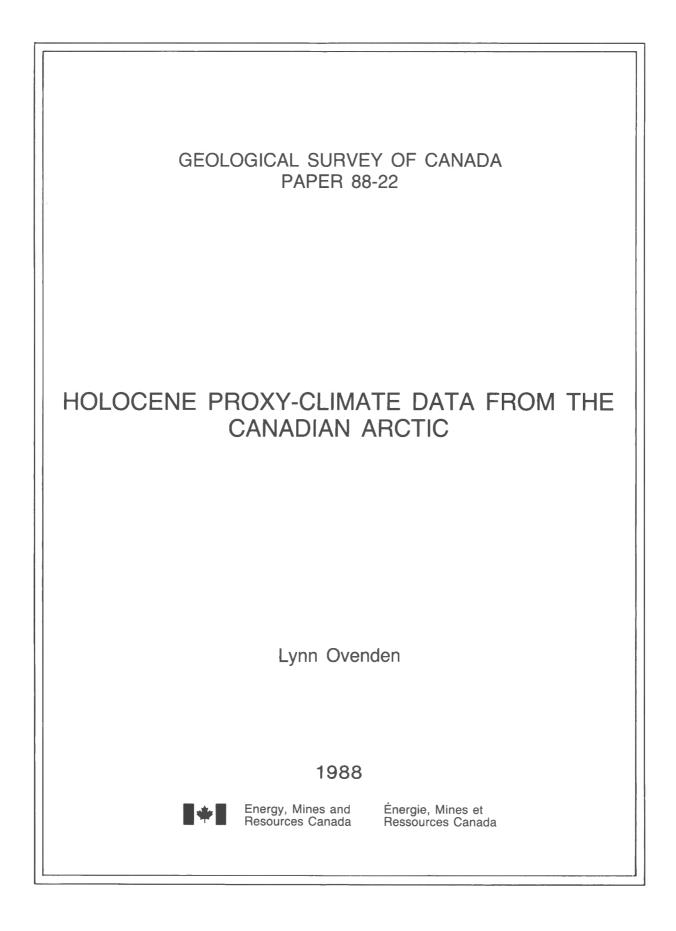
This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

Geological Survey of Canada Commission géologique du Canada


PAPER 88-22

HOLOCENE PROXY-CLIMATE DATA FROM THE CANADIAN ARCTIC

Lynn Ovenden

1988

© Minister of Supply and Services Canada 1988

Available in Canada through

authorized bookstore agents and other bookstores

or by mail from

Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada K1A 0S9

and from

Geological Survey of Canada offices:

601 Booth Street Ottawa, Canada K1A 0E8

3303-33rd Street N.W., Calgary, Alberta T2L 2A7

A deposit copy of this publication is also available for reference in public libraries across Canada

Cat. No. M44-88/22E ISBN 0-660-13077-7

Price subject to change without notice

Critical reader J.V. Matthews, Jr.

Original manuscript submitted — 1988-02-17 Final version approved for publication — 1988-08-24

CONTENTS

- 1 Abstract
- 1 Introduction
- 1 Background
- 2 Vascular plant range extensions
- 2 Arctic peat deposits
- 2 Eolian deposits
- 7 Thermokarst and thaw
- 10 Conclusions
- 10 Acknowledgments
- 10 References

Figure

7 1. An estimate of regional differences in the timing of Holocene peat accumulation on the arctic islands

Tables

- 3 1. Vascular plant range extensions
- 4 2. Holocene peatbeds
- 8 3. Organics buried by eolian deposits
- 9 4. Organics dating thermokarst or ice-wedge collapse

HOLOCENE PROXY-CLIMATE DATA FROM THE CANADIAN ARCTIC

Abstract

A review of diverse reports of the Geological Survey of Canada has produced lists of radiocarbondated samples from the Canadian Arctic which indicate four climatically significant occurrences during the Holocene: vascular plant range extensions, peat deposits of arctic islands, eolian deposition, and thermokarst and thaw. These data suggest warmer and perhaps wetter summers in the western Arctic during the early Holocene and warmer and/or wetter summers during the mid-Holocene elsewhere in the Canadian Arctic. This interpretation is limited by gaps in the database and by uncertainty about the relationship of each data type to climate.

Résumé

L'examen de divers rapports de la Commission géologique du Canada a permis des listes d'échantillons datés au carbone 14 et provenant de l'Arctique canadien. Ceux-ci révèlent quatre événements climatiquement importants qui se sont produits au cours de l'Holocène : les extensions du domaine des plantes vasculaires, les dépôts de tourbe des îles arctiques, la sédimentation éolienne ainsi que le thermokarst et le dégel. Ces données suggèrent l'existence d'étés plus chauds et partant plus humides dans l'ouest de l'Arctique pendant le début de l'Holocène et d'étés plus chauds ou plus humides pendant le milieu de l'Holocène ailleurs dans l'Arctique canadien. Cette interprétation est limitée par des lacunes à partir de la base de données et aussi par des incertitudes concernant chaque type de donées en fonction du climat.

INTRODUCTION

Quaternary studies by the Geological Survey of Canada (GSC) have produced data on the biological, geomorphological, and glacial history of Canada. The climatic implications of some of these studies are widely known, for example, the oxygen isotope and per cent melt records of high arctic ice cores (Koerner and Fisher, 1981) and the abundance of driftwood of mid-Holocene age in the Queen Elizabeth Islands (Blake, 1972). Other climatically significant discoveries have not become general knowledge, as indicated by their omission from literature reviews and annotated bibliographies on Canada's climatic history (Harington and Rice, 1984; Canadian Climate Program, 1985). This review of GSC reports and publications is an attempt to make some of its proxy-climate data more accessible; it was prompted by the Canadian Climate Program's interest in Canada's climatic history and by widespread concern over the mechanisms and implications of climatic change.

In this review, only data of Holocene age from the Northwest Territories and Yukon Territory have been considered. From this body of work, evidence was compiled of four phenomena that are indicative of climatic change: vascular plant range extensions, eolian deposition, peat accumulation and thermokarst and thaw. This report includes a compilation of these four data types, comments on their relationship to climate, and concludes with some general thoughts on the nature of proxy-climate data.

BACKGROUND

The decision to limit the data search to the Holocene of the Arctic was guided by the great activity of GSC personnel in this area over the last 25 years. A survey of the GSC radiocarbon date lists (I-XXVI) suggests that most dates from the Yukon and Northwest Territories are related to at least one of six phenomena: range extensions of plant and animal species, thermokarst, eolian activity, peat deposits, isostatic rebound, and glacial advance and retreat. The relationship to climate of the last two data types seems either too remote or too controversial to pursue. A search was made through the unpublished GSC 'Plant Macrofossil Reports' by J.V. Matthews, Jr. (1973-1986), the unpublished GSC 'Bryological Reports' by M. Kuc and J. Janssens, and selected GSC papers, memoirs, and Current Research articles for such dates and data additional to those listed in the radiocarbon date lists. Several scientists volunteered unpublished information from their files. A check to this study was made by searching the published portion of the Date Locator File (McNeely, 1985) for relevant entries; another search on this file identified peat samples from the arctic islands which had been dated prior to 1985, but for which dates have not yet been published.

