

PAPER 80-25

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

TRACE METAL GEOCHEMISTRY OF SEDIMENTS, NORTHEAST PACIFIC OCEAN

B.D. BORNHOLD D.L. TIFFIN R.G. CURRIE

PAPER 80-25

TRACE METAL GEOCHEMISTRY OF SEDIMENTS, NORTHEAST PACIFIC OCEAN

B.D. BORNHOLD D.L. TIFFIN R.G. CURRIE © Minister of Supply and Services Canada 1981

Available in Canada through

authorized bookstore agents and other bookstores

or by mail from

Canadian Government Publishing Centre Supply and Services Canada Hull, Québec, Canada K1A 0S9

and from

Geological Survey of Canada 601 Booth Street Ottawa, Canada K1A 0E8

A deposit copy of this publication is also available for reference in public libraries across Canada

Cat. No. M44-80/25E Canada: \$3.50 ISBN - 0-660-10805-4 Other countries: \$4.20 Price subject to change without notice

Critical Reader

C.J. Yorath

Authors' Address

Pacific Geoscience Centre Patricia Bay Institute of Ocean Sciences P.O. Box 6000 9860 West Saanich Road Sydney, B.C. V8L 3S2

Original manuscript submitted: 1980-05-12 Approved for publication: 1980-06-24

CONTENTS

- 1 Abstract/Résumé
- Introduction 1
- 1 Regional setting
- 3 Methods 5 Results
- 5
- Sediment lithology 7 Chemical composition
- 7 Unit 1
- 8 Unit 2
- 8 Unit 3
- 8 Unit 4 and 3-4
- Unit 5 9
- 9 Discussion
- 13 Conclusions
- 13 References

Appendixes

- Description of cores obtained in the vicinity of Explorer and Juan de Fuca 15 A Ridges in 1977
- 20 В Elemental analyses of core subsamples used in this study

Tables

- 1. Core numbers, locations, water depths, total lengths, and lengths of 2 each lithologic unit
- Weighted average elemental concentrations $(\mu g/g)$ in core subsamples from 6 2. the northeast Pacific and mean values from elsewhere in the Pacific
- 12 3. Correlation coefficients between elements in each of the five major lithologic units using log-transformed data
- Comparison of correlation coefficients between Mn and other rare elements 13 4. in Units 2 and 4

Figures

- Location map showing the major tectonic elements, subbottom profiles iv 1. and core sites
- 3.5 kHz profile near the axis of the Juan de Fuca Ridge (Line 2) 3 2.
- 4 3.
- 3.5 kHz profile on the southeast flank of the Explorer Ridge (Line 3)3.5 kHz profile (Line 5) across several tilted fault blocks on the northeastern 5 4. flank of the Juan de Fuca Ridge
- Diagrammatic representation of the major lithologic units and their average 7 5. trace element contents
- 8 3.5 kHz profile over core site 13 6.
- 7. Graph of Ca determined by atomic absorption spectrophotometry against 9 CaCO₃ determined by weight loss after acidification
- 10 8. Fe/Mn against (Cu + Ni) showing the relationship between sediments analyzed in the present study and metalliferous sediments and nodules from elsewhere in the Pacific
- 11 9. Ternary diagram Fe-Mn-(Ni+Co+Cu)
- 11 10. Mn versus Fe for all samples in this study showing the apparent lack of significant correlation between the two elements

Figure 1. Location map showing the major tectonic elements, subbottom profiles and core sites. Circled cores are those in which subsamples of Unit 2 were significantly enriched in trace elements.

TRACE METAL GEOCHEMISTRY OF SEDIMENTS, NORTHEAST PACIFIC OCEAN

Abstract

Forty-two cores from the vicinity of the Juan de Fuca and Explorer ridges in the northeast Pacific were analyzed for Zn, Cu, Pb, Ni, Co, Mo, Mn, Fe and Ca. In all but one core, the trace element concentrations tend to be less than those of average Pacific pelagic clay. The exception is a core located northwest of Explorer Ridge which penetrated dark brown sediments at the base of the sedimentary section. These sediments have trace element abundances comparable to those found in metalliferous sediments from the East Pacific Rise and elsewhere in the eastern equatorial Pacific. In view of the very high rates of pelagic and hemipelagic sedimentation, metal-rich sediments overlying basaltic crust are expected to be thin in the northeast Pacific or to be localized along fault scarps or near basement outcrops where hydrothermal fluids emanate.

