OPEN FILE 712 - Mikkel Schau and K. Ashton

LEGEND

9 DYKES DIABASE (1.4 GAK/Ar)

INTRUSIVE

8 GRANITE LATE GRANITE TO GRANODIORITE (1.8 GARb/Sr)
INTRUSIVE (INTO 2.1, AGN)

NW FAULTING (NORTHEAST SIDE DOWN AND/OR DEXTRAL MOVEMNT)

PD DUBAWNT GROUP (1.9 GA U/Pb)

MARTELL SYENITE: TRACHYTE AND/OR SYENITE LLS AND

CHRISTOPHER ISLAND VOLCANICS: F, TRACHYTE LOW, M, RED MUDSTONE, ST, SANDSTONE AND/OR TUFF, A AGGLOMERATE, BX, INTRUSIVE BRECCIA

Pok

KAZAN ARKOSE: CROSSBEDDED, RIPPLED, RED TØLEACHED ARKOSE

Posc

South Channel Conglomerate: Conglomerate, Reccia

UNCONFORMITY

NE FAULTING CUT AN AND AGN, MAY OFFSET GABBRO, PRECEDE AND COEVAL WITH PD

PEGMATITES (NOT SHOWN ON MAP) BIOTITE-BEARING SIMPLE EGMATITES COMMONLY SEEN IN AG AND 4 WITH WEST OF ORTH TREND IN W AND EAST OF NORTH TREND IN E

, NS FAULTING (WEST SIDE DOWN?)

INTRUSIVE

GABBRO

URALITIZED, OFTEN GARNETIFEROUS, LOCALLY SARED
WITH BIOTITE FOLIATION, MAY LOCALLY INCDE 5 AND 1
AND AGN. INCLUDES XENOLITHIC FRAGMENTS (1 AND AGN.

INTRUSIVE

GRANITE WITH BLUE APATITE AND TOURMALINE EMPLACED LAND SHEARED BY, CHESTERFIELD FAULT ZONE

BY CHESTERFIELD FAULT Z

CHESTERFIELD FAULT ZONE

EAST-WEST TRENDING REVERSE FAULT, LOCALLY, D PROBABLY GENERALLY, STEEPLY NORTH DIPPING, BRINGI HIGHER GRADE ROCKS OF THE NORTH OVER LOWER GRADE ROCKOF THE SOUTH.

PLUTONIC COMPLEX (2.4-2.5 GARb-Sr WR)

A) SHEARED TO GNEISSIC, CHLORITIZED, SERIC ZED, AUGENED, GRANITIC TO GRANODIORITIC, PLUTONIC ROCK; IGRANODIORITE COMPLEX WITH LOCALLY PORPHYRITIC PHASES AND AGNETITE AND SPHENE-BEARING PORTIONS EXTENSIVELY DEVELOR TO NORTH AND EAST; C) FLUORITE-BEARING, SHEARED GRANITE GRANODIORITE

INTRUSIVE

IN NORTHWEST CORNER

ANORTHOSITE COMPLEX

A) ANORTHOSITE BLOCKS; B) COARSE GRAINED HYRSTHENE AND CLINOPYROXENE-BEARING LABRADORITE, ANORTHOSE TO LEUCO-GABBRO (STREAKY OR LINEATED); C) FINE GRAIN, RECRYSTALLIZED B; D) LAYERED WITH FELDSPAR-RICH AND PYROXE-RICH LAYERS INTERCALATED AT CENTIMETER TO DECAMETER SCA; E) FERROGABBRO TO FERRODIORITE DYKES AND LAYERS; F)HARNOCKITIC-MANGERITIC GRANOPHYRE

INTRUSIVE

GRANULITE COMPLEX (2.6 GA+ U/Pb.on Zircon)

UNDIFFERENTIATED GRANULITE COMPOSED OF VARIS PROPORTIONS OF PLAGIOCLASE, PYROXENES, ± GARNET ± QUART PERTHITE; MAY CONTAIN PARTS OF 1

P) PLAGIOCLASITE (BYTOWNITE) LAYERS

G) GARNET-PLAGIOCLASE-QUARTZ GNEISS

S) KYANITE-BEARING QUARTZ-PERTHITE-GARNET-GAPHITE-BIOTITE ROCK; LOCAL PODS OF ORTHOPYROXENITE; MAY CONTAIN PARTS OF 1, ESPECIALLY 1D

WITH AGN TO NORTH IS OF TWO TYPES; A) A WNWSTEEPLY DIPPING SHEAR ZONE WITH BRECCIA; AND B) A SURFACE STPARALLEL TO NEARBY LAYERING IN WHICH MAY BE A THRUST, ALHOUGH ALTERNATE EXPLANATIONS ARE NOT PRECLUDED.

