

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

GEOLOGICAL SURVEY OF CANADA OPEN FILE 2091

Gallium and Germanium Potential of Sydney Basin Coals, Nova Scotia

J.C. White

Atlantic Coal Institute P.O. Box 1594 Sydney, Nova Scotia B1P 6R8

1990

Contribution to the Canada-Nova Scotia Mineral Development Agreement 1984-1989, Contract 23233-7-07501 01SZ

TABLE OF CONTENTS

		PAGE
1.	SUMMARY	1
2.	RECOMMENDATIONS	2
3.	ACKNOWLEDGEMENTS	2
4.	INTRODUCTION	3
5.	BACKGROUND 5.1. Gallium and Germanium Utilization 5.2. Occurrence of Gallium and Germanium in Coals	3 3 3
6.	SAMPLE COLLECTION AND HANDLING 6.1 Field Collection 6.2. Sample Preparation and Storage	4 4 4
7.	ANALYTICAL PROGRAM 7.1. ASTM Ash Content 7.2. Total Sulphur 7.3. Gallium, Germanium and Multi-Element Analysis 7.4. Sulphide Concentrates 7.5. Float-Sink Analysis 7.6. Mineralogy: Scanning Electron Microscopy 7.6.1 Introduction 7.6.2 Sample Preparation 7.6.3 Manual Analysis S.E.ME.D.X 7.6.4 Automated Analysis:S.E.ME.D.XC.M.A.	9 9 9 10 10 12 12 12 12 13
8.	GALLIUM AND GERMANIUM ENRICHMENTS 8.1. Seam Enrichments 8.2. Pyrite Concentrates and Float-Sink Analysis 8.3. Scanning Electron Microscopy 8.3.1 Manual Analysis S.E.ME.D.X. 8.3.2 Automated Analysis S.E.ME.D.XC.M.A.	13 13 15 18 18
9.	REFERENCES	20

LIST OF TABLES

- TABLE 1 Sample inventory and stratigraphic position
- TABLE 2 C.M.A. Chemical Classes
- TABLE 3 Gallium and germanium enrichments within and among seams in the Sydney Basin
- TABLE 4 Comparison of gallium and germanium concentrations within the stratigraphic section of the Sydney Basin
- TABLE 5 Summary of minerals encountered in S.E.M. manual analysis

LIST OF FIGURES

- FIGURE 1 Idealized stratigraphic column of the Sydney coalfield showing major coal seams
- FIGURE 2 Location map Sydney coalfield
- FIGURE 3 Sample preparation flowchart
- FIGURE 4 Head motion of Wilfley Table
- FIGURE 5 Distribution of table products

LIST OF APPENDICES

APPENDIX I	Stratigra	phic columns	
APPENDIX II((A) Analytica	l data	
APPENDIX II((B) Gallium o	oncentrations w	vithin seams
APPENDIX II((C) Germanium	concentrations	within seams
APPENDIX II(D) Binary pl	ots	
APPENDIX III	(A) Automated	S.E.MC.M.A.	[data tables]
APPENDIX III	(B) Automated	S.E.MC.M.A.	[plots]

1. SUMMARY

- 1. Gallium (Ga) and germanium (Ge) concentrations from 11 seams in the Sydney Basin were compiled from channel samples collected by the Atlantic Coal Institute (ACI) and core made available by the Nova Scotia Department of Mines and Energy (NSDME). Compiled information was then compared with previously existing geochemical data.
- 2. Ga is enriched in ash of coal samples from the top of the Hub, Phalen and Gardiner seams and at the bottom of the Harbour seam (Lingan site).
- 3. Ga is enriched in whole coal calculated values at the top of the Indian Cove and bottom of the Spencer and Gardiner seams. These sites also correspond to relatively higher ash contents.
- 4. Due to its positive correlation with ash, Ga appears to be contained in the mineral fraction of the coal. However, as Ga-Zn, Ga-S and Ga-Al plots showed no obvious trends, the correlation of Ga with specific mineral species (i.e. sphalerite, pyrite, clays) could not be determined.
- 5. Ge is enriched in ash of coal samples from the top of the Hub, Harbour (Novaco) and Gardiner seams, and at the bottom of the Lloyd Cove, Harbour (Lingan) Phalen and Emery (Rider) seams. The Point Aconi seam displays high Ge values throughout the seam section sampled. The latter, however, may be due to outcrop exposure to sea water.
- 6. Unlike Ga, Ge generally tends to exhibit enrichments in whole coal calculated values. This suggests a negative correlation with ash and supports an organic residence for germanium.
- 7. Lower Ga and Ge values in older seams (ie Mullins, Tracy and McAuley seams) may be related to the depositional environment or the absence of marine water infiltration after coalification.
- 8. Since neither Ga nor Ge were found to be enriched in pyrite concentrates (the dominant sulphide species present in the coals), it appears that these elements are not hosted by pyrite.
- 9. Preliminary geochemical analyses of coal and ash float-sink fractions tend to support an organic association for Ge. Further work, however, is necessary to corroborate these findings.
- 10. Elemental variations between the Lingan and Novaco sampling sites of the Harbour seam reveal that within seam enrichment trend are not always laterally consistent.
- 11. Neither manual (non-computerized) nor automated (computerized) scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) of a wide range of minerals failed to detect either Ga or Ge. This suggests that the nature of Ga and Ge elemental occurence in Sydney Basin coals is extremely disseminated, and below the detection limits of the energy dispersive X-ray system.

2. RECOMMENDATIONS

- 1. To further outline within seam lateral elemental variances, additional channel samples should be taken of those Sydney Basin coal seams that display Ga and/or Ge enrichment.
- 2. Additional float-sink analyses should be completed on those samples exhibiting Ge enrichment in order to confirm elemental affinities in the organic fraction of Sydney Basin coals.
- 3. Samples of ash residues that have been correlated to source coal seams should be collected from coal burning utilities. The latter would facilitate the monitoring of Ga and Ge concentrations contained in Sydney Basin coals over time.

3. ACKNOWLEDGEMENTS

The scope of analytical work required for this project encompassed all employees of the Atlantic Coal Institute and credit must go to the following staff members:

Dieter Birk Helen Costello Alexander Dove Donna McMahon Robert O'Donnell Jean Sibley

X-ray Assay Laboratories provided supplemental analytical support

This work was carried out under contract with the Geological Survey of Canada. The scientific authority responsible for supervising the contract was Dr. T.C. Birkett. The typescript of this report was reviewed and edited by Dr. A.L. Sangster and D.G. Richardson (both of the Geological Survey of Canada). D.G. Richardson also prepared the text, figures and appendices for Open Filing.

4. INTRODUCTION

During 1985-86, comprehensive study of the chemical composition of coals and associated rocks of the Sydney Basin, Nova Scotia, was completed by Atlantic Coal Institute (ACI) under contract with the Geological Survey Canada (GSC) [contract #48SZ.23233-5-0855; Birk et al., 1986). The combining of E. Zodrow's (University College of Cape Breton) existing geochemical coal data with analytical results obtained by the ACI resulted in the creation of a sizeable geochemical database for Sydney Basin coals. Within this database, certain samples exhibited enrichments in gallium (Ga) germanium (Ge) in concentrations of potential economic interest. prompted the GSC to contract to ACI follow-up study that would identify the concentrations mineralogical occurrences of Ga and Ge in Sydney Basin coals.

5. BACKGROUND

5.1. Gallium and Germanium Utilization

Ga and Ge utilization has become increasingly important both the electronics and telecommunications industries. Ga. in the form of arsenide (GaAs) and phosphide (GaP), is primarily used in the manufacture of light emitting diodes and solid state lasers. also has potential applications in the construction of solar cells and computer memories (Habashi, 1988).

Ge is utilized in the manufacture of transistors and rectifiers, fiber optics, infrared glasses, and semiconductors (Lang, 1969; Habashi, 1988). Japanese research has also ascertained that

utilization of Ge in medicines enhances the body's cell functioning and capability to 'fix' greater quantities of oxygen. Preliminary tests indicate these medicines have potential application in the treatment of a variety of ailments, including cancer (Jamison, 1987).

The annual increase in demand for Ga and Ge by the rapidly growing electronics industry is expected to be five to ten percent from 1983 to 2000 (Wardell and Davidson, 1987). In order to satisfy expected demand, new sources of these relatively rare elements are widely being sought, including their abundances in coals.

5.2. Occurrence of Gallium and Germanium in Coals

Many authors have reported on the enrichment of both Ga and Ge along coal seam margins and within rider seams, and the suggestion has been made that elemental enrichment in these zones may be a function of ground-water sorption (Miller and Given (1978); Dalton and Pringle (1962); and, Breger (1958).

Goldschmidt (1954)noted that within most coals, Ga occurs primarily in aluminum-rich minerals, with lesser amounts occuring sulphides. Aluminium- rich minerals were identified as the source of Ga in coals by Swaine (1975), while Miller and Given's (1978) work indicated that Ga replaced aluminium in the clay fraction. In his study of Illinois coals, Ribbe (1975) detected Ga in sphalerite. Bonnett and Czechowski's (1980) work suggests that Ga may also be organically bound the coal matrix. geochemical study of British coals determined that Ga was the principle present in extracted metalloporphyrins.

Ge has long been thought to be concentrated in the organic fraction

of coals. This conclusion was originally based on the inverse correlation between total ash and Ge content and the frequent enrichment of Ge in the vitrain component of coal (Bernstein, 1985). Analyses and washability studies by Gluskoter et al., (1977) have illustrated that of all the elements in coal, Ge had the highest organic affinity with very little Ge occurring in the mineral fraction. The determination by Manskaya et al., (1972) that lignites absorb and retain considerable amount of Ge in an acid medium also supports the organic affinity of this element.

Hawley (1955) was one of the first to note the enrichment of Ge at seam margins of coals from the Sydney Basin in Nova Scotia. The ACI's 1985-86 study sampled many of the same seams studied by Hawley (1955), including the Lloyd Cove, Harbour, Backpit, Phalen, Emery, Gardiner, Mullins and Tracy seams.

6. <u>SAMPLE COLLECTION AND HANDLING</u>

6.1 Field Collection

The samples utilized for this study consisted primarily of those collected during the 1985-86 field season by the ACI for its initial geochemical study of Sydney Basin coals (Birk et al. 1986). samples included outcrop, open pit, underground mine and NSDME core samples. Seams sampled at that time included the Lloyd Cove, Harbour, Indian Cove, Phalen, Emery, Spencer, Mullins, Tracy and McAuley. In order to minimize the effects of oxidation, the ACI archived collected samples in plastic bags under a nitrogen atmosphere.

For the purposes of this follow-up study, a channel sample from the Gardiner seam and a partial

channel sample from the Point Aconi seam were sampled during the 1987-1988 field season by ACI personnel. An inventory of all samples collected by the ACI is shown in Table 1. Figure 1. illustrates stratigraphic position of each seam sampled in the Sydney Coalfield, while Figure 2 shows geographical locations. Stratigraphic columns of each channel sample collected along megascopic descriptions are contained in Appendix I.

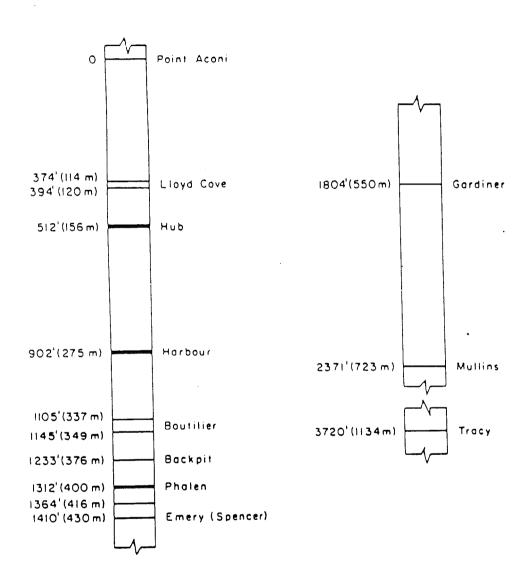
strip mine and outcrop At sites, a cement saw was used to make two parallel cuts, approximately 20 cm apart, down the thickness of the seam. Coal samples were extracted every 15 cm and clay partings and coal/clay transition zones sampled separately. In underground mines, chisels were used to cut channels for sample extraction. Samples were also collected from the overclay and underclay at varying intervals depending on lithologic changes and accessibility. Archived core was sampled at the NSDME core laboratory in Stellarton, Scotia. To sample previously crushed and pulverized archived core, splits were taken of the various intervals that comprised the coal seam, roof and floor.

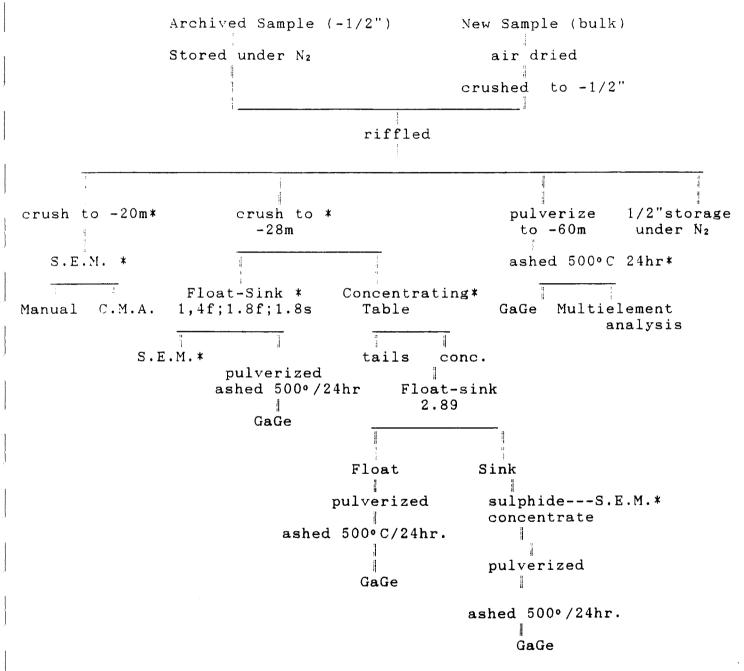
6.2 Sample Preparation and Storage

Archived samples were retrieved from storage and prepared for analysis according to the flow chart presented in Figure 3. Samples collected from the Gardiner and Point Aconi seams were air dried and crushed to -1/2" using a Straub Model 4E grinding mill prior to being processed and prepared for analysis according to the procedures outlined in Figure 3.

All samples were pulverized to

TYPE	core -1980	-82	A.C. chan 1985	nel -86	chann 1987-	el 88
SEAM	chan	 . # 	chan	. # 	chan.	#
POINT ACONI					1	ò
LLOYD COVE Upper			1	12		
(Bonar) Lower			1	17		
HUB (Stubbart)			1	16		
HARBOUR (Sydney Main)			2	33		
BOUTILIER						
BACKPIT (Indian Cove)	2	25				
PHALEN			1	14		
EMERY (Spencer)	2	23	2	30		
GARDINER					1	14
MULLINS	2	29				
TRACY	1	12				
MCAULEY			i	10		




FIGURE 1 Idealized stratigraphic column of the Sydney coalfield showing major coal seams

(conglomerate, grey sandstone, rare coal) (Point Edward formation) red/grey siltstone, mudstone, sandstone, (conglomerate, arkose, shale) GEOLOGY OF THE SYDNEY COALFIELDS (grey mudstone, shale, siltstone, Cope Breton County, N S Ordovician & Cambrian: 7 Conglomerate, grit, sandstone and shale (Greatwire Nember) Granodiorite, quartz monzonite Quartz diorite Pyroclastics, rhyolites George River Series Ordovician:
8 Meadow Lake Formation Mississippi: 10 Vindeor Series 9 Windsor Series Pennslyvanian: 14 Morien Series Morian Series Canso Series Morien Series LEGEND Bi 4 Harbour (Sydney Main) **5**Backpit (Indian Cove) 0 7 Emery (Spencer) Point Aconi 2 Lloyd Cove Seam Samples 86ardiner 10 racy 1 McAuley 9Mullins 6 Phalen 3 H u b 000 Σ ATLANTIC OCEAN D

Figure 2. Location Map - Sydney Coalfield (after Gillis, 1982)

Figure 3.

SAMPLE PREPARATION

* Selected Samples

-60 mesh using a Holmes Model 300 pulverizer, except small samples which were pulverized by hand. Hand crushing followed by sieving was also necessary for the -20 and -28 mesh fractions.

It was necessary to pulverize significantly larger quantities of low ash coal in order to obtain a sufficient quantity of ash for chemical analysis. The latter proved to particularly be problematic NSDME for archived cores. The limited size of certain samples ultimately resulted in the omission of some analyses.

7. ANALYTICAL PROGRAM

7.1. ASTM Ash Content

All samples were routinely analysed for total ash content. Ash analysis was carried out using a Fisher Model 490 Coal Analyser. Approximately 1 gram (± 0.1 mg) of -60 mesh coal was weighed into a fused quartz crucible. The crucible was placed in a cold muffle furnace and heated to 500°C at the rate of 10°C per minute. The sample was further heated to 750°C for four hours until a constant weight was reached. The samples were cooled to room temperature and reweighed. The percent ash was calculated from the difference in the weight of the coal, and the weight of the final product. Sample concentrations are presented Table 5, Appendix II (A).

7.2. Total Sulphur

All samples were routinely analysed for total sulphur content. The total sulphur content of each sample was determined using a Leco Model 521 induction furnace sulphur determinator. In this process, a 0.1 gram sample of -60 mesh coal is burned in a combustion tube, and the

 SO_2 gas yielded in combustion is retained in a dilute HCl solution. The solution is titrated to endpoint using KIO_3 with a starch indicator. The sulphur content is then calculated using the following equation:

where:

A = mls iodate (KIO₃)

B = weight of coal in grams

K = determination factor

(constant)

Total sulphur contents are presented in Table 5, Appendix II (A).

7.3. Gallium, Germanium and Multi-Element Analysis

Where volumes were sufficient, samples in close proximity to the roof and floor of each seam were ashed and analysed for Ga and Ge.

On the basis of the literature reporting an association in coals between Ga and the mineral fraction, previously collected ACI elemental data were scrutinized and those samples displaying elevated aluminum and/or zinc concentrations were reanalyzed for Ga [Goldschmidt (1954); Swaine (1975); Miller and Given (1978); Ribbe (1975) and Glick and Davis (1984)].

Selected samples were placed in a cold muffle furnace and heated to 500°C at a rate of 10°C per minute. The temperature remained at 500°C for 24 hours. The ashed samples were then bagged and sent to X-Ray Assay Laboratories Limited for Ga, Ge and S determinations using X-ray fluorescence (XRF). X-Ray Assay's analytical results are listed in Table 5, Appendix II (A). Table 10, Appendix II (A) contains results from

the duplicate analysis of Ga and Ge in certain samples. Discrepencies in duplicate samples may be due to the inhomogeneous nature of the coal and/or the variability associated with taking sample splits and ashing them at different times. Selected ashed seam samples, which lacked data from the previous ACI study et al., (1986)], were also submitted X-Ray to Assav Laboratories for multi-elemenal analysis. These and previously completed analytical results are listed in Tables 1 to 4, Appendix II (A).

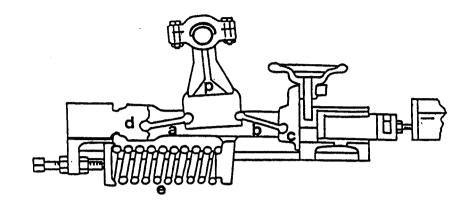
7.4. Sulphide Concentrates

Where sample volume permitted, sulphide concentrates were prepared from those samples that displaying enhanced total sulphur contents. Concentrates were prepared using a Model # 13 1.27 m long by 0.61 m wide Wilfley concentrating table. The longitudinal tilt of the table was set at 3° with a 5° cross tilt and a 20mm stroke length. The head motion of the Wilfley Table is described in Figure 4. Samples ranging in weight from 150 to 500 grams were placed in the feed box and washed over the table at a flow rate of 3 litres per minute. idealized distribution of centrating table product is shown in Although upgraded in Figure 5. pyrite/sulphide content, 'tabled' concentrates still contained a large portion of coaly matter.

In an attempt to upgrade the percentage of pyrite in concentrates, flotation tests were carried out on the initial 'tabled' material. Two types of flotation were used:

1. Concentration of pyrite by floating away the coal using Methyl-Isobutyl Carbinol (MIBC); and Concentration of pyrite by flotation of sulphides using Sodium Ethyl Xanthate as a collector and aerofroth 65 as a frother.

Neither flotation technique significantly increased the yield of pyrite in the concentrates.


A second attempt to upgrade the 'tabled' concentrates utilized separatory funnel filled with bromoform (specific gravity (S.G.) = This density separation technique consisted of the placing of individual 'tabled' concentrates in the bromoform filled funnel; contents were then shaken and allowed to settle for approximately one minute. The sink (S.G. > 2.89) was separated from the float (S.G. < 2.89) and both fractions were dried and weighed. This technique resulted in a more sulphide-rich sink fraction. However, a considerable amount of coaly matter still remained in the sink fraction due to the intimate nature of the sulphides with the organic matter. Recoveries of pyrite concentrates and their corresponding Ga and Ge contents are presented in Table 7 and 8, Appendix II (A), respectively.

7.5. Float-Sink Analysis

Although the contract did not stipulate float-sink analysis, as the project progressed, it was considered useful to separate the coal into 1.40 and 1.80 specific gravity (S.G.) fractions.

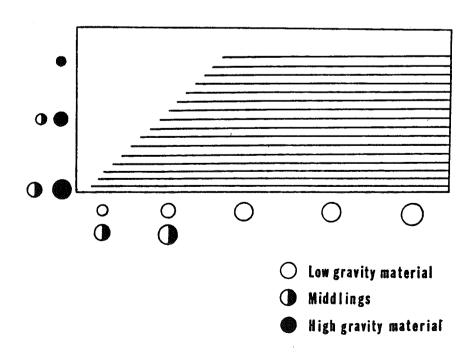

Approximately 500 grams of the bottom sample from the Novaco/Harbour seam [Sample (01-Q), 1.37 to 1.47 m] was crushed to -28 mesh and subsequently split into three samples each consisting of approximately 150 grams. Such a large volume of sample was deemed necessary to provide enough coal in each gravity fraction for analyses of Ga and Ge.

FIGURE 4. - Head Motion of Wilfley Table (B.A. Wills, 1981)

The head motion of a standard Wilfley concentrating table consists of two toggles driven by a pitman (p). The back toggle (b) is seated against a fixed mounting (c), while the front toggle (a) bears on yoke (d) connected to the table deck. The system is held stogether by a spring (e) and driven by the eccentric and pitman. At the beginning of the forward stroke, the toggles are flattened out, and the spring is compressed. As the pitman rises, the toggles steepen out, and are at their most acute angle at the top of the stroke where the table reaches maximum speed. As the pitman descends, the toggle angle flattens out and the direction of the table is abruptly reversed.

Fig. 5 Distribution of Table Products

Each 150 gram split was placed in a separatory funnel with the 1.80 S.G. Certigrav fluid and mixed thoroughly. The sample was allowed to settle for one-half hour and the 1.80 sink fraction was drained and The 1.80 float fraction was then strained, dried and placed into a separatory funnel containing 1.40 S.G. Certigrav fluid and the process was repeated. The latter two-stage procedure resulted in a 1.40 float sample, a 1.80 sink sample and a 1.40 sink and/or 1.80 float sample. Subsequent Ga, Ge, and S analyses completed on the float-sink fractions are presented in Table 9, Appendix II (A).

7.6. Mineralogy: Scanning Electron Microscopy

7.6.1 Introduction

A JEOL T-300 digital beam controlled scanning electron microscope (S.E.M.) equipped with a Tracor Northern Model TN-5500 microanalyser, secondary electron image detector, backscatter electron detector and X-ray detectors was for utilized both manual (noncomputerized/automated) S.E.M. surveys E.D.X. and automated (computerized) Coal Mineral Analyses (C.M.A.).

S.E.M. analyses commenced only after the completion of X-rav fluoresence analysis. In an effort maximize the likelihood of locating the residence sites of Ga and/or Ge in coals, manual S.E.M. -E.D.X. analyses were conducted only on those samples displaying relatively high Ga and concentrations. Meanwhile, the automated C.M.A. program was completed on samples from each seam in order to document the mineralogy throughout the stratigraphic section.

7.6.2 Sample Preparation

Selected samples were split according to American Standard Testina Materials (ASTM) D2013 criteria and stage crushed to -20 mesh [ASTM, (1983)]. Using a Metaserv moulding unit, representative -20 mesh samples were mounted in 25 mm acrylic leucite The resultant pellets pellets. underwent three grinding stages using 240, 400, and 600 grit adhesive backed silicon carbide grinding papers attached to Metaserv grinding laps. This was followed by two polishing first stages, polishing cloth and 0.3 µm alumina powder suspended in distilled water followed by double layered silk and 0.05 µm alumina powder suspended in distilled water. This procedure resulted in a fine polished surface suitable for S.E.M. examination.

Pellet mounted samples were coated with an atomic layer of carbon using a fiber filament Polaron S.E.M. coating system. This was done to prevent beam charging.

A sulphide concentrate from the upper sample of the Prince/Hub seam [Sample (08-A), 0.00 to 0.15 m) was examined as a grainmount by dispersing the concentrate on a carbon planchet, using conductive carbon paint. This mount was also carbon coated using the Polaron S.E.M. coating system.

7.6.3 Manual Analysis S.E.M.-E.D.X..

As noted above, samples were selected for manual analysis on the basis of their Ga and/or Ge content as determined by X-ray fluoresence analysis.

Instrument accelerating voltage was set to 20 KeV with a working distance of 20 mm. After initial image focusing and stigmatism corrections in the secondary electron

image mode (S.E.I.), the backscatter electron detector was activated to establish maximum contrast between macerals and minerals. Photographs were taken with Polaroid PN55 film at 90 second exposures on a high resolution 2000 line CRT. Energy dispersive X-ray microanalysis was performed with a Si(Li) detector and Tracor Northern Model TN-5500 microanalyzer. Spectra were generally collected for 50 seconds and plotted on line by dot matrix printer/plotter. This system is capable of detecting all elements from sodium (Na) [Z = 11] to uranium (U)[Z = 92] in the Periodic Table. Elements below Na are not detected because of the presence of a beryllium window protecting the Si(Li) detector. the Therefore, svstem can differentiate most minerals except for the following:

- 1. Isomers such as pyrite (FeS₂) and marcasite (FeS₂).
- Minerals differing only in light elements (H, Li, Be, B, C, N, O and F)
- 3. Hydrated species (CaSO₄ versus CaSO₄:2H₂O)

Mineral identifications were based on the major element spectral characteristics identified by Huggins et al., (1980). assumptions were made based on petrographic published studies. including: 1) kaolinite and illite are the major clays present, rather than their spectral isomers hallovsite and muscovite: 2) "pyrite" was preferred over "marcasite" unless morphological evidence existed (i.e. sectored or radial crystals); and 3) "siderite" was preferred over "magnetite" or "hematite" even though E.D.X. analysis could not differentiate oxides from carbonates [Sprunk and O'Donnell (1942)].

7.6.4 Automated Analysis: S.E.M. - E.D.X. - C.M.A.

The Coal Mineral Analysis (C.M.A.) software package employed to automatically analyze the mineralogy of coal samples on a particle-by-particle basis. computer controlled S.E.M.-E.D.X. image analysis systems can analyse thousands of particles, information provided by mineralmaceral textures cannot be obtained.

Standard S.E.M. operating conditions for the C.M.A. analysis included an accelerating voltage of 20 KeV, a working distance of 20 mm, a 1.000 nA beam current, and utilization of the backscattered electron image mode (B.E.I.).

The C.M.A. package is designed to classify mineral grains in coal with respect to size and chemical composition. Chemical classification is based on the relative X-ray intensities of eleven different elements, including: Na, Mg, Al, Si, P, S, Cl, K, Ti, Fe and Ca. Table 2, lists the chemical classes used in the C.M.A. program. Results of the automated analysis on the twenty-five samples selected are presented in Appendix III (A).

8. <u>GALLIUM AND GERMANIUM</u> ENRICHMENTS

8.1. Seam Enrichments

Ga and Ge concentrations for both ash and coal are plotted for each seam in Appendix II (B) and Appendix II (C), respectively. Table 3 qualitatively summarizes the enrichment of both elements within and among seams in the Sydney Basin. Ga appears to be enriched in ash of coal samples from the top of the Hub, Phalen and Gardiner seams; and at the bottom of the Harbour seam at the Lingan sampling site. These

TABLE 2. C.M.A. Chemical Classes

Group	Class	Main Elements	Other <u>Elements</u>	Remarks
Quartz	quartz	Si	various	
Silicates	kaolinite illite montmoril mixsil chamosite quarorg	Al/Si	various K/Fe various various various various	montmorillonite mixed silicates organics + quartz
Sulphur bearing	pyrite jarosite pyjar Fe-sul quarpyr gypsum mixsul orgsul	S/Fe S/Fe S/Fe S/Fe Al/Si Ca/S S	various Si/Al/K various various Fe/S various various various	pyrite-jarosite fine pyrites in clay organic sulphur S>70
Chlorine bearing	sylvite halite unkchlor	K/Cl Na/Cl Cl	various various various	unknown chloride
Calcium bearing	calcite mixcarb dolomite ankerite apatite	Ca Ca Mg/Ca Mg/Ca/Fe Ca/P	various various various various various	mixed carbonates
Others	siderite rutile non-int unknown	Fe Ti	various various	highest peak not recognized by computer. EDX intensities incompatable with any of the above groups

enrichments are not apparent, however, when ashed values recalculated to whole coal. Most recalculated whole coal Ga values are less than 5 ppm. Ga enrichments noted at the top of the Indian Cove (SM-17, SM-18), and the bottom of the Spencer (PM-45) and Gardiner seams correspond with elevated ash content. The positive correlation between Ga in coal and ash weight percent is confirmed in the binary plots presented in Appendix II (D). The increase in Ga concentration (in coal) with ash content suggests that Ga is contained in the mineral portion of the sample. However, as Ga-Zn, Ga-S and Ga-Al plots [Appendix II (D)] showed no obvious trends, the correlation of Ga with specific mineral species (i.e. sphalerite, pyrite, clay) could not be determined.

Table 3 indicates that Ge appears to be enriched in the coal ashes from the top of the Hub, Harbour (Novaco) and Gardiner seams; and at the bottom of the Lloyd Cove, Harbour (Lingan) Phalen and Emery (Rider) seams. The Point Aconi seam displays high values through the section. Unlike seam Ga, exhibits similar enrichments when ash concentrations are recalculated to the whole coal basis. suggests that Ge concentration has a negative correlation with the ash content of the sample. Binary plots of Ge in coal and Ge in ash versus ash weight percent reveal that the highest Ge values usually correspond with samples having the lowest ash content [Appendix II(D)]. These findings suggest that associated with the organic phase, and confirm observations previously the in literature [Standnichenko et al., (1953); Zubovic, (1966)].

A compilation of all 'meaningful' Ga and Ge coal data, including seam averages, for the

Sydney Basin is presented in Table 6, Appendix II (A). Certain seam sections from the previous database are not included in this listing because of the questionable nature of these data [refer to Birk et al., (1986)]. Table 4 summarizes average seam Ga and Ge concentrations as reported by Hawley (1955) and Zodrow (1986, 1987) and Birk et al., (1986). In general, average Ga values do not fluctuate greatly down section, however concentrations tend to be higher in the younger seams. This may be related to the depositional environment or marine water infiltration following coalification.

8.2. Pyrite Concentrates and Float-Sink Analysis

Prepared pyrite concentrates were analysed for Ga and Ge in order to determine if the sulphides were hosts for either element. Analytical results are presented in Table 8, Appendix II (A). The sink fraction concentrates exhibited little or no enrichment in either element, with most values being below the detection limits.

The 1.40 S.G. float fraction of sample [(01-Q) 1.37 to 1.47 m], ofthe Novaco/Harbour seam, exhibited a threefold enrichment in both Ga and Analytical results, however, decreased as the specific gravity of the sample's float-sink fraction increased [refer to Table 9, Appendix II (A)]. Sample enrichment in Ga disappears when concentrations are recalculated to a whole coal basis, Ge enrichment becomes pronounced. The latter is suggestive of Ge having an organic affinity. Further work, on a greater number of float-sink samples, is necessary to substantiate the observed enrichments.