Résumé

Quarante-deux carottes provenant des environs des crêtes de Juan de Fuca et d'Explorer ont été soumises au dosage du Cu, Zn, Pb, Ni, Co, Mo, Mn, Fe et Ca. Dans toutes sauf une, les concentrations en éléments-traces tendaient à être moindres que dans les argiles pélagiques courantes du Pacifique. L'exception est une carotte provenant du nord-ouest de la crête d'Explorer, forée dans des sédiments brun foncé à la base de la coupe sédimentaire. Les concentrations en éléments-traces de ces sédiments se comparent à celles mesurées dans les sédiments métallifères de la dorsale est Pacifique, et d'ailleurs dans l'est du Pacifique équatorial. En raison des vitesses très élevées de sédimentation pélagique et hémipélagique, on s'attend à ce que les sédiments métallifères qui recouvrent la croûte basaltique soient minces dans le nord-est du Pacifique, ou concentrés le long des escarpements de failles ou à proximité des affleurements du socle, d'où émanent des solutions hydrothermales.

INTRODUCTION

The discovery in recent years of the association between metal-enriched sediments, first described by Murray and Renard (1891), and active oceanic spreading centres has significance for our understanding not only of geochemical systems in the ocean but of ancient base metal deposits as well (Fryer and Hutchinson, 1976). To date attention has been focused primarily on areas of relatively low sedimentation in the southeastern and equatorial Pacific, such as the East Pacific Rise (e.g. Bostrom and Peterson, 1969; Piper, 1973; Sayles and Bischoff, 1973; Dymond and Veeh, 1975; Heath and Dymond, 1977), the Bauer Deep (e.g. Dymond and Veeh, 1975; Heath and Dymond, 1977; Dymond et al., 1973), basal sediments in Deep Sea Drilling Project holes in the eastern Pacific (e.g. Dymond et al., 1973; Cronan, 1976), and sediments associated with major nodule fields (DOMES site) (Bischoff and Rosenbauer, 1977).

It was the purpose of this study to undertake a reconnaissance examination of sediments in the vicinity of the northern Juan de Fuca and Explorer ridges, active spreading ridges in the northeast Pacific, (Fig. 1) in order to determine the nature and extent of any metalliferous sediments in this area of relatively high pelagic and hemipelagic sedimentation. Iron- and manganese-rich crusts have been recovered in the northeast Pacific in dredge hauls (Barr, 1972; Piper et al., 1975) suggesting that such sediments might occur throughout the region at or near the base of the sedimentary section immediately overlying the basaltic crust. Forty-two cores were recently obtained in this area (Tiffin et al., 1978; Table 1; Appendix A) and analyzed for nine elements (Appendix B).

Regional setting

Three major lithospheric plates meet off western Canada - the American, Pacific and Juan de Fuca plates. The smallest of these, the Juan de Fuca plate, lies between the two larger plates in the study area. It is being generated at the Juan de Fuca and Explorer spreading centres at an average rate of about 2-3 cm/a¹ (Riddihough, 1977) and consumed by subduction under the American plate. The Juan de Fuca plate, due to its small size and position between much larger plates, has been broken into smaller pieces or subplates which, in their most recent history, move almost independently. Thus the Juan de Fuca subplate is separated from the Explorer subplate to the north by the Nootka Fault Zone and moves with left-lateral relative motion at 2 cm/a (Hyndman et al., 1979). The Juan de Fuca and Explorer ridges, and the Sovanco Fracture Zone, also separate the Juan de Fuca and Pacific plates. Relative movement across the spreading centres is 4-6 cm/a on average.

The northern section of Juan de Fuca Ridge is characterized by three linear valleys of which the most westerly is now active as a spreading centre (Riddihough et al., 1980). South of the Heck Seamount Chain, the ridge lacks a pronounced axial valley, a feature which is typical of slow spreading centres.

