To accompany open file maps ## SURFICIAL GEOLOGY AND LANDFORMS Malloch Hill (97 F), Mackenzie Delta (107 C), Stanton (107 D), Cape Dalhousie (107 E) Extended Legend by V.N. Rampton | | 1 | | 1 | | | 70.73 1842 · meth | - | | | | | | |--|--|--|--|---|---|---|--|--|---|--|--|------| | UNIT
NOTATION | MAP-UNIT | MATERIALS | ESTIMATED
THICKNESSES | GEOMORPHOLOGY (includes comments re dynamic proceand natural hazards) | GEOLOGIC COM | PERMAFROST AND ICE CONTENT (deposits permanently from the second | zen SURFACE WATER AND | ORGANIC DEPOSITS WITHIN UNIT | SUSCEPTIBILITY TO GULLEYING (increase | SUSCEPTIBILITY TO MASS MOVEMENT es with slope) | SUSCEPTIBILITY TO THERMOKARST SUBSIDENCE (decreases with slope) | "HA | | c
s ^C | Sandy colluvium | Sand? | No data | Cently sloping plain to mode | is- solidated sands | | Good on steep slopes: | Swales contain peat, | Major on escarpments: | Slumps on steeper | Moderate on gentle | ŧ | | c ^C v
sh ^R | Clayey colluvium overlying shale. | Clay and silty clay
(weathered, general
non-bentonitic shale
with cobbles and
boulders scattered | ly | Upland with gentle to moders
slopes and integrated drains
network; solifluction and sl
features rare; undisturbed | and conglomerat | | fair:small pools along ice-wedge network; beaded drainage common. | Organic-rich depo-
sits to 15 ft in
valleys. | minor on gentler slopes. Minor to major. | Minor to major slumps and mud- flows. | Noderate on gentle slopes (<10 ft). Negligible | 7 | | c v
p ^G | Clayey colluvium overlying fluvial sand. | on surface. Clayey diamicton over medium-grained sand and local gravel. | Diamicton, 2-5
ft; thinnest o
hill crests:
underlying san
100 ft± | relief to 40 ft± | Diamicton was originally till | Diamicton generally saturated with excess ice, locally 20% excess ice: underlying sands generally contain 5-10% excess ice, | Fair: pools in depressions. | Peat to 8 ft * in depressions. | Negligible | Minor mudflows on slopes. | Minor (c6 ft) except
where thaw extends
down to massive ice. | | | E
E | EOLIAN DEPOSITS Eolian sand. | Sand; layers of | 10-60 ft | Flat except for small ridges | Overlies FG st | rarely massive ice. | Good | Nil | Major (?) where | Minor slumps on | N±1 | + | | s v | Thin eolian(?) | terrestrial peat, commonly woody. Silty fine sand. | 0-15 ft | and hills: active blow-outs
common. Linear hills 15-30 ft high:
undisturbed surface appears
stable. | Overlies & | Probably little excess ice. | Good | N11 | sand is thick. | slopes. | Negligible | | | Ev,(r) gG spp | Dune sand over-
lying sandy
outwash. | Fine to medium sand;
layers of terrestria
peat. | | Dunes, 20 ft maximum height, generally 5-10 ft: active blouts common adjacent to streand lakes: r indicates linea and cresentic dunes. | ow- | No excess ice. | Drainage impeded and small thaw-pools common on large flat areas. | Generally negligible | Minor | Negligible | Negligible | - | | F
\$Fp^A | FLUVIAL DEPOSITS Active floodplain. | Silt, fine sand or clayey silt; commonl organic. | 20 ft+ | Flat floodplain: surface inu
dated at least once annually | n- Includes F, p
Mackenzie Delta | Distribution of permafrost
and unfrozen ground may be
irregular: ice lenses prob- | Poor, surface often saturated: marshy | Negligible | Negligible | Ni1 | Minor | † | | g ^F p
F | Floodplain
(partly abandoned) | Same as above. | 20 ft+ | Flat floodplain or very low
terrace: surface inundated
during highest floods: near
sea level, occasionally inun- | | ably common in upper perma-
frost. Taliks may be common under a
continuous surface layer of
permafrost: ice lenses | small thaw-pools, lakes and marshy areas common. | Peat locally thick up to 8 ft. | Negligible | Negligible | Minor | + | | s ^F t | Fluvial terrace. | Silt, clayey silt, and clay. Sand; rare silty | 20 ft+ | dated by marine water. Flat terrace: shallow entrenched meander scars. Low flat terrace; local relie | Locally includes | | Small thaw-pools, lakes and marshy areas. | up to 8 ft in swales | | Mudflow and ground ice slumps may develop on slopes. | Moderate | 1 | | F _f | ALLUVIAL-FANS Alluvial-fan | and clayey beds. | 0-30 ft | up to 15 ft due to former channels, bars, etc.: rare active blow-outs. | 3 | | Small thaw-pools common in former channel traces. | Peat 5-10 ft thick
common in former
channel traces. | Minor | Minor slumps on slopes. | Minor if excess ice is present; otherwise negligible. | 1 | | ff
g,s ^f f | Alluvial-fan | indicated;
locally pebbly.