TABLE 3 Gallium and germanium enrichments within and among seams in the Sydney Basin.

~~~~~~~~					
‡ ‡		GALLIU	M	GERMAN	IUM
SEAM		in ash	in coal	in ash	in coal
Point Aconi		var-low	var-low	i high	bot enr.
Lloyd Cove	Upper Lower	var-mod var-low	var-low var-low	bot enr.	bot enr. bot enr.
Hub		top enr.	var-low	top enr.	top enr.
Harbour	Novaco Lingan	var-mod   bot enr.	var-low low	itop bot enr. I bot enr.	itop bot enr.   var-low
Indian Cove	SM-17 SM-18	var-low var-low	top enr.	var-low   var-low	var-low var-mod
Phalen		top enr.	var-low.	bot enr.	bot enr.
Emery	Main Rider	var-mod     top enr.	var-mod var-low	low bot enr.	l low bot enr.
Spencer	PM-45 PM-48	var-mod	bot enr. low	var-low   low	var-low   low
Gardiner		top enr.	bot enr.	top enr.	top enr.
Mullins	NW-13 NW-16	l low i	low low	low low	low low
Tracy		low	low	low	low
McAuley	60 and and 600 800 and 400 ball and day and	low	low	low	low

TABLE 4 Comparison of gallium and germanium concentrations within the stratigraphic section of the Sydney Basin.

	SEAM	G	alliu	ım (pp	(ppm)   Germanium (ppm)						pm)	
		Zodro	)W N=	A.C.	I.n=		Zodrow	n= 	A.C.I	. n=	Hawley	n=
gest	  Point Aconi 			21	4	1	   177 	7	188	4		
	  Lloyd Cove 	; ;		23	17		120	6	91	17	9	12
	   Hub 	¦ ¦ 86 ¦	15		9 		54 		72	9	 	
	  Harbour !	! ! 21	21	33	15		93	35	76	14	50	26
	Indian Cove/   Backpit		7	24	9	1 1		7	! ! 45	8	; ; ; 50	 5:
	  Phalen	15	13	38 	7	; ; ; ; ; ;	18	13	44	7	15	37
1	: :Emery/Spencer: :		1860 <b>-</b> 1860 -1860 -1860 -1860	   35 	12		·		33	12	50	
! !	  Gardiner 		* <del></del>	i i 34 i	7				!   69 	7	: : 30 !	15
; ;	  Mullins			16	10				   15 	6	   20 	14
:	Tracy !			   < 1 4 	1	 			   		   9 	12
st ;	McAuley :		;	35	2	 			l 60	2	<b> </b>  -	

### 8.3 Scanning Electron Microscopy

### 8.3.1 Manual Analysis S.E.M.-E.D.X.

In an initial attempt locate and document the residence sites of Ga and/or Ge in seven Sydney Basin coal samples, manual energy dispersive X-ray spectra were collected from coal matrices. Though no organically bound Ge was detected, these spectra did indicate traces of sulphur (S), chlorine (C1) and calcium (Ca). At the site where enrichment of these elements occurs, coal grains were found to exhibit distinct colour changes. general, manual S.E.M. - E.D.X. analysis of Sydney Basin coals was not successful in detecting Ga or Ge from any of the minerals listed in Table 5.

The prepared pyrite concentrate from the Hub seam [sample (08-A) 0.00 to 0.15 m] was also subjected to manual S.E.M.-E.D.X. analysis. Though this sample contained several galena crystals as contaminants from the concentrating table, the analysis of indigenous galena and other "heavy" minerals (i.e. pyrite, arsenopyrite, cassiterite, fluorite (?) and sphalerite) failed to detect the presence of Ga.

The 1.40 (specific gravity) float fraction sample from the Harbour seam [Novaco sample (01-Q) 1.37 to 1.47 m) was also 'manually' examined in anticipation detecting Ge in the organic matrix of a coal grain with woody structure (fusinite?). S, Ca, Cl and bromine (Br) (Br being a contaminant from float-sink fluids) were detected, but traces of Ge were not observed. This suggests that if germanium is present in the coal matrix, it is finely disseminated and below detection limits of the system.

### 8.3.2 Automated Analysis S.E.M.-E.D.X.-C.M.A.

Semi-quantitative mineralogical data on twenty-five samples of Sydney Basin coals were obtained by, automated C.M.A. [Appendix III (A)]. The variable C.M.A. mineralogy encountered within the different seams are presented in Appendix III (B).

Mineral abundances appear to vary greatly both within and among seams studied in the Sydney coalfield. Of all the sulphurbearing mineral classes analyzed (PYRITE, JAROSITE, PYJAR, Fe-SUL, QUARPYR, GYPSUM, MIXSIL, ORGSUL refer to Table 2), PYRITE appears to be the dominant species. However, PYRITE's significantly higher contrast in the backscatter image mode, compared to that displayed by the other C.M.A. minerals, explain this domination.

In order to determine if a relationship exists between Ga and C.M.A. mineralogy, binary plots were made of Ga verses sulphur-bearing mineral classes [Ga vs S-Bearing (C.M.A. wt. %)] and Ga versus clays [Ga vs clays (C.M.A. wt. %)][Appendix IV (B)]. The degree of scatter displayed by these plots indicates that there is no clear correlation of Ga with these C.M.A. minerals and substantially more data would be required to ascertain any meaningful relationships.

TABLE 5 Summary of minerals encountered in S.E.M. manual analysis.

	Point  33-02						
Quartz	;	;	;	;	: X	;	;
Kaolinite	,	X	; X	;	X	;	,,   X
: Illite	X		X	: X	. X	X	X
Calcite	 		X	X	\ \ !	,   	   
Siderite				) X		X	
Ilmenite				   !		X	 
Rutile	X		X		X	X	X
Pyrite	X	X	X	X	X	X	X .
Arsenopyrite					 	X	X :
Sphalerite	X :			X	X	   	 
Galena	 					X	 
Barite		1				X	
Zircon	X :				X	X	X
Monazite :	X	i	1	X .		X	
Crandalite :			χ ;	Х			

#### 9. REFERENCES

American Society for Testing and Materials [ASTM]
1983: Annual book of ASTM standards, section 5: Petroleum products, lubricants and fossil fuels, v. 05.05: Gaseous fuels, coal and coke; American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.

Bernstein, L.R.

1985: Germanium geochemistry and mineralogy; Geochimica et Cosmochimica Acta, v. 49, p. 2409-2422.

Birk, D, Pilgrim, J. and Zodrow, E.

Trace element contents of coals and associated rocks of 1986: the Sydney Basin Nova Scotia; Geological Survey of Canada, Open File 2090, 52 p., 4 appendices.

Bonnett, R., and Czechowski, F.

Gallium porphyrins in bituminous coal; Nature, v. 283, 1980: p. 465-467.

Breger I.A.

Geochemistry of Coal; Economic Geology, v. 53, p. 823-1958: 841.

Dalton, I.M., and Pringle, W.J.S.

The gallium content of some Midland coals; Fuel, v. 41, 1962: p. 41-48.

Habashi, F.

1988: A hundred years of the Bayer Process for alumina production; Canadian Mining and Metallurgical, Bulletin, v. 81, no. 909, p.70-76.

Hawley, J.E.

1955: Germanium content of some Nova Scotia coals; Economic Geology, v. 50, p. 517-532.

Huggins, F.E., Kosmack, D.A., Huffman, G.P., Lee, R.J. Coal mineralogies by SEM automatic image analysis; 1980: Scanning Electron Microscopy, v. 1, p. 532-540.

Gillis, K.S.

1982: Evaluation of the Spencer seam for near-surface coal; Nova Scotia Department of Mines and Energy, Open File Report 524, 24 p.

Glick, D.C. and Davis, A.

1984: Variability in the inorganic content of United States coals - a multivariate statistical study; United States Department of Energy DOE/PC/30013-F10 (DE84014544), contract AC 22-8-PC30013, 404 p.

Gluskoter, H.J., Ruch, R.R., Miller, W.G., Cahill, R.A., Dreher, G.B. and Kuhn, J.K.

1977: Trace elements in coal: occurrence and distribution; Illinois Geological Survey Circular no. 499, 154 p.

Goldschmidt, V.M.

1954: Gallium and Germanium; <u>in</u> Geochemistry, edited by A. Muir, Oxford University Press, London, 730p.

Jamison, S.

1987: Germanium; Weekly World News Report, December 22, 1987.

Lang, A.H.

1969: Prospecting in Canada; Geological Survey of Canada, Economic Geology Report 7, p. 219.

Manskaya, S.M., Kodina, L.A., Generalova, V.N. and Dravtsova, R.P. 1972: Interaction between germanium and lignin structures in the early stages of formation of coal; Geochemistry International, v. 9, p. 385-394.

Miller, R.N., and Giver, P.H.

1978: A geochemical study of the inorganic constituents in some low rank coals; Technical Report 1(FE-2494-TR-1) to the U.S. Department of Energy, 314 p.

Ribbe, P.H.

1975: Trace and minor element distributions in coal and coal minerals as determined by ion microprobe mass analysis; Geological Society of America, Abstracts with Program, v. 7, no. 7, p.1244.

Sprunk, G.C. and O'Donnell, H.J.

1942: Mineral Matter in Coal; United States Bureau of Mines Technical paper 648, 67p.

Standnichenko, T., Murata, K.J., Zubonic P. and Hufschmidt, E.L. 1953: Concentration of germanium in ash of American coals: A progress report; U.S. Geological Survey Circular 272, p 1-34.

Swaine, D.J.

1975: Trace Elements in Coals; <u>in</u> Recent Contributions to Geochemistry and Analytical Chemistry, edited by A.I. Tugarinov, John Wiley and Sons, New York, p. 539-550.

Wardell, M.P. and Davidson, C.F.

1987: Acid leaching extraction of Ga and Ge; Journal of Metals, June 1987, p. 39-41.

Wills, B.A.

1981: Mineral Processing Technology; 2nd Edition, Pergammon Press, Toronto, Ontario.

Zodrow, E.

1986:

Coal-stratigraphy geochemistry: Trends in coal samples from Sydney Coalfield, Upper Carboniferous, Nova Scotia; Canadian Institute of Mining and Metallurgy, Bulletin, v. 79, no. 893, p. 83-85.

Zodrow, E. -

1987:

Geochemical trend in whole-seam coal channel samples from the Sydney Coalfield (Upper Carboniferous), Nova Scotia, Canada; Maritime Sediments and Atlantic Geology, v. 23, p. 141-150.

Zubovic, P.

1966:

Physicochemical properties of certain minor elements as controlling factors in their distribution in coal; <u>in</u> Coal Science Advances in Chemistry, Ser. 55, edited by R.F. Gould, Washington, p. 221.

### APPENDIX I

### STRATIGRAPHIC COLUMNS (NOT DRAWN TO SCALE)

- Point Aconi Seam
- Lloyd Cove Upper Seam (Brogan)
- Lloyd Cove Lower Seam (Brogan)
- Hub Seam (Prince)
- Harbour Seam (Novaco)
- Harbour Seam (Lingan)
- Indian Cove (NSDME CORE SM-17)
- Indian Cove (NSDME CORE SM-18)
- Phalen Seam (Phalen Colliery)
- Emery Seam (Steele's Hill)
- Thin seam directly below Emery Seam (Rider/Steele's Hill)
- Spencer Seam (NSDME CORE PM-45)
- Spencer Seam (NSDME CORE PM-48)
- Gardiner Seam
- Mullins Seam (NSDME CORE NW-13)
- Mullins Seam (NSDME CORE NW-16)
- Tracy Seam (NSDME CORE PM-65)
- McAuley Seam (Near Round Island)

### POINT ACONI SEAM

### OUTCROP

40S7 .05	COAL • )		SUL (	ASH % )	6а рра с	Se :oal+	DESCRIPTION
3,40	j.90	33-01 ==	3.53	79.48			overclay; gy
.,	0.07	33-02	4.08	34.57	7	₹3	transition zone; coaly; oxidized
	ે. 15	33-03	5.28	7.46	3	21	coal, signs of oxidation including sulphates
		NS 					
	0.50						
	0.65	33-04	3,38	3.38	0.5	7	coal, bright to semibright banded
		ุ พร					
	0.85						
	1.00	33-05	15.94	19.96	3	52	coaly; dull bands; visible pyrite
1.03		33-06===	2.56	86.78			underclay; gy

f recalculated from determination on ashed samples

LEGEND

- coal

- transitional zone

### BROGAN / LLOYD COVE UPPER SEAM OPEN PIT

HDST DDA: ( # / 0.27		SUL (	ASH % )	Ga pp <b>a</b>	Se coal	DESCRIPTION
0.19			92.41			overclay; gy; iron oxide stain; plant frags
0.13	02-C		92.04 91.01			overclay; gy; iron oxide stain; plant frags overclay; gy-bk; carbonaceous
0.0 <b>0</b> 0.00			90.50 29.99	5	(3	overclay; gy-bn; carbonaceous transition; bk; platy; some fusain; ab. pyrite
÷.18	02-F	5.06	5.74	3	6	coal, bright; friable; ab. pyrite cleat fillings and lenses; some galena?
0.33	02-6	- 2.90	3,26	1	1	coal, bright; friable; some pyrite
3,48	02-H	2.86	3,43	1	1	coal, bright; friable; some pyrite
>. 63	02-[	5.61	6.56	<1 2	i	coal, bright; friable
0.77	02-J	4.72	5.28	3	21	coal, bright; friable
0.00 9.82	02-K	10.08	15.50	3	29	transition; coaly
0.13	02-L	4.97	83.06			underclay; gy; cakey

### LEGEND

- coal

- transitional zone

		BROGAN	/	OYD C	DVE	LOWER	SEAM OPEN PIT
-9ST 1,40	COAL a ) -		SUL (	ASH	6a <b>a</b> qq	Ge coal	DESCRIPTION
1, 25		03-A		91.55			overclay; gy; plant frags
0 <b>.18</b> 0.09		03-B		93.31 93.04			overclay; it gy overclay; it gy
2,00	0.00	03-D	0.60	90.24			overclay; it bn
		03-E àt.	9.81	41.36	ь	4	transition; bk; platy; ab. pyrite
	9.19	03-F	7.74	12.34	4	5	coal, bright; friable; ab. pyrite as cleat fillings and lenses
	0.32	ΰ <b>3−6</b>	11.70	17.38	2	3	coal, bright; friable; some fusain; ab. pyrite
	0.46	03-H		31.97 53.47	7	7	transition; coaly; ab. pyrite coal-clay mixture; coaly stringers; ab. pyrite; pyrite replacing fusa
	0.51	03 <b>-</b> J	9.83	14.56	2	<1	coal, semibright; friable; some durain; ab. pyrite
	0.76	03-K	5.67	6.21			coal, bright; friable; some pyrite
	0.91	03-L	4.31	9.29	2	<1 .	coal, bright; friable; some pyrite
	1.06	03- <b>M</b>	4.88	4.78	1	3	coal, bright; friable; ab. pyrite
	1.21	03-N	5.98	6.66	1	7	coal, bright; friable; ab. pyrite
	Γ	03-0	4.40	6.54	1	24	coal, bright; friable some fusain; ab. pyrite
	1.28	ĺ					,

transition; coaly underclay; gy; muddy

LEGEND

9.00

0.05

- coal

- transitional zone

9.78 21.33 2.62 89.72

3 30

9

	FRINC	E / H	UB			UNDERGROUND
H36T 13A€ 1 3 7 1 26		SUL :	ASH	opm Sa	Ge coal∗	DESCRIPTION
1, 10 - 0. <b>00</b>		0.20	90.04			overclay; dk gy; waxy; conchoidal fracture; fossils rare
0.15	08-A	3,26	7.28	4	31	coal, bright to semibright; ab. pyrite lenses, cleat fillings
9,30	08-B	1.44	3.61	2	2	coal, bright; pyrite in cleats
0.45	09-C	0.82	2.80			coal, bright; dull bone band in upper section; pyrite, calcite in cl
0.60	08-D	1.92	11.02	5	(1	coal, bright; friable; pyrite and calcite in cleats
<b>0.7</b> 5	08-E	5.05	18.40	5	₹2	coal, bright; large pyrite lense; calcite and gypsum?
0,90	08-F	1.07	2.61			coal, bright; pyrite in cleats
:.05	08-6	1.03	2.06	1	0.5	coal, bright; pyrite lenses; cleat fillings; gypsum needles
1.20	\8-H	1.09	2.19			coal, bright; pyrite; calcite; gypsum?
1.35	1-80	1.68	2.90	1	ì	coal, bright; some fusain, ab. pyrite; some gypsum?
1.50	08-J	3.31	3.80			coal, bright; pyrite, calcite, gypsua?
. 1. 85	08-K	7.36	11.69			coal, semibright; pyrite, gypsum?
1.80	08-L	8.27	19.35	3	<2	coal, semibright; pyrite; gypsum?
i.95	08-M	8.50	16.00	2	4	coal, semibright; pyrite; gypsum?
	108-N	9.28	21.04	7	17	coal, semibright; ab. pyrite;
0.00 2.15 0.10 0.10	08-0	0.39	94,43		(9	underclay; It gy; ab. fossil frags
	LEGEND - cc	al ansition	al zone			

		NOVACO	/ HARB	OUR S	SEAM		OPEN PIT
H331	( m :		SUL (	ASH % )	Sa ppm	â <b>e</b>	DESCRIPTION .
0.15		01-A :==	0.99	92.11	-		overclay; gy; rootlets,plant frags
0.10 0.04 0.00	)    	01-8	· 12.79 3.71	92.08 61.67 84.74 35.86	6	<b>〈 4</b>	overclay; gy; rootlets,plant frags overclay; dk gy; carbonaceous; coaly stringers overclay; gy; carbonaceous transition; gy; silty; crenulated contact; siderite nodule
	1, 17	01-F	8.01	11.90			coal; bright; mainly clarain; ab.well developed cleats rich in pyrite,pyrite lenses
	9.32	01-6		10.81	6	19	coal; bright; mainly clarain; pyritic cleat fillings,lenses
	., 47	01-H	8.04	13.89	3	22	coal;bright; mainly clarain; ab. pyrite
	∴ 56	01-1	4.99	8.33			coal; semibright; pyrite
	. 50		14.52	48.27	11	⟨5	transition; gy; carbonaceous; coaly stringers; pl;ab.pyrite
	9.73		1.58	82.93	•		clay parting; gy; carbonaceous
	3.77		5.06	15.10	4	2	transition;gy-bk; platy
	∂.92	01-M		9.04			coal; ab.vitrain; some pyrite
		01-N	4.73	7.03	i	1	coal; bright; dull band, upper section
	1,22	01-0		6.63			coal; bright; pyrite lenses
	37	01 <b>-</b> P		6.34	3	2	coal;semibright; clarian,vitrain,some fusáin; pyrite lenses
0,00	1.47	01-8		10.70	4	45 25	coal; semibright; ab. pyrite
6.10		01-R ====		90.00	·		underclay; gy; rootlets,plant frags

LEGEND

- coal

- transitional zone

	LINGAN	/ HARBOUR SEAM		UNDERGROUND			
HOST COAL ( % ) O.21		SUL ASH ( % )	Ga Ge ppm coal∗	DESCRIPTION			
<b>0</b> ,00 0,00	06-0	0.68 93.56	19	overclay; dk gy; coaly stringers; plant frags			
v. 15	06-A	3.40 9.68		coal, bright; calcite in cleats			
2.30	06-8	0.75 2.34	1 1	coal, bright; rel. clean			
·, 45	06-C	0.71 3.36		coal, bright to semibright			
2,50	Ů6-D	0.51 2.87	1 <1	coal, bright			
75	06-E	0.40 2.38		coal, bright to semibright			
9,90	06-F	0.46 1.03		coal, bright			
1.05	06-6	0.44 1.86		coal, bright to semibright; some fusain			
1.20	96-H	0.76 3.19	(1 1 1	coal, bright			
1.35	1-60	3.48 6.24	1 <1	coal, bright to semibright; some fusain; pyrite in cleats			
1.50	06-J	0.78 1.39	0.3 (1	coal, bright; ab. vitrain			
1.65	Ů6−K	0.60 0.92		coal, bright; ab. vitrain; concoidal fracture			
1.80	06-L	3.31 7.44	i (i	coal, bright; pyrite and calcite in cleats			
0.00 2.00	M-90	1.63 3.94	3 10	coal, bright; some calcite in cleats			
	06-N	1.36 89.83	9	underclay; It gy; some plant frags			
0.20 LEG	END						
		oal					
		ransitional zone					
		udstone; shale					

N.S.D.M. / INDIAN COVE			OVE	CORE SM-17				
	COAL		SUL	ASH	6 a pp <b>a</b>	Ge coal#	DESCRIPTION	
1,30		<del></del>	1					
1, 15		10-A===		82.75			overclay; gy	
1.00	0.00	10-B		73.24		₹7	overclay; gy	
	ð.12	2, 10-C		58.32	22	12	transition; carbonaceous	
	).30	10-0	9.96	51.85	10	⟨5	transition; carbonaceous	