The Explorer spreading centre is a poorly defined irregular central ridge with a series of pronounced troughs ranging in depth from 2800 m in the northeast to more than 3300 m in the large Explorer Trench to the southwest. At its northern end where it terminates against Paul Revere Ridge, the Explorer Ridge is marked by two short, parallel trough segments separated by a high ridge. Although some evidence suggests that spreading has "jumped" to the more northern segment during the past million years (Riddihough et al., 1980), recent dredging of very fresh-looking basalts from the southern segment indicates that spreading may still be active there (R.L. Chase, personal communication, 1979).

¹ a is the SI abbreviation for years

						Thickn	ess of Co	re Units (c	cm)	
Core No.	Water Depth metres	Core Length centimetres	Latitude	Longitude	1.	2.	3.	4.	3+4	5.
1 2 3 4 5 6 7 8 9 10	3015 3030 2650 2540 2690 1805 2070 2550 2350 2465	17 42 60.5 151 59 155 283 190 133 152	50° 12.01' 50° 10.56' 50° 05.64' 50° 05.65' 50° 05.25' 50° 04.24' 50° 03.99' 50° 04.67' 49° 57.16' 49° 49.50'	131° 26.14' 131° 10.58' 130° 44.96' 130° 36.74' 130° 19.07' 130° 09.31' 129° 59.20' 129° 54.22' 129° 43.74' 129° 43.86'	NR 4 9 NR 8 22 6 NR NR	1 4.5 9 7 3 6 5.5 12 6 5	NR 9 69 56 54	16 43.5 66 NR 87	33.5 255.5 172 127 147	
12 13 14 15 16 17 18 19 20	3240 3260 3170 2760 2855 2845 2830 3405 3225	167 169 193 121 85 146 130 218 182	49° 38.97' 49° 40.45' 49° 40.11' 49° 42.40' 48° 37.51' 48° 41.04' 48° 44.34' 48° 52.03' 49° 21.55'	132° 04.04' 131° 56.24' 131° 38.20' 130° 56.03' 130° 14.81' 130° 21.77' 130° 27.21' 130° 45.07' 132° 21.90'	12 NR 3 NR 4.5 NR 3 6	24 2 8 2 4 8.5 12.5 10 29	NR 9 6 5 16 NR	131 164 173 113 76 189 147	133 117.5	3
21B 22 23 24 25 26 27 28 29	3215 3260 3235 3245 3480 3280 3165 3725 3695	165 300 300 287 209 240 238 589.5	49° 19.26' 49° 13.59' 49° 11.30' 49° 09.70' 48° 55.83' 49° 04.29' 49° 22.48' 48° 15.60' 48° 34.24'	132° 14.21' 131° 54.19' 131° 48.47' 131° 42.04' 133° 23.12' 133° 09.27' 132° 39.13' 134° 30.27' 133° 56.69'	12 27 9 NR 9 NR 3 3 NR	7 22 17 17 19 46 18 6 2	14.5 NR NR 14 26 9 5 NR	251 274 283 245 137 210 224 587.5	131.5	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	3230 3290 2775 2445 2500 2605 2540 2565 2700 2680 2820 2475 2440 2425	107 115 169 115 62 91 188 225 115 102 281 53 101 140	$\begin{array}{c} 49^{\circ} & 04.75' \\ 49^{\circ} & 00.07' \\ 49^{\circ} & 43.43' \\ 49^{\circ} & 18.14' \\ 49^{\circ} & 20.25' \\ 48^{\circ} & 00.54' \\ 48^{\circ} & 03.15' \\ 48^{\circ} & 07.34' \\ 48^{\circ} & 11.14' \\ 48^{\circ} & 14.54' \\ 48^{\circ} & 17.16' \\ 48^{\circ} & 27.15' \\ 48^{\circ} & 27.77' \\ 48^{\circ} & 28.42' \end{array}$	131° 27.14' 131° 15.92' 130° 38.87' 130° 12.76' 130° 14.14' 128° 48.50' 128° 10.47' 129° 10.47' 129° 23.50' 129° 30.98' 129° 36.49' 128° 39.41' 128° 36.83' 128° 32.56'	NR 14 1.4 NR 8 16 2.5 NR NR 47 NR NR NR NR	3 10 3 2.5 15 6 6.5 19 13 11 3 0.5 5	13 2 8 NR 8 1 7 8 3 NR 11 NR	91 103 150 103 69 165 89 81 220 50 89.5 135	47 216	
1 = 2 = 3 = 4 = 5 = NR =	Upper grey unit Dark brown unit Transitional unit Medium and dark Very dark brown Not represented	grey unit basal unit								

Table 1. Core numbers, locations, water depths, total core lengths, and lengths of each lithologic unit

The Explorer Ridge is offset from the Juan de Fuca Ridge by the Sovanco Fracture zone, which meets the Explorer ridge segment near the north end of Explorer Median Valley. This has led to speculation that the southwest end of Explorer Ridge, over 50 km long, is cut off by the Fracture Zone and is no longer active (Keen and Hyndman, 1979).

