternation of permanently frozen peat platemus and thawed depressions and water | | | · | Commence of the special specia | | 3 m) depressions occupied by lakes, ponds and bogs. | | | in wet depressions commonly thawed to 1 m + (Zones 1, 2) or unfrozen (Zones 2, 3). | 3 | Fibric to
mesic peat
Fibric to
mesic peat | Pt | Some sphag-
num hummocks Some sphag-
num hummocks | 25-30
25-30 | Imper- | Lichen-bS | Sphagnum-Er
Sphagnum-Er | 15 | bodies presents serious problems
in construction of roads, pipelines,
etc; material highly compressible
when thawed. | | s,gAp | Alluvial flood-
plain of high
energy streams | Send, gravel, is
part with silt
vencer | 1-5+ m
sand and/or
gravel | Flood plain and
low bordering
terraces scarred | Intermittent
drainage
through braided | 0 | Permafrost lacking in active unvegetated parts of floodplain; elsewhere cement ice only, except in silt veneer which | 0 | | | | | | Occasionally
flooded | Prequently * flooded | | Subject to periodic flooding;
constitutes potential reserve of
gravel but extraction presents | | | | | 0-2 m silt | by braided
channels.
Slope 0-3°
Relief to 2 m | channels | | commonly has up to 10% segre-
gated ice as thin (1 mm-2 cm)
seams | 2 | S + G | SM-GM
SM-GM | 0 | | Imp. to well Imp. to well | | | त | serious possibility of deleterious
changes in stream course and down-
stream changes in stream regimen. | | | • | | | | | | Permafrost lacking in | 3 | S + G | SM-GM | 0 | 100-300 | Imp. to well | bPo-A1-W | | व | | | S1 Ap | Alluvial flood-
plain of low
energy streams | Silt, fine-
grained sand | 3-5+ n | Flood plain and
low bordering
terraces,
commonly with | No integrated
drainage sys-
tem; impeded
by meander
scroll ridges | 0-20 | unvegetated part of floodplain;
elsewhere up to 10% segregated
ice by volume as thin (1 mm -
2 cm) seams. Ice wedges in .
polygonal pattern (diameter of | 1 | VFSL to
SiL
VFSL to | SM to
CL-ML | 0 | 100 to
un-
frozen
100 to | Imper-
fectly 4
Poorly 6
Imper- | wS
Sedge-tL
wS-bS | Wi-Al
Sedge-Wi
Wi-Al | <1 | Subject to periodic flooding;
melting of ice wedges produced
polygonal network of depressions
when vegetation is removed. | | | | | | meander scars.
Slope 0-3"
Relief to 1 m | where present | | polygons 6-25 in.) common in
Zone 2. | 3 | VFSL to
SiL | SM to
CL-ML | 0 | un-
frozen
200 to
un-
frozen | fectly 4 Poorly 6 Imper- fectly 4 Poorly 6 | Sedge-tL
wB-bPo-wS
Sedge-tL | Sedge-Wi
Wi-Al
Sedge-Wi | 1 | | | 81 Apk | Thermokerst al-
luvial flood-
plain (associated
with low energy
streams only) | Silt, fine-
grained sand | 3-5+ m | Level floodplain,
in part with
meander sears,
and with numer- | Seepage to
ponds and
lakes, to
adjacent
streams by | 20-50 | Up to 10% segregated ice by vol.
in upper 2-3 m; active expan-
sion of thermokarst lakes and
ponds suggests massive segre- | 1 | VFSL to | SM to
CL-ML | Hummocks and
trenches
0-40 | 40-200+ | Wod.well 1
Imper-
fectly 4
Poorly 5 | wS
wS-bS-lichen
Sedge-Wi | • | 20 | Thermokarst processes active around pond margins; melting of ice wedges produces polygonal network of depressions when vegetation is removed; subject | | | | | | ous channels and
thermokarst
ponds,
Slopes 0-3*,short
steep slopes to 45* | connecting
channels | | gated ice at depth | 2 | VFSL to
SiL
VFSL to
SiL | SM to
CL-ML
SM to
CL-ML | Ikimmocks
0-50
Hummocks
0-20 | 50-200+
200 to
un- | bod.well 2 imper- fectly 4 Poorly 4 Nod.well 2 imper- fectly 4 | ws
ws-bs | wB-bPo-wS
bPo-A1 | 41 | to periodic flooding; highly unsuitable as construction sites. | | a , gAt | Alluvial
terrace of high
energy streams | Sand, gravel,
in part; with
silt veneer | 1-5+ m sand
and/or gravel
0-2 m silt | Relief to 5 m Level to gently sloping terrace, | Surface drain-
age without
integrated | 0-5 | Cement ice only except in silt veneer which commonly has up to 10% segregated ice as thin | 0 | FS-SiL | SM to | Thummocks | frozen
75-150 | Poorly 4 | Sedge-tL | Sedge-Wi | | Offer good construction sites where silt veneer is thin; potential aggregate source. | | | • | | | in part with
shallow channels
and steep scarps.