Gravel or sand. | 0-30 ft | Alluvial fans and aprons: far
along abandoned channel of
Horton River periodically
receive sediment. Alluvial fans: undisturbed
surface stable. | Adjacent to esca
ments cut in sha
or capped by cla
diamicton. Adjacent to F ^G | le | Good except on gentle
and flat slopes where
active layer is satu-
rated during melt season.
Good | 2 ft ± on more
gentle slopes. | Minor | Mudflow may occur on slopes. Minor slumps. | Minor to moderate on
gentle slopes,
Nil | - | | r ^G | Outwash terrace. | Sand, gravel, or interbedded sand and gravel as indicated; | | Flat terrace: some relief due
to channel traces and bars. | Underlain by shR | Little or no excess ice. | Drainage good, except
on larger flat areas | Negligible except
on larger flat areas | g-Negligible | Negligible | N11 | Ŧ | | ₽ ^G
₽
_G | Outwash plain.
(excluding areas in
Eskimo Lakes basin) | local pebbly beds and
gravelly channel-fill
Same as above:materia
become finer grained
toward their northern | s. Cls Generally 20 ft- but may be as thin as 10 ft in | relief (< 20 ft) due to rare
terraces, channel traces, and | Underlain by sh | c in Gravel generally free of excess ice; sand contains little excess ice (< 10%); | and in channel traces: thaw-pools common in latter areas. Same as above. | and in channel traces. Same as above. | s-Minor | Minor slumps on slopes. | Minor | - | | g P
FG
*,g P | Outwash plain; | edges: locally covere
by veneer of silt
(0-3 ft). Sand, gravel, or inte | gravel may thin to 10 ft. | a: small thermokarst basins; dun | es | shot hole logs and thermo-
karst lakes suggest icy
sediments or massive ice at
depths of 20-200 ft: excess
ice common in silty veneer.
Excess ice generally neg- | Very good | Negligible, except | g-negligible | Ice slumps may occur where icy sediments are present above base of slope. | Negligible generally;
but moderate to major
if thaw extends down
to icy sediments or
massive ice. | | | , g ^{FG} | modified by
thermokarst.
(excluding areas in
Eskimo Lakes basin) | bedded sand and grave
as indicated: a few
pebbly beds and
gravelly channel-
fills in sand. | 1 gravel may be as
thin as 10 ft. | features accordant; local relief to 150 ft. | | ligible: shot hole logs and deep thermokarst depressions indicate massive ice and icy sediments at depths of 20-200 ft. | rely good. | in some depressions. | s-Minor, | Minor slumps on
slopes: ice slumps
may occur if icy
sediments are above | Negligible to major
depending on ice content
of sediment and depth of
thermal disturbance: | 7 | | FG
K
G
K
F
K
F
K
F | Hummocky outwash;
morphology due to
thermokarst? | Same as above. | Same as above. | Hummocky to gently rolling;
local relief to 150 ft. | Shot hole logs suggest that area of M and Mv are present within this unit. | Same as above. | Very Good. | Same as above. | | base of slope; ice
slumps will form in
areas of M and My. | minor to moderate in areas of M and M $_{f y}$, | | | .8 ^r m | Hummocky outwash. | Sand and/or gravel. Gravel | No data. | Hummocky; local relief to
100 ft.
Linear features 200-2000 ft
wide; locally multiple ridges | | No data; excess ice probably minimal. Probably nil; massive ice may be present in under- | Fair Very good. | Peat in depressions. | Minor
Negligible | Minor slumps on slopes. | Probably negligible or
minor.