The Sovanco Fracture zone forms the southwest edge of a broad plateau at approximately 2450 m depth. Immediately southwest of the fault, water depths exceed 2800 m.

Seamounts and seamount chains cover much of the area of Juan de Fuca and Explorer ridges. They are mainly confined to the Pacific plate; the number of seamounts on the Juan de Fuca and Explorer subplates is small. Although greater thicknesses of sediment are present on the latter plates, the basement topography defined by seismic profiles does not indicate the presence of a proportionate number of buried seamounts.

Pelagic and hemipelagic sedimentation on the spreading ridges west of British Columbia is greater than on most oceanic spreading ridges. The proximity of the North American landmass, and the effects of Pleistocene glaciation on the continent, have provided large quantities of sediment to the continental shelf and slope, and eventually to the ocean floor. Pelagic sedimentation rates on the Juan de Fuca ridge 100 km south of the study area are in excess of 1.0 cm/10³a (Opdyke and Foster, 1970) and on the Gorda Rise to the southeast, are between 6 and 7 cm/10³a (Heath et al., 1976). Since turbidites are encountered in many of the cores analyzed, these rates are considered to be minimum for much of the area. For example, rates of 170 cm/10³ a at the northern end of Middle Valley in Juan de Fuca Ridge and up to 60 cm/10³a on the north flank of Juan de Fuca Ridge in the vicinity of Heck Seamount have been suggested

(Barr, 1972; Fig. 1). Much higher rates have been found in JOIDES drillholes east of the ridge (von Huene and Kulm, 1973).

Sedimentary accumulations are found over most parts of the region investigated. Thick fan deposits and turbidites rest between the Juan de Fuca and Explorer ridges and the base of the continental slope to the east (Ewing et al., 1968). Near the crests basement depressions contain more than 2000 m of sediments (Barr, 1972). West of the crest, while sediments may be thinner (Lister, 1970), major accumulations exist in basins between seamounts. Our 3.5 kHz profiles obtained along the ship's tracks shown in Figure 1 indicate that sediment exists over many parts of the west side of the ridge, not only in the basins, but on elevated areas as well. The ubiquitous folding and faulting of these sediments (Fig. 2) attests to the degree of tectonic activity throughout the area. Perhaps much of the sediment found on the higher elevations has been moved there after deposition at lower elevations (McManus et al., 1972).

The present bathymetric map (Mammerickx and Taylor, 1971; see also Fig. 1) while showing the main features of the region, does not adequately express the rugged nature of the seafloor. Many of the silled basins are floored by sediments broken by outcrops of dykes and probable volcanic peaks projecting well above the basin floor. Small bumps and "v"-shaped depressions in these areas were targets for coring (Fig. 3). Cores were also selected on some higher elevations and near faults. Cores 42, 43 and 44 were taken in an area of tilted fault blocks (Fig. 4) with a coincident heat flow high.

Methods

An ORE 3.5 kHz high resolution subbottom profiling system with twelve hull-mounted transducers was used to obtain shallow subbottom profiles across the ridge segments.

Figure 2. 3.5 kHz profile near the axis of the Juan de Fuca Ridge (Line 2).

Figure 3. 3.5 kHz profile on the southeast flank of the Explorer Ridge (Line 3).

Specific core sites were selected from the subbottom records, the most favourable general locations having been previously chosen on the basis of tectonics, bathymetry and previously obtained continuous seismic profiles.

Navigation was by LORAN-C which, with an estimated relative accuracy of 30 m, permitted very accurate reoccupation of core sites chosen from echosounding and subbottom profiling records.

Sediment cores up to 5.5 m long were collected using a 550 kg gravity corer, piston corers, and Boomerang corers. Upon recovery each core was immediately split, subsampled for geochemical analysis, described, with the aid of a binocular microscope, and photographed. Subsamples were frozen and the remainder of the cores stored at 4°C.