These data are listed in the following tables, whether or not they were eventually published; one exception is the set of thermokarst dates from the western arctic coast, which is described by Rampton (1982, 1988).

VASCULAR PLANT RANGE EXTENSIONS

The northern limits of many plant taxa are determined by summer warmth and are commonly coincident with an isotherm of mean July temperature (Edlund, 1986). Early Holocene sediments from the northern Yukon and Mackenzie Delta yield ample evidence of more northerly distributions for poplar trees and a suite of shallow water and shoreline plants that are now confined to regions south of treeline or are extremely rare along the coastal plain: Scirpus, Naias, Glyceria, Eleocharis palustris, Sparganium, Potagmogeton praelongus, P. zosteriformis, Nuphar, Ceratophyllum, Ranunculus cymbalaria, Chenopodium, Corispermum, Polygonum lapathifolium, Rumex maritimus, Cicuta mackenziana, and Bidens cernua. There is only limited evidence of mid-Holocene range extensions in the central and eastern Arctic, perhaps because so few early and mid-Holocene organic deposits have been studied from this region (Table 1).

Former range extensions of vascular plants are an excellent form of proxy-climate data because of the availability of good modern distribution maps (Porsild and Cody, 1980), the sensitivity of many taxa to a distinct climatic gradient (summer temperature), the speciesspecificity of many plant macrofossils, and their abundance in suitable organic deposits. The Terrain Sciences Division of the Geological Survey also has abundant data on subfossil insects and mosses; the climatic significance of these data sets remains to be assessed.

ARCTIC PEAT DEPOSITS

Thick (40-900 cm) Holocene peat deposits have been located on many arctic islands. Most probably derive from wet lowland sedge-moss meadows, but they are now dry with gullies along former ice wedges or are covered by alluvial or eolian silt and sand. Peat accumulation rates appear to have been surprisingly rapid, 0.3-5.0 mm/a, based on the 17 peat deposits with at least two radiocarbon dates. Most of the arctic peat deposits listed in Table 2 are early or mid-Holocene in age. A major period of peat growth appears to have occurred on Ellesmere Island from 7 ka to 2.5 ka, and on Banks Island from 10 ka to 5.75 ka (Figure 1). This discrepancy is interesting, in light of other evidence of warmer early Holocene climates in northwestern North America than in the northeast (Williams and Bradley, 1985; Ritchie, 1987).

Are these relict peat deposits climatically significant? Many workers have assumed that current rates of arctic peat production are negligible and that the thick, gullied peat deposits of the early and mid-Holocene are evidence of a high arctic climate more favourable to peat production than the present climate (Tarnocai, 1978). This idea is consistent with other proxy-climate indications and deserves critical study; however, two other possibilities should also be considered:

- The preponderance of early and mid-Holocene peat in this survey may reflect a sampling bias against peat deposits that still have a wet surface. Minimum accumulation rates for the six peat deposits with basal dates younger than 2.5 ka (assuming surface = present) range from 0.3 to 1.4 mm/a. Late Holocene peat growth has occurred on the arctic islands.
- 2) The formerly higher water tables indicated by some relict peat deposits may be due to higher sea levels of the early Holocene, and not to a different climate.

Many more basal than uppermost peat samples from arctic peatbeds have been submitted for radiocarbon dating. This is unfortunate because the cessation of peat growth, if by eolian burial or desiccation, has as much climatic significance as the onset of peat accumulation. One might expect dates of the uppermost peat in a region to coincide with other evidence of the onset of cooler/drier conditions, such as eolian activity. The limited available data are consistent with this hypothesis.

EOLIAN DEPOSITS

The sands and silts of arctic floodplains, glacial outwash plains, and sandy tills are prone to deflation and redeposition on nearby surfaces when they are dry and/or sparsely vegetated (Bird, 1961; Pissart et al., 1977). This occurs both in summer and winter. Large clouds of dust blow off dry, late summer floodplains on Banks Island, and the prominent dark mineral layers in spring snowbanks attest to winter transport. Niveo-eolian deposition has been studied on eastern Baffin Island in sections of finely interbedded peat and sand (Boulton et al., 1976; Andrews et al. 1979). At these sites, an increased proportion of sand to organic matter beginning 3-4 ka has been attributed to a cooler, drier climate following the climatic optimum of the mid-Holocene (Short and Jacobs, 1982).

Table 3 lists several radiocarbon dates on organic horizons buried by eolian sand elsewhere in the arctic. Again, at most sites eolian deposition began within the past 4 ka. The data are insufficient to identify intervals of particularly intense eolian activity within that interval.

Although eolian deposits are probably not a suitable material for deriving absolute estimates of past temperature and precipitation, they are a unique indicator of desiccation and paleowind direction. The data on the initiation of eolian deposition (Table 3) are consistent with the notion of widespread Neoglacial climatic deterioration, but offer little additional insight on climate. A regional investigation of arctic eolian deposits, buried peats, and lake sediments would enable one to compare the responses of these depositional environments to climatic change.