		10-E	6.32	13.73	2	4	coal	
	0.60							
		10-F	5.96	10.87			coal	- coal
	0.90							- transitional zone
	1.15	10-6	6.72	13.29	6		coal	- mudstone; shale
	1,28	10-11	3.50	60.48			coal	
		10-1	4.30	9.17			coal	
	1.48							
		10-J	7.28	13.98	2	15	coal	
0.00	1.78			81.83		8	unders lava ev	
0.15		****		01.03		o	underclay; gy	
0.30		10-L		86.66			underclay; gy	
0.45		10-M		91.11			underclay; gy	

	N.S.D.	M. / INDIA	JN COVE	CORE SM-18
HOST CO	AL	SUL ASH		DESCRIPTION
0.23	<del></del>			
A 55		73.24		overclay; gy
<b>0</b> .05 <b>0</b> .00 0.0	00 ===11-8 :===	75.97		overclay; gy
	- A 11-0	40.32	12 20	transition; carbonaceous
0.1	7	12.18 51.85	7 13	transition; carbonaceous
0.4	7			
	11-E	7.76 15.01		`coal
),71	)			
	11-F	3.96 10.54	3 2	coal
, 0.98		3.86 71.86		clay parting
1.18				
	1 i -H	3.40 12.30		coal
<b>0.</b> 00 1.38	11-1	7.62 16.88	3 15	coal
9.21		82.24		underclay; gy
0.26		90.62		underclay; gy
θ. <b>4</b> 1		58.33		underclay; gy; carbonaceous
l.F.C	END			
51:0		.1		

- coal

- transitional zone

		FHALEN	COLL	IERY	/	FHALEN	SEAM	UNDERGROUND
H35T ( a 0.20			SUL (	ASH % )	Ga pp#	Se coal	DESCRIPTION	
0.00		)7 - N	0.73	88.30			overclay; dk g conchoidal fra	y; coaly stringers near base; waxy; cture; fossils rare
	0.15	)7-A	2.62	4.93	6		coal, bright;	ab. pyrite cleat fillings
:	9.30 C	)7-B	2.41	5.03	1	1	coal, bright;	ab, pyrite cleat fillings
t	0.45	97-C	1.75	6.83	2	ſ	coal, bright;	some pyrite visible
	),50	7-0	1.43	7.68			coal, bright; p	pyrite lenses
į	), 75	7-Е	1.33	3.81			coal, bright; a	ub.vitrain; pyrite lenses
0	0,90	7-F	1.25	4.75	1	⟨2	coal, bright; s	ome fusain layers; calcite visible gs
1	.05	7-G	1.88	3.70			coal, bright; a	b. calcite in cleats
i	.20	7-H	4.53	5.41	ì	₹2	coal, bright; c	alcite in cleats
:	. 35	7-I	1.83	3.67			coal, bright; s	ome calcite
1	.50	7-J	2.12	3.86	i	(1	coal, bright; s	ome calcite
. 1	i i	7-K	5.38	13.44			coal, semibrigh	t; bone band; some calcite
9 <b>.00</b> 1.	07	'-L	6.01	10.11	3	23	coal, bright; s	ome calcite and pyrite

0.79 91.06 (9 underclay; lt gy; fossils rare

LEGEND

0.20

- coal

- transitional zone

ST	EELE	E ' 8	HILL	1	EMERY	SEAM

### OUTCROP

(	T COAL ( m )		SUL ASH	Sa ppm	Ge coal+	DESCRIPTION
0.21		04-0-	77.82	-		overclay; gy; iron oxide stain; ox; plant frags; thin carbonaceous beds
0.18	}	04-T	. 84,10			overclay; gy; iron oxide stain; ox; plant frags thin carbonaceous beds
0.10		04-6	26.76	9		coaly layer; iron oxide stain
0.00	0.00		84.25		8	overclay; gy; iron oxide stain; plant frags
	0.13	01-0	20.63	12	8	coal, highly ox; bone band near bottom; upper I cm not inc. in sample
		04-P	4.87	2	1	coal, bright; friable; iron oxide stain
	0.33					
	0.49	04-0	3.54			coal, bright; friable; iron oxide stain
	0.53	04-N	13.59	4	2	<pre>coal, bone band in upper section; pyrite rich zone lower section; iron oxide staining</pre>
	0.78	04-M	6.86	2	(1	coal, bright; friable; thin clay stringer lower section
	0.93	0 <b>4-</b> L	6.36			coal, bright; friable
	1.08	04-K	9.56	4	<1	coal; large bone band upper section; iron oxide stain
	1.23	∩ <b>4−J</b>	2.42	i	0.2	coal, bright; friable
	1. <b>3</b> 8	04-1	2.24			coal, bright to semibright; friable; upper 5 cm pyrite rich; iron oxide staining
	1.53	04-H	3.29			coal, bright to semibright; pyrite lenses; iron oxide stain
0.00	: 48	04-6	7.86	2	1	coal, semibright; fractured
0.10	1.00	04-A	81.17		8	underclay; bk-gy; carbonaceous
0.20		04-8:	99.08			underclay; gy; plant frags
0. 29		04-C :	93.45			underclay; gy; plant frags
0.39	1	04-D	92.44			underclay; gy; plant frags LEGEND
0.43		04-E	14.69 92.62	8	6	coal; semibright - coal
0.53			72.02			underclay; gy; plant frags - transitional zone
						- mudstone; shale

## STEELE'S HILL / THIN SEAM DIRECTLY BELOW EMERY SEAM

OUTCROP

HOST	CCAL		SUL	ASH % )	Ga	Ge coal+	DESCRIPTION
0.15	•		,	m (	hhm	COG! *	
0.05		<u>05-1</u>		93.00			overclay; gy; plant frags
0.00	0.00		3.87	60.78	-		transition; carbonaceous
•	0.15	05-0	- 1.72	2.69	3	2	coal, bright; friable
	0,23	∂5-E	4.49	6.10	2	6	coal, bright; friable
	0.25	05-F	11.17	31.00	6	16	transition; coaly
0.00	0.30	05-6	7.63	11.79	3	21	coal, semibright; thin lenses of pyrite
		[- <u>-</u> -05-A - <del></del> -	0.54	91.13			underclay; gy; plant frags
0.10							-9-
0.15		[-I-05-8 -I-I		91.97			underclay; gy; plant frags
0.20		05-C		93.55			underclay; gy; plant frags

LEGEND

- coal

- transitional zone

		N.S.	D.M. /	SPEN	CER		CORE	FM-45
HOST (	COAL		SUL (	ASH	ба рра со	Ge al≇	DESCR	IPTION
0.45			_					
0.30		— 12-A		89.04			overc	lay; gy
0.15		12-8		93.20			overci	lay; gy
0.00	0,00	12-C:		89.04			overc)	ay; gy
		12-D	2.32	7.74	3	9	coal	
	0.30							
		12-E	3.74	6.69	1	2	coal	
	0.60							
		12-F	1.30	2.78			coal	
	0.90							
		12-6	1.91	5.71			coal	
0.00	1.30	12-H	5.87	30.58	12	15	transi	tion
0.15		12-1		85.13			underc)	ay; gy
<b>0</b> .30		12-J		90.96			underci	ay; gy
0.45		12-K	•	89.78			undercl	ay; gy
0.60		12-L		88.74			undercl	
0.75	LEGE	12-M		88.92			undercl	ay; gy
		- 0	coal					
			transition	al zone				
			nudstone;	shale				

		N.S.D.M.	. /	SFENC	ER		CORE	FM-48
	DOAL n /			ASH % )		Ge oal+	DESCR	IPTION
0.45								
0.30				94.18			overc	lay; gy
0.15		13-8		94.76			overc	lay; gy
0.00	0.00	13-0		91.75			overc	lay; gy
		13-D	3.92	6.83	2	4	coal	
	<b>0</b> ,30	-						
		13-E	2.68	6.46	1	i	coal	
	0.60							
		13-F	1.82	3.35			coal	
	0.70							
<b>0</b> ,00	1.06	13-6	2.16	6.01			coal	
0.15		13-11		85.40		⟨9	underc	lay; gy
<b>0</b> .28		13-1		88.44			underc	lay; gy
0.43		13-7		88.29			underc	lay; gy

LEGEND

- coal

- transitional zone

### GARDINER SEAM

### OPEN FIT

+097 ∴:3	COAL		SUL (	ASH % )	Ga ppm	Ge coal*	DESCRIPTION
0.04		32-14		93.43			overclav; siltstone; lt.gy; iron staining; hard.
0.00	0.0		1.05	85.42			<pre>overclay; dk.gy; carbonaceous; plant fragments + coaly material; some iron staining.</pre>
	Ů.15	32-01	0.97	5.03	3	22 20	banded coal; some clay(possibly epigenetic- deposited in cleats from runoff; iron staining; friable.
	0.30	32-02	1.32	5.08	2	1	banded coal; small clay stringer within sample; friable.
		32-03	2.29	8.76			coal mixed with clay; dirty; friable.
	0.48 0.50	32-04	1.39	33.17	10	5	clay band mixed with fusain; wet.
	0.65	32-05	2.92	20.97			coal; blocky; rather dull (high inert content); clay debris on cleat surfaces.
	0.80	32-06	3.42	7.49	1	<1	banded coal; clay on cleat surfaces.
	0.95	32-07	4.90	16.15	3	3	banded coal; clay on cleat surfaces; clay stringer 3cm from bottom of sample.
	1.07	32-08	6.96	19.34			coal; dirty; clay on cleat surfaces; clay stringer.
	1.09	32-09	4.53	61.22	22	(6	clay stringer; carbonaceous.
	1.23	32-10	5.40	38.08	13	<4	coal; platy; clay staining; dull(high in inerts).
0.05		32-11-	0.49	84.46			transitional zone; carbonaceous.
0.20		32-12	0.26	90.48			underclay; lt.gy.;coaly zones; root fragments.

LEGEND

- coal

- transitional zone

		N.S.I	o.m.	/	MULLI	N8	SEAM		CORE	NW-13
HOST (				SUL (	ASH ( )	Sa ppm c	6e :oal+	DESCRI	PTION	
0.45		4-A			95.34			overcl	ay; gy	
0.15		4-B			94.92			overcla	ay; gy	
0	·•• <u>=</u>	4-C			94.21			overcla	ıy; gy	
٨	. 20	4 - D		9.00	18.81	3	<2	coal	·	
		1-E		4.93	10.44	3		coal		
		ı-F	i:	1.02	20.16	3	⟨2	coal .		
٥.	14	-6	Ę	5.74	8.91	2		coal		
1.		-н	. 5	. 18	6.76	1		coal		
1.4	14	-I	3	. 83	5.76	1		coal		
	14-	·J	6	. 43	8.49	1	3	coal		
<b>0</b> .00 1.7	5 14-	K = = =		٩	74.70			undercla	y; gy	
0.30				9	5.38			undercla	y; gy	
يا	<u>EGEND</u>									
			oal							

- transitional zone

		N.S.D	.M. /	MULL	INS	SEAM	CORE	NW-16		
HOST ( 0,47	COAL			JL ASH		Ge coal∗	DESCRIPTION			
0.32		15-8		99.21			overclay; gy			
0.17		15-C		93.83			overclay; gy			
0.00	0.00	15-0		93.90			overclay; gy			
	0.25	15-E	11.7	6 23.59	3	(2	coal			
	0.50	15-F	4.3	4 6.31			coal			
		15-6	5.18	3 11.73			coal		LEGEND	- coal
	0.75	15-H	5.84	9.55	1	<1	coal			- transitional zone - mudstone; shale
	1.00	15-1	5.38	7.56			coal			
	1.25	15-J	3.48	4.54			coal			
	1.75	15-K	3,64	7.31			coal			
<b>0.</b> 00		15-L	9.87	18.38	2	4	coal			
0.15	•	15-M		92.79			underclay; gy			
<b>0.</b> 30		15-N		92.85			underclay; gy			

		N.S.	D.M. /	TRACY	SEA	M	CORE	PM-65
	COAL 4 )		SUL (	ASH	Gа рра со	Ge oal#	DESCRIPTIO	N
0.43	-		<b>3</b>					
0.28		16-A		94,36			overclay;	gy
0.13		16-B		91.64			overclay;	<b>3</b> Y
0.00	0,00	16-C		80.82		⟨8	overclay;	<b>3</b> y
	0.25	16-D	8.28	10.92			coal	
	i	16-E	6.58	7.61			coal	
	0.45							
		16-F	4.30	6.46			coal	
	0.81							
		16-6	4.70	11.69	⟨2		coal	
	1.07							
0.00	1.25	16-H	8.33	14.52			coal	
0.14				91.22		(9	underclay;	9 Y
0.27		16-1		34.96	11	6	transitional	i; carbonaceous
0.42	إفاعلمليا	16-K		81.42			underclay; q	<b>J</b> Y
<b>0</b> .57		16-L		81.54			underclay; ç	<b>I</b> Y
	<u>LEGE!</u>	<u>ND</u>						
		,	coal					

- transitional zone

NEAR	RUUND	ISLAND	/	MC	AULEY	SEAM	OUTCROP
	SIII	ASH Ga	g	۵	peccoti	עחזדכ	

HOST COAL (4)		Ga Se ppacoal+	DESCRIPTION
0.30 09-A	93.68		overclay; gy; iron oxide stain
0. 20	93.45		overclay; dk gy; platy; iron oxide stain
0.10	91.14		overclay; dk gy; iron oxide stain; plant frags
0.00 0.00	2.07 89.57	9	overclay; dk gy; carbonaceous
0.10 09-E	7.42 13.22	3 B	coal; vertically cleated, filled with calcite
09-F	5.74 9.47		coal; vertically cleated, filled with calcite
09-6	7.78 11.70	6 7	coal; vertically cleated, filled with calcite
0.33			
0.00 0.48	93.33		underclay; gy; plant frags
0.10	94.56		underclay; gy; iron stain
0.15	93.80		underclay; gy;

LEGEND

- coal

- transitional zone

# APPENDIX II (A)

### ANALYTICAL DATA

TABLE 1	Major element data of selected coal seams - Sydney Basin 1985-86, 1987-88* study [ASH]
TABLE 2	Major oxide data of selected coal seams - Sydney Basin 1985-86, 1986-88* study [ASH]
TABLE 3	Trace element data of selected coal seams - Sydney Basin 1985-86, 1987-88* study [ASH]
TABLE 4	Rare earth element data of selected coal seams - Sydney Basin, 1985-86, 1987-88* study [ASH]
TABLE 5	Gallium and germanium, ash and sulphur data on coals from the Sydney Coalfield
TABLE 6	Gallium and germanium concentrations of coals from the Sydney coalfield
TABLE 7	Pyrite concentration
TABLE 8	Gallium and germanium in pyrite concentrates
TABLE 9	Float-sink analysis of Novaco/Harbour seam
TABLE 10	Duplicate analysis of gallium and germanium

		ACI	Si			Fe	Нn	ı Mg	Ca	Na	K	ρ	S on	Ash
SEAM	SITE 	[D	wt %	wt %	. wt %	wt %	wt X	Ht X	wt X	wt 1	wt %	nt %	ash	wt X
FOINT ACON	TATION	33-02*	- 77 0	1: 40	1.01	0.1	3.010							
01111 110011	ACON1	33-03 <b>*</b>					0.010		0.2		1.5	0.06	0.20	34.57
	NCOMI	33-04*				34.1	0.029		i).6	0.09	0.5	0.05	0.52	7.46
		33-05#		8.73		31.2	0.043		1.0		1.7	0.03	1.69	3.38
		33-031	3.2	1.74	0.10	61.7	0.020	0.08	0.2	0.03	9.3	0.02	0.23	17.96
EEOYD CV.Up		02-H	4.0	2.62		53.1	0.054	0.35	1.3	0.24	0.1	0.05	1.62	3.43
Ļſ	<b>'</b> •	03 <b>-J</b>	5.2	4.87	0.092	51.8	0.067	0.15	0.2	0.046	0.1	0.02	0.29	14.56
HUB	PRINCE	0 <b>8-6</b>	15.0	14.2	0.48	12.6	0.15	0.81	2.6	1.4	8.0	0.03	2.69	2.06
HARBOUR	NOVACO	01-H	6.8	7.82	0.04	47.0	0.075	0.07	0.6	0.11	0.1	9.25	0.93	13.89
		01-N	6.4	4.51	0.31	48.3	0.049		0.8	0.15	0.3	0.05	1.02	
	LINGAN	06-H	14.0	11.5		19.8	0.0068		1.9	1.9	0.7	0.09	1.80	7.03 3.1 <b>9</b>
INDIAN CV.	SM-17	10-G	7.9	3.98	0.17	41.8	0.18	0.63	1.9	0.11	0.9	0.02	1.45	13.29
	SM-18	11-C #	21.9	10.85	0.44	15.2	0.025	0.35	1.4	ā tt	2.1	2.14		
		11-1 +	5.1	2.69	0.14	40.3	0.217	0.31	9.9	0.16	2.1	0.14	2.4	40.32
					7	1010	7121	V.J1	3.7	0.18	0.4	0.02	7.34	16.88
PHALEN	PHALEN COL.		8.3	5.65	9.24	35.3	0.056	0.33	4.0	0.70	0.7	0.03	2.20	4.93
		07-C	16.0	10.0	0.56	16.6	0.048	0.41	3.9	0.56	1.3	0.02	3.06	6.83
		07-F	7.1	5.10	0.22	16.7	0.17	0.44	12	0.74	0.3	0.04	7.30	4.75
		07-H	4.9	2.83	0.13	49.1	0.045	0.24	3.0	0.44	0.2	0.02	2.17	6.41
		07-J	13.0	6.41	0.37	26.4	0.052	0.44	4.2	0.97	0.5	0.09	2.85	
		07-L	5.8	3.50	0.19	40.7	0.069	0.25	4.0	0.37	0.5	0.61	2.87	3.86 10.11
MERY	STEELE'S H.	04-K	25.0	14.7	0.93	3.45	0.0068	0.39	(0.4	0.12	0.2	0.08	0.4	9.56
PENCER	PM-45	12-0 +	15.7	11.06	0.37	24.8	0.116	0.75	1.7	A 11		A 4.4		
		12-H #			0.47	15.5	0.007	0.73	0.3	0.11 0.15	1.5 2.6	0.03	1.55	7.74
							****	7.00	0.3	0.13	4.0	0.03	0.04	30.58
	PM-48	13-E	15.0	11.0	0.39	24.7	0.056	0.61	0.9	0.17	1.7	0.02	1.1	4.46
ARDINER	NOVACO	32-01+	20.9	13.02	0.71	11.3	0.026	0.70	1.7	0.23	2.0	0.07	1.32	5.03
		32-06#	13.3	8.73	0.30	30.9	0.033	0.44	1.3	0.15	1.7	0.03	1.18	7.49
		32-10±	21.5	14.03	0.42	12.5	0.017	0.77	0.2	0.24	3.4	0.03	0.33	38.08
ULLINS	NW-13		10.0	6.93	0.22	37.5	0.028	0.29	0.3	0.13	1.9	0.02	0.86	18.81
		14-E	12.0	8.67	0.37	32.3	0.029	0.40	0.8	0.10	2.1	0.04	0.75	10.44
		14-F	7.9	5.44	0.21	44.7	0.016	0.25		0.066	0.9	0.02	0.54	20.16
		14-6	7.3	5,25	0.27	46.8	0.033	0.24		0.056	0.5	0.02	0.87	8.91
		14-H	15.0	3.19	0.14	54.4	0.046	0.06		0.046	0.3	0.02	1.34	
		14-1	8.1	5.79	0.27	44.2	0.036	0.29		0.068	0.9			6.76
		14-J	6.1	3.89	0.20	50.1	0.031	0.09		0.063	0.5	0.02 0.02	1.33 1.02	5.76 8.49
	NW-16	15-E *	10.7	4.32	0.29	45.3	0.022	0.15	0.7	0.00				
			9.1	5.61	0.31	45.7			0.3	0.09	1.1	0.00	0.54	23.59
		15-L #		4.55			0.039	0.09	0.9	0.02	0.4	0.03	0.78	9.55
		*	10.3	LUIT	0.29	45.1	0.012	0.11	0.4	0.06	1.2	0.00	0.72	18.38
	PM-65	16-6	7.6	6.30	0.47	17.8	0.55	70 AL	1.1	A A71	۸ ٦	0.74		
RACY	r 11-0J	10 0	7.0	0.50	<b>V</b> 17	11.0	0.00	10.00	14	0.071	0.7	0.30	5.97	11.69

TABLE 2 -										70/-08 <b>*</b>		AS	oH 	
SEAM	SITE	ACI ID	SiO2	2 Al203 4 wt %		Pe203		7 -		Na20 wt %	K20 #t %			TOTAL MAJORS
COLUT ACON		<b></b>	= .											******
POINT ACON			2* 59.6		1.68		0.01	ú.46		ú.19	1.78	6.14	6,50	97,95
	ACONI		3* 28.3		0.39		0.04	0.36		$\vartheta.12$	ს.5გ	0.11	1.30	98.43
			+ 28.6				0.06	0.77		0.18	2.03	0.08	4.22	78.96
		3.3-03	5 <b>*</b> 6.75	3.29	0.16	88.2	0.03	0.13	0.24	0.04	0.31	0.05	0.58	99.77
LLOYD CV.U		02-H	8.54	4.75	0.25	75.93	0.07	0.58	1.82	0.32	0.12	0.11	4.04	96.76
Ļ	r.	03 <b>-J</b>	11.12	7.20	0.15	74.07	0.09	0.25		0.06	0.12	0.05		96.12
∌úB	PRINCE	08-6	32.08	26.82	0.80	18.02	0.19	1.34	3.64	1.89	0.96	0.07	o.72	92.54
HARBOUR	HOVACO	01-H	14.55	14.77	0.07	67.21	0.10	0.12	0.84	0.15	0.12	0.57	5 70	100.01
		01-N	13.69	8.52	0.52		0.06	0.18		0.20	0.36	0.57		100.81
	LINGAN	0 <b>6-</b> H	29.95		0.85		0.01	1.58	2.66	2.56	0.84	0.11		94.38 93.18
INDIAN CY.	SH-17	10-G	16.90	7.52	0.28	59.77	0.23	1.04	2.66	0.15	1.08	0.05	3.62	93.31
	SM-18	11-0	÷ 46.9	20 5	A 77	21.5								
	30-10		10.9	20.5	0.73	21.8	0.03	0.58	1.94	0.21	2.57	0.31	5.79.	101.56
		11-1	10.7	5.09	0.24	57.7	0.28	0.51	12.5	0.24	0.43	0.05	18.32	106.26
PHALEN	PHALEN C		17.75	10.67	0.40	50.48	9.07	0.55	5.60	0.74	0.84	0.07	5,49	92.87
		07-€		18.89	0.93	23.74	0.04	0.48	5.46	0.75	1.57	0.05	7.54	93.99
		07-F	15.19	9.63	0.37	23.88	0.22	0.73	16.79	1.00	0.34	0.09	23.22	91.47
		07-H	10.49	5.35	0.22	68.78	0.06	0.40	4.20	0.59	0.24	0.05	5.42	95.78
		07-J	27.81	12.11	0.62	37.75	0.07	0.73	5.88	1.31	0.72	0.21	7.11	94.31
		07-L	12.41	6.61	0.32	58.20	0.09	0.41	5.60	0.50	0.40	1.40	7.16	93.30
EMERY	STEELE'S	H.04-K	53.47	27.77	1.55	4.93	0.01	0.65	(0.56	0.16	0.24	0.18	1.00	89.97
PENCER	PM-45	12-0 ¥	33.4	20.9	0.61	35.4	0.15	1.24	2.42	0.15	1.80	0.06	7 07	100.00
		12-H #	43.7	25.7	0.78	22.1	0.01	0.96	0.38	0.20	3.18	0.07	3.87 0.10	100.20 97.18
	PM-48	13-E	32.08	20.78	0.65	35.32	0.07	-1.01	1.26	0.23	2.05	0.05	2.75	96.25
ARDINER	NOVACO	32-01*	44.7	24.6	1.19	16.2	0.03	1.16	2.41	0.74		2.17		
						44.2	0.03	0.73	1 77	0.31	2.35	0.16	3.30	96.41
		32-10#	46.0	26.5	0.70	17.9	0.02	1.27	0.32	0.33	2.05 4.13	0.08	2.95	97.52
/II / TAIP	4 <del>-</del>								V. 31	V.33	7,13	0.07	0.82	98.07
ULLINS	HM-13	14-0		13.09	0.37		0.04	0.48	0.42	0.18	2.29	0.05	2.15	94.07
		14-E		16.38	0.62		0.04	0.66	1.12	0.13	2.53	0.09	1.87	95.30
		14-F		10.28		63.92	0.02	0.41	0.42	0.09	1.08	0.05	1.35	94.87
		14-6	15.61	9.92	0.45		0.04	0.40	1.26	0.08	0.60	0.05	2.22	97.55
		14-H	32.08	6.03		77.79	0.06	0.10	1.68	0.09	0.36	0.05	3.35	121.82
		14-I		10.94		63.21	0.05	0.48	1.40	0.09	1.08	0.05	3.32	98.39
		14-J	13.05	7.35	0.33	71.64	0.04	0.15	1.26	0.08	0.60	0.05	2.55	97.10
	NW-16	15-E *	22.9	8.16	0.49	64.8	0.03	0.25	0.42	0.12	1.34	0.01	1.35	99.87
		15-H +		10.6	0.52	65.4	0.05	0.15	1.27	0.03	0.69	0.06	i. 95	100.22
		15-L *	22.1	8.59	0.49	64.5	0.02	0.19	0.58	0.08	1.44	0.01	1.80	99.79
RACY	PM-65	16-6	16.26	11.90	0.78	25.45	0.71	0.00	19.59	0.10	0.84	0.69	14.90	91.22