Geochemical analyses on 348 samples were carried out with a Techtron AA-6 spectrophotometer using the following procedures: (1) samples were dried at 50°C and ground to minus 200 mesh; (2) 1.00 g of sediment was mixed with 1 mL nitric, 3 mL perchloric, and 10 mL hydrofluoric acid and taken to dryness at 200° C; (3) the residue was taken up in 25 mL of 10% perchloric acid; (4) Cu, Zn, Mn, Fe, Ni, Pb and Co were aspirated in an air-acetylene flame and Mo and Ca, in a nitrous oxide-acetylene flame. Ni, Pb and Co were simultaneously background corrected. Precision, based on standard soil samples, duplicate pairs, and internal laboratory standards, was found to be ± 5 to 16 per cent except for Mo whose measured values were only slightly above the 1 ppm detection limit. Results in this study are reported in ppm for all elements except Fe and Ca which are reported in per cent.

Total CaCO₃ was determined on duplicate pairs from 50 subsamples in four arbitrarily chosen cores. The method used involved leaching in 2N hydrochloric acid and washing the supernatant and residue several times through preweighed Millipore filters (0.45 μ m nominal pore diameter). The sample and filter paper were dried at 105°C, reweighed, and per cent CaCO₃ determined by weight loss. Precision of this

Figure 4. 3.5 kHz profile (Line 5) across several tilted fault blocks on the northeastern flank of the Juan de Fuca Ridge.

method is 10 to 15% and tends to slightly overestimate actual CaCO $_3$ concentrations by removing other easily leachable minerals, such as Fe and Mn oxides.

Many workers (e.g. Boström and Peterson, 1969; Sayles and Bischoff, 1973; Dymond et al., 1973) reported analytical results on a carbonate-free basis. We have chosen not to do this since, with the exception of cores 26 to 29 (those farthest from the ridges) virtually all of the samples analyzed contained less than 10 per cent $CaCO_3$. Although the major effect of carbonate on trace element concentrations is dilutive, as shown by significant negative correlations between Ca and most other elements (Table 3), the trace element content in most samples is sufficiently low that the biogenic contribution of some elements may be quite significant (Chester and Aston, 1976). If, for example, a sample contains 10 per cent $CaCO_3$ contributed by foraminifera, the carbonate could conceivably yield more than half of the Pb measured in these sediments.

RESULTS

Sediment lithology

The sediments throughout the study area are strikingly similar lithologically. The same general succession of lithologic units can be identified in almost all of the cores (Fig. 5). The uppermost unit (Unit 1) consists of a soft, medium grey to olive-grey silty lutite varying in thickness from 0.5 to 27 cm; this unit occurs in 23 of the 42 cores (Table 1). Underlying Unit 1, usually with sharp contact, is a dark, red-brown soft lutite (Unit 2), ranging from 0.5 to 46 cm in thickness. This succession was previously noted by Bramlette (1961) and identified by Horn et al. (1970) as being characteristic of cores from their Central North Pacific Province. They attribute much of the darker colour in Unit 2 to an increase in disseminated Mn.

A "transitional" unit (Unit 3) underlies the dark brown lutite commonly with sharp, though occasionally gradational, contact. This unit was present in approximately one half of the cores and ranges from 1 to 69 cm in thickness and consists of banded olive grey-green and olive-brown firm, silty lutites.

The lowest unit (Unit 4) penetrated by most cores underlies Unit 3 with a gradational contact and consists of banded medium to dark grey, firm silty lutites. Disseminated foraminifera are present throughout and commonly occur concentrated in thin layers. Thin (1 to 5 cm) layers of fine terrigenous sand are present in this unit in some of the cores. In ten cores Units 3 and 4 could not be differentiated visually and are grouped as Unit 3-4 (undiff.) in Table 1.

The basal few centimetres in core 13 (166-169 cm) (Fig. 6), defined as Unit 5, consist of a dark brown, very stiff lutite containing fragments of nodular manganese-iron oxide and olivine basalt. This was the only core to have penetrated the entire sedimentary sequence to oceanic basement.