Slope 0-3",
locally to 45" | drainage system | | (1 mm - 2 cm) seams | 2 | (often over gravel) FS-SiL (often over-lying gravel: | SM to
CL-ML | 0-20
Hummocks
0-20 | 75-150 | Mod.well 3 Imper- fectly 5 Poorly 2 Mod.well 3 Imper- fectly 5 Poorly 2 | wS-bS-lichen Sedge-Wi wS bS-lichen Sedge-Wi | - | <1 | | | | | | | Relief to 5 m,
greater at scarps | | | Highly variable; low in gravel, | 3 | SL-SiL
(often over
gravel) | SM to
CL-ML | Hummocks
0-20 | 100 to
un-
frozen | Mod.well 3
Imper-
cetty 5
Poorly 2 | wS
wS-bS
Sedee-ti | | <1 | Fans composed of sand and gravel | | Af | Alluvial fens
and fan aprons | Highly vari-
able-silt, sand,
gravel, peat | 50+ M | Gently to
moderately
sloping fans and
aprons. | One or more
shifting
streams usually
present; down-
slope seepage | 0 | mod. to very high in silt (the
more common case). Thin seams
in upper 2-3 thick layers to 30+
cm at depth. Ice content general-
ly lower in coarser sediments at
head of few them in fines | 1 | Variable;
generally
SL-SiL
Variable; | variable | Humnocks | | Mod.weii 2
Imper-
fectly 6
Poorly 2
H.weii Weii 3
Imper- | wS-bS-lichen
Sedge-Wi
wS-wB
bS-lichen | Wi-Al
Wi-Al
Sedge-Wi
Wi-Al-bPo
Wi-Al | 1 | offer well-drained building sites,
but sudden and damaging shifts of
streams on the fans are common;
fans with high silt content are
unsuitable for construction. Fans
of gravel, sand (rare) are good | | | | | | Slopes 1-12°
Relief to 50 m
(from head of fan
to toe) | in poorly
defined runs | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | head of fan than in finer
sediments at outer margin. | 3 | generally
SL-SiL | variable | v-30 | | fectly 6
Poorly 1 | Sedge-Wi | Sedge-Wi | <1 | of gravel, sand (rare) are good
sources of aggregate. | | Cx | Coliuviai
complex | Colluvium de-
rived from
entire range of
surficial de- | 1-5+ m | Steeply sloping valley walls and scarpe. | ` | 0 | | 0 | Variable | - | 0 | 30-250 | Excess-
ively 4
yell 4
impf -
Pobrly 2 | Bare
Grass-wB | North aspect * Sedge | <1 | Active stream erosion, slumping, | | | | surficial de-
posits plus bed-
rock detritus | | Slope 12 to 48°
Relief to 300 m | | | | 2 | Variable | | 0 | 30-300 | Excess- ively Well Impri Poorly 2 | Bare tA-wS-wB bS-lichen | Sedge bS-lichen bS-lichen | <1 | flow-slides common; irregularity of topography and slope instability present major problems for any kind of construction; see comments re map unit on which colluvium is | | | | | | . | | | No. 1 | 3 | Variable | - | 0 | 50-300+ | Excess-
ively 4 | Grass
A-wB-wS | Wi-Al
bS-WS
bS-lichen | <1 | developed. | | | Bcilem
deposits | Sand, mainly
fine to medium
grained | 1-20 m | Thin veneer or
dune ridges
within or ad-
jacent to areas | Mainly sub-
surface seepage;
no organized
drainage | 0 | No data; probably cement ice
only below active layer;
segregated ice highly probable
in subjacent glaciolacustrine