Table 1. Vascular plant range extensions

Sample Locality	Collector	Species	¹⁴ C age and lab number	References
Sabine Point 69°02N 137°38W	V.N. Rampton	Populus	9940±90 GSC-2002	Lowdon and Blake (1976)
Blow River 68°52N 137°05W	J.V. Matthews, Jr.	Populus Potamogeton praelongus	9360 ± 70 TO-328	J.V. Matthews, Jr., PMR*84-9
Old Crow Loc. 44 68°13N 140°00W	O.L. Hughes	Populus	8270 ± 140 GSC-1329	Lowdon and Blake (1979)
Did Crow Loc. 44 68°13N 140°00W	J.V. Matthews, Jr.	Cicuta sp. Scirpus sp. Eleocharis palustris Rumex maritimus	8460 ± 120 GSC-2605	Lowdon and Blake (1979) J.V. Matthews, Jr., pers. comm., 1987
Dld Crow Loc. 32 68°03N 139°49W	O.L. Hughes	Scirpus sp. Eleocharis palustris Chenopodium sp. Polygonum lapathifolium	8100 ± 160 GSC-1243	Lowdon and Blake (1979) J.V. Matthews, Jr., pers. comm., 1987
Stokes Point 69°22N 138°48W	J.V Matthews, Jr.	Scirpus sp.	7510 ± 100 GSC-3747	J.V. Matthews, Jr., pers. comm., 1987
Hungry Creek 65°34N 135°31W	O.L. Hughes	Scirpus cf. validus	8980 ± 90 GSC-2341	J.V. Matthews, Jr., PMR 76-11 O.L. Hughes, pers. comm., 1987
Jpper Porcupine 66°57N 137°42W	O.L. Hughes	Scirpus sp. Eleocharis palustris Naias flexilis	9190 ± 90 GSC-2461	Lowdon and Blake (1980) J.V. Matthews, Jr , PMR 77-3
Eagle River 67°06N 137°03W	J.V. Matthews, Jr. N.W. Rutter	Naias flexilis Glyceria sp. Bidens cernua Ceratophyllum demersum Potamogeton zosteriformis	9970 ± 160 GSC-3133	Blake (1984) J.V. Matthews, Jr., PMR 80-12
Corkery Creek 63°51N 135°38W	O.L. Hughes	Scirpus validus	9000 ± 90 GSC-4020	O.L. Hughes, pers. comm., 1987 J.V. Matthews, Jr., PMR 85-16
Liverpool Bay 70°05N 128°24W	V.N. Rampton	Populus	9020±80 GSC-1989	Lowdon and Blake (1978)
Richardson River 67°48N 116°11W	D.E. Kerr	Eleocharis sp. Myriophyllum sp.	6100 ± 80 GSC-4009	D. Kerr, pers. comm., 1987 J.V. Matthews, Jr., PMR 83-19
Tuktoyaktuk Pingo 69°04N 134°19W	J.R. Mackay	Nuphar polysepalum	6730 <u>±</u> 80 GSC-1797	Lowdon and Blake (1979) M. Kuc, BR*209
Dome Bay 78°28N 102°37W	D.A. Hodgson	<i>Carөх</i> sp. (not <i>stans</i>) <i>Salix</i> sp.	7500 ± 90 GSC-2572	J.V. Matthews, Jr., PMR 77-6 D.A. Hodgson, pers. comm., 1987
Femperance Bay 78°20N 97°45W	D.A. Hodgson	Salix sp.	6900 ± 100 GSC-2624	J.V. Matthews, Jr., PMR 83-15 D.A. Hodgson, pers. comm., 1987
Dartmouth Bight 75°39N 99°20W	W. Blake, Jr.	Vaccinium uliginosum Salix pseudopolaris Ranunculus trichophyllus var. eradicatus	9210 ± 170 GSC-180	Blake (1964) Dyck et al. (1965)
Skraeling Island 78°55N 75°39W	W. Blake, Jr.	Potamogeton filiformis	6650 ± 70 GSC-3391	J.V. Matthews, Jr., PMR 82-1 Blake (1982)

* PMR unpublished Geological Survey of Canada Plant Macrofossil Report BR unpublished Geological Survey of Canada Bryological Report