Nil except if thaw line | + | | F ^G P | Outwash plain.
(Eskimo Lakes basin) | Sand; organic detri-
tus: upper 8 ft may
be silt or clayey silt | 20 fti | or hummocky. Flat outwash plain: active ice slumps on recently steepened slopes. | Unit probably grades to GC k | lying sediments. Silty beds are icy: massive ice near base of unit. | Fair | Generally €1 ft. | Minor | Ice slumps on slopes. | intercepts icy sediments
or massive ice.
Minor (≼6 ft) except if
thaw line intersects
massive ice. | + | | ●F ^G p | Outwash plain.
(Eskimo Lakes basin) | Sand; organic detri-
tus; a few silty beds
near top of unit. | 10-30 ft | Same as above. | | Silty beds may be icyt mas-
sive ice common near base
of unit. | Fair | Same as above. | Minor | Ice slumps if base of slope lies below level | Same as above. | + | | s ^{FG} pk | Outwash plain:
modified by
thermokarst.
(Eskimo Lakes basin) | Same as above. | 10-30 ft | Outwash plain, many depression 10-100 ft deep: active ice slumps on recently steepened slopes. | ns | Same as above. | Fair | Peat may be
10-30 ft thick
in depressions. | , | of massive ice. | | - | | L
L
L ^G | LACUSTRINE DEPOSITS:
The mokarst lake
basins. | Texture of deposits related to adjacent map-units. | 5-20 ft + | Flat to gently sloping areas; frequently "stepped": heaving active in some localities: blow-outs in sandier basins. | | Ice lenses common in fine-
textured deposits (excess
ice content to 60%) massive
ice under pingos and domes. | Commonly marshy. | 5-10 ft of peat common. | Negligible | Negligible | Moderate if ice content high | h. | | c K | deposits: modified by thermokarst. | Clay, silty clay. | 10 ft + | Rolling: local relief 50-100 feet. | | Commonly icy: 50% excessice common. | Fair to poor. | Negligible except
in depression. | Negligible to
minor. | Negligible | Minor to moderate probable, | | | 3,gLG | Glacio(?)lacustrine
deposits. | Thinly bedded silt,
clay and sand; sand
and gravel where
indicated: material
commonly relates to
adjacent map-unit. | 10-20 ft | Flat to gently sloping plain: "terraced" in some localities. | | Ice lenses in finer tex-
tured deposits: massive
ice in pingos. | Thaw-pools common on surface: drainage generally poor. | | Negligible to
minor, | Negligible | Minor to moderate. | | | | MORAINAL DEPOSITS Moraine | Stony clayey diamic-
ton: one sample 43%
>2m; remainder 19% s,
29% si, 52% cl. | 40 ft ± | Low rolling hills: ice slumps present on recently steepened slopes. | | Commonly 20% excess ice. | Feir: small pools common
along ice-wedge networks, | Negligible | Negligibl e | Ice slumps on slopes. | Moderate to major. | + | | | Moraine: modified by thermokarst. | Clayey diamicton: samples run 10% t >2m; 10-20% s, 20-40% si, 50-65% cl: pockets of sorted silty and clayey | 15-50 ft | Hummocky to rolling: local reli
to 150 ft +: hills are "involut
in the Tuk area with characteri
pattern of ridges and swales wi
2-10 ft relief: active ice slum | ed"
stic
th | Till often icy, reticulate ice lenses - excess ice to 20%: mud-flow debris free of excess ice: pond deposits icy"; massive ice common at base of till in "involuted" | Fair: poor in swales on "involuted hills". | Generally negligible: irregular patches of peat up to 10 ft, especially in | Negligible | Minor ice slumps if
disturbance shallow;
major ice slumps if
massive ice exposed. | Minor to moderate. | | | F | Morainal deposits
overlying (?)