silts where solian deposits | 1 | | | | | We11 7 | Men a | What he are | | Offers restricted well-drained sites within large areas of poorly drained units GL, GLk; subject to wind erosion when vegetation mat is removed. | | | | | | of GP, GLp
slope to 20°
relief to 10 m | | | occur within areas of GLk | 2 | LS-S | SP
SP | o
o | 50-300
50 to
un- | Well 7 Well 7 Impf. 2 Poorly 1 Well 7 Impf. 2 | WS-WB
WS-WB
bS-WS
bS-tL-sedge
tA-WS
WS-WB | wS-wB-grass
wS-wB-grass
wS-wB-bS
Sedge-tL
tA
wB | <1 | , somotes, | | Lp . | Glaciolscus-
trine plain | Glaciolacus-
trine silt and | 1-20 m + stit | Flat to gently sloping | Surface seepage | 0-20 | No data; should be treated as Lpk until data available | 0 | | CL-ML | Hummocks | | Poorly — 1 | bS-tL-sedge - | | | Detachment slides, followed by development of retrogressive flow | | , | ; | clay; discon-
tinuous organic
cover | | slope 0-2°
relief to 3 m | filled depressions | | | 2 | SiL-SiC
SiL-SiC
(some FS) | to
CL
CL-ML
to
CL | 20-60
Humocks
20-75 | 50-100 | Poorly 6 Im- perfectly 5 Poorly 5 | tL-bS-sedge | wB-wS-Wi
Sedge-Wi-Al
wS-wB-Wi
Sedge-Wi-tL | 1 | slides, common on colluvial slopes (Cx) developed on this unit (and on lesser areas of steep slope not mapped as Cx), especially following fire or other disturb- | | | | | | | | | Commonly up to 10% segregated . | 3 | SiL-SiC | CL-ML
to
CL | Hummocks
10-50 | 50-200 | Im-
perfectly 5
Poorly 5 | bS-lichen | bS-lichen
tL-Wi-sedge | <1 | ance of vegetation. Thermokarst processes active | | Lpk | Glaciolacus-
trine thermo-
karst plain | Glaciolacus-
trine silt and
clay; discon-
tinuous organic
cover | 1-20 m + silt
and clay | Flat to gently
sloping, num-
erous shallow
thermokarst
lakes and ponds | Seepage centri-
petal to ponds
and lakes, inter-
mittent seepage
through fen- | . 25 | ice as thin (1 mm - 2 cm) seams
in upper 1-3 m; segregated loe
as reticulate network to 40% by
volume, or thick tabular bodies
of nearly pure loe at greater | 1 | SIL-SIC | CL-ML | Hummocks | | Mod.well 2 | w5-w 3 -b5 | w5-w8 | | around pend margins; detachment
slides, followed by development
of retrogressive flow slides,
common on colluvial slopes (Cx)
developed on this unit (and on | | | t | | | slope 0-5°
relief to 6 m | filled depres-
sions between
ponds and lakes | | depth. | 3 | (some PS) | (some SM) | 20-75 | 50-150+ | porfectly s | bS-lichen
bS-tL-sedge | wS-wB-Wi
Sedge-Wi-tL | 5 | lesser areas of steep slope not
mapped as Cx), especially
following fire or other disturb-
ance of vegetation. | | αρ | Glaciofluvial-
lacustrine | Glaciolacus-
trine silt and
clay overlain | 1-35 + m sand,
minor gravel
3-15 + m sitt | Fiat to gently
sloping
slope 0-2* | Drainage mainly subsurface | 0-20 | No data; should be treated as
GLk until data available | 0 | | | | | *** | | | | Detachment slides followed by development of retrogressive flow slides common on colluvial slopes (Cx) developed on this | | * .