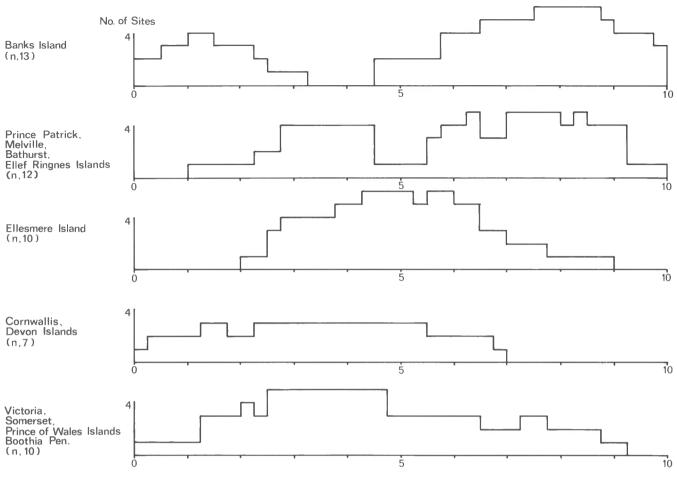

thickness	Growth (cm from	¹⁴ C age and	Substrate/ rate	basin	Surface	
(cm)	uppermost peat)	lab. number	(mm/a)	type	of peat	Reference
200	200	1440 ± 40 GSC-2286	> 1.4	glacial outwash		Lowdon and Blake (1980) Vincent (1983)
~420	400	9770 ± 80 GSC-2127		depression in till	gullied polygons	Lowdon and Blake (1980) Vincent (1983)
50	50	3050 ± 90 GSC-2387		river terrace		Lowdon and Blake (1980) Vincent (1983)
>410	400	8970 ± 140 GSC-2776			gullied polygons	Lowdon and Blake (1980) Vincent (1983)
>500	500	7800 ± 70 GSC-2160		depression in till	gullied polygons	Lowdon and Blake (1980) Vincent (1983)
130	130	2130 ± 70 GSC-2324	>0.6	deep gully in marine silt		Lowdon and Blake (1980) Vincent (1983)
100	60-100 30	9360 ± 90 GSC-2723 7600 ± 90 GSC-2656	0.3	depression in till		Lowdon and Blake (1980) Vincent (1983)
250	250 60	9820 ± 220 -197 6940 ± 110 GSC-10	0.6	depression in till		Dyck and Fyles (1962) Vincent 1983
400	400	9730 ± 150 GSC-1525		river terrace		Lowdon et al. (1977) Kuc (1973)
110	110	6490 ± 60 GSC-3216			30 cm fine sand	Blake (1983) French et al. (1982)
~200	near base	8530 ± 110 GSC-2284		gravelly sand	shallow cover of colluviated till	Blake (1987) Vincent (1983)
83	base	6520 ± 150 GSC-2610		glaciofluvial terrace		Vincent (1983)
110	base	2510 ± 60 GSC-2636	>0.4	meander scar		Vincent (1983)
nd						
184	184	4270 ± 140 GSC-1194		round depression	gullied polygons	Kuc (1971)
300	300	8460 ± 150 GSC-364		terrace	deeply gullied	Kuc (1971)
40	40	9040 ± 160 GSC-1708		marine delta		Barnett (1973)
~250	base	7890 ± 70 GCS-4187		sandy depression		D.A. Hodgson, pers. com 1987
~250	top	8420 ± 80 GSC-1887		valley floor	peat mounds overlain by sand-silt	Lowdon and Blake (1975) W. Blake, Jr., pers. comm 1987
326	326	6510 ± 150 GSC-253	0.6	large meltwater	ice-cored mound	Lowdon et al. (1967) Blake (1974)
	(cm) 200 ~420 50 >410 >500 130 100 250 400 110 ~200 83 110 ~200 83 110 184 300 40 ~250 ~250	(cm) uppermost peat) 200 200 ~420 400 50 50 >410 400 >500 500 130 130 100 60-100 30 250 250 250 60 400 400 400 110 110 ~200 near 83 base 110 base 110 base 40 40 -250 base -250 base ~250 top	uppermost peat) lab. number 200 200 1440 ± 40 GSC-2286 ~420 400 9770 ± 80 GSC-2127 50 50 3050 ± 90 GSC-2387 >410 400 8970 ± 140 GSC-2387 >500 500 7800 ± 70 GSC-2324 100 60-100 9360 ± 90 GSC-2234 100 60-100 9360 ± 90 GSC-2234 100 60-100 9360 ± 90 GSC-2656 250 250 9820 ± 220 H-197 60 6940 ± 110 GSC-10 9360 ± 90 GSC-2284 400 400 9730 ± 150 GSC-2216 ~200 near 8530 ± 110 GSC-2610 110 110 6490 ± 60 GSC-2284 83 base 6520 ± 150 GSC-2636 nd 110 base 184 184 4270 ± 140 GSC-1194 300 300 8460 ± 150 GSC-364 40 40 9040 ± 160 GSC-1708 ~250 base 7890 ± 70 GCS-187 ~250 base 7890 ± 70 GSC-1887	uppermost peat) lab. number (mm/a) 200 200 1440 ± 40 GSC-2286 >1.4 ~420 400 9770 \pm 80 GSC-2127 >1.4 50 50 3050 \pm 90 GSC-2180 > >410 400 8970 \pm 140 GSC-2716 > >500 500 7800 \pm 70 GSC-2160 > 130 130 2130 \pm 70 GSC-2233 > > 100 60-100 9360 \pm 90 GSC-2256 0.3 GSC-2266 > > 100 60-100 9360 \pm 90 GSC-2256 0.6 H 197 > 400 400 9730 \pm 150 GSC-125 110 110 6490 \pm 60 GSC-2610 400 400 9730 \pm 150 GSC-2636 > > 110 110 6490 \pm 60 GSC-2636 > > 110 base GSC-2636 > > > 110 base GSC-1194 >	(cm) uppermost peat) lab. number (mm/a) type 200 200 1440 \pm 40 > 1.4 glacial outwash ~420 400 9770 \pm 80 depression in till 50 50 3050 \pm 90 river >410 400 8970 \pm 140 csc-2776 >500 500 7800 \pm 70 depression in till 130 130 2130 \pm 70 depression in till 100 60-100 9360 \pm 90 .3 depression in till 100 60-100 9360 \pm 90 .3 depression in till 100 60-100 9360 \pm 90 .3 depression in till 110 60 6940 \pm 110 .5 in till 60 690 \pm 91 .6 depression in till 110 110 6352 \pm 150 glaciofluvial csc-2816	(cm) uppermost peat) lab. number (nm/a) type of peat 200 200 1440 ± 40 G3C-2286 >1.4 glacial outwash outwash ~420 400 970 ± 80 G3C-2187 depression in till gullied polygons 50 50 3050 ± 90 GSC-2387 river terrace gullied polygons >410 400 8970 ± 140 GSC-2776 gullied polygons gullied polygons >500 500 7800 ± 70 GSC-2780 0.8 depression marine sitt gullied polygons 130 130 2130 ± 70 GSC-2723 0.8 depression in till gullied polygons 100 60-100 9360 ± 90 GSC-723 0.3 depression in till gullied polygons 110 60 6940 ± 10 GSC-725 5 river terrace 30 cm fine sand ~200 near 8530 ± 110 GSC-2816 gaciofluvial terrace shallow cover of colluviated till 110 base 6520 ± 150 GSC-2836 co.4 GSC-2836 meander scar 110 base 250 ± 60 GSC-1926 o

Table 2. Holocene peatbeds (>40 cm thick) of the arctic islands

Polar Bear Pass 75°45N 98°28.5W	> 150	top	2870 ± 50 GSC-1876			thin veneer of alluvium	Lowdon and Blake (1980)
Polar Bear Pass 75°44N 98°28W	-	top	2760 ± 70 GSC-1883			thin veneer of alluvium	Lowdon and Blake (1980)
Dartmouth Bight 75°38N.5 99°20W	264	261-264 17-21	9210 ± 170 GSC-180 7820 ± 140	1.7	depression on ridge		Dyck et al. (1966) Blake (1964,1974)
		17-21	GSC-233				
Walker River 75°57N 77°52W	> 150	top	7100 ± 140 GSC-201	>0.6	river terrace	thin colluvium	Dyck et al. (1965)
Goodsir Inlet 75°40N 97°40W	130	25	5830 ± 70	1.0	depression with	gullied	C. Tarnocai, pers. comm.,
		78	GSC-2355 6160±90 GSC-2317	1.6	small temporary stream	polygons	1987
Ellef Ringnes Islan	d						
Dome Bay 78°27N 102°37W	150	140-150	7500 ± 90 GSC-2572		delta surface	gullied polygons	D.A. Hodgson, pers. comm., 1987
Ellesmere Island							
Lake Hazen 81°49N 71°18W	>235	225-235 35-40	4980±70 GSC-3451 3260±70 GSC-3540	1.1	stream valley	10 cm till-like material	Blake (1985) Gould (1985)
Tanquery Fiord by McDonald River 81°24N 76°10W	210	210	4060 <u>+</u> 130 GSC-374		-	4.3 m of outwash	Lowdon et al. (1967) Hattersley-Smith and Long (1967)
Tanquery Fiord, by Rollrock River 81°30N 76°10W	400	400	6480 ± 200 SI-468		-		Hattersley-Smith and Long (1967)
Oobloyah Bay 80°54N 82°17W	~225	180	4190 <u>+</u> 130 GSC-105		gravel of glacial valley		Dyck and Fyles (1963)
Strathcona Fiord 78°33N 82°20W	275	275	7680 ± 150 GSC-175		till, upland depression	30-60 cm colluvium	Dyck and Fyles (1964)
Slidre River north 79°56N 84°35W	~250	30-36	4950 ± 60 GSC-2005		stream valley	15 cm of sand/silt	D.A. Hodgson, pers. comm., 1987
Slidre River south 79°54N 84°38W	~180	~30	3970 ± 80 GSC-2039	~1.4	terrace of stream valley		D.A. Hodgson, pers. comm., 1987
Makinson Inlet 77°50W 81°W45	900	890-900	5180 ± 260 GSC-2909	3.5	glacial valley	gullied, thin cover of outwas	Lowdon and Blake (1981) sh
		0-10	2590±150 GSC-3191			and till	
Carey Islands, north 76°44N 73°00W	260	250-260	6300 ± 140 GSC-2368	1.2	hollow on plateau	gullied	Brassard and Blake (1978) Blake (1987)
		15-18	4390 ± 140 GSC-2415		above sea cliff		
Carey Island, central 76°43N 73°11W	104	99-104	8940 ± 90 GSC-2440	0.5	valley	peat mound	Blake (1987) Brassard and Blake (1978)
		15-20	7230±80 GSC-2568				
Devon Island							
Truelove Lowland 75°40N 85°37W	170	170	2450 ± 90 -3231	>0.7		high-centre polygons	Jankovska and Bliss (1975) Barr (1971)
75°38N 84°28W	-	base	4300 ± 95 S-430			high-centre polygons	Barr (1971)
75°38N 84°26W	-	base	6900 ± 115 S-428			high-centre polygons	Barr (1971)