fluvial sands. | deposits. Clayey diamicton. | No data, but diamicton believed to be >15 ft. | Hummocky to rolling: local relito 150 ft ±: ice slumps active. | | hills". | Fair | "involuted hills". Up to 15 ft ± of peat in depressions and in irregular | Negligible | Ice slumps on slopes. | Moderate | - | | Mv
F,() | deposits overlying
fluvial and/or
marine sand:
modified by ther- | Clayey diamicton:
fluvial sands gene-
rally medium to
coarse with rare | Diamicton thick-
ness 0-15 ft,
rarely to 30 ft+:
underlying sands
30 ft+. | Rummocky to rolling: local relief to 150 ft +: ice slumps where thick icy till caps recently steepened slopes. | Shot hole logs
indicate greater
thickness of diami
ton than seen in
most exposures and | ice in underlying deposits
c- at depths of 20-200 ft. | Fair | patches on hills. Same as above. | specially marine sand, is near surface. | Minor ice slumps in
diamicton veneer;
slumps and flows in
sand: major ice slumps
if marelye ice exposed. | Minor: major if thew line intersects massive ice. | | | Mv K | Chin morainal
deposits overlying
marine deposits:
modified by | to medium. Clayey diamicton: marine clay and fine to medium sand. | | Rolling: local relief exceeds
100 ft, but generally less
than 40 ft: ice slumps on
recently steepened slopes. | indicated in this table. Same as above. | Diamicton probably icy:
thick ice lenses occur
in deformed marine sediments. | Poor to fair: low areas often marshy, | Sише ан аbove, | Minor | ico slumps on slopes. | Minor to major, dependent upon presence of excess ice and depth of thaw line. | + | | Mv K G | eposits over shale: | Clayey diamicton:
mderlying material | clayey units 15 ft ±. Diamicton thick- ness generally | Rolling: local relief exceeds 100 ft in some places. | | Diamicton commonly icy: ice lenses rare in | Fair | Same as above. | Negligible | Ice slumps on slopes. | Minor to moderate. | + | | Mv I d | okarst. | ame as above. | 0-15 ft, locally
thicker.
Diamicton thick-
ness 0-15 ft. | Sloping plain: some local relief due to stream incission. | | weathered shale. Same as above. | Fair to poor. | Same as above, | Minor | Minor ice slumps and superficial mud-flows. | Same as above. | + | | m a | eposits over arine(?)silts. | mderlying material s interbedded silt, clayey silt and | Diamicton thick-
ness 0-15 ft,
rarely to 30 ft:
underlying silts
20 ft. | Broad channels give unit
local relief to 100+: ice
slumps common on recently
steeped slopes. | | Diamicton generally icy:
ice lenses and massive ice
common in underlying silts. | Fair to poor. | Peat to 15 ft in channels. | Minor | Ice slumps on slopes. | Same as above. | + | | M _{G,K} ∫ G | LACIALLY MODIFIED DEPC
Laciated marine
ands: modified by
hermokarsc. | SITS Larine sand gene- ally fine-grained: ine-grained dune and through poorly orted gravel to clayey diamicton | Marine sand gene-
rally 50 ft +:
cliff-top dunes
5-15 ft: poorly
sorted gravel 0-2
ft: clayey diamic- | on a few hill-crests. | Shot hole logs from
north end of .
Richards Island
indicate clayey mat
rial, 10-30 ft +
commonly caps unit | contain little excess ice,
but thermokarst suggests | Good | Negligible, except
in some depressions | Minor | Minor slumps and flows:
major ice slumps if
massive ice exposed | Negligible to minor | | | y, f _{G,K} I | e s
ce-thrust marine M | lacio-fluvial and acustrine deposits long some depres- ions. arine sand gene- S | | Hummocky: local relief to | (?). | Sand appears to be free of | Variable | 15 ft of peat in | Minor | | | | | by I | nd clay: modified from the modern from the first fluvial fluvial from the first fluvial fluvial from the first fluvial fluvial fluvial from the first fluvial flu | luvial sand medium-
rained: clay locally
ilty. | 0 fr + | 50-100 ft relief due to closely-spaced gullies: | Underlain by inter-
bedded sand and ma- | excess ice, but massive ice (20 ft +) under clay common. Sands free of excess ice. | Good | some depressions | Minor | Same as above | Minor to major Negligible in general; | - | | | 8 | luvial sand medium-
rained, rare beds
f woody detritus. | 0 ft + | Same as above: active | rine clay: clay may
outcrop locally. | Clay locally contains | Fair | Negligible | Minor to major | Earth and ice slumps | moderate to major if icy sediments or massive ice are near surface. Minor to moderate | | | カー | ARINE DEPOSITS arine deposits. S | | | | Unit is underlain | Fine sand contains up to | fair to poor: thaw- | Negligible | Minor | on slopes Ice slumps on slopes | Moderate | + | | 17 H | b | edded silt, clay, land sand. | ying deposits
20 ft. | | by shale: beaches
may be present at
edge of unit. | 50% excess ice: large ice wedges common. Same as above: reticulate network of ice lenses in clay. | pool common along
ice wedge networks | Negligible | Minor | Same as above | Moderate | 1 | | TK m | odified by ther-
okarst. | Same as ≰(?) S | ame as ¢(?) | ently sloping plain inter-
upted by flat-bottomed
hermokarst basin: local
elief to 30 ft. | Same as ≰(?) | Same as &(?) | Same as #7 pools common in thermokarst depres- sions | Generally negli-
gible: peat to
5 ft in some
depressions | Minor | Same as above | Moderate | 1 | | ຕ ^A ar | nd beaches. | and, gravel. 2- | 2
1ı.