* | | by glacio-
fluvial sand
with minor silt,
rare fine
gravel. Discon- | and olay | relief to 3 m | | | | 2 | FSL to
SiL | SM to
CL-ML | Hummocks
10-30
Hummocks | 50-150 | Im-
perfectly 6
Poorly 4 | pS-lichen
bS-tL-sedge
bS-lichen | wS-wB-Wi
Sedge-Wi-tL
bS-wB | <1 | unit (and on lesser areas of steep slope not mapped as Cx), especially following fire or other disturbance of vegetation. | | GLek | Glaciofiuvial- | tinuous organic | 1-35 + m send. | Flat to gently | Seepage centri- | 25 | Commonly up to 10% segregated ice as thin (1mm-2cm) seams in | 0 | SiL | CL-ML | 0-30 | 50-200 | perfectly 6
Poorly 4 | tL-bS-sedge | tL-Wi-sedge | 1 | Thermokarst processes active around pond margins; detach- ment slides, followed by | | | lacustrine
thermkarst
plain | | minor gravel
3-15+m efit
and clay | sloping, numer-
ous shallow
thermokarst lakes
and ponds
slope 0-5° | petal to ponds
and lakes, inter-
mittent seepage
along fen-filled
depressions be- | - | upper 2-3m of sand, but massive
segregated ice rare in the sand;
very high ice content (to 75%+
by vol.) as reticulate network
in underlying silt and clay | 2 | FSL to | SM to | Hummocks | 50-150+ | Mod.well 2
Im-
perfectly 6
Poorly 2 | wS-wB-bS
>S-lichen | WS-WB
WS-WB-Wi | <1 | development of retrogressive flow slides, common on collu- vial slopes (Cx) developed on this unit (and on lesser areas of steep slope not mapped as | | | , | | | relief to 6 m | tween ponds and
lakes | | | 3 | FSL to
SiC
G+S | CL-ML
SM to
CL-ML
to CL | 10-50
Hummocks
10-40 | Ĭ | Mod.well 2
Im-
perfectly 6
Poorly 2
Well 5 | bS-lichen
tL-bS-sedge | Seage | | Cx), especially following fire
or other disturbance of vegeta-
tion. Rotational slope failures
common along banks of larger streams. | | Op
Ot | Glaciofluvial plaim Glaciofluvial terrace | Sand, gravel,
locally with
vencer of
colian silt | 2-15+ m | Flat to gently
sloping
slope 0-2*
relief to 5 m | Drainage mainly
subsurface | 0-5 | Typically cement ice only, polygonal pattern on some areas of unit in Zones 0, 1 suggests possible wedge ice. | 1 | (local
silty cap)
G + S
(local
silty cap) | GW-SW | Hummocks
0-10 | 50-150
75-150 | Impf. 4 Poorly 1 Well 5 Imperfectly 4 Poorly 1 | Bi-Wi
Sedge-sphagnum
WS-lichen
bS-lichen
tL-Bi-sedge | wB-Wi-wS
wB-bS-Wi
Sedge-Bi | <1 | Offers good construction sites;
major source of aggregate where
material is gravel rather than
sand. | | | | or sand | | | | | | 3 | G + S | GW-SW | Hummocks
0-10 | 75-150+ | MeII 6
Im-
perfectly 3
Poorly I | wS
bS-wS-lichen
bS-tL-sedge | wS-wB-grass
wS-wB-bS
Sadge-ti | <1 | , | | 04 | Glaciofluvial plain, | Send, gravel;
silt, pest in | | Flat to gently
sloping inter- | Drainage mainly
subsurface with | 0-5 | As Gp, but with locally high
segregated ice within silt
and below peat in channels | 0 | | | | | | | | | Same as Gp, Gt (above) except in channels which may contain peat and ice-rich silt. Where unit grades into units GL, GLk, the | | | channelled | channels | | rupted by shal-
low channels
and low scarps.