Locality	Peatbed thickness (cm)	Dated level (cm from uppermost peat)	¹⁴ C age and lab. number	Growth rate (mm/a)	Substrate/ basin type	Surface of peat	Reference
Cornwallis Island							
Intrepid Bay 75°05N 96°09W	75	75	6590 <u>+</u> 100 GSC-2532			high-centre polygon	Lowdon and Blake (1979)
Eleanor Lake 75°23N 94°47W	110	110	4670 ± 60 GSC-2476			high-centre polygon	Lowdon and Blake (1979)
Eleanor Lake 75°23N 94°42W	130	130	1700 ± 40 GSC-2321	>0.8		high-centre polygon	Lowdon and Blake (1979)
Resolute 74°46N 95°06W Somerset Island	125	125 20-25	5410 ± 50 QL-1741 1680 ± 60 QL-1739	0.3		palsa	Washburn (1983) Washburn and Stuiver (1985)
Stanwell-Fletcher L. 72°58N 94°57W	135	135 32	6280 ± 80 GSC-2339 6070 ± 100 BGS-337	5.0	gravel and sand of stream valley	gullied polygons	Lowdon et al. (1977)
Creswell Bay 72°53N 93°37W	230	225-230 180-188 90-96 0-3	$7590 \pm 80 \\ GSC-2583 \\ 7250 \pm 70 \\ GSC-3250 \\ 5100 \pm 90 \\ GSC-3257 \\ 1320 \pm 60 \\ GSC-2945$	1.3 0.4 0.2	laminated sand and silt	gullied, eroding polygons	Blake (1987)
Creswell River 73°00N 93°00W	120	75 120	5700 ± 80 GSC-3082 6010 ± 80 GSC-3077	1.5	depression	gullied polygons	C. Tarnocai, pers. comm., 1987
Creswell River 73°03N 93°15W	170	170	4580 ± 80 GSC-2439		fine sand	11 cm of fine sand over dissected peat polygons	A.S. Dyke, pers. comm., 1987
Prince of Wales Is	and						
73°46N 97°46W	102	100-102 5-7	8655 ± 230 S-2888 7430 ± 210 S-2889	0.8	small depression in marine sand	degraded high-centre polygons	A.S. Dyke, pers. comm., 1987 Hooper, 1986
Boothia Peninsula							Duck and Euler (1062)
Pelly Bay 68°05N 90°09W	~200	base	4530 ± 120 GSC-32		marine terrace		Dyck and Fyles (1963)
Lord Lindsay River 70°06N 95°33W	132	130-132 5-8	4750 ± 60 GSC-3277 2080 ± 60 GSC-3282	0.5		high-centre polygons	A.S. Dyke, pers. comm., 1987
Wrottesley Valley 71°04N 95°37W	~130	138-144 0-7	4580±70 GSC-3279 1240±70 GSC-3331	0.4	depression in till on broad valley floor	eroding high-centre polygons	A.S. Dyke, pers. comm., 1987
Victoria Island							
Richard Collinson Inl 72°38N 113°41W		60	2200 ± 75 GSC-19	>0.3	marine terrace		Dyck and Fyles (1962)
central 70°59N 110°04W	~800	base ~600	9120 ± 100 GSC-4193 9180 ± 100	1.4	depression in glaciolacustrine silt	dry	D. A. Hodgson, pers. comn 1987
		top	GSC-4202 4730 ± 80 GSC-4206				

Г

Figure 1. An estimate of regional differences in the timing of Holocene peat accumulation on the arctic islands. Each histogram shows the number of sites accumulating peat during each 250 year interval of the last 10 ka years. The number (n) of radiocarbon-dated peat deposits in each region is indicated. Where the uppermost (or lowermost) peat is of unknown age, its age is arbitrarily assumed to be 2 ka younger (or older) than the peat layer that was radiocarbon dated. A few sites (e.g., Polar Bear Pass on Bathurst Island) emerged from the sea less than 2 ka prior to the uppermost peat date; peat growth at these sites is assumed to have commenced upon emergence. In the 17 arctic peat deposits with both upper and lower peat layers dated, the average duration of peat growth is about 2.7 ka.

THERMOKARST AND THAW

Thermokarst results from melting of ground ice accompanied by local collapse of the ground surface and subsequent formation of depressions. Oriented lakes with steep, eroding shorelines are modern examples of ongoing thermokarst activity. Sediments in such thaw lakes appear to differ from those in other lacustrine sequences in their layered concentrations of terrestrial plant remains (Rampton, 1982). Thermokarst deposits can therefore be recognized in exposures. Studies of such thermokarst deposits show that thawing and collapse were widespread in northwestern Canada between 10 ka and 8 ka, especially along the Beaufort Sea coast (Rampton, 1982, 1988; French and Harry, 1983; Table 4). Thermokarst activity may be expected to increase in a landscape of ice-rich surficial materials where summers are growing warmer (or possibly winters are becoming snowier) and in which permafrost is therefore degrading. The early Holocene summers in northwestern Canada were therefore warmer than they had previously been. Moreover, because active layers were deeper then than now, summers were warmer than at present (Mackay, 1978; Burn et al., 1986).

The absence of data marking a similar thaw interval in the remainder of the Canadian Arctic is puzzling, as thermokarst lakes occur at least as far north as Bathurst Island. Perhaps warming was insufficient to initiate thawing elsewhere, or collapse did not occur because less ground ice was present. It is also possible, however, that thermokarst deposits have simply not been studied in the central and eastern Arctic.