GNEISS COMPLEX (2.7 GA+U/Pb on zircon)

GRANITIC GNEISSES RICH IN BIOTITE, INTERCALED WITH AMPHIBOLITES AND LOCALLY CONTAINING INCLUSIG OF TALC SCHISTS

NOT IN CONTACT

METASEDIMENTARY COMPLEX

MIDDLE GRADE METAMORPHIC ROCKS, S, INCLUDINGARNETITES, EPIDOTE BIOTITE SCHISTS, MARBLE TREMOLITE SCSTS AND QUARTZOFELDSPATHIC GNEISSES AND, M, AMPHIBOUES LOCALLY GARNETIFEROUS

GEOLOGICAL BOUNDARY (DEFINED, UNCERTAIN, GRADATIONAL, ASMED)

BEDDING, TOPS KNOWN, UNKNOWN

METAMORPHIC LAYERING, GNEISSOSITY AND LAYERING IN HIGH GDE ROCKS
WHERE QUARTZ, FELDSPARS AND MAFIC MINERALS & LAYERED
ON MILLIMETER TO CENTIMETER SCALE

MARKER BEDS IN GRANULITE

FOLIATION, SCHISTOSITY, OFTEN ALIGNMENT OF MAFIC MINERAL BUT MAY GRADE INTO GNEISSIC GRANITIC ROCK IN 2

MINOR FOLDS ARE ABUNDANT AND OF MANY GENERATIONS AND ORIGINAL IN THE GNEISSES, BUT ARE RELATIVELY RARE AND GENERAL SHALLOWLY WEST PLUNGING IN THE GRANULITES

MINOR FAULTS ARE VERY COMMON ALONG CHESTERFIELD INLET AND ATTEMPT HAS BEEN MADE TO PUT THEM ON MAP

FAULTS, HIGH ANGLE FAULTS (DEFINED, ASSUMED), THICK ON NDROPPED SIDE, ARROWS SHOW APPARENT MOVEMENT, POSSIBLE THT?

DIRECTION OF FAULT

MINERALS, Cu - MALACHITE AND LOCAL CHALCOPYRITE, FL, PUE FLUORITE, SE, SERPENTINE, SA, SAPPHIRINE, S, SILLIMANITE, KYANITE (BASEMENT ROCKS NEAR UNCONFORMITY AND FAULCONTAIN PREHNITE, PUMPELLYITE, CHLORITE AND/OR EPIE.

SUBJECT TO REVISION. NOTICE OF ANY REVISIONS OR ADDITIL GEOLOGICAL INFORMATION KNOWN TO USERS OF THIS OPEN FILE MAP WOULD GRATEFULLY RECEIVED BY THE AUTHORS.

The region within 5 km of the coastline of Baker Lake and all islands in these map sheets has been designated as within a caribou crossing area. Land use regulations prohibiting geological mapping in caribou crossing areas first started in 1977 and as a result the geology on the easternmost Bowell Islands and Rio Island and the south coast of Baker Lake has not been studied by the authors. Persons entering the area must obey the Caribou Protection Regulations and notify the Land Use Section, Northern Environment Branch, Indian and Northern Affairs Department.

Geology by Wright, 1967; Donaldson, 1965; Reinhardt and Skippen, 1973; (Reinhardt, Chandler and Skippen, Open File 703, 1980); Schau and Hulbert, 1976; Schau and Ashton, 1978; Blake, 1980; compiled by Schau and Ashton, 1980.

The topography for this map was reproduced from 1:250 000 topographical map sheets, published by the Department of Energy, Mines and Resources (56D in 1956 and 56C in 1959). Users are warned that modern 1:50 000 maps, from the same source, position the $94^{\circ}00W$ latitude $\sim\!200$ m to the east so that using maps of different ages will lead to mislocations.

Air photographs covering these map areas may be obtained through the National Air Photographic Library, Topographical Survey, Ottawa, Ontario.

JULY 1980
GEOLOGICAL SURVEY
COMMISSION GÉOLOGIQUE
OTTAWA

OPEN FILE