Relief to 10 mg
exceptionally | seepage along
channels | | | 2 | G + 5 | GW-SW | Hummocks
0-10 | 75-150+ | Well 7
Imperf. 2
Poorly 1 | w8-w8
bs-wS-lichen
b8-tL-sedge | w3-wB-grass
w5-wB-b5
Sedge-ti | <1 | surface deposit is typically sand
rather than gravel and may be
underlain by ice-rich silt. | | - P. S. | | · | | to 30 m | | | | 3 | | | | | <u> </u> | | | - | | | Gr
Gr | Humocky, ridged
glaciofluvial
deposits (in-
cludes eskers
and esker com- | Sand, gravel | | Hummocks and
ridges, relief to
40 m
slope 5-15° | Drainage mainly
subsurface | • 0 | Typically no segregated ice in well drained sites, but segregated ice may be present in association with silt layers beneath depressions. | 1 | G + S | GW-SW | 0 | 50-150 | perfectly 2
Well 8 | WS-WB
bs-WS | wB-wS-grass
wB-wS-bS
wS-wB-grass | ļ | Offers good construction sites;
major source of aggregate where
material is gravel rather than
sand. | | | plexes) | | | | | | | 3 | G + \$ | GW-SW | 0
Hummocks | 150+ | Imperf. 9 | bS-wS-lichen | wS-wB-bS | | | | Hp
HV
Hpv | Moraino piain | Glacial till -
typically clay,
silt, minor
sand and gravel. | Ap:2-20 m
Av:0-3 m
Apv:1-20 m | Flat to gently
sloping (0-3%)'
except as indi-
cated by the | Downslope
seepage in
shallow sub-
parallel runs | 0-5 | Commonly up to 10% segregated ice as thin (1 mm - 2 cm) irregular discontinuous seams in upper 2-3 m. Thicker 10 cm to | 0 | SICL-C
(Some L-C) CL (some L | ML
CL | Hummocks
30-60
Hummocks
20-60 | 50-75
50-80 | Imperf, 9 Poorly 1 Mod.well 2 Imperf, 4 Poorly 4 | Cottongrass-
sedge
Sedge-sphagnu
wS-lichen
bS-wS-lichen
tL-bS-sedge | m
wB-wS
wB-wS-Wi
Sedge-Al-Wi | 25 | Potential subsidence on removal of vegetation typically less than 1 m (but note that unit may have up to 10% unmmapped fO or pO, and that locally ice content | | . | | Locally up to
904 > 2 mm. | | slope superscript
relief to 5 m | | | 3 m + ice lenses at depth
occasionally in Zones 0, 1 rare
in Zone 2. | 2 | and C) CL (some L) CL (some L) | CL | Hummocks
10-40
Hummocks
0-30 | 50-150
50-200 | Poorly 3
Mod.well 2 | tL-bS-sedge bS-wS-wB bS-lichen tL-bS-sedge-A wS-bS-bPo bS-lichen | WS-WB-DS
WS-WB-WI | 50 | | | Mp1
My1 | Moraino plain | Glecial till | Mp:2-20 m
My:0-3 m | 51ope1
3-8° | Downslope
seepage in | 0-5 | As Mp | 0 | SIUL-U
(Some L-C) | ML | Flummocks
30-60 | 50-75 | Imperf. 9 Poorly 1 Mod.well 3 | tL-bS-sedge Cottongrass- sedge Sedge-sphagnu wS-lichen | tL-Wi-sedge | 30 | Potential subsidence on removal of vegetation typically less than 1 m; potential for creep of active | | 1677
1672
1672
1677 | | | Apv:1-20 m | Slope ²
8-12° | shallow sub-
parallel runs | | | 2 | CL-C
CL-SiC
(locally
some L) | ML-CL | 20-75
Hummocks
20-60 | 50-150
50-100 | Imperf. 6 Poorly 1 Mod.well 5 Imperf. 4 Poorly 1 | bS-wS-lichen
tL-bS-sedge