Sample locality	Collector	¹⁴ C age and lab. number	Dated material	References
Chapman Lake 64°52N 138°19W	O.L. Hughes	10900 ± 150 GSC-311	prominent silt layer in lake sediment	Dyck et al. (1966) Terasmae and Hughes (1966)
McQueston River 63°38N 137°06N	O.L. Hughes	1590 ± 150 GSC-565	soil overlain by loess	Lowdon and Blake (1968)
Hayes River 67°13N 92°05W	R.D. Thomas	980 ± 70 GSC-2522	peaty soil overlain by sand	Lowdon et al. (1977) Thomas (1977)
Amer Lake 65°33N 97°37W	B.C. McDonald	2540 ± 130 GSC-1086	peat beneath sand-peat layers	Lowdon et al. (1971)
Coppermine River 66°50N 116°21W	D.A. St-Onge	3210 ± 60 GSC-2998	peat overlain by dunes	Blake (1983) St-Onge (1980)
Liverpool Bay 70°01N 129°29W	V.N. Rampton	3280 ± 130 GSC-1268	detritus overlain by eolian sand	Lowdon and Blake (1978) Rampton (1988)
Bernard River 73°15N 121°40W	J-S. Vincent	5800 ± 180 GSC-2242	twiggy peat overlain by eolian sand	Pissart et al. (1977)
Sachs River 71°58N 124°58W	J-S. Vincent	8430±120 GSC-2419	peat layer beneath sand	Pissart et al. (1977)
Thomson River 73°51N 119°49W	J-S. Vincent	3790±90 GSC-2119	willows overlain by eolian sand	Pissart et al. (1977)
Thomson River 73°42N 119°56W	A. Pissart	3460±80 GSC-2124	willows overlain by eolian sand	Pissart et al. (1977)
Dundee Bight 75°58N 96°17W	L.A. Dredge	710±50 GSC-2454	willow exposed by deflation	Lowdon and Blake (1978)
Millut Bay 64°40N 67°33W	A.S. Dyke	1790±80 GSC-2084	soil overlain by eolian sand	Lowdon and Blake (1979)
Pilik River 71°21N 77°19W	D.A. Hodgson	2650 ± 130 GSC-1071	peat bed overlain by stratified sand	Lowdon et al. (1971)
Aktineq Glacier 72°53N 78°52W	R.N.W. DiLabio	450 ± 70 GSC-2597	peat layer within eolian sand unit	Lowdon and Blake (1978)
Paulatuk 69°21N 124°06W	J.R. Mackay	1030±140 GSC-1251	peat in eolian sand	Lowdon et al. (1971)
Mason River 69°55N 128°26W	V.N. Rampton	8650 ± 80 GSC-2029	peaty layer in middle of 0.6 m thick loess deposit	Lowdon and Blake (1978)
Mountain River 65°15N 128°34W	O.L. Hughes	940 ± 50 GSC-2504	spruce stump near base of 19 m thick cliff top dune	Lowdon and Blake (1979)
Warden's Grove 63°40N 104°26W	B. Gordon	810 ± 130 GSC-1689	spruce stump overlain by approx. 2 m eolian sand	Lowdon et al. (1974)

Table 3. Organics buried by eolian deposits

Table 4. Organics dating thermokarst or ice wedge collapse

9				
Sample locality	Collector	¹⁴ C age and lab. number	Dated material	References
Sabine Point 69°04N 137°48W	D.G. Harry	8980 ± 90 GSC-3914	wood at base of mudflow deposit that thaw-truncates ice below	Blake (1987)
Sabine Point 69°04N 137°48W	D.G. Harry	11,000 ± 100 GSC-3986	detritus at base of thermokarst lake sediment	Blake (1987)
King Point 69°05N 137°55W	D.G. Harry	7770 ± 90 GSC-3987	peat directly over fossil ice wedge (maximum age of thaw event)	Blake (1987) Harry et al. (1985)
Old Crow Flats 67°54N 139°26W	W. Pettapiece	6020 ± 140 GSC-2225	detrital layer at base of thermokarst lake sediment	Lowdon et al. (1977)
Old Crow Basin 67°56N 139°16W	J.V. Matthews, Jr.	10,400 ± 180 GSC-2773	peat in ice wedge pseudomorph	Blake (1984)
Bell Basin 67°12N 137°41W	J.V. Matthews, Jr.	8890 ± 90 GSC-3134	redeposited peat mat in thermokarst lake sediment	Blake (1984)
		8710±80 GSC-3161	organic pod 1 m above GSC-3134 in organic silt	
Horton River Pingo 68°29N 123°16W	B.G. Craig	3,050 ± 150 GSC-397	intercalated peat and silt layers exposed in pingo crater	Dyck et al. (1966)
Erly Lake Pingo 68°14N 122°38W	R.J. Fulton	10,800 ± 150 GSC-1139	moss peat mat in lake sediment	Lowdon et al (1971)
Grandview Hills 67°06N 131°13W	O.L. Hughes	9560 ± 120 GSC-2298	wood at base of thaw pond sediment	Lowdon and Blake (1979)
Norman Wells 65°29N 126°34W	R.J. Fulton	8880 ± 150 GSC-1099	peaty layer in thermokarst lake sediment	Lowdon et al. (1971)
Escape Rapids 67°35N 115°27W	M.A. Guerts	9150 ± 100 LV-1452	wood at base of thaw lake sediment	Guerts (1985)
Thesinger Bay 71°57N 125°14W	D.G. Harry	6490 ± 60 GSC-3216	base of peatbed that grew during thaw event	Blake (1983) French and Harry (1983)
Thesinger Bay 71°57N 125°13W	D.G. Harry	8560 ± 210 GSC-3292	twigs at base of thermokarst lake sediment	Blake (1983) French and Harry (1983)
Thesinger Bay 71°57N 125°25W	H.M. French	9490±80 GSC-2364	wood in thaw lake sediment	French and Harry (1983)
Thesinger Bay 71°53N 124°59W	J-S. Vincent	8240 ± 140 GSC-2246	base of thermokarst lake sediment	French and Harry (1983) Lowdon and Blake (1980)
Satellite Bay 77°22N 116°35W	A. Pissart	7090 ± 150 GSC-854	detritus in ice wedge pseudomorph	Lowdon and Blake (1968)
Yukon Coastal Plain		14 dates		Rampton (1982)
Tuktoyaktuk Coastla	nds	36 dates		Rampton (1988)

CONCLUSIONS

The four data types compiled in this study reflect different aspects of Holocene climate in the Canadian Arctic. Thermokarst and range extensions of plant species are probably indicators of summer warmth (perhaps also snow depth), and are widely evident in early Holocene sediments of the western Arctic; elsewhere, such data are rare. Eolian activity and peat accumulation are more likely related to moisture conditions, in an inverse manner. A major period of peat accumulation appears to have occurred in the early Holocene in the western Arctic and in the mid-Holocene on the eastern islands. Evidence of eolian activity during the last 4 ka is sparse but pervasive.