(1.0 (0.5 (0.5 0.5 3.1 (23 F 4 5 ~ 17 Hf pps 10.0 2.0 (0.2 (0.2 **5** 3.7 8.9 8.9 ន្ទ 288 64 19.8 17.1 13.8 22 23 25 22 C R 8.0.4 6.8 8 8 8 12 12 13 8 8 65.0 18.4 34.1 6 Cu Ppe 22.0 150 150 150 8 3 33 61.0 210 250 220 220 120 2 2 2 3 3 2 2 2 55 130 180 180 180 130 150 150 150 150 150 150 280 180 200 20 1.1 = ~ 0.5 4.2 7.8 8.2 5.9 5.9 6.8 7.9 7.5 150 150 53.0 58.0 22 **₹2** 3 8 % 5 5 5 5 8 E 88 88 140 140 140 140 174 172 172 173 174 174 177 88 study Co. 77.1 3 X 7 3. 2. 2. 2. 2. 3. 2 22 27 15 118 118 119 30 37.0 81.0 88 32 32 43 43 74 75 75 3 **a** 382 110 230 230 230 80 190 190 8 3 3 3 3 3 8 8 2 4 - 2 8 v  $\overline{z}$ ,a 🗅 ... 555555 0000000 PP# 0.5 14 13 7.0 7.6 8.1 2.6 2.4 17 2.0 6.9 2.0 61.4 11.4 0.3 0.3 . · · 6.7 0.7 0.5 * 4 5 5 5 X 23 19 12 ٠ ت 46 В 3 3 12 22 2 = 5 2 = = 15 15 22 B4 664 315 282 2 € 23 223 540 240 310 310 370 863 131 540 570 540 462 628 2 irace element data of selected coal S 8 2 120 120 210 210 9 22 3 5 2 8 8 8 8 2 8 2 8 3 3 2222233 222 2 4 2 C 2 ~ C - 2 ÷ 8 0 PP 120 120 2700 3000 2 2 5 8 8 180 62 37 1900 660 2100 1500 920 490 950 560 790 460 28 30 P 9 36. 17.0 90.0 8.9 6.50 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 13-02¢ 13-03¢ 13-04¢ 13-05¢ 32-014 32-064 32-104 ž. LINGAN SH-17 SITE POINT ACONI SN-18 PH-48 ლ ¦ ACON! 5 2 Æ IMD I AN LLOYO 3 SARDI

5 6 6

7 2 2000

S 8

2 2 2 2 25 26 27 28 520 220 230 38 200 220 320 120 180 180 240 240 240 2 2 330 95 95 190 190 150 150 150 150 170 6.0 250 9.0 021 3888 22 2 **2 3** S 9 ≂ ¤ 222222 9 87 62 20 20 99 999999 37.75 2 3 9 = 5 = 2 4 7 7 7 7 ~ ~ 8788887 3 3 3 5 <del>4</del>2 2 888 120 88 285788 240 250 190 2 2 8 02 19 19 19 59 1.84 9.98 3.18 7.7 5.31 1.65 1.73 1.73 1.33 3.42 18.1 3.3 2.9 6.86 4.2 8.3 3.76 5.4 3.4 2.2 10 26.0 6.4 6.4 4.2 .. .. 3.8 3.8 7 17.3 8.6 14. 5.1 3.4 5.0 18.0 11.0 8.7 11 8.0 7.2 7.2 5.9 8.1 5.8 4.9 1.6 4.0 15.6 4.8 11.8 15.6 19.8 13.1 1.6 0.5 0.7 0.7 1.2 0.3 0.8 0.4 0.5 0.9 ។១ 1.6 (0.6 _; - - ~ ¥ = 50 S S 2 2B0 290 140 230 230 230 32 833 486 590 280 320 9 985 349 204 Ξ 3 360 25 55 23 9 5 S 5 22 # Z ± 22 22 22 -88• 1987 (0.5 (0.5 (0.5 (0.5 (0.5 (1.0 3.7 (0.5 2.2 (0.5 (0.7 (0.5 (0.5 2.7 8.8 (0.7 (0.5 (0.7 (0.5 (0.2 (0.5 (1.0 (1.4 (1.0 (0.5 3.0 Basin 1985-86, 27.5 7.06 12.2 21.4 6.01 23.5 22 23 59.5 19.6 7.53 5.22 12.2 18.6 31.9 2 S 27.1 26.5 13.6 18.0 11.2 10.3 5.21 10.8 3.22 35 263 263 263 263 5.1 1.0 12.0 82.0 2 <del>2</del> 25. 2.3 1.1 1.1 2.6 3.0 3.0 9.2 8.7 4.4 7.6 5.8 8.0 **-**34.0 9.0 58.0 4.2 98.0 21 3.1 11 6.2 6.4 5.1 24 23 33 2 995 82 % .9.8.9.9.8 2 128 2 129 222222 9 % # 2 140 780 780 780 780 3 38 270 25 25 25 2 2 228823 3 8 3 3 2 2 8 260 420 420 520 580 680 9 ٠ ۽ 2 3 290 8 353 230 3 3 8 8 262 306 349 349 308 1700 2825 3 2 8 828 8 = = 3223322 ¥ 5 # 200 290 2 2 2 2 2 2 2 2 3 350 120 350 **7**9  $\Im$ selected 332323 ≃ ≅ 2 2 % 22 2282822 S2 72 28 8 52 \$ 2 # 3 2 3 ₹ 222223 23 123 3 7 2 23 288888 62 127 88 3 Contd Irace element data of 9 × i i 2222 **3** 3 刊 報 報 - J-11 - J-11 32-01# 32-06# 32-10# COL. 07-A 07-C 07-F 07-H 07-J 12-0-12 2 BROGAN PHALEN PRINCE POINT PH-45 PH-48 PR-65 ROUND LLOYD CV.Up.B ટં HARBOUR 옾 PHALEA INDIAN **ICAULEY** POINT MERY GARDI RACY \$

22

3

288

2

로 프

<del>후</del> 등 등 등 후

35

20

TABLE 4 - Rare earth element data of selected coal seams - Sydney Basin 1985-86, 1987-88# study ASH

SEAM	SITE	ACI I.D.	La ppa		Pr ppa	P P m	Sa ppa	Eu pp <b>a</b>	6d ppa		Dy pp∎	oK ppa	Er ppm	Ta ppa	Yb ppæ	Lu pps
POINT ACONI	POINT	33-02	£ 87 9	140	14.0	7.6	145	2 40	10.6		D (	1 67		A 7	7 7/	
TOTAL TOUR	ACONI	33-03	* 51.1	52	5.2	7 a 3 2	7.49	2.02	8.6		7 7	1.51	1.0	7.7 A. K.	7.75 5.07	1.21 A 05
		33-04	€ 17.9	33	1.9	21	3.60	1.05	2.9		2,2	0.54	1.2	0.2	7.29	0.40
	•	33-05	¥ 9.8	20	2.3	14	3.88	1.51	5.4		5.5	1.19	3.1	0.4	3.97	0.45
cLOY9 CV.Up.	8ROGAN	02-H	23.9 11.8	31.9		18.2	7.38	1.73	5.2	v.82	5.5				2.90	0.43
ir.		03-1	11.8	28.8		15.2	5.07	1.43	5.5	1.02	7.1				3.01	0.43
HU <b>8</b>	PRINCE	08-6	97.5	172		76.8	16.0	3.41	19.2	1.90	14.1				6.08	0.93
HARBOUR	NOVACO	01-H	65.6 60.7 91.0	172		92.1	18.4	4.59	21.3	2.74	14.8				5.80	0.75
		01-N	50.7	125		63.1	13.9	3.10	15.6	1.95	10.3					0.61
	LINGAN	06−H	91.0	150		67.8	13.8	2.65	16.0	1.78	12.1				5.06	0.77
ENDIAN CV.	SM-17	10-6	23.5	49.5		27.0	9.51	2.87	10.3	2.04	12.8				4.52	0.69
	SM-18	11-C	£ 67.9	125	14.4	54.2	8.1	1.93	6.3	ψ. 6	4.4	0.81	1.7	0.2	2.2	ú. 27
		11-I	£ 13.5	25.4	3.6	15.8	4.0	1.30	5.6	0.8	4.9	1.16	2.7	0.2	2.1	0.47
PHALEN	PHALEN	07-A	29.3	72.3		44.3	18.7	5.83	19.7	6.08	34.6				15.3	2.30
	COL.	07 <b>-</b> C	56.9	104		45.3	11.6	2.34	11.9	1.51	9.6				7 97	0.66
		07-F	35.7	45.2		37.7	11.1	2.80	13.1	1.69	9.0				2.83	0,44
		07-H	17.9	31.7		14.0	4.45	1.23	5.5	0.55	3.6				1.42	
		07-J	35.7 17.9 34.9 28.4	60.4		27.5	6.75	1.40	7.2	1.00	5.5				2.81	0.46
																0.93
EMERY	STEELE'S H.	04-K	95.0	173		69.3	14.2	2.50	15.7	1.73	11.0				5.73	ù.93
SPENCER	PM-45	12-D	¥ 56.4	121	15.2	67.8	14.9	4.04	17.2	2.3	13.0	2.60	6.2	0.7	5.2	0.95
		12-H	¥ 57.4	108	14.1	59.0	11.7	2.90	11.1	1.8	11.6	2.48	5.1	0.7	5.6	1.00
	PM-48	[3-E	57.6	109		52.9	11.3	2.52	12.0	1.56	9.6				4.75	0.73
GARDINER	NOVACO	32-01	± 91.1	151	18.1	77	14.6	3.22	15.9		12.9	2.72	7.0	1.0	6.81	0.99
		32-06	* 64.0	107	12.6	49	7.01	1.99								
		32-10	± 79.6	130	14.2	53	10.3	1.88	6.4		5.6	1.22	3.2	0.5	4.53	0.82
MULLINS	NW-13	14-D		60.2				1.39		0.83						0.42
		14-E	59.5	109			11.3			1.47						0.40
		14-F	29.7					1.82		1.19						0.40
		14-6	53.3				10.0	2.21		1.24	7.1					0.43
		14-H 14-I	26.3 39.4				4.87 6.59	1.11		0.69						0.22
		14-3		55.2			7.30			0.79 1.16	5.5 7.3					0.39 0.53
	NW-16	15-E	£ 22.1	43.2	5.1	19.9	4.4	1.19	4.9	0.7	5.1	0.96	2.3	0.2	2.0	0.33
			* 29. <b>4</b>			31.6		1.58	5.5	0.7		0.94	2.0	0.1		0.44
			<b>*</b> 25.0			30.3		1.48	6.4	0.7		1.17	2.8	0.3		0.36
TRACY	PM-65	16-6	37.8	67.3		29.0	á.11	1.35	8.0	0.81	5.4				2.28	0.37
MCAULEY		09-6														
	HOUND 13.	V 7 - 0	43.7	61.3		44.1	14.1	4.20	10.8	3.07	17.5				<b>5.28</b>	9.77

FABLE 5 - Sallium, germanium, ash and sulphur data on coals from the Sydney Coalfield.

SITE/SEAM	ACI I.O.	THICKNESS	SULPHUR (1 as de	termined)	(opa i	n ash)	(nna i	coal)
POINT ACONI					*******			
Outcrop	33- 01		3.53	79.48				
	33- 02	0.00 - 0.07	4.0R	74. 57	19 0	 / t ^		
	33- 03							
	33- 04	0.50 - 0.65m	3.38	7,70	17 0	200	2.8	21
	33- 05	0.50 - 0.55m 0.85 - 1.00m	15.94	19.96	13.3	260 260	0.5 2.7	7 <b>52</b>
	33- 09	Underclay	2.56	86.78				
	~	**************************************						
BROGAN/LLOYD COVE	02-0	0.19 - 0.27m		92.41				
oper Seam	02-C	0.13 - 0.19		92.04				
loen Pit Mine	02-B	0.05 - 0.13a		91.01				
	02-A	Roof; 0.05m	1.13	90.50		10		9
	02-E	0.00 - 0.03a	1 00					
	02-F	0.03 - 0.18m 0.18 - 0.33m	5.06	5.74	54	117	7	(2
	02- <del>6</del>	0.18 - 0.33m	2.90	3.26	7.6	70		٥
	02-H	0.33 - 0.48a	2.86	3.43	27	10	1	
	02-1	0.18 - 0.33m 0.33 - 0.48m 0.48 - 0.63m	5.61	6.54	<10	10	(1	1
	021	0 43 - 0 77-	4 72		23		2	
	02-K	V. // - V. DZE	10.08	10.00	18	190	3 3	29
		Underclay; 0.13a						
• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	•••••••				
ROGAN/LLOYD COVE	03-A	0.25 - 0.40m		91.55				
ower Seam	0 <b>3-B</b>	0.18 - 0.25a		93.31				
en Pit Mine	03-C	0.09 - 0.18		93.04				
	03-0	Roof; 0.09m	0.60	90.24				
	03-E	0.00 - 0.04m	9,81	41.36	14		 6	
	03-F	0.04 - 0.19	7.74	12.36	31	37	4	<b>⟨4</b>
	03- <del>6</del>	0.19 - 0.32	11.90	17.38	12	20	2	5 3
	03-H	0.32 - 0.36e	21.60	31.97	••	20	4	J
	03-I	0.36 - 0.46m	13.78	53.47	13	13	7	7
	03-J	0.46 - 0.61m	9.83	14.56	17	<10	2	7
	03-K	0.61 - 0.76m	5.67	6.21	• /	110	4	<1
	03-L	0.76 - 0.91	4.31	9,29	17	(10	2	71
	03-M	0.91 - 1.06m	4.88	4.78	14	59	i	<1 3
	03-N	1.06 - 1.21	5.98	6.66	14	102	1	3 7
	03-0	1.21 - 1.288	4.40	6.54	23	368	2	24
	03-P	1.28 - 1.31m	9.78	21.33	12	140	3	30
	03-0	Underclay; 0.05e	2.62	89.72		10		

TABLE 5 ContdGallium, germanium, ash and sulphur data on coals from the Sydney Coalfield.

SITE/SEAM			SULPHUR (% as det	erained)	(ppa in	ash)	(ppm in	Ge coal)
PRINCE/HUB Underground Mine	08-P	Roof; 0.20m		90.04		10		9
	A-80	0.00 - 0.15	3.26	7.28	77			31
	08-8	0.15 - 0.30	1.44	3.61			2	2
	08-C		0.82	2.80			-	4
	0 <b>8</b> -D	0.45 - 0.60m	1.92		47	<10	5	<1
	<b>08-E</b>		5.05	18.40	26	(10	5	(2
	08-F		1.07	2.61			-	`•
	08- <del>6</del>	0.90 - 1.05	1.03	2.06	29	22	1	0.5
					38		1	
	H-80	1.05 - 1.20a	1.09	2.19				
	1-80	1.20 - 1.35m	1.68	2.90	30	19	1	i
	08-J	1.35 - 1.50e	3.31	3.80				•
	0 <b>8-</b> K	1.50 - 1.65m	7.34	11.69				
	08-L	1.45 - 1.80	8.27	19.35	16	<10	3	⟨2
			8.50		13	23	2	4
	08-N	1.95 - 2.15m		21.04	32	80	7	17
	08-0		0.39	94.43		(10		(9
OVACO/HARBOUR	01-A	0.15 - 0.25a						
pen Pit Mine	01-B	0.10 - 0.15e	1.00	92.08				
, , , , , , , , , , , , , , , , , , , ,								
,	01-C	0.04 - 0.10m	12.79					
,			12.79 3.71	61.67 8 <b>4.</b> 74				
	01-C 01-D 01-E	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 	61.67 84.74 35.86	17	<10	<b></b> -	<u>-</u>
	01-C 01-D 01-E 01-F	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01	61.67 84.74 35.86 11.90		<10	<b></b> 5	(4
	01-C 01-D 01-E 01-F 01-G	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01 6.62	61.67 84.74 35.86 11.90 10.81	54	180	 6	 (4 19
	01-C 01-D 01-E 01-F 01-G 01-H	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01 6.62 8.04	61.67 84.74 35.86 11.90 10.81 13.89				
	01-C 01-D 01-E 01-F 01-G 01-H 01-I	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01 6.62 8.04 4.99	51.67 84.74 35.86 11.90 10.81 13.89 8.33	54 25	180 160	6	19
	01-C 01-D 01-E 01-F 01-G 01-H 01-I 01-J	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27	54	180	6	19 22
	01-C 01-D 01-E 01-F 01-G 01-H 01-I 01-J 01-K	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52 1.68	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27 82.93	54 25 22	180 160 (10	4 3	19 22
	01-C 01-D 01-E 01-F 01-H 01-I 01-J 01-K 01-L	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52 1.68 5.06	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27 82.93 15.10	54 25	180 160	4 3	19
	01-C 01-D 01-E 01-F 01-G 01-H 01-I 01-J 01-K 01-L	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52 1.68 5.06 6.14	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27 82.93 15.10 9.04	54 25 22 28	180 160 <10	6 3	22 <5
	01-C 01-D 01-E 01-F 01-G 01-H 01-I 01-J 01-K 01-L 01-M	0.04 - 0.10m Roaf; 0.04m 	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52 1.68 5.06 6.14 4.73	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27 82.93 15.10 9.04 7.03	54 25 22	180 160 (10	6 3	19 22 <5
	01-C 01-D 01-E 01-F 01-H 01-I 01-J 01-K 01-L 01-M 01-N	0.04 - 0.10m Roof; 0.04m 0.00 - 0.02m 0.02 - 0.17m 0.17 - 0.32m 0.32 - 0.47m 0.47 - 0.56m 0.56 - 0.60m 0.60 - 0.73m 0.73 - 0.77m 0.77 - 0.92m 0.92 - 1.07m 1.07 - 1.22m	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52 1.68 5.06 6.14 4.73 5.01	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27 82.93 15.10 9.04 7.03 6.63	54 25 22 28 16	180 160 <10	6 3 11 4	19 22 <5
	01-C 01-D 01-E 01-F 01-H 01-I 01-J 01-K 01-L 01-M 01-N 01-Q	0.04 - 0.10m Roaf; 0.04m 0.00 - 0.02m 0.02 - 0.17m 0.17 - 0.32m 0.32 - 0.47m 0.47 - 0.56m 0.56 - 0.60m 0.60 - 0.73m 0.73 - 0.77m 0.77 - 0.92m 0.92 - 1.07m 1.07 - 1.22m 1.22 - 1.37m	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52 1.68 5.06 6.14 4.73 5.01 4.24	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27 82.93 15.10 9.04 7.03 6.63 6.34	54 25 22 28 16 46	180 160 <10	6 3 11 4	19 22 <5
	01-C 01-D 01-E 01-F 01-H 01-I 01-J 01-K 01-L 01-M 01-N	0.04 - 0.10m Roof; 0.04m 0.00 - 0.02m 0.02 - 0.17m 0.17 - 0.32m 0.32 - 0.47m 0.47 - 0.56m 0.56 - 0.60m 0.60 - 0.73m 0.73 - 0.77m 0.77 - 0.92m 0.92 - 1.07m 1.07 - 1.22m	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52 1.68 5.06 6.14 4.73 5.01	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27 82.93 15.10 9.04 7.03 6.63	54 25 22 28 16 46 41	180 160 (10 12 20 30 420	6 3 11 4 1	19 22 <5 2
	01-C 01-D 01-E 01-F 01-H 01-I 01-J 01-K 01-L 01-M 01-N 01-Q	0.04 - 0.10m Roaf; 0.04m 0.00 - 0.02m 0.02 - 0.17m 0.17 - 0.32m 0.32 - 0.47m 0.47 - 0.56m 0.56 - 0.60m 0.60 - 0.73m 0.73 - 0.77m 0.77 - 0.92m 0.92 - 1.07m 1.07 - 1.22m 1.22 - 1.37m	12.79 3.71 6.97 8.01 6.62 8.04 4.99 14.52 1.68 5.06 6.14 4.73 5.01 4.24	61.67 84.74 35.86 11.90 10.81 13.89 8.33 48.27 82.93 15.10 9.04 7.03 6.63 6.34	54 25 22 28 16 46	180 160 <10 12 20 30	4 1 1 3	19 22 <5 2 1

TABLE 5 ContdGallium, germanium, ash and sulphur data on coals from the Sydney Coalfield.

SITE/SEAM	ACI I.D.	THICKNESS	SULPHUR (% as det				6a (ppm in	6e coal)
LINGAN/HARBOUR Underground Mine	04-0	Roof; 0.20m			*******	20		19
	06-A		3.40					
	06-8		0.75	2.34	55	60	1	i
	. 04-C	0.30 - 0.45m	0.71	3.36			•	•
	04-D		0.51	2.87	29	<10	1	(1
	04-E	0.60 - 0.75e	0.40	2.38			-	` •
	06-F	0.75 - 0.90m	0.44	1.03				
	04-6	0.90 - 1.05m	0.44	1.84				
	06-H	1.05 - 1.20	0.74		10	31	(1	1
					45		į.	•
	1-40	1.20 - 1.35a	3.48	6.24	16	<10	1	<1
		1.35 - 1.50	0.78 0.60	1.39	23	<10		(1
		1.50 - 1.65m	0.60	0.92				٠.
			5.31	7,44	17	10	1	<1
	06-M	1.80 - 2.00	1.63	3.94	79	260	3	10
	04-N	Underclay; 0.20m	1.36	89.83		10		9
NDIAN COVE	10-A	0.15 - 0.30a		82.75				
.S.D.M.E. Core H-17	10-B	Roof; 0.15m		73.24		<10		⟨7
	10-€	0.00 - 0.12		58.32	38	20	22	12
	10-D		9.96	51.85	20	(10	10	⟨5
	10-E	0.30 - 0.60	6.32	13.73	12	30	2	4
	10-F	0.40 - 0.90m	5.96	10.87			-	,
	10- <del>6</del>	0.90 - 1.15m	6.72	13.29	44		6	
	10-H	1.15 - 1.28	3.50	60.48			•	
	10-I	1.28 - 1.48m	4.30	9.17				
	10-J		7.28	13.98	14	110	2	15
	10-K	Underclay: 0.15m		81.83		10		 8
	10-L	0.15 - 0.30m		86.66		••		0
	10-M	0.30 - 0.45m		91.11				

ាងBLE 5 ContdBallium, germanium, ash and sulphur data on coals from the Sydney Coalfield.

SITE/SEAM	ACI I.D.	THICKNESS	SULPHUR (% as de	terained)	(ope is	n ash)	form in	coall
INDIAN COVE	11-A	0.05 - 0.23m						
4.S.D.M.E. Core 54-19	11-8	Roof; 0.05m		75 97				
	11-C	0.00 - 0.17a					12	20
	11-0	0.17 - 0.47m	12.18	51.85	13		7	
	11-E	U.4/ ~ U./Um	7.76	15.01	. •		1	13
	11-F	0.70 - 0.88m	3.96	10.54	25	20	3	2
	11-6	0.88 - 1.18 <b>e</b>	3.86	71.86		44	3	2
	11-H	1.18 - 1.38m	3,40	12.30				
	11-1	1.38 - 1.46m	7.62	16.88	14.8	90	3	15
	11-J							
	11-K	0.12 - 0.17		90.62				
	11-E	0.17 - 0.32m		58.33				
HALEN COL./PHALEN						(10	*****	(9
	07-A	0.00 - 0.15m	2 42	4 07	130			
		7174 VII.UM	4104	7.73	120		Á	
	07-B	0.15 - 0.30e	2.41	5.03		15	6 1	,
	07-8 07-C	0.15 - 0.30m 0.30 - 0.45m	2.41 1.75	5.03 6.83		15 10	1	1
	07-B 07-C 07-D	0.15 - 0.30m 0.30 - 0.45m 0.45 - 0.60m	2.41 1.75 1.43	5.03 6.83	16	15 10	-	i 1
	07-B 07-C 07-D 07-E	0.15 - 0.30m 0.30 - 0.45m 0.45 - 0.60m 0.60 - 0.75m	2.41 1.75 1.43 1.33	5.03	16		1	
	07-B 07-C 07-D 07-E 07-F	0.15 - 0.30a 0.30 - 0.45a 0.45 - 0.60a 0.60 - 0.75a 0.75 - 0.90a	2.41 1.75 1.43 1.33	5.03 6.83 7.68 3.81	16 34	10	1 2	1
	07-B 07-C 07-D 07-E 07-F	0.15 - 0.30a 0.30 - 0.45a 0.45 - 0.60a 0.60 - 0.75a 0.75 - 0.90a 0.90 - 1.05a	2.41 1.75 1.43 1.33 1.25	5.03 6.83 7.68	16		1 2	
	07-B 07-C 07-D 07-E 07-F 07-G	0.15 - 0.30m 0.30 - 0.45m 0.45 - 0.60m 0.60 - 0.75m 0.75 - 0.90m 0.90 - 1.05m 1.05 - 1.20m	2.41 1.75 1.43 1.33 1.25 1.88	5.03 6.83 7.68 3.81 4.75 3.70	16 34	10	1 2	(1
	07-B 07-C 07-D 07-E 07-F 07-G	0.15 - 0.30a 0.30 - 0.45a 0.45 - 0.60a 0.60 - 0.75a 0.75 - 0.90a 0.90 - 1.05a	2.41 1.75 1.43 1.33 1.25 1.88 4.53	5.03 6.83 7.68 3.81 4.75 3.70 6.41	16 34	10	1 2	1
	07-B 07-C 07-D 07-E 07-F 07-B 07-H 07-I 07-J	0.15 - 0.30m 0.30 - 0.45m 0.45 - 0.60m 0.60 - 0.75m 0.75 - 0.90m 0.90 - 1.05m 1.05 - 1.20m 1.20 - 1.35m 1.35 - 1.50m	2.41 1.75 1.43 1.33 1.25 1.88 4.53 1.83	5.03 6.83 7.68 3.81 4.75 3.70	16 34 12 12	(10	1 2	(1)
	07-B 07-C 07-D 07-E 07-F 07-B 07-H 07-I 07-J 07-K	0.15 - 0.30m 0.30 - 0.45m 0.45 - 0.60m 0.60 - 0.75m 0.75 - 0.90m 0.90 - 1.05m 1.05 - 1.20m 1.20 - 1.35m 1.35 - 1.50m 1.50 - 1.65m	2.41 1.75 1.43 1.33 1.25 1.88 4.53 1.83 2.12	5.03 6.83 7.68 3.81 4.75 3.70 6.41 3.67 3.86	16 34	10 <10 <10 <10	1 2	(1) (1) (1)
	07-B 07-C 07-D 07-E 07-F 07-B 07-H 07-I 07-J 07-K	0.15 - 0.30m 0.30 - 0.45m 0.45 - 0.60m 0.60 - 0.75m 0.75 - 0.90m 0.90 - 1.05m 1.05 - 1.20m 1.20 - 1.35m 1.35 - 1.50m	2.41 1.75 1.43 1.33 1.25 1.88 4.53 1.83 2.12 6.38 6.01	5.03 6.83 7.68 3.81 4.75 3.70 6.41 3.67 3.86 13.44	16 34 12 12 25 34	10 <10 <10 <10 20 230	1 1 1 1 3	(1) (1) (1) 3

TABLE & Doca Gallium, germanium, ash and sulphur data on coals from the Sydney Coalfield.

S!TE/SEAM		INTERNESS		(ermined)	(ppe in	ash)	(ppm in	coal)
	0 <b>4-</b> U							
EMERY	04-T	0.18 - 0.21m	1.74	84.10				
	04-5					20	9	5
	04-R	Roof; 0.10m	0.72	84.25		10		8
	04-9	0.00 - 0.13a	2.56	20.63	58		12	8
	04-P		1.93	4.87	33	24	2	1
	04-0	0.33 - 0.48m	1.38 2.24	3.54				
	04-N				27	12	4	2
	04-M				36	(10	2	(1
	04-L			6.36				
	04-K		0.78	9.56 2.42	37	10	4	<1
	04-J		1.06	_	60	10	1	0.2
	04-1	1.23 - 1.38	1.38					
		1.38 - 1.53e	2.32	3.29				