bS-wS-wB
bS-lichen
bS-tL-sedge | wB-wS-Wi
Sedge-Al-Wi
wS-wB-bS
wS-bS-Wi
Sedge-tL | 1 | layer, especially in slope cate-
gory ² . Because of drainage by
numerous subparallel rums, roads
or berms normal to slope direction
require numerous culverts to avoid
impoundment of surface water. | | | | | | March 1 | Dane to the | 0 | As Mp | 3 | CL SiCL-C (Some L-C) | CL
M-L | Hummocks
0-30
Hummocks
30-60 | 50-200
50-75 | Weil 5 Imperf. 4 Poorly 1 Impf. 9 | wS-bS-wB
bS-lichen | wB-wS-A1
bS
tL-Wi-sedge | <1
5 | Similar to Mp; crests of drumlins | | 144 | Drumlin
moraine plain | Glacial till | 2-20+ = | Moraine plain
with individual
drumlins, to
fluted moraine
plain | Parallel seep-
age or streams
in fluted
moraine, to
trellis pattern | 0-15 | | 1 | CL-L | CL to
CL-ML | Hummocks
20-60 | 50-90 | Poorly Mod.well Imperf. Poorly Well 3 | wS-lichen
bS-wS-lichen
tL-bS-sedge
bS-wS-WB | WB-WS
WB-WS-Wi
Sedge-A1-Wi
WS-WB-DS | <1 | and drumlinoid ridges typically well-drained, intervening depres- sions poorly drained; construction of roads, etc. easier parallel to than normal to orientation of drimlins | | | ··-· · | · . | | slope 2-10°
relief to 20 m | or deranged
drainage in
moraine plain
with drumlins | | | 3 | r-cr | GC-CL
CL-ML
to
CL | 0-30
Humocks
0-30 | 50-150
50-200 | Imperf. Poorly 3 Mod.well Imperf. Poorly 3 | bS-lichen
bS-tL-sedge
WS-WB-DPO
bS-lichen
tL-bS-sedge | wS-wB-Wi
Sedge-tL
wB-wS-AI
bS
tL-Wi-sedge | 1 | drumlins. | | 16 | Subdued hun-
nocky normino | Glacial till | 5-30 m | Broad hummocks
10 to 30 m
high, 100 to | Deranged;
centripetal to
local depres- | 5-30 | Commonly up to 10%, locally up to 40% ice as thin (1 mm to 2 cm) irregular discontinuous seams in | 0 | SICL-C
(some L-C) | ML
CL | Hummocks
30-60
Hummocks
20-75 | 50-75
50-150 | Imperf.
Poorly
Mod.well
Imperf. | sedge Sedge-sphagnu WS-lichen bS-wS-lichen | WB-WS
WB-WS-W1 | 10 | Summits of broad hummocks typically well drained, similar to Mp; lower slopes and intervening depressions may have high ice content, with potential for subsidence of several | | | | | | 500 m across;
slopes to 10° | sions | | upper 2-3 m. Thicker (16 cm to 3 m +) ice lenses at depth common in Zones 0, 1, occasional in Zone 2. | 2 | CL-C CL-SiCL (locally some L) | CL
(some
CL~ML) | Hummocks
20-60 | 50-150 | Poorly Mod.well | tL-bS-sedge bS-wS-wB bS-lichen bS-tL-sedge | Sedge-A1-Wi
WS-WB-BS
WS-WB-Wi
Sedge-tL | 3 | metres on removal of vegetation;
retrogressive flow slides occur on
colluvial slopes (Cx) developed on
this unit west of Peel River. | | | Hamocky
moraine | Glacial till, | 15-50+ m | Individual to coalescent | Deranged,
centripetal to | 0-15 | Highly variable depending upon topographic position; crests of | 0 | re-cr | GC-GM
to CL | Humocks
15-50 | 50-90 | Mod.well
Imperf.