In summary, these data are consistent with paleoclimatic interpretations of the low arctic which are based primarily on pollen studies (Ritchie, 1987; Williams and Bradley, 1985) — that is, warmer early Holocene summers in the west and a mid-Holocene optimum in the east. Moreover, they provide scattered glimpses of environmental history from the arctic islands, a vast region whose pollen stratigraphy remains unknown (except for Baffin Island), and from which we have little other evidence of Holocene terrestrial conditions.

The climatic significance of the data identified in this report is limited by its uneven geographic and temporal distribution, and by uncertainty about the relationship of each data type to climate. In general, processes that respond to a climatic gradient in a quantifiable and predictable way are most suitable for reconstructing past climates. Increased efforts to understand the climatic significance of the many sorts of phenomena that geologists study will lead to data collection of more climatic significance. Such data will also be useful in predicting effects of future climatic change.

ACKNOWLEDGMENTS

This survey was initiated by J.V. Matthews, Jr. and was supported in part by Canadian Climate Program funds, arranged through the Atmospheric Environment Service. Searches of the Date Locator File were executed by R.N. McNeely and were very helpful. The generous cooperation of many individuals in designing and conducting the survey is gratefully acknowledged. S.A. Edlund, B.F. Findlay, and B.R. Pelletier made useful suggestions which improved an earlier draft of the manuscript.

REFERENCES

- Andrews, J.T., Webber, P.J., and Nichols, H.
- 1979: A late Holocene pollen diagram from Pangnirtung Pass, Baffin Island, NWT, Canada; Review of Palaeobotany and Palynology, v. 27, p. 1-28.
- Barnett, D.M.
- 1973: Radiocarbon dates from eastern Melville Island; in Report of Activities, Part B, Geological Survey of Canada, Paper 73-1B, p. 137-140.

Barr, W.

1971: Postglacial isostatic movement in northeastern Devon Island: a reappraisal; Arctic, v. 24, p. 249-268.

Bird, J.B.

- 1967: The Physiography of Arctic Canada; The Johns Hopkins Press, Baltimore, Maryland, 336 p.
- Blake, W., Jr.
- 1964: Preliminary account of the glacial history of Bathurst Island, Arctic Archipelago; Geological Survey of Canada, Paper 64-30, 8 p.
- 1972: Climatic implications of radiocarbon-dated driftwood in the Queen Elizabeth Islands, Arctic Canada. in Climatic Changes in Arctic Areas During the Last Ten-thousand Years, Y. Vasari, H. Hyvarinen, and S. Hicks, (ed.); Acta Universitatis Duluensis Series A, Scientiae Rerum Naturalium 3, Geologica 1, p. 78-104.
- 1974: Periglacial features and landscape evolution, central Bathurst Island, District of Franklin; in Report of Activities, Part B, Geological Survey of Canada, Paper 74-1B, p. 235-244.
- 1982: Geological Survey of Canada radiocarbon dates XXII; Geological Survey of Canada, Paper 82-7, 22 p.
- 1983: Geological Survey of Canada radiocarbon dates XXIII; Geological Survey of Canada, Paper 83-7, 34 p.
- 1984: Geological Survey of Canada radiocarbon dates XXIV; Geological Survey of Canada, Paper 84-7, 35 p.
- 1985: Geological Survey of Canada radiocarbon dates XXV; Geological Survey of Canada, Paper 85-7, 32 p.
- 1987: Geological Survey of Canada radiocarbon dates XXVI; Geological Survey of Canada, Paper 86-7, 60 p.

Boulton, G.S., Dickson, J.H., Nichols, H., Nichols, M., and Short, S.

- 1976: Late Holocene glacier fluctuations and vegetation changes at Maktak Fiord, Baffin Island, NWT, Canada; Arctic and Alpine Research, v. 8, p. 343-356.
- Brassard, G.R. and Blake, W., Jr.
- 1978: An extensive subfossil deposit of the arctic moss Aplodon wormskioldii; Canadian Journal of Botany, v. 56, p. 1852-1859.
- Burn, C.R., Michel, F.A., and Smith, M.W.
- 1986: Stratigraphic, isotopic, and mineralogical evidence for an early Holocene thaw unconformity at Mayo, Yukon Territory; Canadian Journal of Earth Sciences, v. 23, p. 794-803.

Canadian Climate Program

- 1985: Past climatic change in the Canadian Arctic; Atmospheric Environment Service, Downsview, Ontario, Report 85-14, 101 p.
- Dyck, W. and Fyles, J.G.
- 1962: Geological Survey of Canada radiocarbon dates I; Radiocarbon, v. 4, p. 13-26.
- 1963: Geological Survey of Canada radiocarbon dates II; Radiocarbon, v. 5, p. 39-55.
- 1964: Geological Survey of Canada radiocarbon dates III; Radiocarbon, v. 6, p. 167-181.
- Dyck, W., Fyles, J.G., and Blake, W., Jr.
- 1965: Geological Survey of Canada radiocarbon dates IV; Radiocarbon, v. 7, p. 24-46.

Dyck, W., Lowdon, J.A., Fyles, J.G., and Blake, W., Jr.

- 1966: Geological Survey of Canada radiocarbon dates V; Radiocarbon, v. 8, p. 96-127.
- Edlund, S.A.
- 1986: Modern arctic vegetation distribution and its congruence with summer climate patterns; Proceedings, Impact of Climatic Change in the Canadian Arctic, Orillia, Ontario; Atmospheric Environment Service, Downview, Ontario, p. 84-99.
- French, H.M. and Harry, D.G.
- 1983: Ground ice conditions and thaw lakes, Sachs River lowlands, Banks Island, Canada; Proceedings, Mesoformen des Reliefs im heutigen periglazialraum, H. Poser and E. Schunke (ed.); Abhandlungen der Akademie der Wissenschaften in Gottingen, Math.-Physik.Klasse, Nr. 35, p. 70-81.

French, H.M., Harry, D.G., and Clark, M.J.

1982: Ground ice stratigraphy and late-Quaternary events, southwest Banks Island, Canadian Arctic; Proceedings, Fourth Canadian Permafrost Conference, National Research Council of Canada, p. 81-90.

Geurts, M.A.

1985: Le paysage végétal Holocene dans la région d'Escape Rapids, Territoires du Nord-Ouest; Géographie physique et Quaternaire, vol. 39, p. 215-220.

Gould, A.J.

1985: Plant communities of the Lake Hazen area, Ellesmere Island; unpublished MSc thesis, University of Toronto.

Harington, C.R. and Rice, G.

1984: Annotated bibliography of Quaternary climatic change in Canada; National Museums of Canada, Syllogeus 51, 368 p.

Harry, D.G., French, H.M., and Pollard, W.H.