	04-6	1.53 - 1.68a				10	2	1
	04-A	Underclay; 0.10m	3.04	81.17		10		8
	04-B	0.10 - 0.20m 0.20 - 0.29m		99.08				
	04-C	0.20 - 0.29		93.45				
	04-D	0.29 - 0.39		92.44				
	0 <b>4-E</b>	0.39 - 0.43m	2.69	14.69	52	40	8	6
	04-F	0.43 - 0.53m	****	92.62				
	• • • • • • • • • • • • • • • • • • • •	••••••	*********	• • • • • • • • • • • • • • • • • • • •	*******	• • • • • • • •	•••••	• • • • • •
R. STEELE'S HILL/	05-1	0.05 - 0.15m		93.00				
EMERY	05-H	Roof; 0.05m						
utcrop - Rider Seam		***************************************						
	05-0		1.72	2.69	114	60	3	2
		0.15 - 0.23a	4.49	6.10	30	100	2	6
	05-F		11.17	31.00	20	52	6	
	0 <b>5-6</b>	0.25 - 0.30e	7.63	11.79	23	180	3	21
	05-A	Underclay; 0.10m	0.54	91.13			******	
	05-B	0.10 - 0.15e		91.97				
	05-C	0.15 - 0.20m		93.55				

TABLE 5 Contd Gallium, germanium, ash and sulphur data on coals from the Sydney Coalfield.

SITE/SEAM	ACI I.D.	THICKNESS	SULPHUR (% as det	ASH ermined)	Sa (ppm in	Se ash)	6a (ppa in	6e (coal)
SPENCER	12-A	0.30 - 0.45m		89,04			•	
N.S.D.M.E. Core	12-B	0.15 - 0.30m		93, 20				
PM-45	12-C	Roof; 0.15m		89.04				
	12-D	0.00 - 0.30m	2.32	7.74	40.4		3	9
	12-E	0.30 - 0.60m	3.94		12		1	2
	12 <b>-</b> F	0.40 - 0.90		2.78	••	•••	•	4
	12-6	0.90 - 1.20m	1.91					
	12-H	1.20 - 1.30m	5.87	30.58	39.2	50	12	15
	12-1	Underclay; 0.15a		85.13				
	12-J	0.15 - 0.30m		90.96				
	12-K	0.30 - 0.45		89 78				
	12-L	0.45 - 0.60m		88.74				
	12 <b>-</b> H	0.60 - 0.75m		88.92				
	************		••••••	• • • • • • • • •	• • • • • • • • •	••••••	*******	
PENCER	13-A	0.30 - 0.45		94.18				
.S.D.M.E. Core	13-B	0.15 - 0.30m		94.76				
H-48	13 <b>-</b> C	Roof; 0.15a		91.75		(10		(9
	13-0	0.00 - 0.30m	3,92	 6.83	22			4
	13-E	0.30 - 0.60m	2.68	6.46	22	10	1	i
	13-F	0.60 - 0.90	1.82	3.35		••	•	
	13-6	0.90 - 1.06	2.16	6.01				
	13-H	Underclay; 0.15e		85.40		⟨10		 (9
	13-I	0.15 - 0.28m	****	88.44		`••		\ 7
	13-J	0.28 - 0.43m		88.29				

TABLE 5 ContdGallium, germanium, ash and sulphur data on coals from the Sydney Coalfield.

SITE/SEAM	ACI I.D.	THICKNESS	SULPHUR (I as det	erained)	(ppm in	ash)	(ppm in	coal)
SARDINER		0.04 - 0.13m						
	32- 13	Roof; 0.04m	1.05	85.42				
	32- 01	0.00 - 0.15m	0.97	5.03	65.0	430	 3	22
	70 40				69	393	3	20
	32- 02	0.15 - 0.30	1.32	5.08	37	10	2	i
	32- 03	V.JV - V.TOM	2.28	8.76				
	32- 04		1.39		30	14	10	5
	32- 05		2.92	20.97				
	32- 06	0.45 - 0.80m	3.42	7.49	18.4	<10	1	(1
		0.80 - 0.95	3.42 4.90 6.96	16.15	16	18	3	3
		0.95 - 1.07	6.96	19.34				
	32- 09	1.07 - 1.90m	4.53	61.22	36	(10		(6
	32- 10	1.09 - 1.23	5.40	38.08	34.1	(10	13	<4
	32- 11	Underclay; 0.05m	0.49	84.46				
	32- 12	0.05 - 0.20m	0.26	90.48				
					*******			
ULLINS	14-A	0.30 - 0.45		95.34				
.S.D.M.E. Core	14-B	0.15 - 0.30m		94.92				
W-13	14-C	Roof; 0.15m		94.21		<10		(9
	14-D	0.00 - 0.20	9.00	18.81	17	(10	 7	 (2
	14-E	0.20 - 0.45m	4.93 11.02 5.74	10.44	31			-
	14-F	0.45 - 0.70m	11.02	20.16	15	<10		⟨2
		0.70 - 0.95∎	5.74	8.91	17		2	١.
	14-H	0.95 - 1.20m	5.18	6.76	15		i	
	14-I	1.20 - 1.45	3.83	5.76	12		i	
	14-J	1.45 - 1.75a	6.43	8.49	17	30	i	3
	14-K	Underclay; 0.15e		94.70				
	14-L							
	14-M	0.30 - 0.45		94.41				

TABLE 5 ContdGallium, germanium, ash and sulphur data on coals from the Sydney Coalfield.

SITE/SEAM	ACI I.D.	THICKNESS	SULPHUR (% as de	ASH etermined)	Ga (ppa in	Ge 1 ash)	Ga (ppm in	Ge Coal
MULLINS	15-6	0.32 - 0.47#						
N.S.D.M.E. Core	15-0			70.21				
NW-16	15-0	Roof; 0.17a		93.90				
	15-E	0.00 - 0.25m	11.76	23.59		(10	3	
	15-F		4.34	6.31		(10	J	(
	15-6		5.18	11.73				
	15-H		5.84	9.55	12.2	(10	1	(
	15-I		5.38	7.56			•	`
	15-J		3.48					
		1.50 - 1.75	3.64					
	15-L	1.75 - 1.95m	9.87	18.38	12.3	20	2	4
	15-M	Underclay: 0.15m		92.79			~	
	15-N	0.15 - 0.30		92.85				
	13-0	0.30 - 0.45m		94.54				
TRACY		0.28 - 0.43						
M.S.D.M.E. Core	14-R	0.13 - 0.28		94.36				
PM-65	16-C	Roof; 0.13m		91.64				
				80.82		(10		(8
	14-0	0.00 - 0.25		10.92				
		0.25 - 0.45m	6.58	7.61				
	16-F	0.45 - 0.8im	4.30	4.44				
	14-6	0.81 - 1.07m	4.70	11.69	(14		⟨2	
	16-H	1.07 - 1.25a	8.33	14.52				
	16-I	underclay; 0.14m		91.22		<10		 (9
		0.14 - 0.27		34. QA		17	11	6
		0.27 - 0.42m		81.42		• •	••	•
	16-L	0.42 - 0.57m		81.54				
**********								
OUND IS./MCAULEY	09-A	0.30 - 0.40m		93.68				
utcrop	09-B	0.20 - 0.30		93.45				
	09 <b>-</b> C	0.10 - 0.20m		91.14				
	09-D	Roof; 0.10e	2.07	89.57		10		. 9
		0.00 - 0.10m	7,42	13.22	20	 60	3	
		0.10 - 0.25e	5.74	9.47		50	J	8
	09-6	0.25 - 0.33	7.78	11.70	49	60	4	7
	09-H	Underclay; 0.15m	0.22	93.33		10		
	09-I	0.15 - 0.25m		94.56		10		9
	09-J	0.25 - 0.40m		93.80				

TABLE 6 Gallium and germanium concentrations of coals from the Sydney Coalfield.

: SEAM	E. Zodrow	ppa	ash		1		E. Zodro: ppm ash			1		C.I. ash	
	: 6a 6e ::	Ga 	6e 		6a	6 <b>e</b>	: 6a 6e	: 6a	6 <b>e</b>	1 6a		1 6a	6 <b>e</b>
POINT	Outcrop	Outc	rop	HUB	l Pr		;	·-; !		-: ! Pr	ince	-¦	
ACONI	360	19.8	<10	1 1	1 400			į		1 77			
	140	37.1	280	1 1	200		i	į		57			
	: 80	!			100		1	1		1 3/	52	i	
	100	1 13.8	200	1	120		!	1				i	
	260			i	40	80	1	1		47			
	260	1			40	80				: 26	<10	l	
		13.3	260	, , ! !	1 40		•	i		1		1	
SEAM	1		200	1 1		20	•	i .		1 34	22	1	
AVERAGE		21.0	100	i i	1 90	40	•	1		1		!	
					60	40		1		1 30	19	:	
UPPER	•			•	20	40		t		{		1	
LLOYD		Open Pi			1 40	60		1		1		1	
	240		<10		1 20	40	<b>!</b>	}		1 16	<10	1	
COVE :	80		112		1 40	40	{	1		1 13	23	{	
	60		30		1 40	20	† 1	1		1 32			
i	80 8		19 1		1 40	20	į	1			•		
i	60	16	10 1	;	1	40	) }	1		!		1	
}	200 (		1	!	1		1	i		1		1	
;	!	54	400 1	1	1		· [	!		1		i	
!	!	18	190 :	1	1			1		1		i	
EAH :	;		į.	SEAM				1		i		:	
VERAGE :	120 !	31	110	AVERAGE	86	54		1		37		<u>'</u>	
;										: 3/ :{		( !	
OWER :	i.		an i	HARBOUR	Nov	aco i	No. 26	Lin	igan	Nov	aco	Lin	gan
LOYD :	í	Open f		ł	10	170	40		410		⟨10		yun
OVE (	;		(10	<b>¦</b>	1 10	80 ;	60	1 70	490		`	55	60
+	;	31	37	1	20	100			30		180		00
!	1	12	20 1	1	1		40		30		160		/10
1	1		{	1	: 20	90 :	40		20		100	47	<10
ļ	1	13.	13 1	1	1 10	30 (	40		30		<10		
1	1	17	⟨10	1	1 10	280	40		20		(10 )		
;	1		!	1	70	830 ;	20		30		10:		
i	+	17	(10 )	Ì	1	!	20		20		12 !		31
1	1		59		i	;	20			•	4		<10
:	1		102	į	i	- ;			20		20	23	<10
1			368 !	i			20		30		1		
i	į		140 1	!	;	1	20		20		30 !		<10
	1	• •	1 VF.		1	i	20		20		327	79	260
:	1		!	!	1	i	20	30	60		:		
AN :	!		!	SEAM	!	i i		i 1					
ERASE :		17	77	AVERAGE	21	i יינפף	-,	i			- 1		
	!-		· · · · ·			226	31	21	88	31	94	35	56
1 -					;				!				

Note: "(" was dropped when calculating seam averages.

;	: 6a	6 <b>e</b>	1 6a	A.0 pp <b>s</b> 6e	i Ga	Ge		: E. Zodrow : ppm ash : Ga Ge		001	C.I. Mash   Ga	
:INDIAN				SM-17				6a 6e				
COVE	(10	30	1 28		1 30.6		SPENCER		Core	PH-45	: Core	PM
!	(10	20						1		120		
; J	1 10	20	1 20	<10		26	l	1	1 12	35	1 22	
! }							ł	1	1		{	
1	10	20			25	20	1	1	j k		1	
	1 10	110			i		1	1	39.2	50	1	
i	10	150			i		SEAM	1	[		i	
	10	360			16.8	90	AVERAGE	!	! <b>१</b> 1	68		
	!		14	110	ł						22	
SEAM	;		1	;	<u> </u>			•		Pit	,	
<b>AVERAGE</b>	10	101	26	43	21	47						
				!			 	1 1	67	412		
PHALEN	No	. 26	! Phalo	n Col.:			1		37	10	;	
,	30		130				i	i	i		!	
'	10	20		15 1			i		30	14	(	
,	20	10									1	
1				10		i	i	;	18.4	<10	¦	
i i	10	20 1		į		;	1 :	1	16	18	<b>!</b>	
i	20	(10				;	;	;			<b>¦</b>	
i	10	20		<10		i	1 1	1 1	34	(10		
i	20	20		;		- 1	}			<10		
i	20	20 1		<10		į	SEAM !		• • • •			
ł	10	20		1		1	AVERAGE	į	34	69		
1	20	<10	25	<10		1			77	، رو ا ـ ـ ـ ـ ـ ـ ـ ـ		
1	10	20 1		20 :		1	HULLINS	,	Corn	AM-12	^	
1	10	(10	34	230		1	1		17	4M-19 !	Lore	NM-
1	10	20 1		1		i		1	1/	<10		(
EAM :		1				i	!	i	31			
VERAGE !	15	18	38	44			,	i	15	(10		
							1	į	17	;	12.2	<
HERY :		i	Dúta	rop i		-1	l i	i	15	1		
!				40 :			i i	i	12	1		
		;	33	24 1		i	i (	ì	17	30		
		1	33	24 i		i	1	1		!	12.3	
1		i				1	ISEAM :	1		1		
i			27	12 /		ı	AVERAGE	1	18	17 1	12	
i .		1	36	<10		- 1						
1		1		!		ŀ	TRACY :	1	Care P	M-65 !		
1		1		(10		!	1 1	i		<b></b> 1		
1		-	60	10		1	1 1					
. }		1		1		ł	i			l F		
1		+		1		i		1	(14	j 1		
;		1	28	10 1		!		1	147	į 1		
AH ;		1	-	1		:	SEAM !	1		į		
ERAGE :		į	40	17		,	AVERAGE :	i		i		
		!		**		·				1		
IERY- :		į –	Outer	1								
		1	114			i	MCAULEY :	!	Outc			
1) F N		1		60 1		i		Į.	20	60		
DER :		į ,		100		ł		1		}		
DEK ;			20	52 ¦		ł	1	;	49	60 :		
} }		İ	23	180 ;		1	1	{		1		
DER ;			23 47	180 ¦ ; 98 ¦		<b>!</b>	SEAN :	; ;				

Note: "(" was dropped when calculating seam averages.

***************************************		TABLE 7	- PYRITE CONCENTRA	TION		
			CONCENTRATI	NG TABLE	FLOAT-SINK	ANALYSIS
SITE/SEAM	ACI I.D.	THICKNESS	STARTING WT.(g)	CONCENTRATE WEIGHT +	FLOAT WEIGHT %	SINK WEIGHT %
BROGAN/LLDYD COVE	02-F	0.03-0.18	ŧ	7.1	73,80	21.00
Jpper Seam	92-J	0.63-0.77 a	357.5	19.0	73.00 82.47	26.20
Open Pit Mine	02-K	0.77-0.82	150.6	23.8	76.09	17.53 23.91
9ROGAN/LLOYD COVE	03-E	0.00-0.04 m	105.3	18.8	78.09	21.91
Lower Seam	03-H	0.32-0.36	314.5	56.8	68.50	31.50
Open Pit Mine	03-1	0.36-0.46 📾	410.2	73.5	73.13	26.87
	03-N	1.06-1.21 a	311.4	14,9	85.44	14.56
	03-P	1.28-1.31 m	199.6	34.0	71.15	28.85
PRINCE/HUB	08-A	0.00-0.15 a	126.1	16.7	85,45	14 55
Underground Mine	08-E	0.60-0.75 m	246.8	13.9	69.64	14.55 30.36
NOVACO/HARBOUR	01-E	0.00-0.02	366.9	78.2	70,28	29.72
Open Pit Mine	01-H	0.32-0.47 a	300.2	66.2	59.59	40.41
	01-J	0.56-0.60 🛦	459.7	57.4	64.41	35.59
	01-P	1.22-1.37 m	300.9	19.3	61.09	38.91
~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0i-Q	1.37-1.47	ŧ	29.0	20.07	79.93
LINGAN/HARBOUR	0 <b>6-</b> I	1.20-1.35	296.2	6.4	77.50	72 FA
Underground Mine	06-M	1.80-2.00 m	332.2	3.8	87.37	22.50 12.63
PHALEN COL./PHALEN Underground Mine	07-L	1.65-1.83 a	143.9	13.7	87.74	12.26
Lr.EMERY/STEELE'S HILL	05-0	0.00-0.15	269.9	8,9°		
Outcrop-Rider Seam	05-6	0.25-0.30 m	266.5	48.3	99.21 34.41	0.79 6 <b>5.59</b>
GARDINER	232 01	0.00-0.15	324.6	13.1		
lpen Pit Mine	232 09	1.07-1.09	139.5	15.1	94.73	5.27
	232 10	1.09-1.23	239.3	23.0	95.60 96.04	4.40 3.96

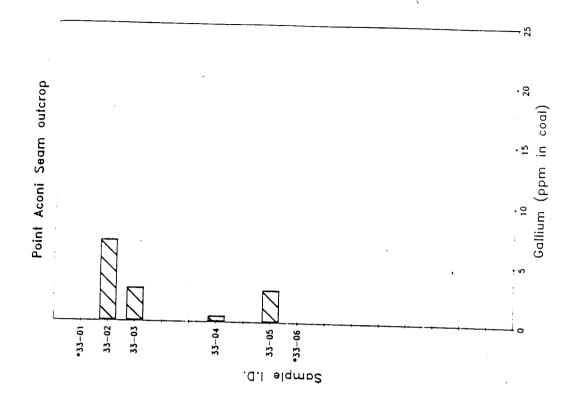
^{*} NOT AVALIABLE

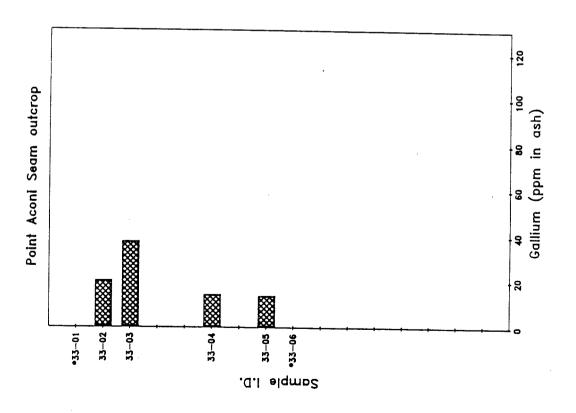
⁺ FLOAT SINK STARTING WEIGHT

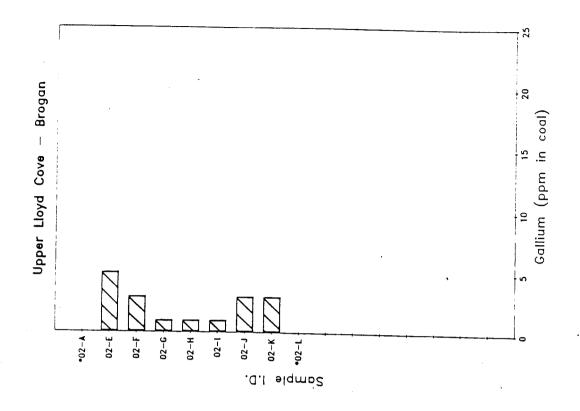
⁺⁺ PYRITE CONCENTRATE % OF FLOAT-SINK SAMPLE

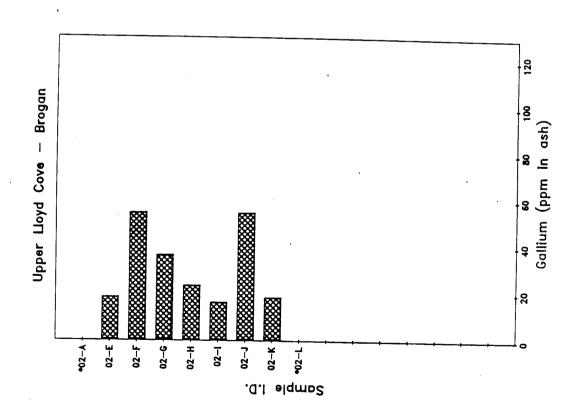
TABLE 8	Gallium	and germanium	in pyr:	ite co	ncentra	ates.
SITE/SEAM AC	I I.D.	THICKNESS	Fl Ga	RITE C( OAT Ge	G a	RATE NK Ge
Brogan/Lloyd Cove Lower Seam	03-H	0.32-0.36m	<10	16		<10
Novaco/Harbour	01-E	0.00-0.02m	1 6	16	<10	17
	H-10	0.32-0.47m	17	115	<10	<10
			. =			

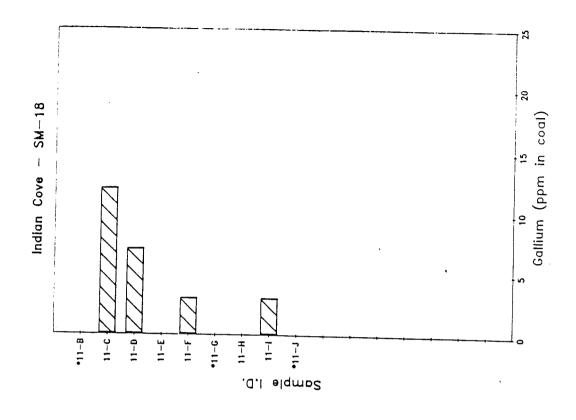
TABLE 9	Float-Sink	analysis	of Novaco	/ Harbour Seam (1.37m-1.47m 260-01				
Relative Specific Gravit	y Weight	Ash	Sulphur	Ga	G e	6 a	G <i>e</i>	
Fraction	,	wt%	wt%	ppm in ash		ppm in coal*		
1.40 FLOAT	72.62	2.56	1.87	147	1020	4	26	
1.80 FLOAT	13.69	13,54	5.08	25	128	3	17	
1.80 SINK	13.69	54.30	32.30	<10	22	⟨5	12	

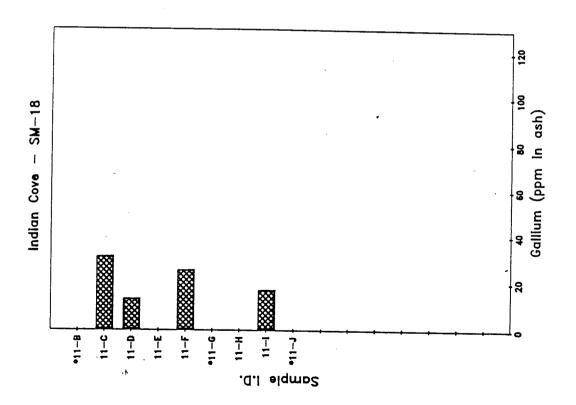

^{*} recalculated from concentrations in ash

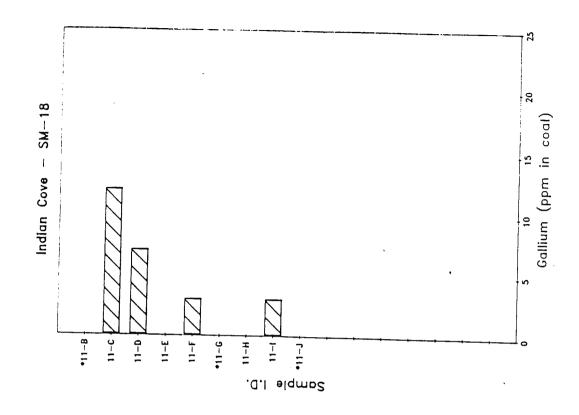

TABLE 10	ABLE 10 Duplicate analysis of gallium and germanium					
SEAM	DEPTH		Ga (ppm	Ge in ash)	Ga Ge (duplicate)	
Upper Lloyd Cove	02-1	0.48-0.63m	<10	10	23	
Hub	08-G	0.90-1.05m	29	22	38	
Harbour/Novaco	0 i - Q	1.37-1.47m	41	420	35	234
Harbour/Lingan	06-H	1.05-1.20m	<10	31	45	
Gardiner	32-01	0.00-0.15m	65	430	69	393

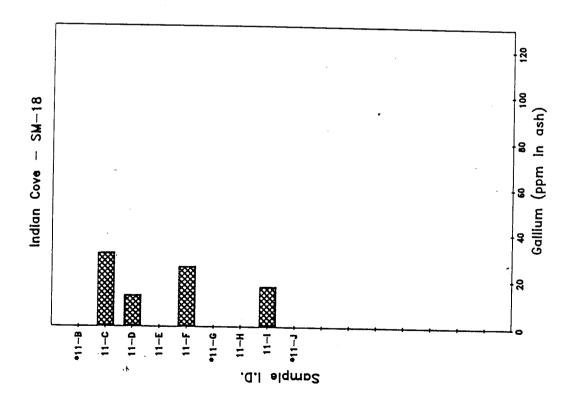

### **APPENDIX II (B)**

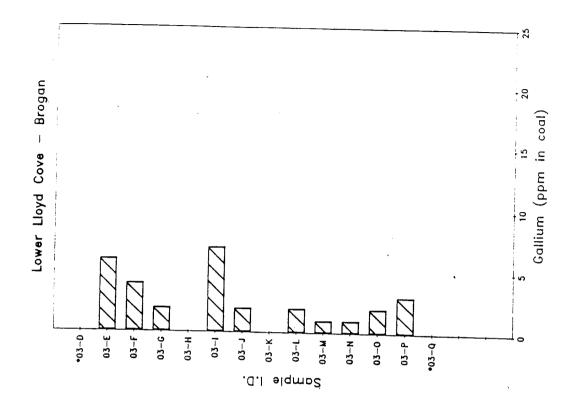

### GALLIUM CONCENTRATIONS WITHIN SEAMS

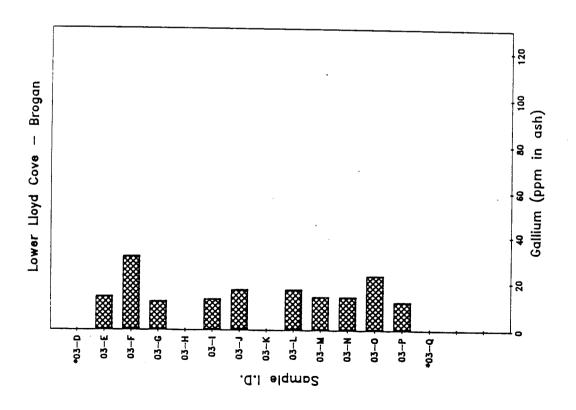

- Point Aconi Seam
- Lloyd Cove Upper Seam (Brogan)
- Lloyd Cove Lower Seam (Brogan
- Hub Seam (Prince)
- Harbour Seam (Novaco)
- Harbour Seam (Lingan)
- Indian Cove (NSDME CORE SM-17)
- Indian Cove (NSDME CORE SM-18)
- Phalen Seam (Phalen Colliery)
- Emery Seam (Steele's Hill)
- Thin seam directly below Emery Seam (Rider/Steele's Hill)
- Spencer Seam (NSDME CORE PM-45)
- Spencer Seam (NSDME CORE PM-48)
- Gardiner Seam
- Mullins Seam (NSDME CORE NW-13)
- Mullins Seam (NSDME CORE NW-16)
- Tracy Seam (NSDME CORE PM-65)
- McAuley Seam (Near Round Island)

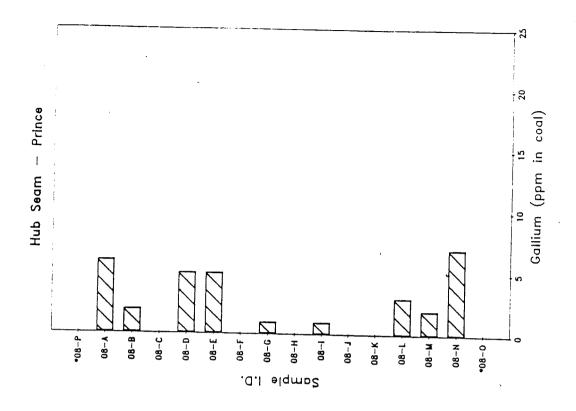


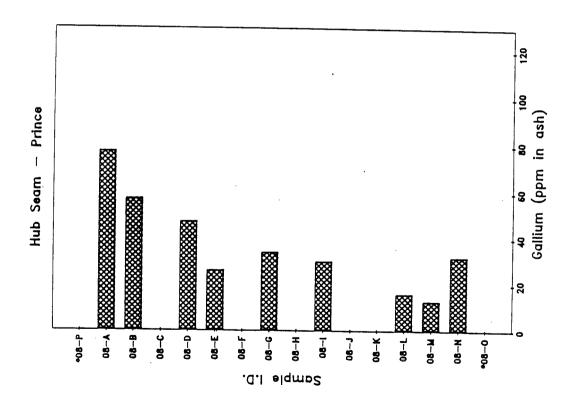



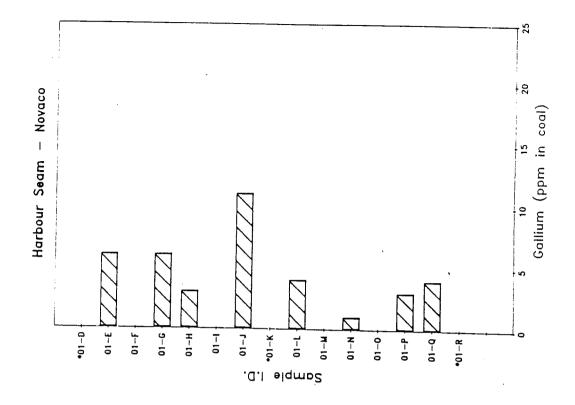



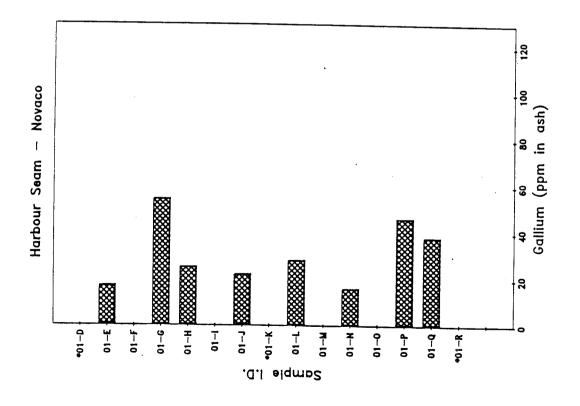



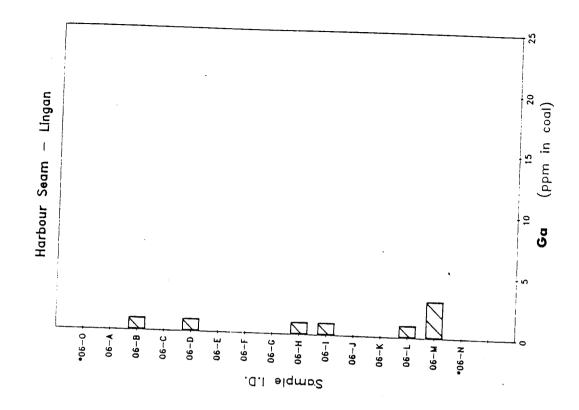



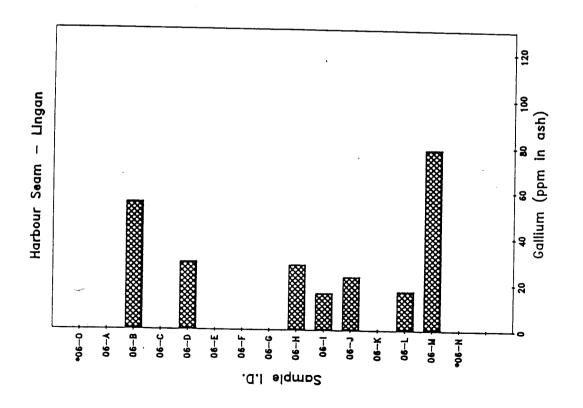



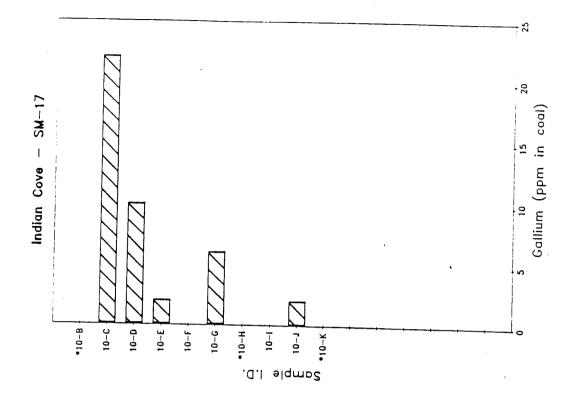



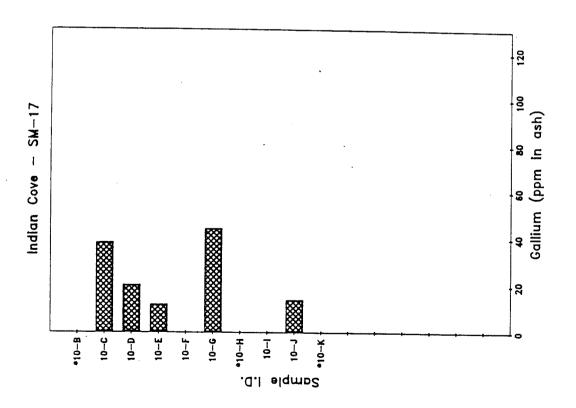



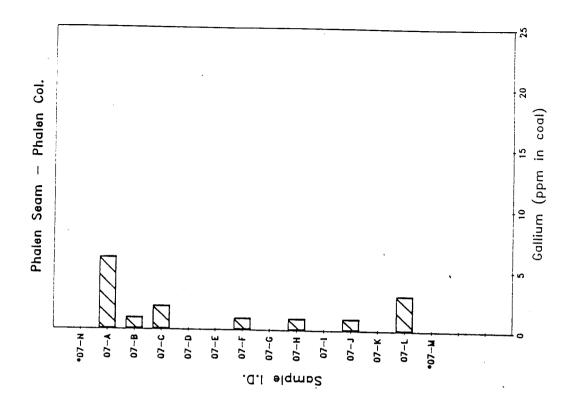



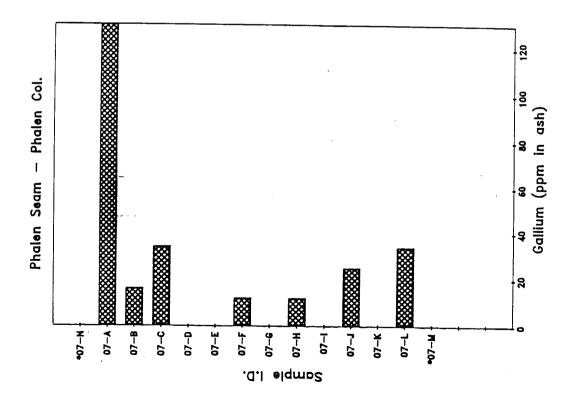



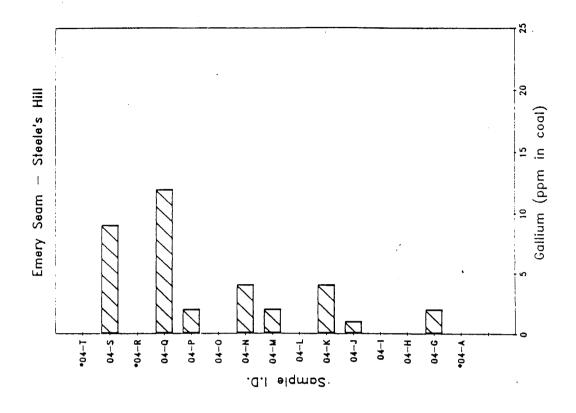



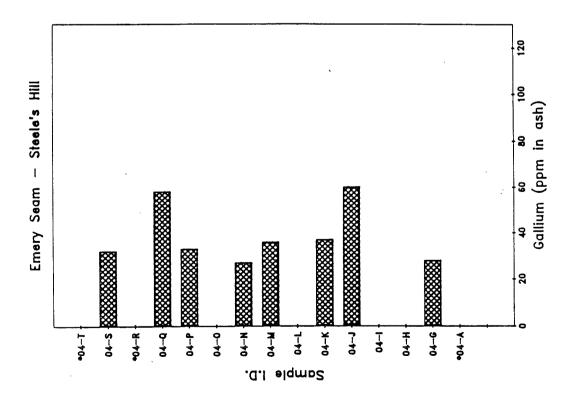



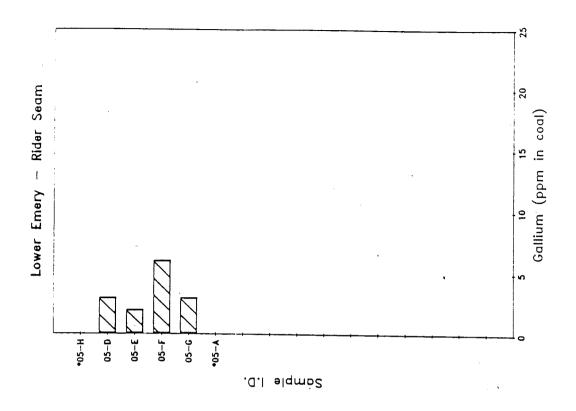



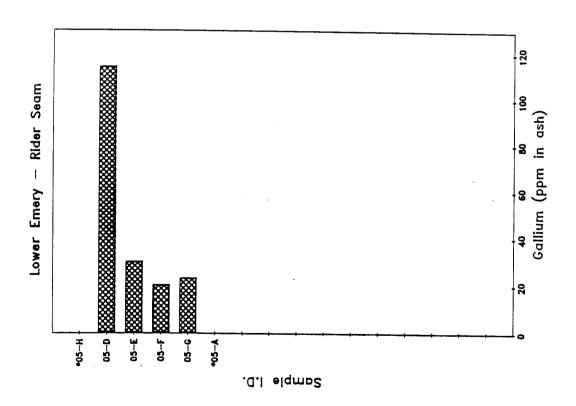



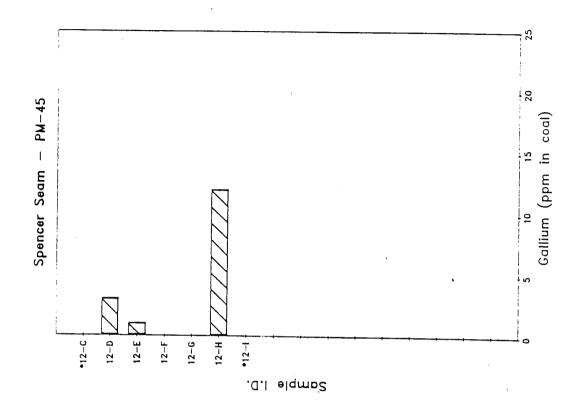



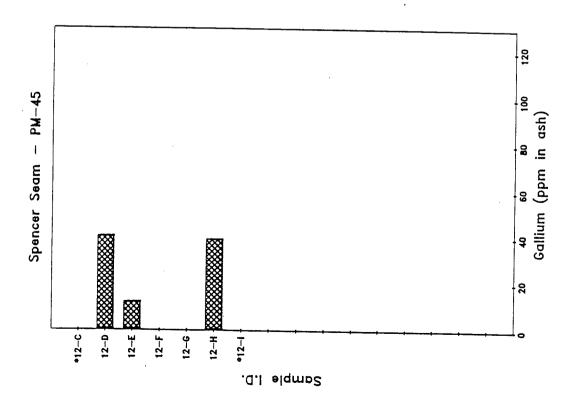



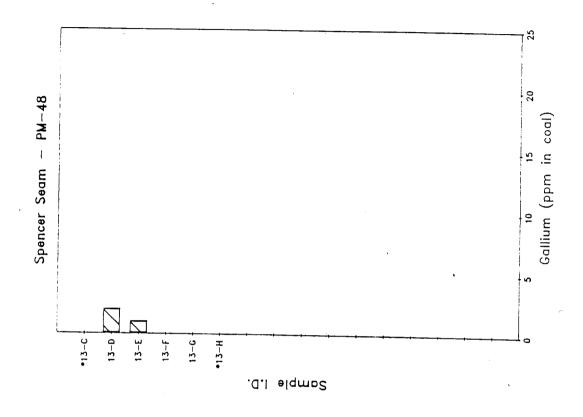



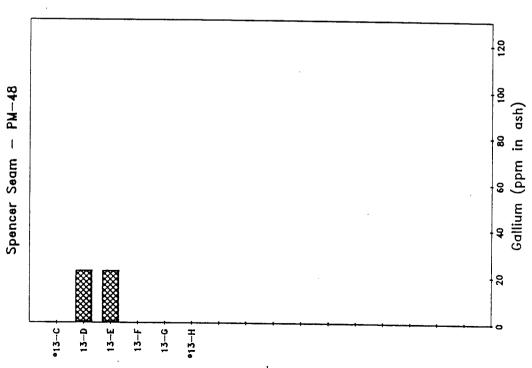



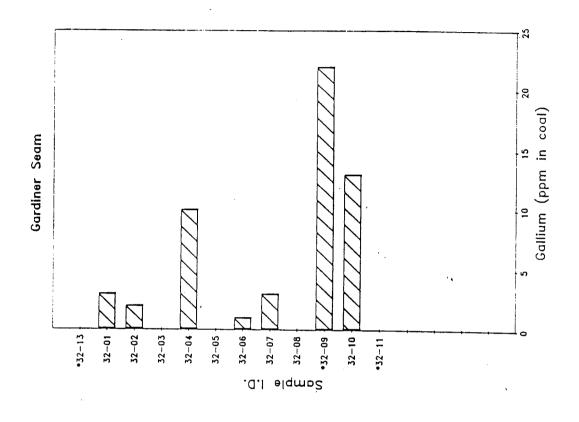



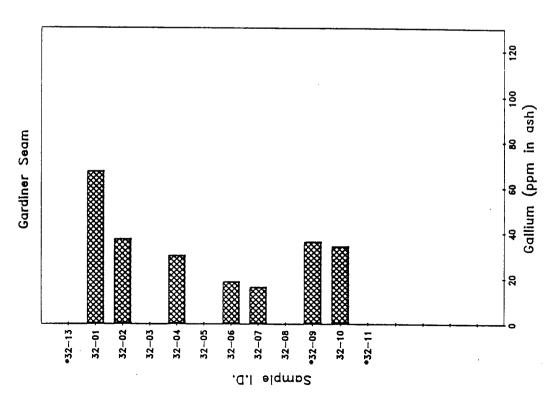



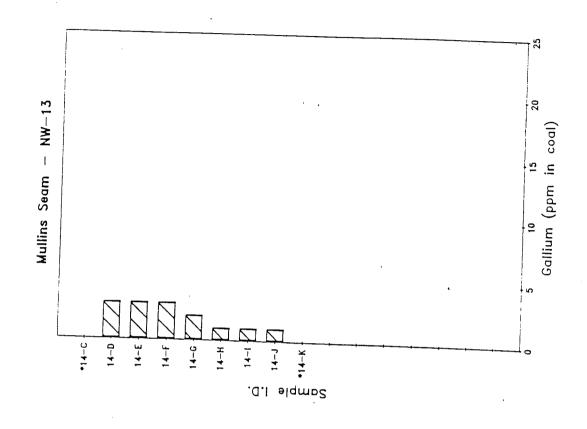



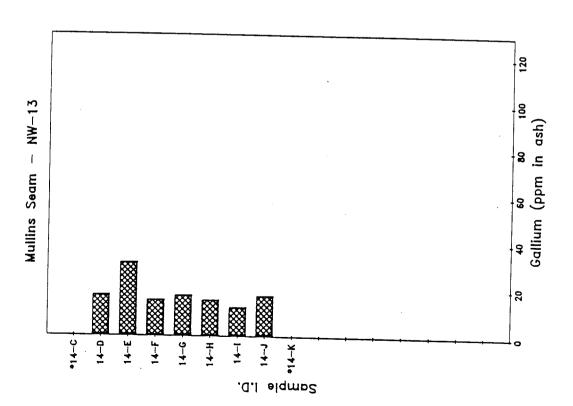



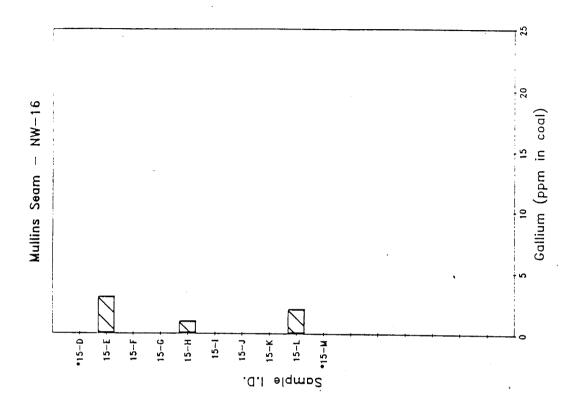


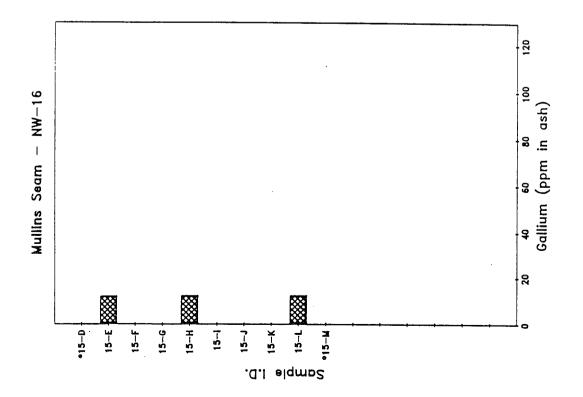



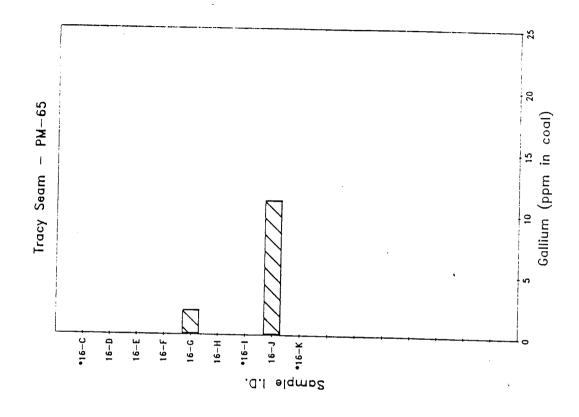



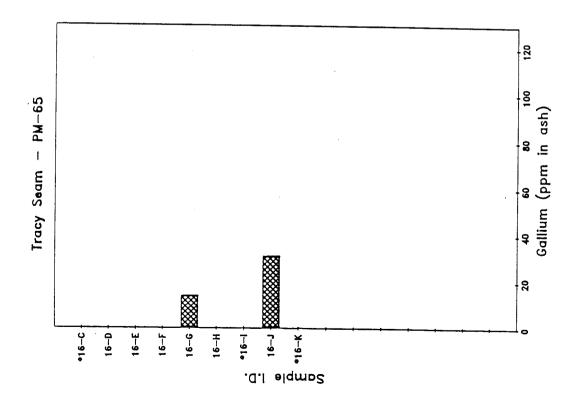



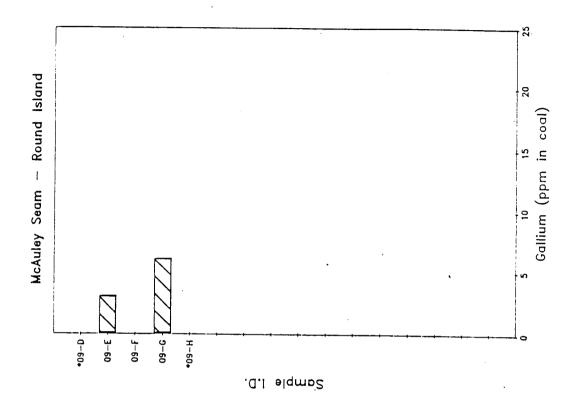



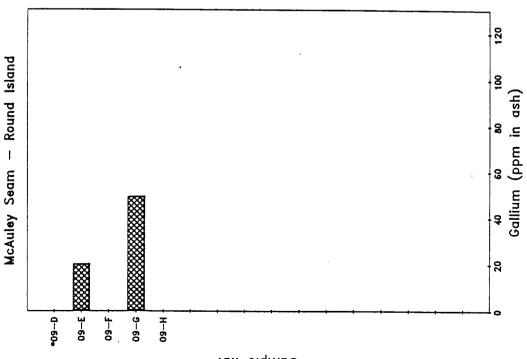


Sample 1.D.



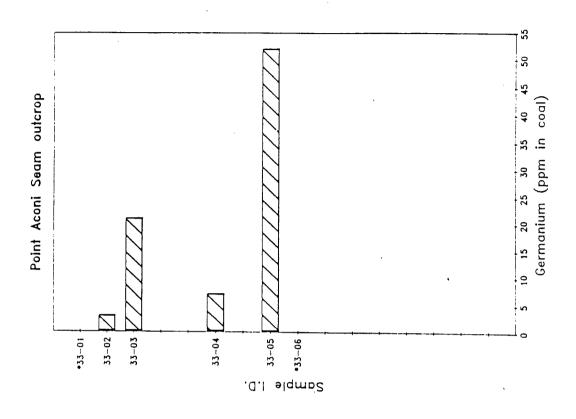



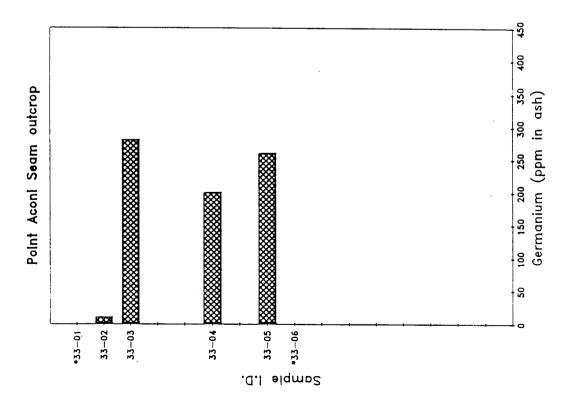


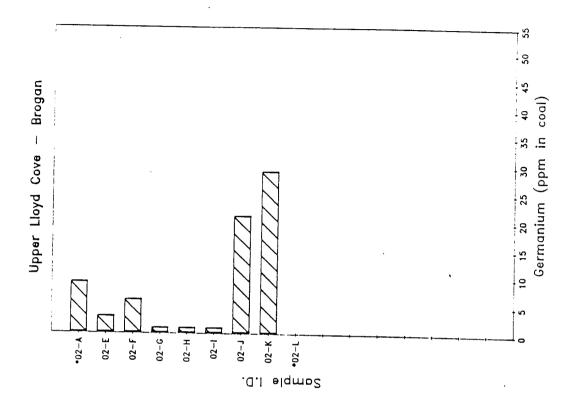


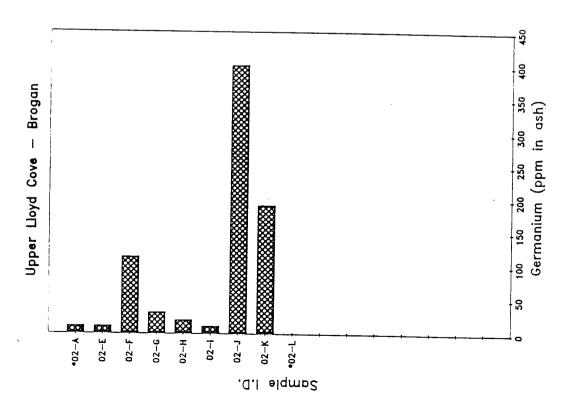


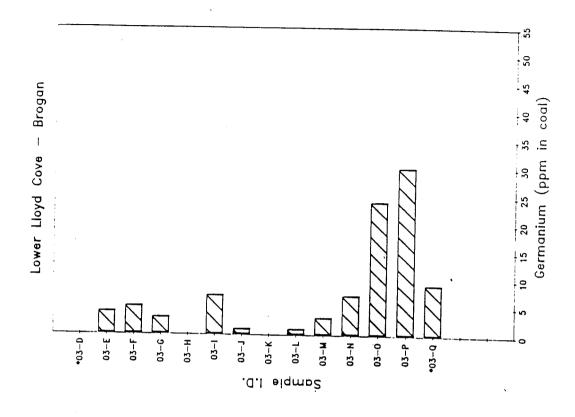


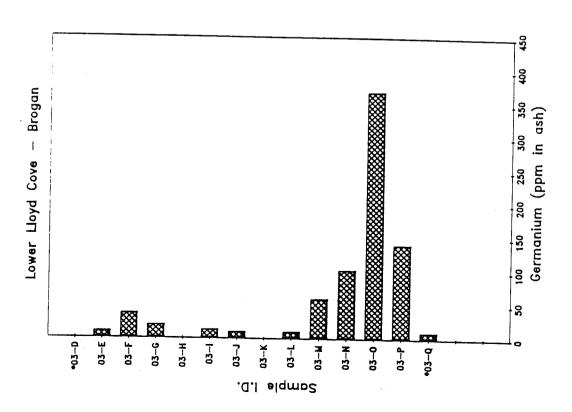



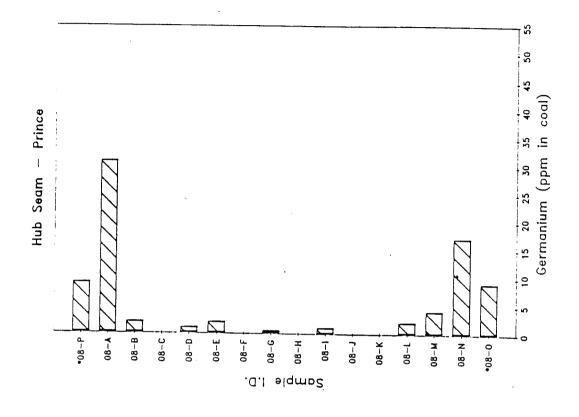


Sample 1.D.

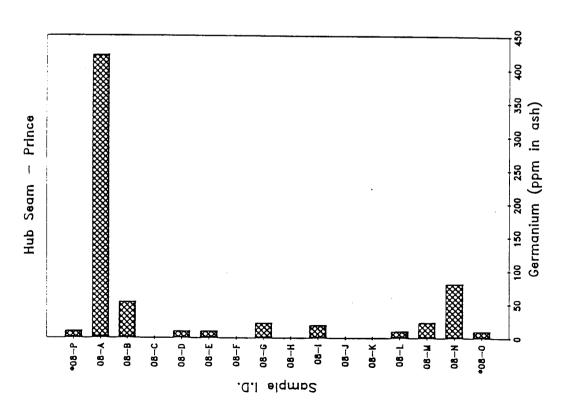

## APPENDIX II (C)

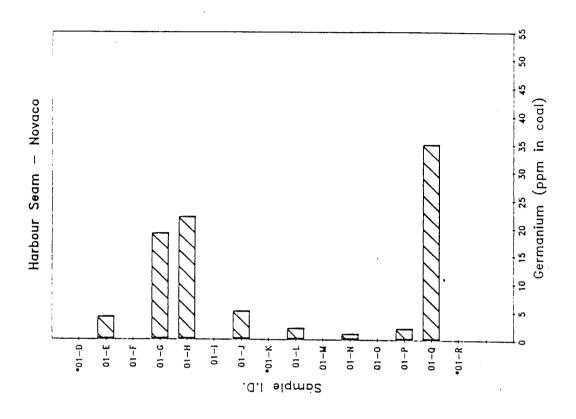

## GERMANIUM CONCENTRATIONS WITHIN SEAMS

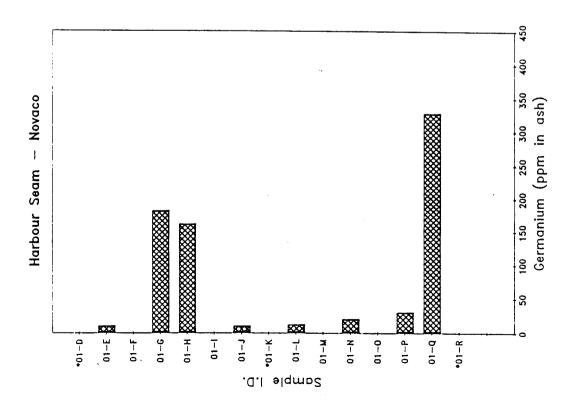

- Point Aconi Seam
- Lloyd Cove Upper Seam (Brogan)
- Lloyd Cove Lower Seam (Brogan
- Hub Seam (Prince)
- Harbour Seam (Novaco)
- Harbour Seam (Lingan)
- Indian Cove (NSDME CORE SM-17)
- Indian Cove (NSDME CORE SM-18)
- Phalen Seam (Phalen Colliery)
- Emery Seam (Steele's Hill)
- Thin seam directly below Emery Seam (Rider/Steele's Hill)
- Spencer Seam (NSDME CORE PM-45)
- Spencer Seam (NSDME CORE PM-48)
- Gardiner Seam
- Mullins Seam (NSDME CORE NW-13)
- Mullins Seam (NSDME CORE NW-16)
- Tracy Seam (NSDME CORE PM-65)
- McAuley Seam (Near Round Island)

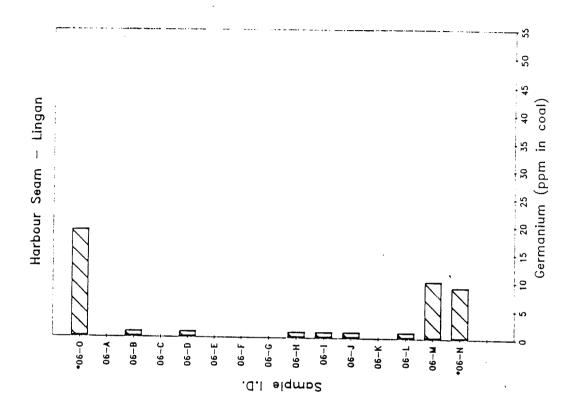


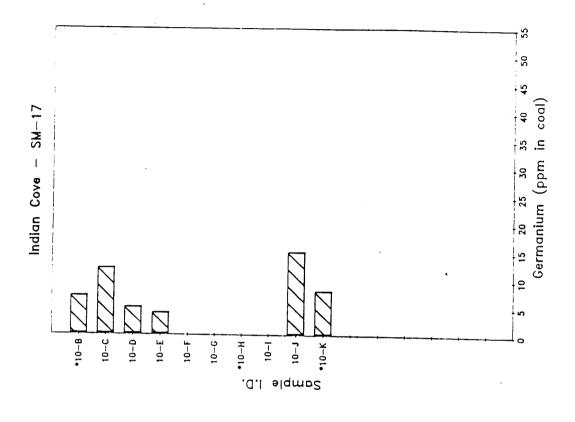



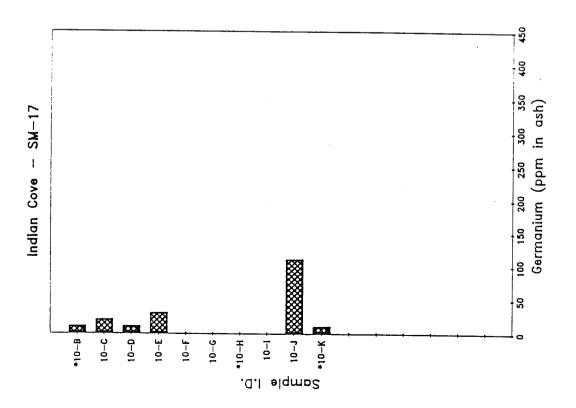



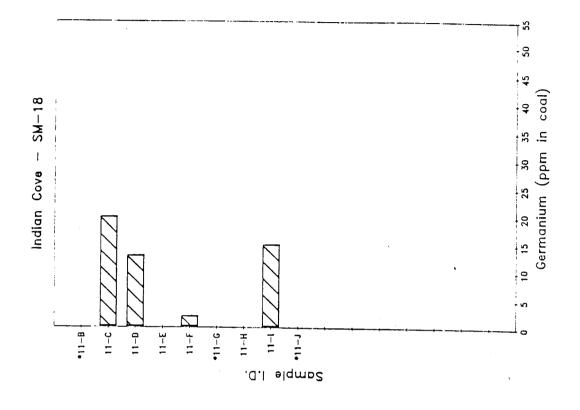



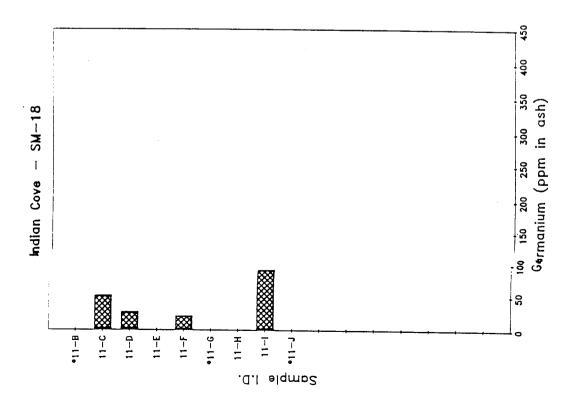



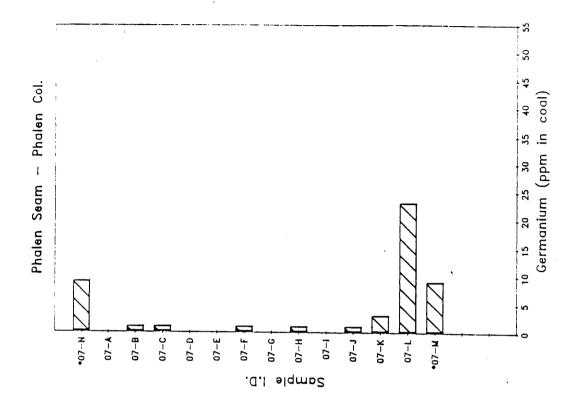


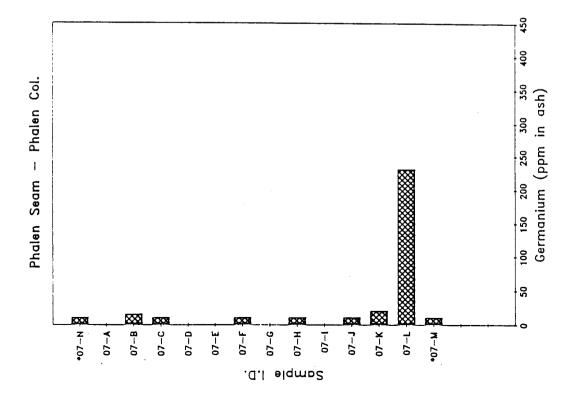



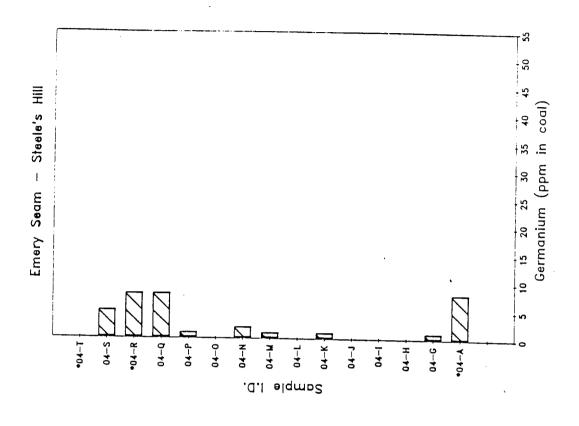



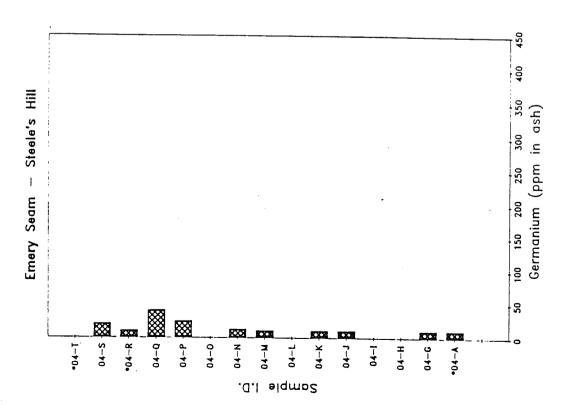



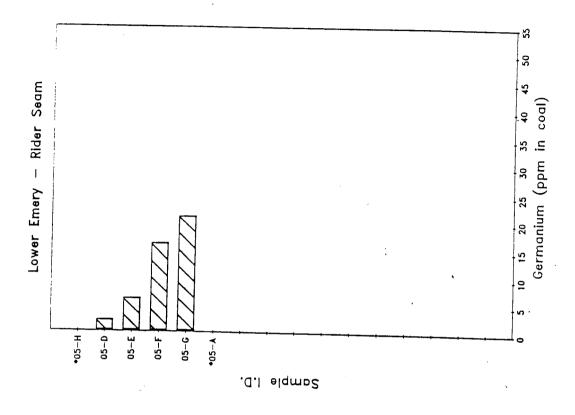



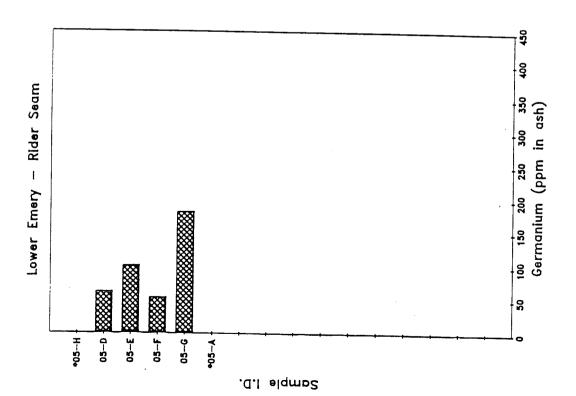



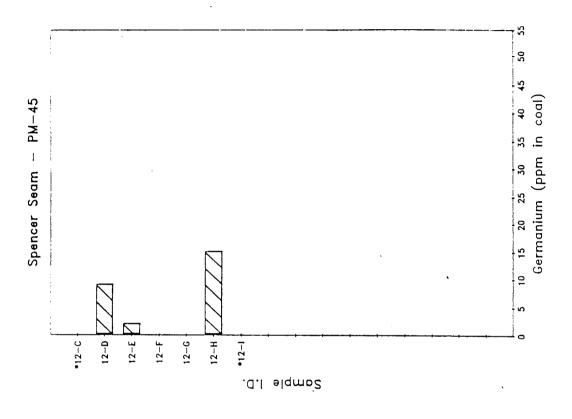



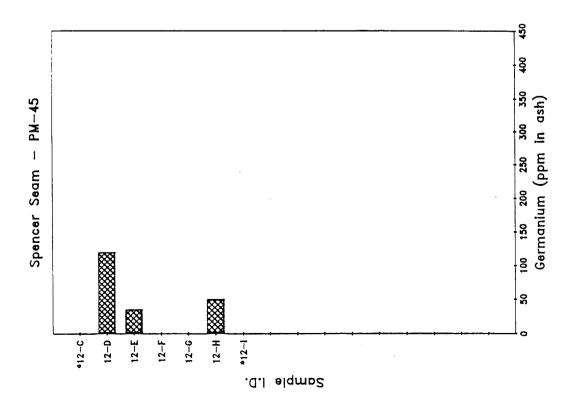



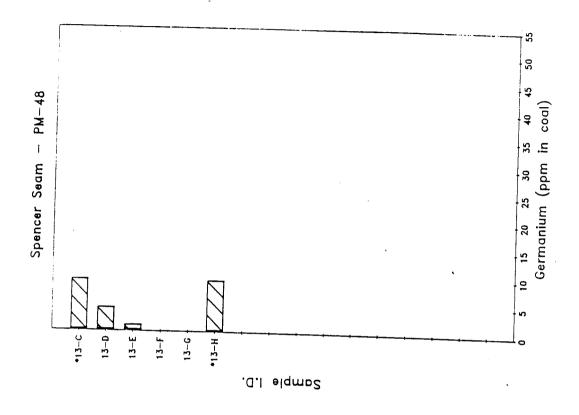



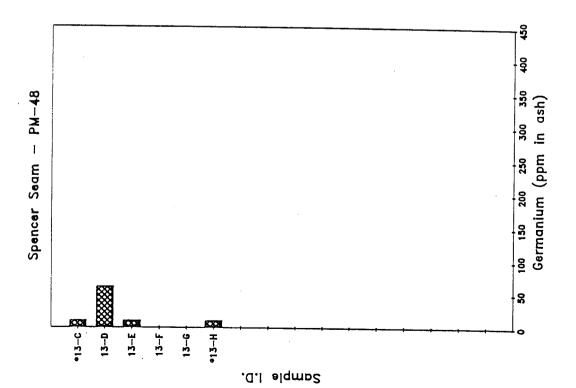



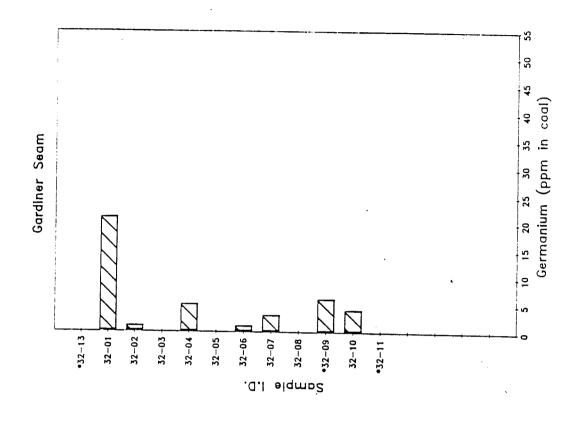



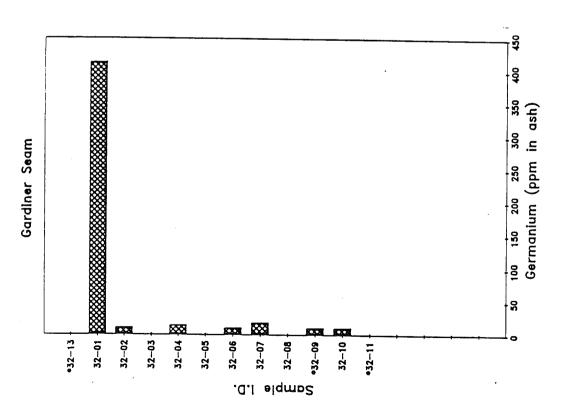



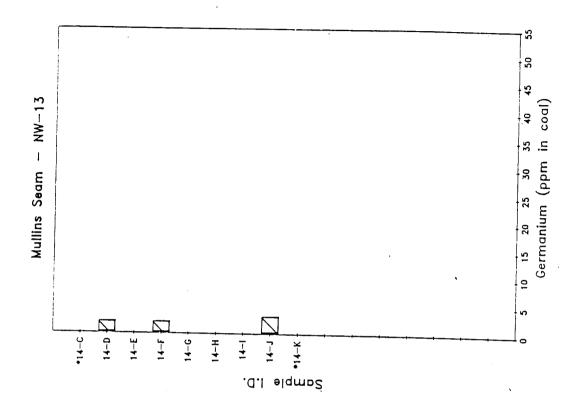



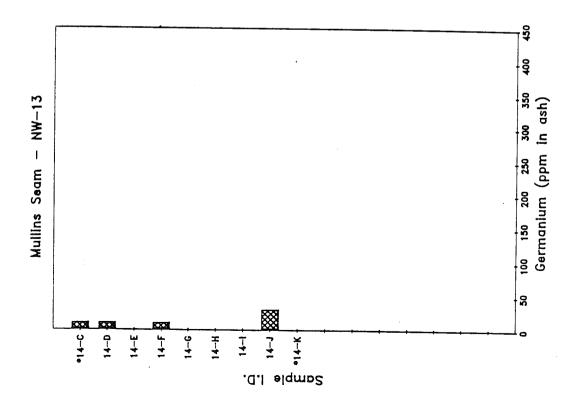



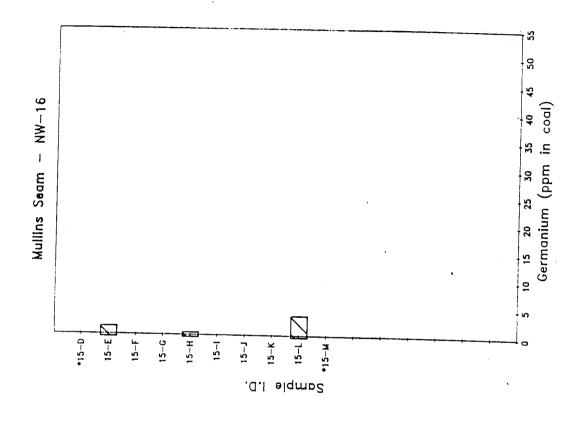



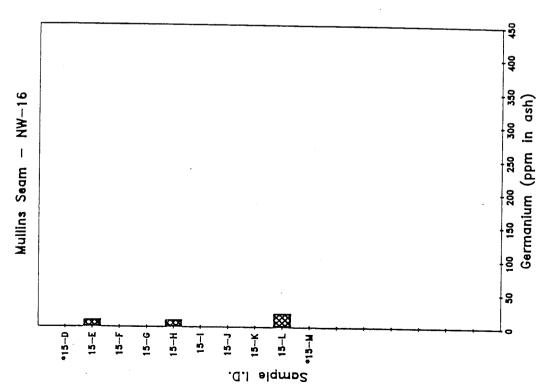



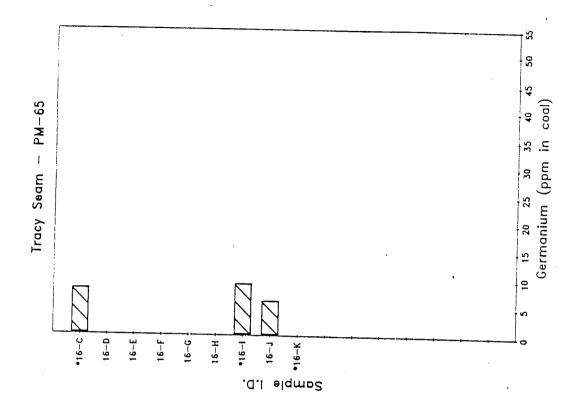



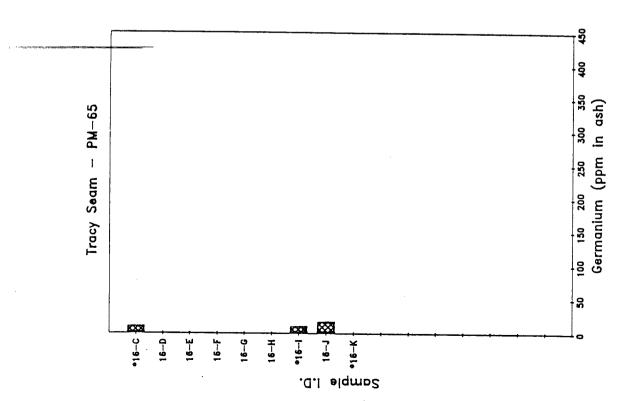



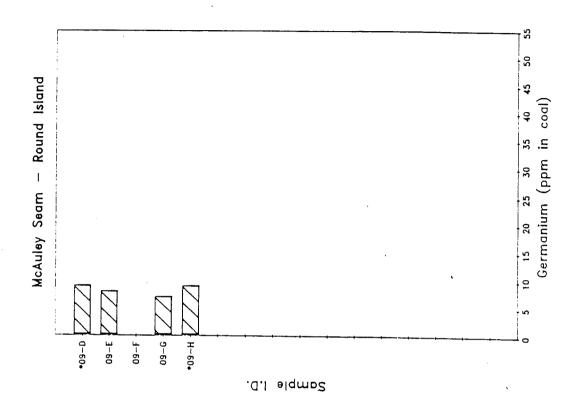



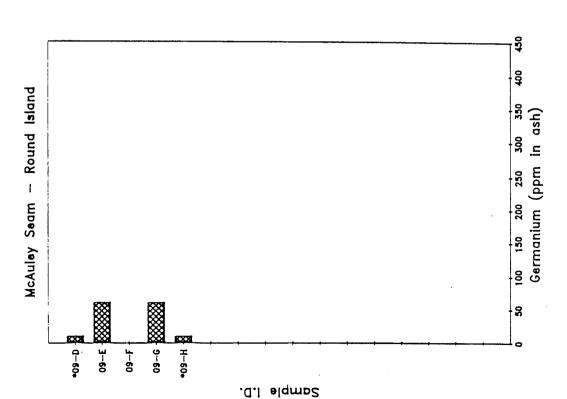



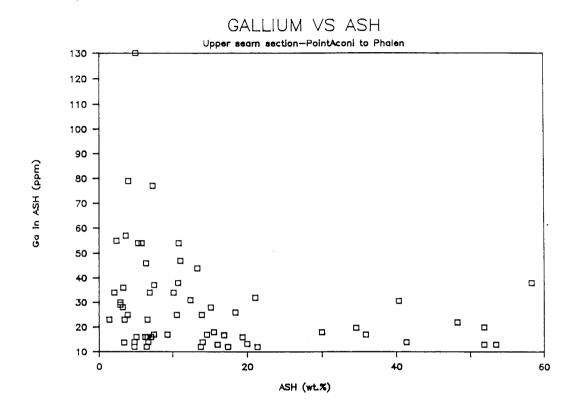



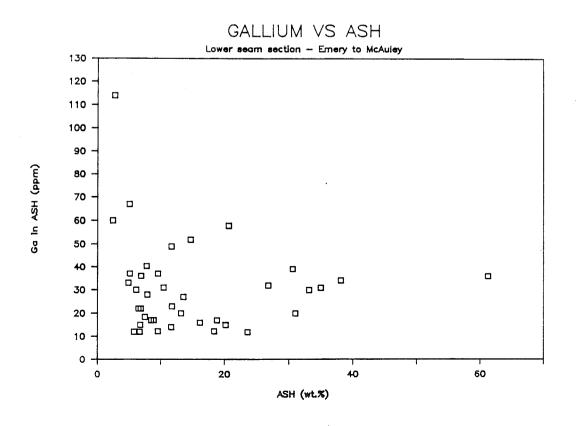



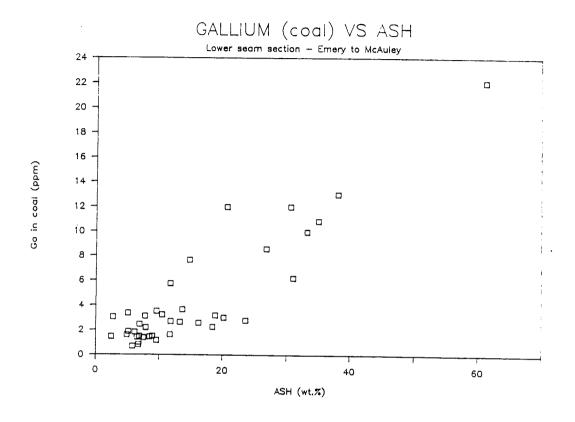


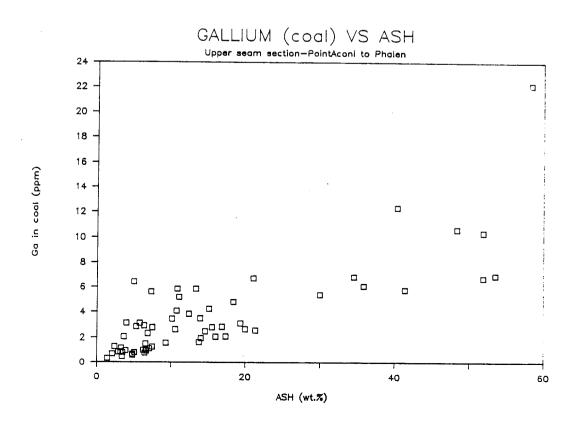


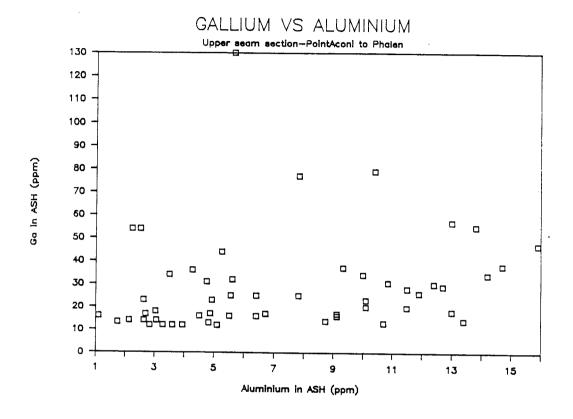


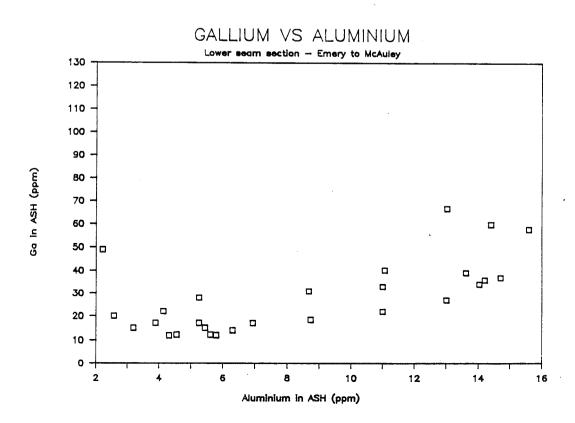



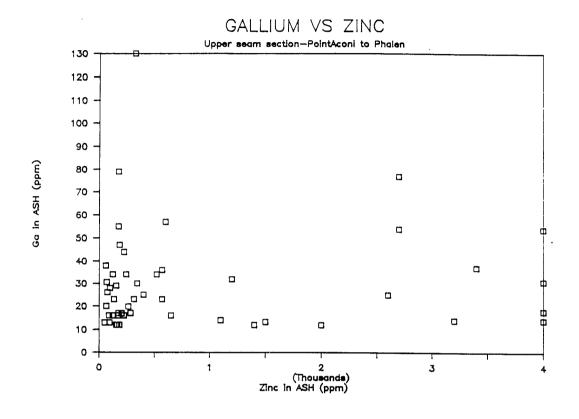



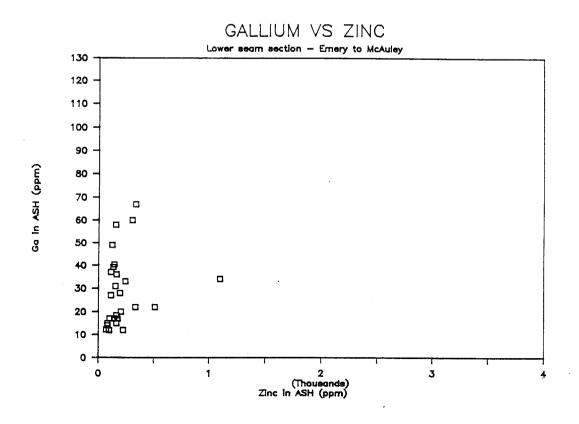


## APPENDIX II (D)

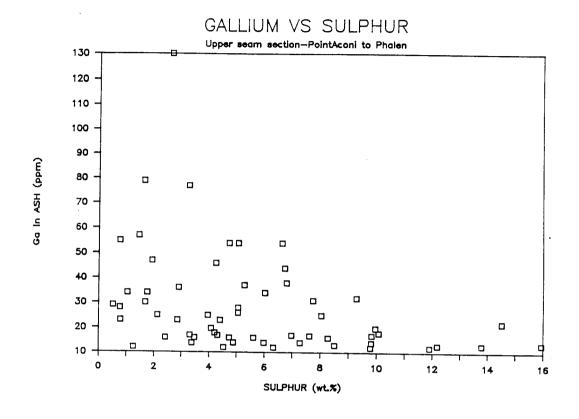

## BINARY PLOTS

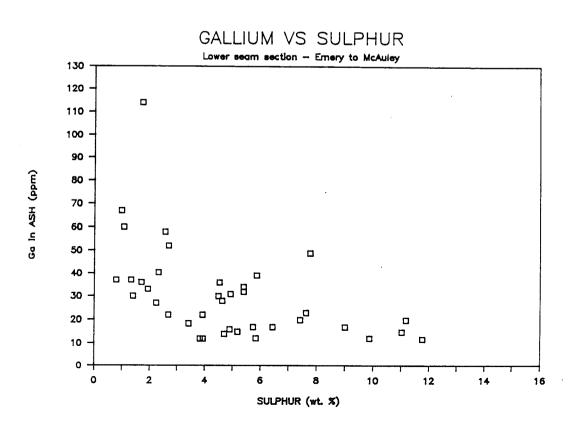

GALLIUM in ash (ppm)	vs	ASH (wt%)
GALLIUM in coal (ppm)	vs	ASH (wt%)
GALLIUM in ash (ppm)	vs	ALUMINUM in ash (ppm)
GALLIUM in ash (ppm)	vs	ZINC in ash (ppm)
GALLIUM in ash (ppm)	vs	SULPHUR (wt%)
GERMANIUM in ash (ppm)	vs	ASH (wt%)
GERMANIUM in coal (ppm)	vs	ASH (wt%)

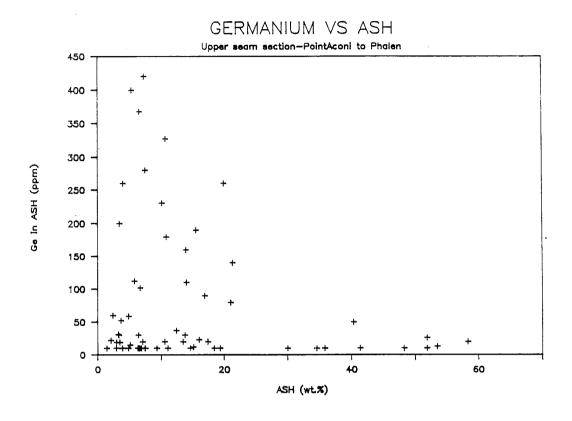


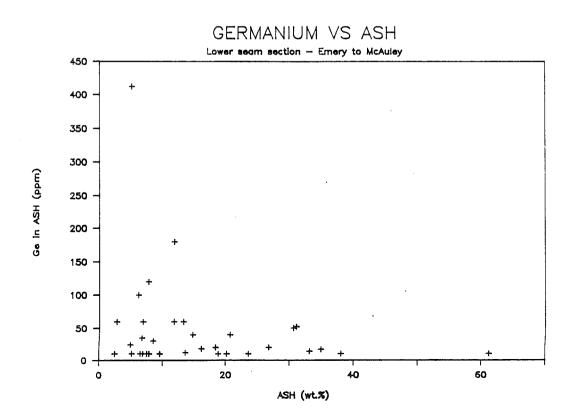



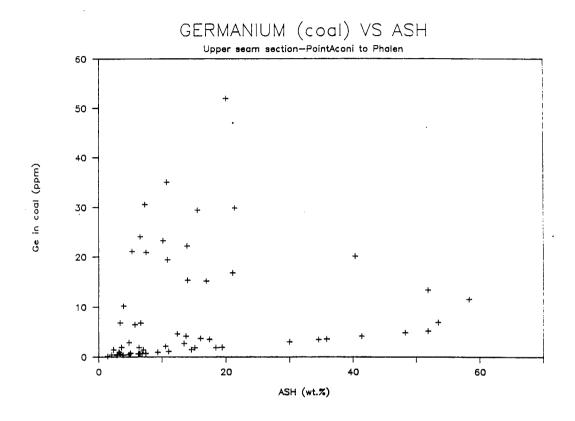



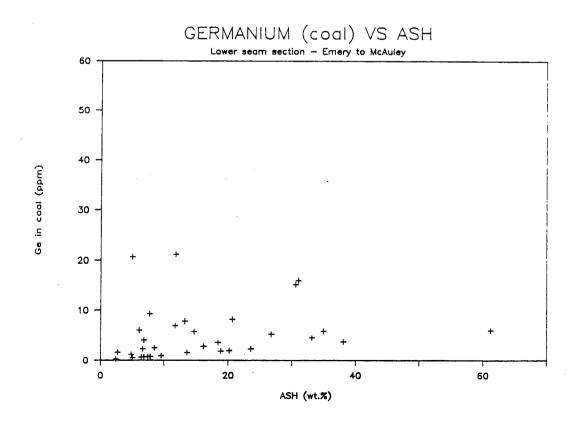














## APPENDIX III (A)

#### AUTOMATED S.E.M. - C.M.A. DATA TABLE