Poorly | Bi-sedge
Cottongrass-
sedge
Sedge-sphagnu | | <1 | Crests of prominent ridges and
hummocks offer restricted good con-
struction sites. | | | moraine | minor gravel | ,, ,, | hummocks 15 to
50+ m high;
slopes to 20°,
exceptionally 30° | centripetal to
local depres-
sions | | of prominent ridges and hummocks
well-drained and ice-free to depths
of 2-5 m; lower slopes as for Mm. | 1 2 | GL-CL (local gravel deposits) GL-CL (local gravel | GC-GM
to CL
GC-GM
to CL | Hummocks
0-60
Hummocks
0-50 | 50-150
50-120 | M.well well ! Imperf. Poorly M.well well ! | WS-lichen
 bS-wS-lichen
 tL-bS-sedge
 WS-wB-bS
 bS-lichen | WB-WS
WB-WS-Wi-Al
Sedge-Al-Wi
WS-WB
WS-WB-Wi | | struction sites. Ice content and potential for sub- sidence may be high in depressions. | | Hr | Ridged
moraine | " | | Individual and compound straight to sinuous ridges 15 to 50+m high; slopes to 20°, exceptionally 30° | | | | 3 | (local gravel deposits) | ., 06 | V-3V | | Poorly | bS-tL-sedge | Sedge-tL | | • | | Ug | Upland,
glaciated | Glacial till -
minor glacio-
fluvial sand
and gravel, | 1-5 m
thicker
in depres-
sions | Rolling bedrock
controlled top-
ography with
relief to 150 m, | Downslope
seepage in
sub-parallel
runs; perm-
apent streams | 0-5 | As Mp, Mv on hilltops and gentle slopes with locally very abundant (up to 40% by vol.) segregated ice in silt and clay filled depressions | 1 | CL-C
locally silts | CL
(some
CL-ML) | Hummocks
20-60 | 50-100 | Poorly | wS-lichen bS-wS-lichen tL-bS-sedge | WB-Wi-WS
WB-WS-Wi-Al
Sodge-Al-Wi
WB-WS | | | | | | glaciolacus-
trine silt and
clay, peat | | slopes to 15° | ament streams
in valleys | | | 2 | E graveis CL-SICL (Locally some L) | CL-ML) CL (some CL-ML) | Hummocks
20-60 | 50-100 | Mod.well | S wS-lichen S bS-wS-lichen tL-bS-sedge | | 1 | | | Ps | Piedment, | Mainly glacial | 1-15+ m | Broadly rolling piedmont slopes | Dendritic (to | 0 | As Mp in uppermost 1-3 m;
massive segregated ice common
in both till and glacio- | 0 | SICL
(some L-C) | ML-C1 | Hummocks
30-60 | 50-75 | Imperf.
Poorly | 8 Cottongrass-
2 sedge
Sedge-sphagnu | | 45 | Detachment slides and subsequent retrogressive flow slides common on colluvial slopes (Cx) devel- | | | gamerated. | distributed
glaciolacus-
trine silt
and clay in | | piedmont slopes
on east flank of
Richardson Mtns. | major streams
deeply incised | | in both till and glacio-
lacustrine sediments at greater
depth | 2 | , | | | | | | | | oped on this unit. | | | | valleys | | | | | | 3 | Variable | | 0-75
variaty of | | Mell
Temp | 8 Sedge
Cottongrass- | | 30 | Sorted polygons, stone stripes, | | 0 | Colluvial
vencer | Rock detritus,
minor glac-
imily trans-
ported material | 0-2 m | Veneer conforms
to bedrock top-
ography
Hilly to
mountainous | Generally freely
drained | 0 | Probably coment for only. | 0 | but generally coarse | | variety of
frost forms | 20-200 | | Cottongrass-
Sedge-sphagnu | | | in part active, suggest cryoturba-
tion; solifluction lobes on high
slopes (elev. 800m+) of Richardson
Mountains indicate active creep of
colluvial veneer. | | | | | | mountainous
Slopes to 45° | | | | | | | | | | | | | , | | R | Bodrock | Cretscoous
sandstones,
shales. Paleo- | | Mainly prominent
ridges, scarps
and hills devel- | Generally freely drained | , 0 | No records of segregated ice,
but possibility of ice in joints
and in future sonce. | 0 | Variable
Variable | - | 0 | | Excess-
ively 1 | Bare to scattered | Baro | | Carbonate rocks of Paleozoic age provide suitable material for rip- rap and crushed aggregate; sand- stones and shales of Imperial | | _ 1. | 1 | shales. Paleo-
soic sandstones
shales, quartz- | | oped on resistant sandstones, | | | | 2 | Variable Variable | - | 0 | | ively 1 | 0 wB-A1-bS
Bare to
scattered | Scattered
wB-bS | + | Formation readily rippable to pre-
vide fill; shales, especially
bentonitic shales, of Cretaceous | | | | ites, carbonate | • | quartiites and