dı | -8 ft above mean sea level: p
gher ridges inundated only m
uring highest storm tides. | nderlain by finer
oorly sorted
aterial. | Little excess ice. | Very good | Nil | N11 | Negligible | N11 | + | | /v | or de nu Tu | ganic: sandy posits along orth edge of k Pen. lt, clayey silt: 20 | a
f | requently inundated. | agoons are flooded
ake basins and
bandoned stream
hannels. | Permafrost generally present: no data re excess ice. | Poor; commonly marshy Poor: surface often | Up to 2 ft Negligible | Negligible Shallow gullys | Negligible Nil | Minor to moderate | | | M | B E | ndy where indi-
ted. | | at; frequently inundated. | | Distribution of perma-
frost irregular: ice
lenses in frozen
material. Same as above. | saturated; local marshy areas Poor surface; often saturated; marshy | Negligible | might develop if natural drainage interrupted. Same as above | N11 | Negligible Minor in areas of permafrost. | + | | M Ou is | ter deltaic Si | lt, clayey silt. 20 | ft + Sa | me as above | | Permafrost thins toward
outer edge of islands:
ice lenses in frozen | Same as above | Negligible | Same as above | Ní 1 | Same as above | + | | | 1a | at:interbedded 3-
custrine silt
mmon near base. | | gh-centre peat polygons:
me low-centre polygons. | | material. Ice content high: moisture content many times dry weight common. | Water common along
traces of ice wedges
and in low-centre
polygons | | N11 | N11 | Minor to moderate; very minor if drainage maintained and upper layer | r | | 100 | no | n-bentonitic:
in colluvial | 10 | 00-200 ft high: streams c
tively down-cutting t | ajor slumps along
oast where combus-
ion of coal has | Negligible | Good | N1 1 | Major | Slumps and superficial
debris flows | of peat is not removed | | | Und
(Li | DIFFERENTIATED DEPOSIT: differentiated Si 2) deposits. di ortheast of or | ver. | a | | eakened shale. | No data. | Fair | Negligible | Negligible | Minor ice slumps on slopes | Minor to moderate |
 | | Tul
Der
Und | k and near
nis High Hill) | bably sand or No | data Ger | itly rolling plain: | | No data. | Poor to fair | Large areas of | Minor | slopes Minor slumps | Minor | | | U Und | differentiated Cla | yey diamicton. | ft + F1 | et plain: ice slumps on ently steepened slopes. | | Excess ice common. | Fair | peat, 10 ft ± thick Negligible | Negligible | Major ice slumps on slopes | Moderate | | | (L, mod mok | M) deposits: dia
lified by ther-
arst. | data, but No | swa on data Hun | ling with many small eles: ice slumps common recently steepened slopes. mocky: local relief to | | Excess ice common. | Fair: water common
along ice-wedge
traces. | Peat common in depressions Peat appears to | Negligible Minor on sandy | Major ice slumps on
slopes | Moderate | | | | | bably clayey till
/or glacio- | | mocky: local relief to | | water | | Peat appears to
be thick in
depressions | Minor on sandy slopes | Ice slumps possible on slopes | Probably only minor | | ^{1.} For distribution maps of pingos and ground ice slumps see Mackay, 1963. ^{2.} Excess ice is frozen water in excess of the amount needed to saturate the soil. It is expressed as volume per cent of a sample of the material in a thaved state. ^{3.} Potential for landscape damage following man-induced disturbances is proportional to numerical value assigned to map-unit.