```
Table 1A: Normalized weight distribution (Point Aconi ACI-87-233-03)
Table 1B: Size distribution (Point Aconi ACI-87-233-03)
Table 2A: Normalized weight distribution (Point Aconi (ACI-87-233-04)
Table 2B: Size distribution (Point Aconi ACI-87-233-04)
Table 3A: Normalized weight distribution (Point Aconi ACI-87-233-05)
Table 3B: Size distribution (Point Aconi ACI-87-233-05)
Table 4A: Normalized weight distribution (Brogan/Lloyd Cove Upper seam ACI-87-260-02J)
Table 4B: Size distribution (Brogan/Lloyd Cove Upper seam ACI-87-260-02J)
Table 5A: Normalized weight distribution (Brogan/Lloyd Cove Upper seam ACI-87-260-02K)
Table 5B: Size distribution (Brogan/Lloyd Cove Upper seam ACI-87-260-02K)
Table 6A: Normalized weight distribution (Brogan/Lloyd Cove Lower seam ACI-87-260-03J)
Table 6B: Size distribution (Brogan/Lloyd Cove Lower seam ACI-87-260-03J)
Table 7A: Normalized weight distribution (Brogan/Lloyd Cove Lower seam ACI-87-260-03P)
Table 7B: Size distribution (Brogan/Lloyd Cove Lower seam ACI-87-260-03P)
Table 8A: Normalized weight distribution (Prince/Hub seam ACI-87-260-08A)
Table 8B: Size distribution (Prince/Hub seam ACI-87-260-08A)
Table 9A: Normalized weight distribution (Prince/Hub seam ACI-87-260-08N)
Table 9B: Size distribution (Prince/Hub seam ACI-87-260-08N)
Table 10A: Normalized weight distribution (Novaco/Harbour seam ACI-87-260-01H)
Table 10B: Size distribution (Novaco/Harbour seam ACI-87-260-01H)
Table 11A: Normalized weight distribution (Novaco/Harbour seam ACI-87-260-01Q)
Table 11B: Size distribution (Novaco/Harbour seam ACI-87-260-01Q)
Table 12A: Normalized weight distribution (Lingan/Harbour seam ACI-87-260-06H)
Table 12B: Size distribution (Lingan/Harbour seam ACI-87-260-06H)
Table 13A: Normalized weight distribution (Lingan/Harbour seam ACI-87-260-06M)
Table 13B: Size distribution (Lingan/Harbour seam ACI-87-260-06M)
Table 14A: Normalized weight distribution (Indian Cove seam ACI-87-260-10G)
Table 14B: Size distribution (Indian Cove seam ACI-87-260-10G)
Table 15A: Normalized weight distribution (Phalen Colliery ACI-87-260-07A)
             Size distribution (Phalen Colliery ACI-87-260-07A)
Table 16A: Normalized weight distribution (Phalen Colliery ACI-87-260-07L)
```

Table 16B: Size distribution (Phalen Colliery ACI-87-260-07L)

## **APPENDIX III (A)**

#### AUTOMATED S.E.M. - C.M.A. DATA TABLE