carbonates | | | į. | | | | | | ively 1 | 0 AB-V1-PE | | - | age subject to massive slides. | The map unit designator (e.g. tMp²) is based on the genetic category, as interpreted from air photos. Areas are further described by morphological modifiers which indicate landforms. Prefixes describing texture and superscripts indicating slope may be applied using field or air photo information. Mixed Units Where the areas of two or more map units are too small to be separately delineated at the map scale, mixed units are used. A common combination is the and pfO; the unit comprising over 50% of the total areas is shown first; where the secondary unit comprises 49-25% the combination is shown as the - pfO; where the secondary unit comprises 24-10%, the combination is shown as tMp/pfO; percentages less than 5% are ignered. MAP SYMBOLS Geological boundary: defined assumed or transitional Escaryments: bedreck unconsolidated unconsolidated ninor minor minor minor minor minor define states: payables. Promise, drumlinoid fidge: Promisent homseche: pk (often gravel) 4. VBGETATION Data compiled by S.C. Zeltai bS - black spruce (Piosa mariana) wS - white spruce (Piosa glauca) wB - white birch (Betula necalaekana) Bi - dwarf birch (Betula glandwlosa) tL - tamarack (Larix laricina) Wi - willow (Salix sp.) A1 - alder (Alnue sp.) tA - trembling aspen (Populue tremulcidee) bPO - balsom poplar (Populue balsamifera) Sedge - Carex sp. Cottongrass - Briophorum sp. Lichem - Cladonia sp., Cetraria sp. Sphagnum - Sphagnum sp. Er - Ericascae (Ledum, Chamaedaphne Kalmia etc.) *Stable/After fire categories replaced by Occasionally flooded/ Prequently flooded for alluvial units, and by South aspect/North aspect for celluvial units. Bata compiled by W. Pettapiece Microrelief is estimated on the mineral surfaces. Drainage is estimated from a combination of topographical, ve U.S.D.A. TEXTURAL CLASSIFICATION | | | | | | U.S.D.A. 11 | EXTURAL CLA | SSIF10 | CATION | | | | |-----|---|--|-----|---------------------|------------------------|--------------------|---------------|--|--|--|--| | (| | Fortel | | | Identification | Bymbol | Typical Names | | | | | | | | More than 18 % | 17 | Wide range in grain | stee. Well graded | | C₩ | Well graded gravole, gravel-sand mixtures with few or so | | | | | Ţ, | | | 0.0 | Prodominately one | nise. Pourly grade | 4 | GP | Poorly graded gravels, gravel-east mixtures with few or an | | | | | | 1 | | 74. | Containing non-ph | ptic floor | | GM | Alty gravels, poorly graded gravel-mod-sit minteres. | | | | | - 1 | 1 | | 311 | Contemples planting | lee. | | oc | Clayer gravels, poorly graded gravel-seed-cley mietabus. | | | | | | Š | To see and see a s | 57 | Wide range in prair | tion. Well graded | L | RW | Well graded enade, gravelly sands with few or no final. | | | | | - 1 | J | | 11 | Predominately one | size. Poorly grade | 4. | 87 | Poorly graded sands, gravelly supda with few or no fless. | | | | | | O | | 741 | Containing non-pla | atic face. | | ям | Mity conds, poorly graded cond-alls mixtures. | | | | | | | |]11 | Containing plantin | face. | | PC | Clayey sands, yearly graded send-stay mirrares. | | | | | | | | | Dry | Reaction
to shaking | Toughasss | | | | | | | | | | | Name to slight | Quiet to ster | Xons | ML, | Sussessie situ and very flue sunds, resh flour, affer es
stayey flue cands. | | | | | - 1 | Ţ | | | Medium to slight | None to dow | Medium | C1. | Surgania stays of less plantistry, gravely chaps, sandy
chaps, other chaps. | | | | | - 1 | | | | Physic to medium | No- | Stight | OL | Organie clays and organic alti-slay mistures. | | | | | | ď | 111 | | State to medical | flor to sess | Flight to medium | ME | lauryanis alta, salaarissa fan sandy er alter arfin, distila
affin. | | | | | | 2 | 6.2 | | High to very high | Mess | IR _{eb} | CM | Surgeole stays of high planticity. Put chaps. | | | | | | | [43] | l . | Medica to high | None to very de- | State to medium | 94 | Cognite stage of medium to high plantiday. | | | | | ' | - | erganic cul | • | Martifed by sele | r, adar, aposige field | er Elbrona tanturs | h | Pest or other highly organic cells. | | | | WITPING CLASSIFICATION . Revised May 18, 1972.