1985: Ice wedges and permafrost conditions near King Point, Beaufort Sea coast, Yukon Territory; in Current Research, Part A, Geological Survey of Canada, Paper 85-1A, p. 111-116.

Hattersley-Smith, G. and Long, A.

1967: Postglacial uplift at Tanquery Fiord, northern Ellesmere Island, NWT; Arctic, v. 19, p. 255-260.

Hooper, J.

1986: Pollen analysis of a peat profile and a buried soil from the Cape Hardy area, northern Price of Wales Island, N.W.T.; unpublished BSc thesis, University of Alberta, Edmonton.

Jankovska, V. and Bliss, L.C.

1975: Palynological analysis of a peat from Truelove Lowland; in Truelove Lowland, Devon Island, Canada: a High Arctic Ecosystem, L.C. Bliss (ed.); University of Alberta Press, Edmonton, p. 139-142.

Koerner, R.M. and Fisher, D.A.

1981: Studying climatic change from Canadian High Arctic ice cores; in Climatic Change in Canada 2, C.R. Harington (ed.); Syllogeus 33, p. 195-218.

Kuc, M.

- 1971: Bryoflora of the Mould Bay area, Prince Patrick Island; its geobotanical differentiation and age; Nova Hedwigia, v. 22, p. 659-674.
- 1973: Addition to the arctic moss flora. VI. Moss flora of Masik River valley (Banks Island) and its relationship with plant formations and the postglacial history; Revue Bryologique et Lichenologique, v. 39, no. 2, p. 253-264.

Lowdon, J.A. and Blake, W., Jr.

- 1968: Geological Survey of Canada radiocarbon dates VII; Radiocarbon, v. 10, p. 207-245.
- 1970: Geological Survey of Canada radiocarbon dates IX; Radiocarbon, v. 12, p. 46-86.
- 1973: Geological Survey of Canada radiocarbon dates XIII; Geological Survey of Canada, Paper 73-3, 61 p.
- 1975: Geological Survey of Canada radiocarbon dates XV; Geological Survey of Canada, Paper 75-7, 32 p.
- 1976: Geological Survey of Canada radiocarbon dates XVI; Geological Survey of Canada, Paper 76-7, 21 p.
- 1978: Geological Survey of Canada radiocarbon dates XVIII; Geological Survey of Canada, Paper 78-7, 20 p.
- 1979: Geological Survey of Canada radiocarbon dates XIV; Geological Survey of Canada, Paper 79-7, 58 p.
- 1980: Geological Survey of Canada radiocarbon dates XX; Geological Survey of Canada, Paper 80-7, 28 p.
- 1981: Geological Survey of Canada radiocarbon dates XXI; Geological Survey of Canada, Paper 81-7, 22 p.

Lowdon, J.A., Fyles, J.G., and Blake, W., Jr.

1967: Geological Survey of Canada radiocarbon dates VI; Radiocarbon, v. 9, p. 156-197.

Lowdon, J.A., Robertson, I.M., and Blake, W., Jr.

- 1971: Geological Survey of Canada radiocarbon dates XI; Radiocarbon, v. 13, p. 255-324.
- 1977: Geological Survey of Canada radiocarbon dates XVII; Geological Survey of Canada, Paper 77-7, 25 p.

Lowdon, J.A., Wilmeth, R., and Blake, W., Jr.

1974: Geological Survey of Canada radiocarbon dates XIV; Geological Survey of Canada, Paper 74-7, 11 p.

Mackay, J.R.

1978: Freshwater shelled invertebrate indicators of paleoclimate in northwestern Canada during late glacial times: discussion; Canadian Journal of Earth Sciences, v. 15, p. 461-462.

McNeely, R.N.

1985: The Geological Survey of Canada Date Locator File: a progress report; in Current Research, Part B, Geological Survey of Canada, Paper 85-1B, p. 471-473.

Pissart, A., Vincent, J-S., et Edlund, S.A.

1977: Dépôts et phénomènes éoliens sur l'île de Banks, Territoires du Nord-Ouest, Canada; Journal canadien des sciences de la terre, vol. 14, p. 2462-2480.

Porsild, A.E. and Cody, W.J.

1980: Vascular Plants of Continental Northwest Territories, Canada; National Museums of Canada, Ottawa, 667 p.

Rampton, V.N.

- 1982: Quaternary geology of the Yukon coastal plain; Geological Survey of Canada, Bulletin 317, 49 p.
- 1988: Quaternary geology of the Tuktoyaktuk coastlands; Geological Survey of Canada, Memoir 423, 98 p.

Ritchie, J.C.

1987: Comparison entre la végétation du Mackenzie et du nord Québecois à l'Holocene; Géographie physique et Quaternaire, vol. 41, p. 153-160.

St-Onge, D.A.

1980: Glacial Lake Coppermine, north-central District of Mackenzie, Northwest Territories; Canadian Journal of Earth Sciences, v. 17, p. 1310-1315.

Short, S.K. and Jacobs, J.D.

1982: A 1100 year paleoclimatic record from Burton Bay — Tarr Inlet, Baffin Island; Canadian Journal of Earth Sciences, v. 19, p. 398-409.

Tarnocai, C.

1978: Genesis of organic soils in Manitoba and the Northwest Territories; in Quaternary Soils, W.C. Mahaney (ed.); Proceedings Third York University Symposium on Quaternary Research, p. 453-470.

Terasmae, J. and Hughes, O.L.

1966: Late-Wisconsinan chronology and history of vegetation of the Ogilvie Mountains, Yukon Territory, Canada; The Palaeobotanistm, v. 15 p. 235-242.

Thomas, R.D.

1977: A brief description of surficial materials of north-central Keewatin; in Report of Activities, Part B, Geological Survey of Canada, Paper 77-1B, p. 315-317.

Vincent, J-S.

1983: La géologie du quaternaire et la géomorphologie de l'Île Banks, Arctique canadien; Commission géologique du Canada, Mémoire 405.

Washburn, A.L.

1983: Palsas and continuous permafrost; Proceedings, Fourth International Conference on Permafrost, Fairbanks, Alaska. National Academy Press, p. 1372-1377.

Washburn, A.L. and Stuiver, M.

1985: Radiocarbon dates from Cornwallis Island area, Arctic Canada — an interim report; Canadian Journal of Earth Sciences, v. 22, p. 630-637.

Williams, L.D. and Bradley, R.S.

1985: Paleoclimatology of the Baffin Bay region; in Quaternary Environments: Eastern Canadian Arctic, Baffin Bay, J.T. Andrews (ed.); Allen and Unwin, Boston, p. 741-772.

*

Energy, Mines and Resources Canada Énergie, Mines et Ressources Canada