```
Table 17A: Normalized weight distribution (Emery/Steele's Hill seam ACI-87-260-04Q)
Table 17B: Size distribution (Emery/Steele's Hill seam ACI-87-260-04Q)
Table 18A: Normalized weight distribution (Emery/Steele's Hill seam ACI-87-260-04J)
Table 18B: Size distribution (Emery/Steele's Hill seam ACI-87-260-04J)
Table 19A: Normalized weight distribution (Lower Emery/Steele's Hill seam ACI-87-260-05D)
Table 19B: Size distribution (Lower Emery/Steele's Hill seam ACI-87-260-05D)
Table 20A: Normalized weight distribution (Lower Emery/Steele's Hill seam ACI-87-260-05G)
Table 20B: Size distribution (Lower Emery/Steele's Hill seam ACI-87-260-05G)
Table 21A: Normalized weight distribution (NSDME Spencer core PM-45 ACI-87-260-12D)
Table 21B: Size distribution (NSDME Spencer core PM-45 ACI-87-260-12D)
Table 22A: Normalized weight distribution (NSDME Spencer core PM-48 ACI-87-260-13F)
Table 22B: Size distribution (NSDME Spencer core PM-48 ACI-87-260-13F)
Table 23A: Normalized weight distribution (Gardiner seam ACI-87-232-01)
Table 23B: Size distribution (Gardiner seam ACI-87-232-01)
Table 24A: Normalized weight distribution (NSDME Mullins core NW-13 ACI-87-260-14G)
Table 24B: Size distribution (NSDME Mullins core NW-13 ACI-87-260-14G)
Table 25A: Normalized weight distribution (NSDME Mullins core NW-16 ACI-87-260-15H)
Table 25B: Size distribution (NSDME Mullins core NW-16 ACI-87-260-15H)
```

Table 1A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
SAMPLE # POINT ACONI - 0.07 - 0.15 m ( ACI-87-233-03 )

;			S	IZE / BIN			
MINERAL :	0.21 umi	1-2.5 uml	2.5-5 um!	5-10 um!	10-20 umi	>20 um {	TOTAL
KAOLINITE!	0.0	0.1	3.3	6.2	4.0	1.2	14.8
PYRITE	0.0	0.4	2.9	4.6	20.7	12.9	41.5
FE-SUL	0.0	0.0	0.0	0.4	2.9	9.6	13.0
QUARORG.	0.5	1.1	3.2	1.0	0.3	0.6	6 . 8
QUARPYR.	0.1	0.2	0.6	0.9	0.8	2.9	5.5
MIXSIL.	0.0	0.0	0.8	2.1	2.9	7.5	13.1
MISC. 1	0.3	0.2	0.7 {	0.9	1.5	1.6	5.2

### Table 1B

:	36	-2	33	-0	3

1 DISK	149	FILE 115	- 119 PA	RTICLES				RUN/T 128.00	i
: DATE	1/29/88	Summary	118 70	ITAL 5	99 MA	SS 4.1E+00	UG/CH2	ANAL./T101.00	I
30 TIME	9:25	OFF-PT.	> 5	i0U	1 > 5	OU 2.3E-01	UG/CH2	DEAD/T 26.99	,
			SIZE D	ISTRIBU	T10N				
TYPE	0.2-	1 1-2.5	2.5-5	5-10	10-20	+20	PART/CM2	%TOTAL	
QLIARTZ	0	0	47	47	0	7	2.6E+02	0.0	
KAOL INITE	0	9	49	35	6	1	8.3E+03	1.5	
ILLITE	0	0	63	32	5	0	3.8E+02	0.1	
ORGSULF	9 <b>9</b>	i	0	0	0	0	9.9E+04	17.4	
JAROSITE.	0	0	0	0	100	0	1.8E+01	0.0	
PYJAR	0	26	52	17	5	9	7.3E+02	0.1	
PYRITE	14	11	36	12	22	4	5.1E+03	0.9	
SIDERITE.	0	0	0	0	0	100	1.8E+01	0.0	
FE-SUL	0	28	0	18	33	22	6.8E+02	0.1	
guarorg	89	6	5	1	0	0	9.1E+04	16.0	
9UARPYR	68	14	12	4	1	1	8.7E+03	1.5	
MIXSIL	0	0	39	39	12	10	1.8E+03	0.3	
MIXSUL	99	1	0	0	0	0	3.0E+04	5.4	
ТИІ-ТОМ	93	5	2	0	0	0	3.2E+05	56.4	
inkhoun	75	11	0	7	4	2	1.6E+03	0.3	

TOTAL.... 90 4 3 1 1 0 5.7E+05 100.0

## Table 2A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
SAMPLE # POINT ACONI - 0.50 - 0.65 m ( ACI-87-233-04 )

<u>;</u>		SIZE / BIN								
MINERAL :	0.21 umi	1-2.5 umi	2.5-5 um:	5-10 um:	10-20 umi	>20 um (	TOTAL			
I AOLINITE!	0.0	0.0	0.2	3.4	0.5	0.0	4.3			
ORGSULF.	0.6	0.2	0.1	0.9	0.3	0.0	2.0			
PYJAR.	0.3	0.2	0.3	1.2	0.9	0.0	3.1			
PYRITE ;	0.6	0.6	3.1	13.0	24.1	20.4	61.9			
FE-SUL.	0.0	0.0	0.2	0.0	1.3	19.8 :	21.3			
QUARPYR.	0.0	0.1	0.5	2.4	0.6	0.0 H	3.6			
MISC.	0.3	0.3	0.9	1.6 !	0.8 :	0.0 (	3.9			

### Table 2B

: 87	-233	-04
------	------	-----

! DISK	149	FILE 150	- 154 Pr	ARTICLE	S			RUN/T	12.00
! DATE	2/ 3/88	SUMMARY	153 7	OTAL	542 MA	ASS 2.8E+00	UG/CM2		
						100 2.00100	007 U12	ANAL./T	249.00
28 TIME	13:51	OFF-PT.	> 5	5 <b>0</b> U	5 > 5	60U 3.0E-01	UG/CM2	DEAD/T !	63.00
			SIZE	) ISTRIB	UT 10N				
TYPE	0.2-	1 1-2.5	2.5-5	5-10	10-20	+20	PART/CH2	XTOTAL	
QUARTZ	0	22	64	8	6	0	7.0E+02	0.1	
KAOLINITE	0	0	9	87	4	0	1.2E+03	0.2	
ILLITE	0	0	100	0	0	0	5.6E+01	0.0	
ORGSULF	99	0	0	0	0	0	2.3E+05	48.2	
JAROSITE.	0	0	0	0	100	0	1.3E+01	0.0	
PYJAR	96	2	1	1	0	Ô	3.6E+04	7.4	
FYRITE	83	3	5	6	3	1	2.9E+04	6.1	
FE-SUL	0	29	11	0	13	47	5.2E+02	0.1	
9UARORG	92	3	3	2	0	0	1.3E+04	2,8	
@UARPYR	73	6	8	11	!	0	5.4E+03	1.1	
MIXSIL	0	0	35	65	0	0	1.7E+02	0.0	
MIXSUL	98	1	0	1	0	Õ	1.5E+04	3.3	
TMI-T0M	91	7	2	0	Ö	Õ	1.4E+05	30.4	
UNKNOWN	0	0	25	63	7	4	4.4E+02	0.1	
TOTAL	94	3	1	1	0	8	4.8E+05	100.0	

Table 3A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
SAMPLE # POINT ACONI - 0.85 - 1.00 m ( ACI-87-233-05 )

1			9	IZE / BIN			
MINERAL :	0.21 um!	1-2.5 umi	2.5-5 um!	5-10 umi	10-20 um!	>20 um ;	TOTAL
'  !	: 				i 	; 	
PYJAR.	0.1	0.1	0.6	0.8	0.7	0.6	2.8
PYRITE	0.0	1.5	5.4	18.5	23.1	28.5 i	77.0
FE-SUL.	0.0	0.0	0.1	1.0	1.8	10.9	13.8
QUARORG.	0.2	0.3	0.3	0.2	0.3	0.6	1.8
QUARPYR.	0.0	0.0	0.2	0.5	0.2	1.0	2.0
MISC.	0.2	0.3	0.7	0.8	0.1	0.5 (	2.6

Table 3B

: 87-233F-05	:	87	-2	33	F-	05
--------------	---	----	----	----	----	----

1 DISK	150	FILE 155	- 159	PARTICLES				RUN/T 233.00
I DATE	2/ 9/88	SUMMARY	158	TOTAL 5	96 NA	SS 1.5E+01	UG/CH2	ANAL ./T129.00
30 TIME	10:22	OFF-PT.	>	50U	4 > 5	OU 1.5E+00	UG/CH2	DEAD/T 103.99
			SIZE	DISTRIBU	TION			
TYPE	0.2-	1 1-2.5	2.5-	5 5-10	10-20	+20	PART/CM2	%TOTAL
QUARTZ	0	0	75	25	0	0	1.0E+03	0.1
KAOLINITE	0	0	100	0	0	0	3.1E+02	0.0
ILLITE	0	52	48	0	0	0	5.2E+02	0.1
ORGSULF	98	1	1	0	0	0	2.1E+05	28.5
PYJAR	63	10	17	8	2	0	1.6E+04	2.2
PYRITE	73	7	9	8	3	1	2.0E+05	26.1
SIDERITE.	0	0	0	100	0	0	2.5E+02	0.0
FE-SUL	87	0	2	5	2	5	2.6E+04	3.5
QUARORG	95	4	1	0	0	0	1.8E+05	23.5
QUARPYR	68	12	8	8	2	2	1.2E+04	1.6
HIXSIL	0	0	100	0	0	Ō	2.5E+02	0.0
MIXSUL	99	0	0	0	1	0	5.9E+03	0.8
NOT-1NT	85	11	4	0	0	0	1.0E+05	13.5
INKNOWN	0	0	0	100	0	0	2.5E+02	0.0
TOTAL	87	5	4	3	i	0	7.7E+05	100.0

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
BROGAN/LLOYD COVE (UPPER SEAM) - 0.63 - 0.77 m ( ACI-87-260-02J )

			· · · · · · · · · · · · · · · · · · ·	SIZE / BIN			
MINERAL :	0.21 um	1-2.5 um!	2.5-5 um:	5-10 um:	10-20 umi	>20 um ;	TOTAL
PYJAR. :	0.1	0.3	1.0	0.7	0.4	1.1	 3.5
PYRITE	0.0	0.8	13.6	32.0	18.4	15.2	80.0
SIDERITE :	0.0	0.0	0.0	0.0	0.0	1.9	1.9
FE-SUL.	0.0	0.1	0.3	0.6	2.6	2.6	6.3
QUARPYR.	0.1	0.2	0.8	0.3	0.5	0.6	2.4
MISC.	0.1	0.5	2.4	1.5	0.8	0.5	5.9

.: 87	-260 <del>-0</del>	<b>2</b> J			Table	e 4B			
í	DISK	151	FILE 180	- 184	PARTIC	LES			RUN/T 244.00
i	DATE	2/12/88	SUMMARY	183	TOTAL	524	HASS 4.4E+00	U6/CM2	ANAL./T 77.00
27	TIME	9:24	OFF-PT.		> 50U	4	> 50U 4.0E-01	UG/CH2	DEAD/T 166.99

#### SIZE DISTRIBUTION

TYPE	.2-1.	12.5	2.5-5.	510	10-20	+20	PART/CH2	%TOTAL
QUARTZ	ð	12	7 <b>5</b>	12	1	0	1.1E+03	1.1
KAOLINITE	0	18	60	19	2	0	7.0E+82	0.7
ILLITE	8	65	0	35	9	0	3.9E+02	0.4
ORGSULF	91	4	4	0	0	0	1.3E+84	13.5
PYJAR	52	23	19	5	1	0	5.1E+03	5.3
PYRITE	3	12	45	33	5	1	2.2E+84	22.9
SIDERITE.	0	85	0	0	8	15	1.5E+92	0.2
FE-SUL	0	11	35	23	21	9	1.1E+03	1.2
QUARORG	76	13	10	0	8	0	1.2E+04	13.0
QUARPYR	84	7	8	1	0	0	1.6E+04	17.0
HIXSIL	<b>9</b> .	48	27	23	2	. 0	5.9E+82	0.6
MIXSUL	65	0	27	0	6	2	5.1E+82	0.5
NOT-INT	54	31	10	3	2	0	2.1E+84	21.7
UNINGAN	8	38	45	16	i	1	1.6E+03	1.7
TOTAL	52	16	19	10	2	0	9.7E+84	100.0

Table 5A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION

BROGAN/LLOYD COVE (UPPER SEAM) - 0.77 - 0.82 m ( ACI-87-260-02K )

; 6		SIZE / BIN									
MINERAL I	0.2i umi	1-2.5 um!	2.5-5 um!	5-10 um i	10-20 um!	>20 um	TOTAL				
PYJAR.	0.1	0,2	1.0 !	2.2	0.9	0.0	4.5				
PYRITE !	0.0	0.7	7.3	34.7	8.0	15.4	66.8				
SIDERITE !	0.0	0.0	0.0	1.6	0.0	3.5	5.1				
FE-SUL.	0.0	0.0	0.4	3.6	0.9	7.8	12.8				
QUARORG. :	0.2	0.1	0.6	1.9	0.1	0.0	3.0				
QUARPYR. I	0.1	0.2	0.9	2.7	0.5	0.7	5.0				
MISC.	0.1	0.1	0.4	1.0	0.7	0.5	2.8				

Table 5B

: 87-260-02K	
--------------	--

1 DISK	149	FILE 140 -	- 144 1	PARTICLE	S			run/t	203.00
i DATE	2/ 2/88	SUMMARY	143	TOTAL	5 <b>46</b>	MASS 1.0E+01	UG/CM2	ANAL./T	175.99
28 TIME	14:10	OFF-PT.	>	50U	10	50U 2.1E+00	UG/CM2	DEAD/T	27.00
			SIZE	DISTRIB	UTION				
TYPE	0.2-	1 1-2.5	2.5-5	5 5-10	10-2	0 +20	PART/CM2	%TOTAL	
QUARTZ	0	0	0	0	100	0	5.9E+01	0.0	
KAOLINITE	0	0	0	88	12	0	4.6E+02	0.0	
ILLITE	0	94	0	0	6	0	3.0E+02	0.0	
ORGSULF	98	1	1	1	0	0	8.1E+04	8.2	
JAROSITE.	0	0	0	0	100	0	1.9E+01	0.0	
PYJAR	95	i	2	1	0	0	9.9E+04	10.1	
PYRITE	43	8	20	27	2	1	5.8E+04	6.0	
SIDERITE.	-	0	0	88	0	12	9.4E+02	0.1	
FE-SUL	93	0	2	5	0	1	6.4E+04	6.5	
QUARORG		1	2	2	0	0	1.2E+05	12.9	
QUARPYR	93	2	2	3	0	0	1.0E+05	10.9	
MIXSIL	0	0	0	0	100	0	4.6E+01	0.0	
MIXSUL		0	1	1	0	0	6.3E+04	6.4	
TMI-TON	86	4	5	4	0	0	3.8E+05	38.8	
UNKNOWN	. 0	0	0	0	33	67	5.7E+01	0.0	
TOTAL	88	3	4	4	0.	0	9.8 <b>E+05</b>	100.0	

Table 6A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION

BROGAN/LLOYD COVE (LOWER SEAM) - 0.46 - 0.61 m ( ACI-87-260-03J )

! !		SIZE / BIN									
MINERAL !	0.21 um!	1-2.5 um!	2.5-5 umi	5-10 um!	10-20 um!	>20 um	TOTAL				
: {	ا  !			i 	i 	: 					
KAOLINITE	0.0	0.2	1.1	2.3	1.5	0.3	5.3				
PYJAR.	0.0	0.0	0.6	0.2	0.6	0.0	1.5				
PYRITE :	0.0	0.0	2.9	11.6	22.4	34.7	72.2				
SIDERITE !	0.0	0.0	0.0	0.0	0.0	1.6	1.6				
FE-SUL.	0.0	0.0	0.0	0.0	3.1	5.9	9.0				
QUARORG.	0.2	1.0	1.3	1.1	0.2	0.0	3.7				
QUARPYR.	0.0	0.1	0,2	0.8	0.4	0.9	2.4				
MISC.	0.1	0.4	0.7	0.2	1.5	1.4	4.3				

Table 6B

: 260-03J

1 D1S	K 152	FIL	E 231	- 235	PARTICLE	S			RUN/T	171.00
1 DAT	E 3/21/	88 SUM	MARY	234	TOTAL	572	MASS 7.0E	00 UG/CH2	ANAL./T	80.00
29 TIM	E 10:44	0FF	-рт.	)	50U	3	> 50U 7.4E-	-01 UG/CM2	DEAD/T	90.99
				SIZE	DISTRIB	UTION				
TYPE		0.2-1	1-2.5	2.5-	·5 5-10	10-	20 +20	PART/CM2	%TOTAL	
QUARTZ.		0	0	79	9	21	0	1.2E+02	0.1	
KAOL INI	TE	0	28	39	28	5	Ō	6.4E+03	2.8	
ILLITE.	• •	0	0	100	0	0	Ô	1.2E+02	0.1	
ORGSULF		92	4	3	1	0	1	1.9E+04	8.4	
PYJAR		80	4	13	1	1	0	8.4E+03	3.7	
PYRITE.	• •	8	14	26	26	18	7	1.3E+04	5.9	
SIDERITE	Ε.	0	0	0	0	0	100	7.9E+01	0.0	
FE-SUL.	• •	0	0	0	0	58	42	8.1E+02	0.4	
QUAROR6	• •	85	11	3	1	0	0	1.0E+05	43.6	
QUARPYR.		85	.7	3	3	1	Ō	1.5E+04	6.7	
MIXSIL.		0	0	65	0	35	0	3.0E+02	0.1	
MIXSUL		68	10	16	7	0	Ô	1.5E+03	0.7	
TMI-TON		87	11	2	0	Ô	Ô	6.3E+04	27.6	
UNKNOUN.		0	0	0	0	67	33	7.9E+01	0.0	
TOTAL	•	79	10	6	3	2	1	2.3E+05	100.0	

Table 7A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION

8ROGAN/LLOYD COVE (LOWER SEAM) - 1.28 - 1.31 m ( ACI-87-240-03P )

<b>!</b>	~=========		9	SIZE / BIN			
MINERAL ;	0.21 umi	1-2.5 uml	2.5-5 um!	5-10 um	10-20 umi	>20 um ¦	TOTAL
QUARTZ :	0.0	0.0	0.2	0.4	0.5	4.1	5.3
PYRITE !	0.0	0.0	4.5	11.6	16.8	31.0	64.6
FE-SUL.	0.0	0.0	0.0	0.5	3.0	14.2	17.7
QUARORG.	0.3	1.0	0.8	0.3	0.8	0.2	3.4
QUARPYR.	0.0	0.1	0.3	0.5	0.9	1.0	2.9
MISC.	0.1	0.1	1.0	1.5	2.9	0.5	. 6.2

## Table 7B

## : 87-268-03P

1 DISK	152	FILE 200	- 204	PARTICLES				RUN/T !88.00
1 DATE	2/15/88	SUMMARY	203 7	OTAL 59:	3 MA	SS 1.1E+81	U6/CH2	ANAL./T 93.99
30 TIME	15:28	OFF-PT.	>	50U 7	' <b>&gt;</b> 5	OU 2.4E+80	U6/CH2	DEAD/T 994.00
			SIZE	DISTRIBUTI	ON			
TYPE	.2-1	. 12.5	2.5-5	. 510	10-20	+20	PART/CH2	%TOTAL
QUARTZ	33	0	29	22	9	7	2.2E+83	0.5
KAOLINITE	0	43	29	29	0	Ö	5.7E+02	0.1
ILLITE		0	77	19	5	0	1.7E+03	0.4
ORESULF	98	2	0	0	0	0	8.7E+04	19.7
PYJAR	64	6	24	0	6	0	4.4E+83	1.0
PYRITE	60	5	17	11	5	2	5.3E+04	12.0
FE-SUL		0	18	17	32	42	1.9E+83	0.4
QUARORG	98	8	1	0	0	0	1.8E+05	41.8
QUARPYR MIXSIL	75	9	. 8	5	2	1	1.3E+84	3.1
	. 0	0	57	28	11	4	1.1E+03	0.3
MIXSUL	75	0	5	14	6	0	3.4E+03	0.8
APATITE	-0	0	0	0	108	0	8.4E+81	0.0
NOT-INT	56	29	12	1	2	1	5.9E+04	13.3
UNKNOWN	98	0	2	0	0	0	2.9E+84	6.6
TOTAL	82	9	5	2	1	1	A ACLOR	100 0

Table 8A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION PRINCE/HUB - 0.07 - 0.15 m ( ACI-87-260-08A )

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SIZE / BIN										
MINERAL I	0.21 um!	1-2.5 uml	2.5-5 umi	5-10 um:	10-20 um (	>20 um :	TOTAL					
QUARTZ :	0.1 1	0.2 !	2.9 !	1.9 !	1.5	1.5	7.9					
KAOLINITE	0.2	1.0	1.2	3.2	2.1	0.2	7.9					
ILLITE	0.2	0.5	0.7	1.0	0.8	0.0	3.2					
PYJAR.	0.0	0.3	1.3	0.9	0.1	0.0	2.6					
PYRITE :	0.0	3.0	9.1	25.4	7.9	14.5	60.4					
FE-SUL. :	0.0	0.1	0.0 1	1.4	1.0	1.6	4.1					
QUARORG.	0.5	1.0	0.9	1.2	0.2	0.0	3.8					
QUARPYR.!	0.2	0.3	1.1	0.5 !	0.1	1.4	3.5					
MIXSIL.	0.2	0.3	2.3	1.0	1.3	0.4	5.6					
MISC. :	0.0	0.1	0.0.1	0.4 !	0.1	0.4	0.9					

: 87-260-08A				TABI	E 8E				
1 DISK	150	FILE 165	- 169 PAF	TICLES				RUN/T	126.00
1 DATE	2/10/88	SUMMARY	168 TOT	AL 515	i MA	SS 1.7E+00	UG/CH2	ANAL./T	97.99
27 -TIME	12:54	OFF-PT.	> 50	U 19	> 5	OU 2.6E+00	UG/CH2	DEAD/T	28.00
			SIZE DI	STRIBUTI	ON				
TYPE	.2-1	. 12.5	2.5-5.	510	10-20	+20	PART/CH2	%TOTAL	
QUARTZ	25	13	48	12	2	0	3.2E+03	2.3	
KAOLINITE	57	29	7	6	1	0	9.7E+03	7.1	
ILLITE	46	25	20	7	1	0	3.0E+03	2.2	
ORGSULF	0	0	0	100	0	0	7.6E+01	0.1	
PYJAR	0	58	28	14	0	0	1.0E+03	0.8	
PYRITE	8	39	27	23	2	1	8.2E+03	6.0	
CALCITE	0	0	0	0	100	0	4.1E+00	0.0	
MONTMORIL	0	0	0	0	0	100	4.1E+00	0.0	
FE-SUL	0	50	Q	40	7	4	3.8E+02	0.3	
QUAROR6	72	21	6	1	Ö	Ò	1.0E+04	7.5	
QUARPYR	87	6	6	1	Ō	Õ	1.2E+04	9.3	
MIXSIL	78	6	14	2	ī	Ö	9.8E+03	7.2	
MIXSUL	0	100	Ō	ē	ō	Õ	1.9E+02	0.1	
NOT-INT	81	14	4	ī	Ö	0	5.9E+04	43.0	
UNKNOWN	92	5	2	1	8	Ō	1.9E+04	14.9	

1.3E+05 100.0

TOTAL....

73

15

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION PRINCE/HUB - 1.95 - 2.15 m ( ACI-87-260-08N )

1			(	SIZE / BIN			
MINERAL	0.21 um!	1-2.5 umi	2.5-5 um!	5-10 um!	10-20 umi	>20 um !	TOTAL
	 !	'  1		i 			
QUARTZ !	0.0	0.1	0.7	1.1	0.1	0.3	2.3
KAOLINITE!	0.0	0.1	0.8	0.4	0.3	0.0	1.6
ILLITE !	0.0	0.3	1.6	5.5	1.1	1.6	10.2
PYJAR.	0.0	0.1	0.6	1.4	1.1	1.4	4.7
PYRITE	0.0	0.5	2.5	6.6	15.2	2 <b>5.</b> 9	50.7
FE-SUL.	0.0	0.0	0.0	0.5	0.3	2.8 1	3.6
QUARORG. I	0.2	0.4	2.2	3.5	0.6	0.3	7.2
QUARPYR.	0.0	0.2	1.9	4.8	1.4	2.2	10.5
MIXSIL.	0.0	0.2	1.6	1.1	1.2	2.9	7.1
MISC.	0.0	0.0	0.1	0.0	0.0	2.0	2.1

: 87-2	60-08N			Ţ	ABLE	9B				
1	DISK	156	FILE 239	- 243 PA	RTICLE	S			RUN/T	108.00
i	DATE	3/22/88	SUMMARY	242 TO	ITAL	59 <b>5</b>	MASS 1.0E+01	U6/CH2	ANAL./T	83.00
30	TIME	9:50	OFF-PT.	> 5	OU	5	50U 7.7E-01	UG/CM2	DEAD/T	24.99
				SIZE D	ISTRIB	TION				
TYPE		0.2-	1 1-2.5	2.5-5	5-10	10-2	0 +20	PART/CH2	%TOTAL	
	RTZ	0	24	56	18	1	1	4.1E+03	1.6	
	LINITE	0	21	68	8	3	ō	4.6E+03	1.8	
	ITE	20	22	26	30	2	i	2.0E+04	7.9	
	SULF	0	51	49	0	0	Ō	7.8E+02	0.3	
	DSITE.	0	0	0	0	0	100	2.8E+01	0.0	
	AR	34	23	26	14	2	. 1	8.0E+03	3.0	
	ITE	12	18	28	25	11	å	1.7E+04	6.5	
	RITE.	0	0	0	0	9	. 100	2.8E+01	0.0	
	SUL	0	24	0	48	7	21	8.1E+02	0.3	
	ORG	80	. 7	8	4	Ò	0	1.2E+05	47.1	
	PYR	11	16	40	2 <b>9</b>	2	1	1.9E+04	7.4	
	IL	50	18	25	5	ī	i	2.3E+04	8.7	
MIXS	UL	100	0	0	0	Ô	ō	1.4E+03	0.5	
NOT-	INT	49	17	32	1	Ö	õ	3.7E+04	14.1	
UNKN	OLAN	Ó	13	39	39	6	3	1.9E+03	0.7	
TOTAL	L	54	13	21	10	1	1	2.6E+05	100.0	

## TABLE 10A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
NOVACO/HARBOUR - 0.32 - 0.47 m ( ACI-87-260-01H )

! !		SIZE / BIN								
MINERAL	0.21 umi	1-2.5 umi	2.5-5 umi	5-10 uml	10-20 um/	>20 um !	TOTAL			
   KAOLINITE	0.0	0.6	4.0	2.9	4.2	3.7	15.5			
PYRITE !	0.0	0.0	3.9	4.4	12.7	34.3	55.3			
FE-SUL.	0.0	0.0	0.0	0.0	0.8 !	4.0	4.8			
QUARORG.	1.0	0.7	0.8	0.6	0.3	0.2	3.6			
QUARPYR.	0.2	0.1	0.6	1.3	0.9	0.3	3.4			
MIXSIL.	0.0	0.5	1.1	1.7	2.6	7.3	13.2			
MISC.	0.3	0.3	0.8	0.7	0.8	1.4	4.2			

## TABLE 10B

#### : ACI-87-260-01H

1 DISK	149	F1LE 120	- 124 P	ARTICLE	:S			RUN/T	155.00
1 DATE	1/29/88	Suttary	123 T	OTAL	578	MASS 3.2E+00	UG/CH2	ANAL./T	
30 TIME	13:24	OFF-PT.	> !	50U	22 >	50U 4.2E+00	UG/CH2	DEAD/T	24.00
			SIZE	DISTRIB	UTION				
TYPE	0.2-	1-2.5	2.5-5	5-10	10-20	+20	PART/CM2	%TOTAL	
QUARTZ	0	94	0	0	6	0	2.7E+02	0.0	
KAOLINITE	4	26	53	13	3	1	8.4E+03	1.3	
ILLITE	0	0	97	0	0	3	3.7E+02	0.1	
ORGSULF	99	1	0	0	0	0	7.5E+04	11.9	
JAROSITE.	0	0	90	0	10	0	9.8E+01	0.0	
PYJAR	56	12	22	10	G	Ō	1.6E+03	0.3	
PYRITE	91	1	5	1	1	1	3.8E+04	6.0	
SIDERITE.	0	0	0	0	0	100	1.0E+01	0.0	
CALCITE	0	100	0	0	0	0	4.0E+02	0.1	
HONTHORIL	0	0	0	0	100	0	1.0E+01	0.0	
FE-SUL	0	0	0	0	36	64	1.1E+02	0.0	
QUARORG	97	2	1	0	0	8	2.0E+05	32.0	
QUARPYR	90	3	4	2	0	0	1.8E+04	2.9	
MIXSIL	0	44	35	14	4	3	3.7E+03	0.6	
HIXSUL	100	0	0	0	0	9	1.1E+03	0.2	
NOT-INT	91	7	2	0	0	0	2.7E+05	43.4	
UNKNOWN	100	0	0	0	0	0	8.7E+03	1.4	
TOTAL	92	4	2	1	0	0	6.3E+05	100.0	

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
NOVACO/HARBOUR - 1.37 - 1.47 m ( ACI-87-260-01Q )

 		SIZE / BIN											
MINERAL !	0.21 umi	1-2.5 uml	2.5-5 um!	5-10 uml	10-20 umi	>20 um	TOTAL						
QUARTZ !	0.0	0.0	0.2	0.3	1.3	0.8	2.6						
KAOLINITE	0.0	0.1	0.9	2.5	1.5	2.1	7.0						
ILLITE	0.0	0.3	1.1	1.4	3.7	2.1	8.7						
PYJAR.	0.1	0.1	2.1	0.3	0.0	0.0	2.6						
PYRITE !	0.0	0.5	4.1	15.9	11.3	19.0	51.3						
SIDERITE	0.0	0.0	0.0	0.0	0.0	4.6	4.6						
FE-SUL.	0.0	0.0	0.0	0.0	0.6	2.7	3.4						
QUARORG.	0.3	0.4	1.1	1.5	0.7	0.0	4.1						
QUARPYR.!	0.1	0.2	0.6	0.9	1.1	0.5	3.4						
MIXSIL.	0.0	0.1	0.2	0.8	2.3	6.2 l	9.6						
MISC.	0.2	0.2	0.4 1	1.0	0.5	0.4	2.7						

87-260-019			TABL	E 111	<u>3</u>			
1 DISK	151 F	ILE 190 ·	- 194 PART	TICLES				RUN/T 137.08
1 DATE	2/15/88	SUMMARY	193 TOTA	NL 597	MA	SS 6.4E+00	U6/012	ANAL./T 92.00
30 TIME	10:24	FF-PT.	> 501	J 3	> 5	OU 2.7E-01	U6/CM2	DEAD/T 44.99
			SIZE DIS	TRIBUTI	ON			
TYPE	.2-1.	12.5	2.5-5.	510	10-20	+28	PART/CH2	%TOTAL
QUARTZ	9	20	39	19	17	4	9.7E+02	0.2
KAOLINITE	0	12	46	34	6	1	5.0E+03	0.9
ILLITE	9	34	31	15	10	i	7.4E+03	1.3
ORGSULF	98	1	1	0	0	0	1.0E+05	17.2
PYJAR	92	1	6	0	9	0	4.2E+84	7.3
PYRITE	59	9	13	16	2	1	3.2E+84	5.7
SIDERITE.	0	0	8	0	0	100	8.1E+81	0.0
HONTHORIL	0	0	0	0	100	0	2.0E+01	0.0
FE-SUL	0	50	9	0	20	38	4.0E+02	0.1
QUARORG	91	5	3	1	0	0	1.0E+85	18.0
QUARPYR	87	6	4	2	1	9	3.0E+84	5.3
MIXSIL	90	2	2	4	2	1	2.0E+84	3.6
MIXSUL	95	1	2	2	0	0	1.8E+84	3.2
NOT-INT	88	7	3	1	0	8	2.0E+05	35.9
UNINOLIN	93	2	2	2	0	9	8.6E+83	1.5

2

1

5.8E+05 100.8

TOTAL....

87

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION LINGAN/HARBOUR - 1.05 - 1.20 m ( ACI-87-260-06H )

! !	SIZE / BIN										
MINERAL :	0.21 uml	1-2.5 umi	2.5-5 um!	5-10 umi	10-20 um!	>20 um	TOTAL				
QUARTZ !	0.0	0.0	3.0	2.6	0.9	1.3	7.7				
KAOLINITE!	0.0	0.1	1.0	0.0 }	1.9	1.0	4.0				
ILLITE !	-0.0	0.1	3.5	2.3	0.5 (	1.5	7.7				
;   HAMOSITE	0.0	1.1	0.2	13.1	3.4	3.4	21.1				
PYJAR.	0.1	0.2	1.0	1.9	0.1	0.0	3.3				
PYRITE	0.3	1.5	4.4	12.6	2.8	4.1 {	25.7				
QUARPYR.	0.1	0.2	0.1	1.4	0.2	0.7	2.7				
MIXSIL.	0.0	1.0	3.3	5.5	7.4	6.4	23.8				
MISC.	0.1	0.0	0.5	2.1	0.6	0.6	4.0				

## TABLE 12B

#### : 87-260-06H

-179 DISK	149	FILE 130	- 134	PARTICLE	S			RUN/T 2	82.00
1 . DATE	2/ 1/88	SUMMARY	133	TOTAL	598	MASS 4.3E+00	UG/CH2	ANAL./TI	10.00
30 TIME 1	0:52	OFF-PT.	)	50U	2 >	50U 1.2E-01	UG/CH2	DEAD/T 1	71.99
			SIZE	DISTRIB	UTION				
TYPE	0.2-	1 1-2.5	2.5-	5 5-10	10-2	0 +20	PART/CH2	%TOTAL	
QUARTZ	0	0	77	21	2	1	5.5E+03	2.7	
KAOLINITE	33	10	50	0	7	1	3.3E+03	1.7	
ILLITE	0	2	79	18	0	0	7.7E+03	3.8	
CHAMOSITE	4	49	5	39	3	1	1.0E+04	5.0	
ORGSULF	0	100	0	0	0	0	1.6E+02	0.1	
PYJAR	35	12	36	17	0	0	2.6E+03	1.3	
PYRITE	41	26	16	17	1	0	1.8E+04	8.9	
HALITE	0	0	0	0	100	0	2.6E+01	0.0	
SIDERITE.	0	0	0	95	5	. 0	2.4E+02	0.1	
MONTMORIL	0	0	90	0	0	10	2.5E+02	0.1	
FE-SUL	0	35	61	0	4	0	4.6E+02	0.2	
QUARORG	92	2	4	3	0	8	1.7E+04	8.7	
QUARPYR	44	29	9	16	1	0	2.8E+03	1.4	
MIXSIL	38	23	24	10	3	1	2.2E+04	10.9	
UNKCHLOR.	100	0	0	0	0	0	5.3E+03	2.6	
NOT-INT	73	14	9	3	0	0	7.8E+04	38.4	
UNKNOWN	81	10	4	4	1	0	2.8E+04	14.0	
TOTAL	60	15	16	8	1	0	2.0E+05	100.8	

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION LINGAN/HARBOUR - 1.80 - 2.00 m ( ACI-87-260-06M )

, 1 !	SIZE / BIN										
MINERAL	0.21 umi	1-2.5 um!	2.5-5 umi	5-10 umi	10-20 umi	>20 um !	TOTAL				
	·		, 	  !							
QUARTZ	0.0	0.7	3.5	2.0	1.2	2.3	9.7				
KAOLINITE	0.1	0.4	0.6	3.4	2.4	0.0	6.9				
ILLITE	0.0	0.4	1.3	0.8	0.3	0.0	2.8				
PYJAR.	0.2	1.6	0.8	0.7	1.3	0.0	4.6				
PYRITE	1.2	6.1	9.2	19.6	16.6	9.2 l	61.3				
FE-SUL.	0.1	0.1	0.0	0.0	3.3	2.0	5.3				
MIXSIL.	0.3	0.3	3.3	0.8	1.7	0.6	7.0				
MISC.	0.5	0.6	0.3	0.0	0.3	0.8	2.4				

## TABLE 13B

87	-260	-0 <i>6</i> H
----	------	---------------

1	DISK	152	FI	LE 205	- 209	PARTIC	_ES				RUN/T	162.00
1	DATE	2/16/88	Su	MARY	208	TOTAL	596	MASS	2.3E+00	U6/QH2	ANAL./T	77.00
30	TIME	11:23	OF	F-PT.		> 50U	4	> 500	1.6E-81	U6/CH2	DEAD/T	84.99
					S121	E DISTRI	BUTION	i				
TYPE		0.	2-1	1-2.5	2.5	-5 5-1	0 1	0-20	+20	PART/CH2	%TOTAL	
QUA	₹₹₹₹		•	33	54	11		1	1	5.5E+03	3.2	
KAOL	.INITE	1	9	30	18	27	,	6	0	3.0E+03	1.7	
ILLI	TE		•	56	36	7	,	1	0	2.8E+03	1.6	
	XLF		ı	100	9	0	1	0	0	5.1E+02	0.3	
PYJA	w	3	2	59	7	2	}	1	0	6.1E+83	3.5	
PYR1	TE	4	9	32	18	6	,	2	0	2.6E+04	15.3	
FE-S	JU	5	4	26		0		17	4	8.8E+#2	0.5	
QUAR	KORB	9	6	3	1	0		ġ	0	1.7E+04	10.0	
QUAR	PYR	9	6	4	•	0		9	0	5.8E+03	3.3	
MIXS	IL	7	7	6	15	1		1	0	1.7E+84	9.8	
MIXS	<b>U</b>	6	8	32	•	0		0	0	2.8E+03	1.6	
UNKC	HLOR.		0	0	93	0		9	7	1.1E+02	0.1	
NOT-	·INT	7	1	23	6	0		0	0	8.3E+04	47.3	
UNKON	OLN	2	6	0	60	13	:	1	0	3.8E+83	1.7	
TOTA	L	6	5	22	10	2		1	0	1.7E+05	189.0	

TABLE 14A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
INDIAN COVE - 0.90 - 1.15 m ( ACI-87-260-10G )

\ !			(	SIZE / BIN			~ ~ ~ ~ ~ ~ ~ ~ ~
MINERAL !	0.21 umi	1-2.5 umi	2.5-5 um!	5-10 um!	10-20 um!	>20 um !	TOTAL
	·		· 	 !	1 	i	
ILLITE	0.0	0.0	0.0	1.2	0.4	1.0	2.6
PYJAR.	0.1	0.5	1.3	3.6	1.1	3.5	10.2
PYRITE	0.0	1.2	9.0	25.2	13.8	10.8	60.0
FE-SUL.	0.0	0.0	0.2	0.2	1.4	2.2	4.1
QUARORG.	0.6	0.9	1.3	5.1	0.9	1.0 (	9.8
QUARPYR.	0.1	0.4	1.3	4.5	0.6	2.8 ¦	9.5
MISC.	0.2	0.1	0.4	1.7	0.5	0.9	3.8

## TABLE 14B

: 87-260-106

1	DISK	149	FILE 135	- 139 PA	RTICLES	3			RUN/T 296.00		
1	DATE	2/ 2/88	Su <del>nt</del> ary	138 TO	TAL 5	592 MA	SS 1.0E+01	UG/CH2	ANAL./T183.00		
30	TIME	8:49	OFF-PT.	> 5	-	8 > 5	OU 2.8E+00	UG/CH2	DEAD/T 113.00		
SIZE DISTRIBUTION											
TYPE		0.2-		2.5-5	5-10	10-20	+20	PART/CH2	%TOTAL		
	₹₹₹₹	0	91	0	0	9	0	3.3E+02	0.0		
	TE	0	0	0	85	10	5	1.3E+03	0.2		
	ULF	100	0	0	0	0	0	7.0E+04	10.2		
	R	71	11	11	6	1	0	3.9E+04	5.8		
	TE	0	15	42	36	5	1	3.7E+04	5.5		
	RITE.	0	0	0	0	0	100	3.0E+01	0.0		
	UL	0	0	50	24	15	11	1.5E+03	0.2		
	ORG	93	4	1	2	0	0	3.5E+05	50.7		
	PYR	41	17	18	22	1.	1	2.6E+04	3.8		
	IL	61	0	19	19	1	0	3.9E+03	0.6		
	UL	97	0	1	2	0	0	3.5E+04	5.1		
	INT	66	18	10	4	1	1	9.7E+04	14.1		
UNKNO	DUN	97	1	0	1	0	0	2.5E+04	3.7		
TOTAL		81	7	6	5	1	0	6.9E+05	100.0		

## TABLE 15A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
PHALEN COL./PHALEN - 0.00 - 0.15 m ( ACI-87-260-07A )

	SIZE / BIN									
0.21 uml	1-2.5 uml	2.5-5 um:	5-10 um!	10-20 um!	>20 um ¦ ∣	TOTAL				
0.0	0.1	0.5	0.8	1.2	0.0	2.6				
0.1	0.2	1.4	3.7	0.7	0.9	6.9				
0.0	0.2	0.9	0.4	0.4	0.0	1.9				
0.0	0.7	5.2	14.2	26.1	28.3	74.5				
0.0	0.0	0.0	0.2	1.9	3.4	5.5				
0.1	0.1	0.5	0.2	0.8	0.3	1.9				
0.1	0.4	1.8	1.9	0.9	1.7	6.8				
	0.0   0.0   0.0   0.0   0.0   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0	0.0   0.1   0.2   0.0   0.7   0.0   0.0   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1	0.21 um   1-2.5 um   2.5-5 um    0.0   0.1   0.5    0.1   0.2   1.4    0.0   0.7   5.2    0.0   0.0   0.0    0.1   0.1   0.5	0.21 uml 1-2.5 uml 2.5-5 uml 5-10 uml 0.0   0.1   0.5   0.8   0.1   0.2   1.4   3.7   0.0   0.2   0.9   0.4   0.0   0.7   5.2   14.2   0.0   0.0   0.0   0.0   0.2   0.1   0.1   0.5   0.2	0.21 um   1-2.5 um   2.5-5 um   5-10 um   10-20 um    0.0   0.1   0.5   0.8   1.2    0.1   0.2   1.4   3.7   0.7    0.0   0.2   0.9   0.4   0.4    0.0   0.7   5.2   14.2   26.1    0.0   0.0   0.0   0.0   0.2   1.9    0.1   0.1   0.5   0.2   0.8	0.21 um  1-2.5 um  2.5-5 um  5-10 um  10-20 um  >20 um    0.0 um    0.0 um    0.5 um    0.8 um    0.0 um    0.0 um    0.5 um    0.8 um    0.7 um    0.9 um    0.0 um    0.7 um    0.9 um    0.0 um    0.7 um    0.7 um    0.8 um				

TAILE 15B

:	87-26	0-07A				1	ALL	136				
	1	DISK	149	FILE 101	- 104	PART I CL	ES				RUN/T	67.00
	i	DATE	1/28/88	SUMMARY	103	TOTAL	429	MASS	2.1E+00	UG/CH2	ANAL./T	58.00
	22	TIME	9:23	OFF-PT.		> 50U	4	> 50U	2.8E-01	UG/CH2	DEAD/T	8.99
					\$121	E DISTRI	BUT 10N					
	TYPE		0.2-	_{ - 1 _ 2 E	2.5	-5 5-11	. 10	-20	+20	PART/CM2	%TOTAL	
								-20 7	0			
		RT2	0	19	59	16		•	-	1.0E+03	1.9	
		LINITE	72	7	12	9		1	0	9.3E+03	16.3	
		ITE	9	28	62	8		2	0	1.4E+03	2.6	
		SUM	0	0	100	0		0	0	5.8E+01	0.1	
		SULF	0	0	0	100		0	0	5.8E+01	0.1	
		4R	0	0	83	17		0	0	3.4E+02	0.6	
		]TE	0	15	37	30	i		4	5.4E+03	9.5	
		ITE	0	0	0	0			100	7.6E+00	0.0	
		ERITE.	0	0	0	0	5		50	. 1.4E+01	0.0	
		CITE	0	0	0	0	10	-	0	2.2E+01	0.0	
		SUL	0	0	0	29	4	5	25	1.9E+02	0.3	
		RORG	64	24	9	2		0	0	2.5E+03	4.4	
		RPYR	49	31	14	6		0	0	2.0E+03	3.6	
		SIL	96	1	2	0		0	0	1.9E+04	33.7	
	HIXS	SUL	53	0	21	26		)	0	1.3E+03	2.4	
	UNKO	CHLOR.	0	0	100	0		)	0	5.8E+01	0.1	
	NOT-	- INI	0	56	32	10		2	1	3.0E+03	5.3	
	LNKA	10M	91	0	6	2		)	0	1.0E+04	19.0	
	TOTA	۱L	67	9	14	7		2	1	5.7E+04	100.0	

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION PHALEN COL./PHALEN - 1.65 - 1.83 m ( ACI-87-260-07L )

1	SIZE / BIN							
MINERAL	0.21 um;	1-2.5 um!	2.5-5 um!	5-10 um!	10-20 um	>20 um ;	TOTAL	
! 		: 	' 	, 	, , , , , , , , , , , , , , , , , , , ,	! 		
PYJAR.	0.0	0.3	3.3	0.2	0.2	0.3	4.4	
PYRITE !	0.0	2.6	28.1	23.0	17.9	12.8	85.2	
FE-SUL.	0.0	0.0	0.0	0.0	1.9	3.5	5.4	
MISC. I	0.2	0.8	0.9	1.2	1.4	0.4	5.0	

RUN/T 112.99

#### TABLE 16B

: 8	7-	26	0-	0	7L
-----	----	----	----	---	----

1	DISK	151		FILE 175	- 179	PARTIC	LES					RUN/T	112.99
1	DATE	2/11/	88	Su <del>rt</del> iary	178	TOTAL	595	N/	188	6.7E+00	UG/CH2	ANAL./T	92.00
30	TIME	14:28		OFF-PT.		> 50U	5	> 5	50U	7.8E-01	UG/CM2	DEAD/T	20.99
					SIZ	E DISTR	BUTI	ON					
TYF	PΕ		.2-1	. 12.5	2.5	-5. 5.	-10	10-20		+20	PART/CM2	%TOTAL	
QUAR	αz		0	0	0	(	)	100		0	6.2E+01	0.0	
KAOL	INITE		0	35	0	62	2	4		0	8.7E+02	0.5	
ILLI	TE		0	0	0	(	)	100		0	3.3E+01	0.0	
ORGS	ULF		75	25	0	C	)	0		0	6.1E+02	0.4	
PYJA	R		43	17	38	2	?	0		0	1.5E+04	8.8	
PYRI	TE		13	19	51	14	}	3		0	7.0E+04	41.2	
CALC	ITE		80	0	0	20	)	0		0	1.3E+03	0.8	
FE-S	UL		0	0	0	0	)	76		24	5.1E+02	0.3	
QUAR	ORG		61	25	14	0	l	0		0	1.9E+03	1.1	
QUAR	PYR		83	10	0	7		i		0	3.9E+03	2.3	
MIXS	IL		0	91	0	0	!	Ō		9	1.6E+02	0.1	
MIXS	UL		94	6	0	0		Ō		0	1.4E+04	8.4	
APAT	ITE		43	29	25	0		3		0	1.0E+03	0.6	
NOT-	INT		78	19	3	Ō		Õ		Ō	3.6E+04	21.2	
UNKN	OUN		94	4	2	0		Ō		0	2.4E+04	14.2	
TOTA	L		51	15	25	6		2		0	1.7E+05	100.0	

RUN/T 149.00

## TABLE 17A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION EMERY/STEEL'S HILL - 0.00 - 0.13 m ( ACI-87-260-04Q )

1 !	SIZE / BIN						
MINERAL	0.21 um	1-2.5 umi	2.5-5 um!	5-10 um!	10-20 um;	>20 um !	TOTAL
	·				! 	i 	
QUARTZ	0.0	0.4	1.1	1.7	3.2	1.1	7.5
KAOLINITE	0.1	0.9	3.2	2.1	2.0	2.0	10.3
ILLITE !	0.6	1.9	4.4	3.6	2.8	5.9	19.0
PYRITE	0.0	0.4	4.2	3.9	13.7	13.7	35.0
SIDERITE	0.0	0.0	0.2	0.0	0.0	2.9 1	3.1
FE-SUL.	0.0	0.0	0.0	0.0	2.0	1.3	3.3
QUARORG.	0.4	0.5	0.7	0.7	0.3	0.6	3.2
QUARPYR.	0.2	0.3	1.2	0.9	0.3	1.6	4.4
MIXSIL.	0.4	0.9	3.0	2.3	1.8	3.8	12.2
MISC.	0.2	0.4	0,7	0.0	0.7	0.0	1.9

87-260	-049

## TABLE 17B

1 DISK 156 FILE 259 - 263 PARTICLES

1 0	ATE	3/24/88	SUMMARY	262	TOTAL	599 1	4ASS 4.9E+00	UG/CH2	ANAL./T	82.00
30 T	TIME	13:58	OFF-PT.	,	50U	1 >	50U 9.6E-01	UG/CM2	DEAD/T	66.99
				SIZE	DISTRIB	UTION				
TYPE		0.2	-1 1-2.5	2.5-	·5 5-10	10-20	+20	PART/CM2	%TOTAL	
QUART	7	0	32	44	16	7	1	5.1E+03	1.1	
KAOLI		40	30	25	4	1	0	2.2E+04	4.8	
ILLIT	Έ	80	10	8	2	0	0	1.1E+05	23.8	
ORGSU	LF	0	0	0	0	100	0	1.7E+01	0.0	
PYJAR		71	15	13	0	i	0	6.7E+03	1.5	
PYRIT	Ε	55	9	20	8	7	2	1.3E+04	2.8	
SIDER	ITE.	0	0	85	0	0	15	2.3E+02	0.1	
HONTH	ORIL	83	17	0	0	0	0	5.7E+03	1.2	
FE-SU	L	0	0	0	0	75	25	2.0E+02	0.0	
QUARO	RG	94	4	i	Ō	0	0	1.1E+05	25.4	
QUARP	YR	49	24	20	6	0	0	1.2E+04	2.7	
MIXSI	L	91	4	4	1	0	0	1.3E+05	29.5	
UNKCHI	LOR.	0	0	0	0	100	0	1.7E+01	0.0	
NOT-II	NT	15	69	14	1	1	0	2.9E+04	6.3	
UNKNOL	M	34	32	14	13	2	6	3.1E+03	0.7	
TOTAL		78	12	7	2	1	0	4.6E+05	100.0	

C.M.A.	- NORMALIZED WEIGHT DISTRIBUTION	•
EMERY/STEEL'S	HILL - 1.08 - 1.23 m ( ACI-87-260-04J	١

} !	SIZE / BIN										
MINERAL	0.21 umi	1-2.5 umi	2.5-5 um!	5-10 um!	10-20 um:	>20 um	TOTAL				
QUARTZ	0.0	0.4	10.4	3.7	2.7	1.1 1	18.3				
KAOLINITE	0.0	0.3	7.7	14.8	3.0	3.8	29.6				
ILLITE	0.0	0.3	6.9	8.5	0.5	0.0	16.0				
PYRITE	0.0	0.3	0.0	0.0	6.8	1.6	8.6				
FE-SUL.	0.0	0.0	0.0	0.0	1.0 !	1.5 :	2 <b>.5</b>				
QUARORG.	0.3	0.7	1.1	1.2	0.3 [	0.0	3.6				
QUARPYR.	0.1	0.2	1.1 ;	0.0	0.1	1.2	2.8				
MIXSIL.	0.0	0.4	8.4	2.8	2.8 !	3.2 1	17.5				
MISC.	0.0	0.0	0.3	0.0	0.4 1	0.3	1.0				

## TABLE 18B

87	-26	0-0	4J
----	-----	-----	----

1 DISK	157	FILE 265 -	268	PARTICLE	S			run/t	124.00
1 DATE	3/25/88	SUMMARY	267	TOTAL	477	MASS 1.7E+00	UG/CH2	ANAL./T	71.00
24 TIME	9:17	OFF-PT.	>	50U	0	50U 0.0E+00	UG/CM2	DEAD/T	52.99
			SIZE	DISTRIB	UTION				
TYPE	0.2	-1 1-2.5	2.5-5	5-10	10-2	20 +20	PART/CM2	%TOTAL	
QUARTZ	0	12	75	11	2	0	7.3E+03	8.2	
KAOLINITE	0	5	56	36	2	0	8.5E+03	9.6	
ILLITE	0	10	61	29	0	0	6.2E+03	7.0	
ORGSULF	0	0	100	0	0	0	1.6E+02	0.2	
PYJAR	0	0	0	0	100	. 0	9.7E+00	0.0	
PYRITE	0.	74	0	0	24	2	6.2E+02	0.7	
SIDERITE.	0	0	0	0	0	100	4.6E+00	0.0	
HONTHORIL	0	0	100	0	0	0	1.7E+02	0.2	
FE-SUL	0	0	0	0	58	42	4.9E+01	0.1	
QUARORG	81	13	5	1	0	0	1.5E+04	17.4	
QUARPYR	67	8	24	0	0	0	3.6E+03	4.1	
MIXSIL	18	8	65	7	2	0	7.5E+03	8.4	
MIXSUL	0	0	0	0	100	0	6.6E+00	0.0	
APATITE	0	0	0	0	100	Ō	4.6E+00	0.0	
NOT-INT	55	19	23	2	0	0	2.5E+04	28.7	
UNKNOWN	96	1	1	1	0	0	1.3E+04	15.4	

8.9E+04 100.0

TOTAL.... 49 12 30

TABLE 19A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
LR EMERY/STEEL'S HILL - 0.00 - 0.15 m ( ACI-87-260-05D )

;				SIZE / BIN			
: MINERAL	0.21 umi	1-2.5 um!	2.5-5 um!	5-10 um:	10-20 um!	>20 um !	TOTAL
QUARTZ :	0.0	0.5 !	5.8	8.7	0.8	0.3	16.1
KAOLINITE	0.0	1.7	13.8	14.8	2.4	1.0	33.7
I ILLITE !	0.0	0.5	3.0	5.9	0.2	0.0	9.5
PYRITE	0.1	0.5	0.3	4.2	4.6	1.6	11.3
QUARORG.	0.5	1.8	3.2	1.7	0.1	0.0	.7.2
QUARPYR.	0.1	0.4	1.6	0.0	0.2	0.4	2.6
MIXSIL.	0.0	1.3	7.9	3.9	3.8	0.9 1	17.9
MISC.	0.1	0.2	0.2	0.0	0.5	0.6	1.6

## TABLE 19B

	27_	2/11.	-050
٠	01-	700.	'U JU

1 DISK	149	FILE 145	- 149	PARTICLE	S			RUN/T 1	50.00
i DATE	2/ 3/88	Summary	148	TOTAL	60 <b>0</b> N	MSS 4.8E+00	UG/CH2	ANAL./T	73.99
30 TIME	9:42	OFF-PT.	>	500	0 >	50U 0.0E+00	UG/CH2	DEAD/T	76.00
			SIZE	DISTRIB	MO E TU				
TYPE	0.2-	1 1-2.5	2.5-5	5-10	10-20	+20	PART/CM2	%TOTAL	
QUARTZ	0	16	61	22	1	0	1.4E+04	4.3	
KAOLINITE	15	17	50	17	1	0	5.0E+04	15.2	
ILLITE	8	23	46	22	0	0	1.2E+04	3.8	
PYJAR	0	98	0	0	2	0	7.4E+02	0.2	
PYRITE	18	27	12	35	8	1	4.0E+03	1.2	
SIDERITE.	0	0	0	0	0	100	8.1E+00	0.0	
HONTHORIL	0	0	0	0	100	0	9.5E+00	0.0	
FE-SUL	0	Û	0	0	80	. 20	3.9E+01	0.0	
QUARORG	74	16	8	1	0	. 20	1.0E+05	30.6	
QUARPYR	82	. 11	7	Õ	Ŏ	Ŏ	3.4E+04	10.5	
MIXSIL	22	29	42	6	2	Ô	3.2E+04	9.9	
MIXSUL	100	0	0	Õ	ō	0	1.5E+04	4.5	
тиі-том	44	37	17	1	Õ	0	6.4E+04		
UNKNOWN	38	37	24	Ó	1	0		19.2	
		••	• •	٧		U	1.9E+03	0.6	
TOTAL	49	21	23	é	0	0	3.3E+05	100.0	

TABLE 20A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION LR EMERY/STEEL'S HILL - 0.25 - 0.30 a ( ACI-87-260-05G )

			9	IZE / BIN			
MINERAL !	0.21 umi	1-2.5 um l	2.5-5 umi	5-10 uml	10-20 umi ;	>20 um (	TOTAL
: AOLINITE!	0.0	0.0	0.1	0.3	0.4	1.4	2.2
ILLITE	0.0	0.0	0.4	1.2	0.4	0.0	2.0
PYJAR.	0.1	0.3	0.7	1.6	2.2	0.0	5.0
PYRITE	0.0	0.7	7.0	23.7	23.0	15.3	69.6
SIDERITE	0.0	0.0	0.0	0.0	0.9 !	3.4	4.3
FE-SUL.	0.0	0.0	0.0	0.3 1	2.9 1	3.5 l	6.6
QUARORO.	0.1	0.3	0.5	0.B	0.3 1	0.0 1	2.0
QUARPYR.:	0.0	0.1	0.4	0.9 1	1.6	1.5	4.5
HISC.	0.1	0.2	0.9	0.8 I	0.6	0.9	3.6

### TABLE 20B

: 87-249-056

1 DISK 151 FILE 185 - 189 PARTICLES

RUN/T 157.99

1 DATE 2/12/88 SIMMARY 188 TOTAL 571 MASS 1.0E+01 UB/CH2 ANAL./T133.08

29 TIME 14: 5 OFF-PT. > 589 3 > 589 8.8E-81 UG/CH2 DEAD/T 24.99

#### SIZE DISTRIBUTION

TYPE	.2-1.	12.5	2.5-5.	518	19-29	+26	PART/CH2	ZTOTAL
QUARTZ	1	0	82	15	3	0	1.4E+83	9.4
KAOLINITE	1	•	43	43	9	4	1.0E+03	0.3
ILLITE	•	8	49	41	3	0	2.7E+83	1.8
ORGSULF	96	4	ı	0	1 .	0	1.0E+05	27.8
PYJAR	84	6	5	3	1	0	3.9E+84	11.2
PYRITE	6	18	31	33	18	2	3.4E+84	9.7
SIDERITE.	•	0	•	9	46	54	3.1E+02	8.1
HONTHORIL	•	188	•	•	•	0	2.8E+02	0.1
FE-SUL	•			17	58	25	1.3E+03	1.4
QUARDRS	79	13	5	2	8	8	4.Æ+84	12.4
QUARPYR	85	4	5	5	2		2. <b>8E+14</b>	7.9
MIXSIL	•	35	57	•	6	3	1.5E+03	1.4
MIXSUL	95	4	1	9		0	1.5E+04	4.4
NOT-INT	75	14	6	2	2	1	7.1E+04	29.9
union	81	9	12	6	1	0	7.1E+03	2.0
TOTAL	74	9	7	5	2	A	3. <b>5£+8</b> 5	100.0

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
SPENCER PM-45 - 0.00 - 0.30 m ( ACI-87-260-12D )

		9	SIZE / BIN			
0.21 um!	1-2.5 umi	2.5-5 umi	5-10 um:	10-20 um:	>20 um i	TOTAL
		0.2.	1	1 2 2	· · · · · · · · · · · · · · · · · · ·	3.2
0.1	0.6 1	1.7	2.7	1.4	0.4	6.9
0.0	0.2	2.2	6.5	2.7	12.4	24.2
0.1	0.9 1	0.9	2.8	1.1	0.4	6.2
0.3	3.7	2.0	7.2	7.7	7.7	.28.7
0.0	0.0	0.0	0.0	0.0	2.3	2.3
0.0	0.1 !	0.0	0.9	1.8	3.5	6.3
1.7	2.1	1.9	0.6	0.6	1.1 1	8.1
1	1	. 1	1	1.1	1	5.3
0.0 :	!	0.2	2.5 ( 0.4 (	0.2	1.9	7.4
	0.0   0.1   0.0   0.1   0.3   0.0   1.7   0.3	0.0   0.0   0.0   0.1   0.6   0.1   0.6   0.2   0.1   0.7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0	0.21 um   1-2.5 um   2.5-5 um   0.0   0.0   0.2   0.1   0.0   0.2   0.1   0.0   0.7   0.0   0.7   0.3   3.7   2.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.	0.21 um   1-2.5 um   2.5-5 um   5-10 um    0.0   0.0   0.2   0.0    0.1   0.6   1.7   2.7    0.0   0.2   2.2   6.5    0.1   0.9   0.9   2.8    0.3   3.7   2.0   7.2    0.0   0.1   0.0   0.0    1.7   2.1   1.9   0.6    0.3   1.9   0.6   1.3    0.0   0.4   1.5   2.5	0.0       0.0       0.2       0.0       2.2         0.1       0.6       1.7       2.7       1.4         0.0       0.2       2.2       6.5       2.7         0.1       0.9       0.9       2.8       1.1         0.3       3.7       2.0       7.2       7.7         0.0       0.0       0.0       0.0       0.0       0.0         0.0       0.1       0.0       0.9       1.8       1.7         1.7       2.1       1.9       0.6       0.6       0.6         0.3       1.9       0.6       1.3       1.1         0.0       0.4       1.5       2.5       1.0	0.21 um   1-2.5 um   2.5-5 um   5-10 um   10-20 um   >20 um    0.0   0.0   0.2   0.0   2.2   0.8    0.1   0.6   1.7   2.7   1.4   0.4    0.0   0.2   2.2   6.5   2.7   12.4    0.1   0.9   0.9   2.8   1.1   0.4    0.3   3.7   2.0   7.2   7.7   7.7    0.0   0.0   0.0   0.0   0.0   0.0   2.3    0.0   0.1   0.0   0.9   1.8   3.5    1.7   2.1   1.9   0.6   0.6   1.1    0.3   1.9   0.6   1.3   1.1   0.1    0.0   0.4   1.5   2.5   1.0   1.9

### TABLE 21B

: 87-260	D-12D			11	TOLL	<u> </u>				
1	DISK	156	FILE 244	- 248 PA	RTICLES				RUN/T 19	1.00
1	DATE	3/22/88	SUMMARY	247 TO	TAL 59	3 HAS	SS 3.5E+00	UG/CH2	ANAL./TI8	0.00
30	TIME	13: 7	OFF-PT.	> 5	OU	7 > 50	U 1.9E+00	UG/CH2	DEAD/T 1	1.00
				SIZE D	ISTRIBUT	TON				
TYPE		0.2-	-1 1-2.5	2.5-5	5-10	10-20	+20	PART/CH2	%TOTAL	
QUAR	सर…	0	0	42	0	51	7	2.8E+02	0.0	
KAOL	INITE	49	20	18	12	1	0	1.1E+04	2.0	
ILL	TE	15	17	34	29	2	2	8.3E+03	1.4	
OR69	SULF	98	2	0	0	0	0	5.2E+04	8.9	
PYJA	¥R	25	52	13	9	1	0	6.7E+03	1.1	
PYRI	TE	76	18	2	3	1	0	5.5E+04	9.4	
SIDE	RITE.	0	0	0	0	0	100	2.0E+01	0.0	
MONT	MORIL	0	88	12	. 0	0	. 0	1.0E+03	0.2	
FE-S	3UL	0	79 1	0	9	8	3	1.3E+03	0.2	
QUAF	RORG	95	. 4	1	0	0	0	2.6E+05	45.3	
QUAF	RPYR	40	49	7	3	1	0	1.4E+04	2.5	
MIXS	SIL	0	50	30	18	2	1	5.5E+03	0.9	
HIXS	SUL	100	0	0	0	0	0	1.8E+03	0.3	
NOT-	·INT	71	25	2	1	0	0	1.5E+05	27.1	
UNKA	IOLAN	86	0	7	7	0	0	3.6E+03	0.6	

2

5.9E+05 100.0

TOTAL.... 82 14 3

TABLE 22A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION

SPENCER PM-48 - 0.60 - 0.90 a ( ACI-87-260-13F )

				SIZE / BIN			
MINERAL :	0.21 umi	1-2.5 umi	2.5-5 usi	5-10 um l	10-20 um!	>20 um i	TOTAL
QUARTZ I	0.0	0.2	1.7	4.6	1.4	   1.7	9.7
KAOLINITE	0.1	. 0.2	0.2	0.5	0.B	1.8 1	3.6
ILLITE	0.1	0.6	1.0	0.7	0.1	0.8	3.3
PYJAR.	0.3	0.5	0.9	1.5	0.6	0.7	4.
PYRITE	0.0	4.3	3.0	5.2	10.8	20.3	43.1
SIDERITE !	0.0	0.0	0.0	0.0	0.0	3.7	3.
FE-SUL.	0.0	0.0	0.0	0.0	1.7	3.9	5.
UARORG.	0.4	0.6	1.6	2.7	2.4	2.7	10.4
UARPYR.	0.1	0.4	1.7	2.7	0.9	2.7	8.5
MIXSIL.	0.1	0.2	0.2	1.3	2.2	1.7	5. 7
MISC.	0.2	0.4	0.6	0.0	0.1	0.6	2.0

## TABLE 22B

:	87	-2	60	-1	3F	
---	----	----	----	----	----	--

1	DISK	156	FILE 254	- 258	PARTICL	ES				run/t	277.00
1	DATE	3/23/88	SUMMARY	257	TOTAL	512	MASS	1.4E+00	U6/CM2	ANAL./T	207.99
26	TIME	13:49	OFF-PT.		> 50U	1	> 50U	2.9E-01	UG/CH2	DEAD/T	69.00

#### SIZE DISTRIBUTION

TYPE	0.2-1	1-2.5	2.5-5	5-10	10-20	+20	PART/CM2	%TOTAL
QUARTZ	0	21	43	32	3	1	1.4E+03	2.2
KAOLINITE	56	32	5	5	1	1	1.8E+03	2.7
ILLITE	29	45	20	ó	0	0	2.1E+03	3.1
CHAMOSITE	0	<b>65</b>	35	0	0 `	G	2.3E+02	0.4
OR6SULF	91	8	1	0	0	Ō	5.6E+03	8.4
JAROSITE.	0	0	0	0	8	100	5.4E+00	0.0
PYJAR	66	20	8	4	ı	0	3.0E+03	4.5
PYRITE	24	57	8	7	3	1	6.5E+03	9.7
SIDERITE.	0	0	0	0	0	100	1.0E+01	0.0
CALCITE	0	0	100	0	0	0	4.2E+01	0.1
MONTHORIL	0	100	0	0	0	0	1.7E+02	0.3
FE-SUL	0	0	0	0	64	36	5.4E+01	0.1
QUARORG	87	7	4	2	0	٥	1.8E+04	26.9
QUARPYR	82	9	6	4	0	Ò	1.3E+04	19.3
MIXSIL	57	24	7	9	3	1	1.9E+03	2.9
MIXSUL	78	17	4	O	Õ.	ā	1.2E+03	1.8
NOT-INT	11	59	18	8	2	1	8.4E+03	12.5
UNKNOUN	62	17	11	7	2	i	3.5E+03	5.3
				-	-	•	0.02.40	٠.٠
TOTAL	62	23	8	5	1	0	6.7E+84	100.0

## TABLE 23A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
SAMPLE # GARDINER 0.00 - 0.15 m ( ACI-87-232-01 )

 			9	BIZE / BIN			
MINERAL (	0.21 umi	1-2.5 umi	2.5-5 uml	5-10 um i	10-20 um!	>20 um (	TOTAL
 	· 		,	; 			
QUARTZ	0.0	0.2	1.9	5.8	1.0	0.4	9.2
KAOLINITE	0.1	0.8	2.8	5.4	2.5	1.6	13.3
ILLITE	0.3	1.0	5.1	7.4	1.6	0.5	15.9
PYRITE	0.0	0.2	0.9	9.5 ¦	7.1	5.9	23.6
QUARORG.	1.1	0.7	3.5	1.2 !	0.2	0.0 1	. 6.6
QUARPYR.!	0.3	0.5	1.6 !	0.4	0.1	0.0 !	2.9
MIXSIL.	0.3	1.0	4.3	6.5 ¦	4.0 ¦	9.0 [	25.1
MISC.	0.1	0.2	0.0	1.6	0.8	0.8	3.5

### TABLE 23B

:	88	-232-	0	1

1	DISK	149	FILE 110	- 114 P	ARTICLE	S			RUN∕T	106.00
. 1	DATE	1/28/88	SUMMARY	113 T	OTAL	598	MASS 3.1E+00	UG/CH2	ANAL ./T	93.99
30	TIME	13:39	OFF-PT.	>	50U	2	50U 8.7E-02	UG/CH2	DEAD/T	12.00
				SIZE	DISTRIB	UTION				
TYPE		0.2	-1 1-2.5	2.5-5	5-10	10-2	0 +20	PART/CM2	%TOTAL	
QUAR	TZ	0	14	45	39	2	0	3.4E+03	0.7	
KAOL	INITE	56	16	16	11	1	0	1.4E+04	3.2	
ILLI	TE	86	5	6	3	0	0	6.1E+04	13.2	
CHAM	OSITE	0	100	9	0	0	0	4.6E+02	0.1	
6YPS	um	100	0	0	0	0	0	1.5E+03	0.3	
PYRI	TE	25	10	24	31	9	1	2.4E+03	0.5	
SIDE	RITE.	0	0	0	0	100	0	1.7E+01	0.0	
RUTII	LE	0	0	0	100	0	0	1.9E+02	0.0	
HONTI	MORIL	100	0	0	0	Û	0	5.6E+03	1.2	
FE-SI	UL	0	0	0	0	78	'22	3.9E+01	0.0	
QUAR	ORG	93	. 3	3	0	0	0	7.8E+04	16.8	
QUARI	PYR	76	12	ii	2	0	0	1.2E+04	2.6	
MIXS	IL	79	8	8	4	1	0	4.4E+04	9.5	
MIXSU	UL	0	0	0	100	0	0	1.9E+02	0.0	
NOT-	INT	85	8	5	1	0	0	2.3E+05	50.2	
UNKNO	OUN	66	18	11	3	2	0	6.7E+03	1.4	
TOTAL		84	7	6	2	0	0	4.6E+05	100.0	

TABLE 24A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION
MULLINS NW-13 - 0.70 - 0.95 m ( ACI-87-260-14G )

¦				SIZE / BIN			
MINERAL	0.21 umi	1-2.5 umi	2.5-5 umi	5-10 um l	10-20 um!	>20 um	TOTAL
 				·		! 	
KAOLINITE!	0.0	0.2	0.3	1.6	0.7	0.0	2.8
ORGSULF. I	0.1	0.2	0.1	1.6	0.0	0.2	2.2
PYJAR.	0.0	0.3	3.5	1.3	1.6	1.4	8.0
PYRITE	0.0	0.5	7.8	6.8	15.6	17.5	48.7
SIDERITE	0.0	0.0	0.0	0.0	0.0	3.8	3.8
FE-SUL.	0.0	0.0	0.1	0.9	1.2	7.0	9.2
QUARORG.	0.3	1.4	2.3	1.9	0.9	0.7	7.4
QUARPYR.	0.0	0.2	2.1	2.7	1.8	5.4 I	12.2
MISC.	0.1	0.2	2.1	0.8 1	1.9	0.8	5.8

## TABLE 24B

: 87-260-146	: 8	۱7۰	-26	SO٠	-1	48	
--------------	-----	-----	-----	-----	----	----	--

87-260-	146										
1 0	ISK	156	FILE 24	9 - 253	PARTICL	ES				RUN/T 1	38.00
1 0	ATE	3/23/88	SUMMARY	252	TOTAL	581	MASS :	3.7E+00	UG/CH2	ANAL./T	93.99
30 T	IHE	9:28	OFF-PT.		> 50U	5	> 50U :	1.0E+00	UG/CM2	DEAD/T	44.00
SIZE DISTRIBUTION											
TYPE		0.2	2-1 1-2	.5 2.5	-5 5-1	0 10-	20	+20	PART/CM2	%TOTAL	
QUART	Z	0				37		0	3.3E+02	0.2	
KAOL I	NITE	12	2 41	20	23	4	ļ	0	2.8E+03	1.9	
ILLIT	Ε	0	56	41	0	2	!	0	2.1E+03	1.4	
ORGSU	LF	94	4	0	1	0	l	0	5.2E+04	34.3	
PYJAR		8	3 20	60	10	2	!	0	4.8E+03	3.2	
PYRIT	Ε	16	15	45	14	8		2	1.0E+04	6.7	
SIDER	ITE.	0	0	0	0	0	10	00	2.3E+01	0.0	
FE-SU	L	0	0	30	30	15	;	25	5.5E+02	0.4	
QUARO	RG	62	2 26	10	2	0	١.	0	3.5E+04	23.3	
QUARP	YR	0	34	45	16	2	<u>}</u>	2	6.0E+03	4.0	
HIXSI	L	0	0	93	0	5	i	1	8.8E+02	0.6	
MIXSU	L	95	5 0	4	1	0	1	0	2.0E+04	13.1	
NOT-1	NT	4	20	61	14	1		0	1.6E+04	10.8	
UNKNO	WN	0	0	76	0	11	1	13	4.3E+02	0.3	

TOTAL.... 61 14 18 5 1 0 1.5E+05 100.0

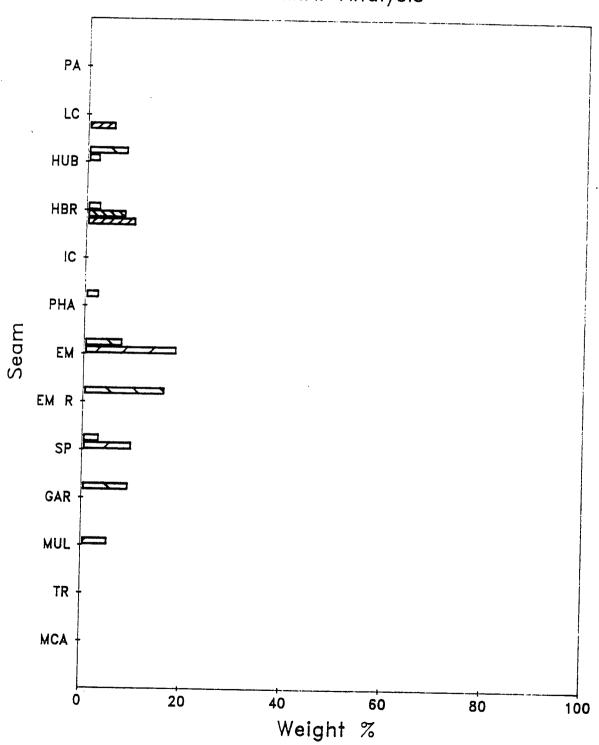
TABLE 2 5A

C.M.A. - NORMALIZED WEIGHT DISTRIBUTION MULLINS NW-16 - 0.75 - 1.00 a ( ACI-87-260-15H )

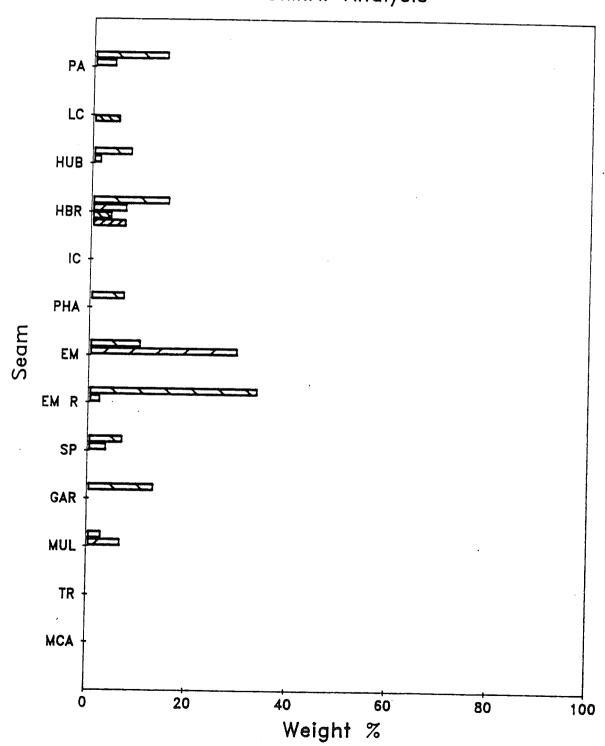
	SIZE / BIN									
MINERAL :	0.2i umi	1-2.5 ual	2.5-5 umi	5-10 um i	10-20 umi	>20 um i	TOTAL			
QUARTZ 1	0.0	0.1	0.8	1.6 1	2,2	0.5	5.2			
I AOLINITE!	0.0	0.0	0.6	2.9	1.0	2.1	6.7			
ILLITE	0.0	0.2	0.9	3.1	0.1	0.0	4.3			
ROSULF.	0.2	0.2	2.0	2.7	0.1	0.3	5.4			
PYJAR.	0.0	0.2	0.9	0.3	1.0	0.6	3.1			
PYRITE :	0.0	1.0	8.4	16.2	16.2	9.9	52.3			
FE-SUL.	0.0	0.0	0.2	0.0	2.6	2.9	5.7			
QUARORG.	0.4	0.9	1.8	3.0	2.3	0.5	9.0			
QUARPYR.	0.1	0.2	0.4	1.6	1.3	1.4	5.1			
HISC.	0.1	0.3	0.1	0.9	1.6	0.3	3.2			

## TABLE 25B

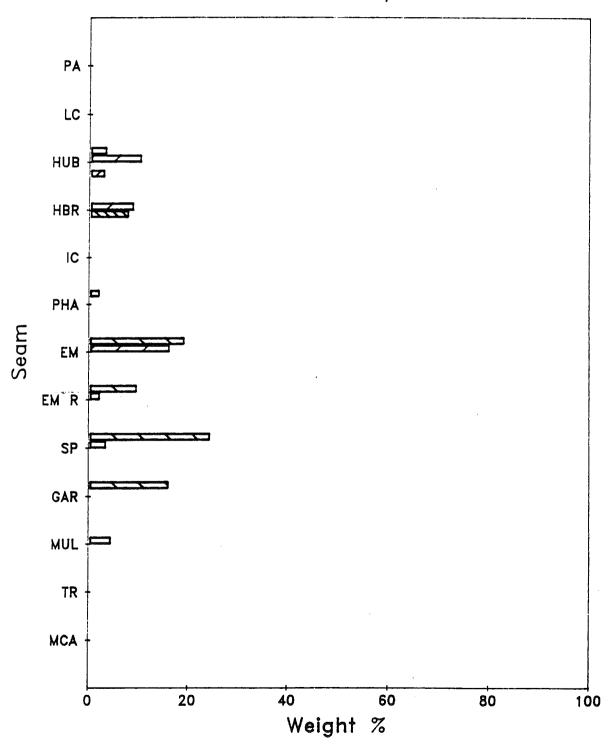
87	-24	(n-	15H


1	DISK	157		FILE 2	69 -	273	PART	CLES	3					RUN/T	267.00
1	DATE	3/25/	88	Summar	Y	272	TOTAL	. 5	49	Н	ASS	3.7E+00	UG/CM2	ANAL./T	261.99
28	TIME	13:53		OFF-PT			> 500		6	>	50U	1.7E+00	UG/CH2	DEAD/T	5.00
SIZE DISTRIBUTION															
TYPE			0.2-	-1 1-	2.5	2.5	-5	5-10		10-20		+20	PART/CH2	%TOTAL	
	RTZ		0	-	5	52		22		10		1	1.9E+03	1.0	
	LINITE		0		0	38		52		6		3	1.9E+03	1.0	
	ITE		Ô		3	31		45		0		0	3.2E+03	1.7	
	SULF		89		4	5		2		0		0	6.3E+04	31.9	
	AR		14	. 4	4	30		7		4	•	i	2.0E+03	1.0	
	ITE		37		6	24		17		5		1	1.9E+04	9.8	
	ERITE.		0		0	0		0		100		0	1.6E+01	0.0	
	TMORII		0	9	0	0	1	0		10		0	1.7E+02	0.1	
	SUL		8		0	52	<u>}</u>	0		36		12	5.6E+02	0.3	
	RORG.		83		9	5		3		1		0	4.9E+04	24.9	
	RPYR.		30	2	0	33	}	10		6		2	3.0E+03	1.6	
	SIL		0		7	(	)	21		11		0	6.8E+02	0.3	
	SUL		0		0	(	)	90		10		0	1.6E+02	0.1	
	-INT.		71	1	5	11	ļ	0		2		0	4.1E+04	21.1	
	NOUN.		95		3	1	ļ	0		0		0	1.0E+04	5.3	
TOT	AL		73	1	0	10	ì	5		2		0	1.9E+05	100.0	

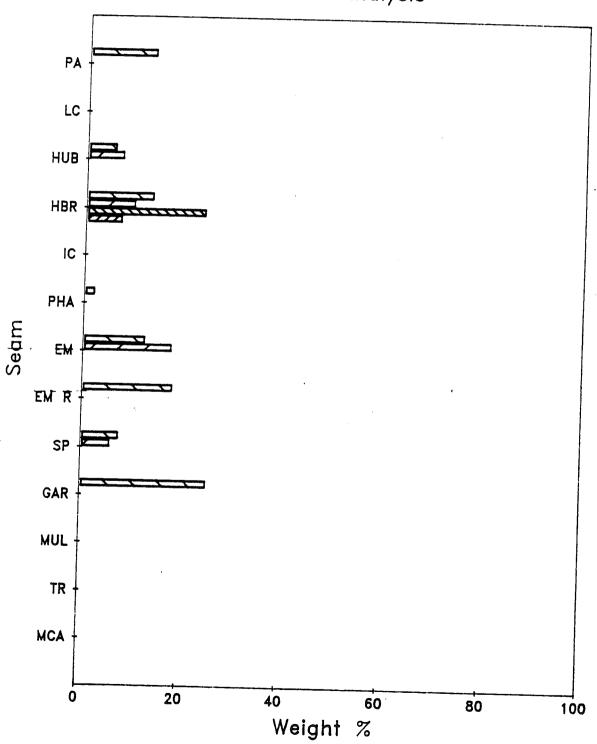
## APPENDIX III (B)


## AUTOMATED S.E.M. - C.M.A. PLOTS

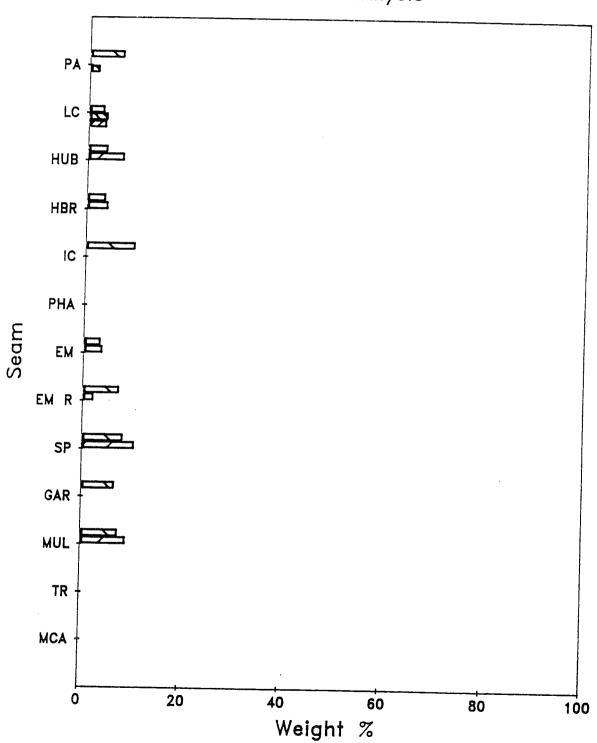
Weight %	QUARTZ	vs	SEAMS			
Weight %	KAOLINITE	vs	SEAMS			
Weight %	ILLITE	vs	SEAMS			
Weight % (Mixed Si		vs	SEAMS			
Weight % (Organics	QUARORG + Quartz)	vs	SEAMS			
Weight %	PYRITE	vs	SEAMS			
Weight % PYRITE-JA		vs	SEAMS			
Weight % (Iron su)		vs	SEAMS			
Weight % (fine pyr	QUARPYR rites in clay	vs	SEAMS			
Weight %	C.M.A Clays	vs	GALLIUM	in	ash	(ppm)
	C.M.A. S-bearing fractions	vs	GALLIUM	in	ash	(ppm)


QUARTZ C.M.A. Analysis

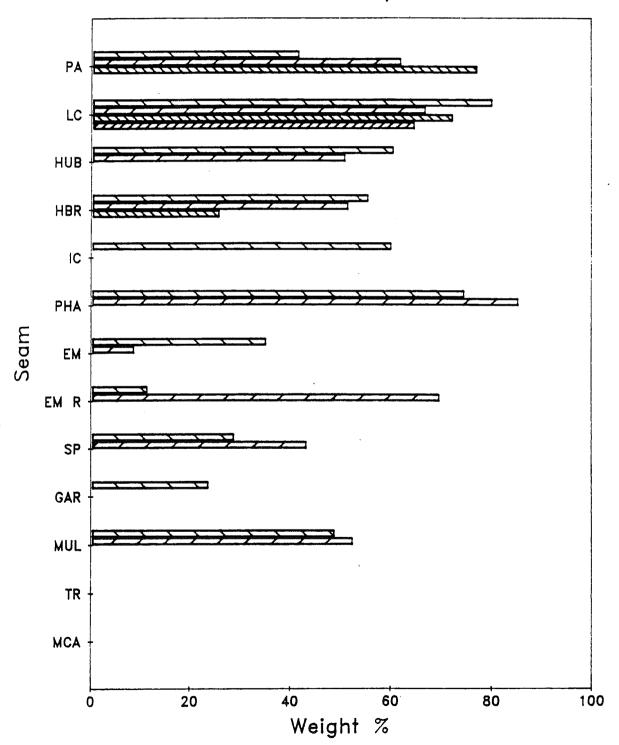



KAOLINITE C.M.A. Analysis

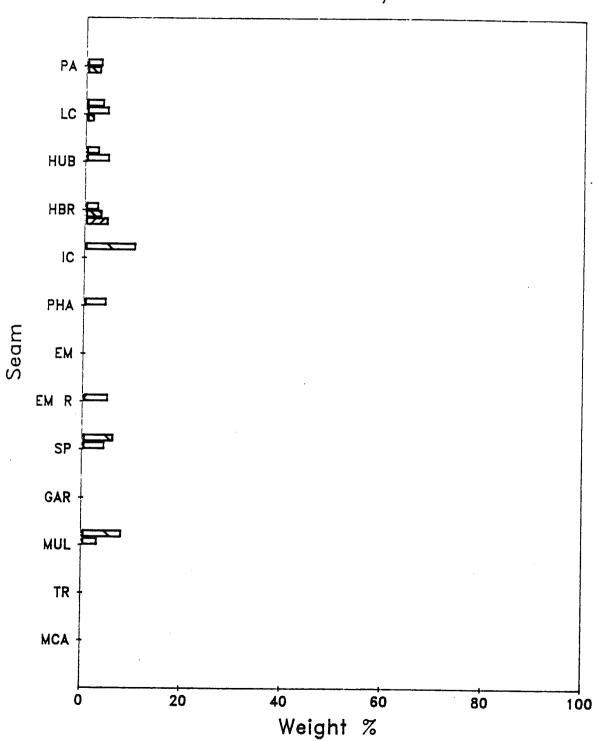



ILLITE C.M.A. Analysis

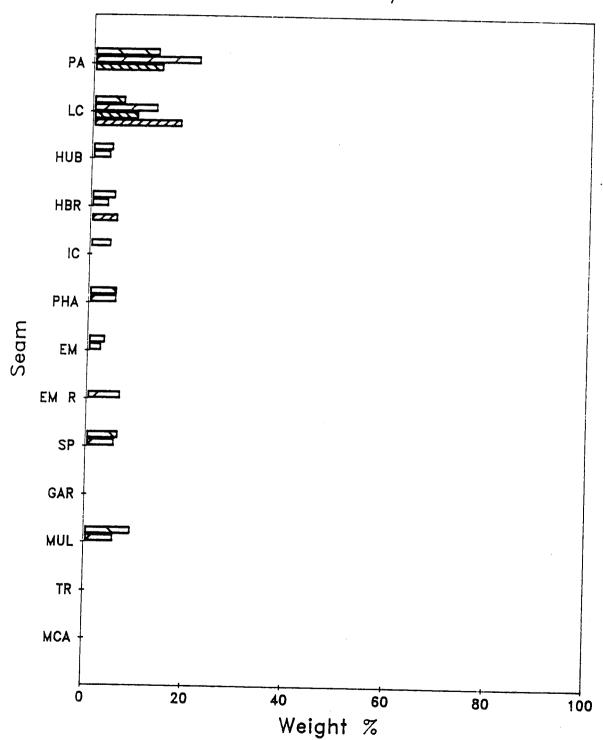



MIXSIL C.M.A. Analysis



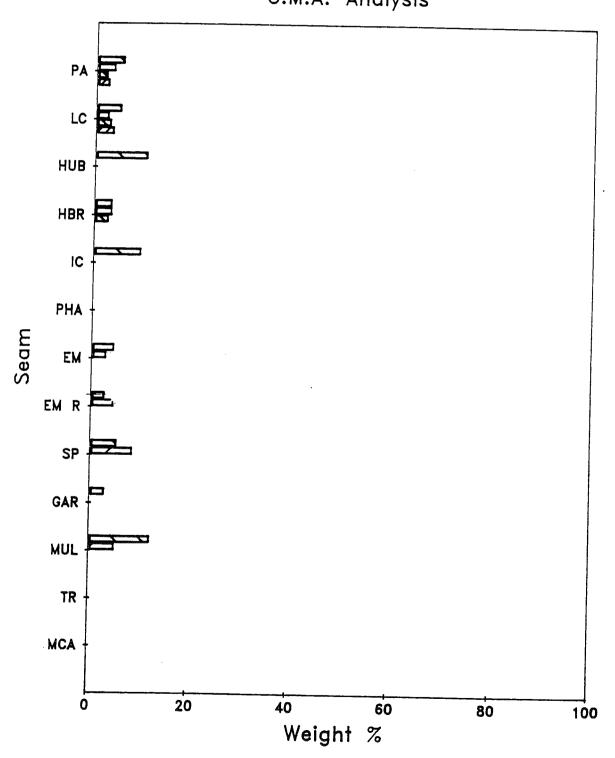

**QUARORG** C.M.A. Analysis




PYRITE C.M.A. Analysis



**PYRJAR**C.M.A. Analysis




FE-SUL C.M.A. Analysis



---

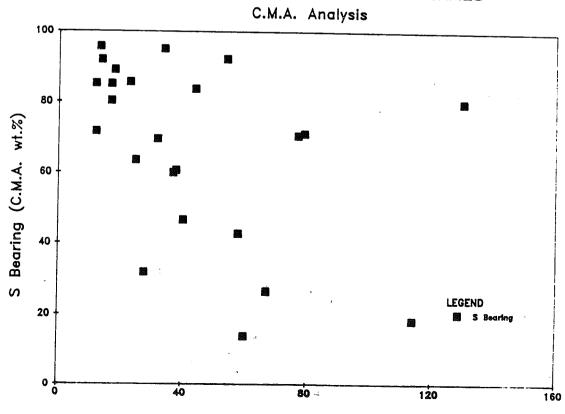
QUARPYR C.M.A. Analysis



160

## GALLIUM VS CLAYS

# GALLIUM VS S BEARING MINERALS


80

Gallium (ppm in ash)

120

0 <del>|</del>

40