Area	Zn	Cu	Pb	Ni	C	Mn	Mo	Ъе	Ca	c	Reference	-
All Samples – Mean Range	136 42-801	68 14-1400	14 6-340	75 10-540	23 10-490	2100 460-38000	4.0 1-48	5.3 2.1-12-2	4.9 1.2-28.0	348 348	This study	
Unit 1 Unit 2 Unit 2	152 193	68 103 7//	14 18 15	85 143 05	21 31	2730 10900	6.0 8.6 5.5	5.3 5.1	3.2 3.8	46 63		
Unit 2 Unit 4 Unit 3 & 4 (Undiff.) Unit 5	1/2 119 320	74 57 1400	13 13 340	87 66 450	24 24 490	1200 1500 29500	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.2 5.5 12.2	4.7 0.6 1.6	25 166 49 1		
Unit 2 - Cores 16-19, 26, 32, 38-41	253	128	20	190	35	21800	14	5.0	4.1	18		
Pacific Pelagic Clay	160 -	320 570		210 293	100 116	4780 12500	18	5.06 6.5	0.66	1 1	Cronan, 1976 Chester and Aston, 1976	
North Pacific Pelagic Clay	ı	531	ı	212	80	5465	1	5.23	ı	I	Bonatti, 1975	
East Pacific Rise crest	380	730	ı	430	105	60000	30	18	ı	6	Bostrom & Peterson, 1969	
flank	290	960	I	675	230	30000	113	10.5	ı	12	Bostrom & Peterson, 1969	
basal sediments	470	790	100	460	82	60600	ı	20.07	1.47	13	Cronan, 1976	
Bauer Deep	330	910	8	820	67	46000	ı	14.1		7	Dymond et al., 1973	
Crustal Abuncance	70	55	12	75	25	950	1	5.63	4.15	ı	Cronan, 1976	

Table 2. Weighted average elemental concentrations (µg/g) in core subsamples from the northeast Pacific (this study) and mean values from elsewhere in the Pacific

	4		

Figure 5. Diagrammatic representation of the major lithologic units and their average trace element contents. Elemental concentrations are \log_{10} ppm except for Fe which is reported as per cent.

Chemical composition

A summary of the average concentrations of the nine elements in each of the five major units is presented in Table 2 with the overall means, and ranges for all the samples.

Histograms for both the total sample and subsets chosen by lithologic unit, revealed the expected lognormal distributions for all elements except Fe which appears to be normally distributed (Cronan, 1976; Krumbein and Graybill, 1965). Thus, in the statistical treatments of data presented in this paper, a logarithmic transformation has been applied for all elements except Fe. The means and standard deviations presented in Table 2 are weighted on the basis of core or unit length and have not been logtransformed in order to permit comparison with results of other studies. Figure 7 is a graph of Ca, determined by spectrophotometry, against CaCO₃, determined by weight loss after acidification. Since most of the Ca values lie at or below the theoretical line for Ca in CaCO₃, we feel confident that most of the Ca in the samples is contained in the carbonate fraction and that our measured values of Ca are at least representative of the CaCO₃ content of the samples.

Several general comments can be made regarding the trace elements in each of the major lithologic units.

Unit 1

This surficial unit is characterized by trace element concentrations of all elements, except Zn and Fe, that are 20 to 60 per cent of those reported for average Pacific pelagic clays (Cronan, 1976; Chester and Aston, 1976; Table 2); values for Zn and Fe are comparable to reported values. The average concentrations in Unit 1 are similar to those in Units 3, 4 and 3-4 (undiff.).

Figure 6. 3.5 kHz profile over core site 13 in which metal-rich sediments were recovered from the basal few centimetres.

Unit 2

Of all the lithologic units except Unit 5, the highest concentrations of all elements except Fe and Ca were found in Unit 2. Even those values, however, tend to be well below those for average Pacific pelagic clays: Cu, Pb, Co, Mo and Ca concentrations are 25 to 50 per cent of those in average Pacific clays. Zn, Mn and Fe have comparable concentrations to average deep-sea clays.

In an effort to discover any regional differences in trace element abundances in Unit 2, those cores which contained samples with three or more elements whose concentrations were more than two standard deviations above the mean were identified. The ten cores fitting these criteria (Fig. 1) fall along the southernmost line of cores including all cores from the north flank of the Juan de Fuca Ridge, across southwestern Explorer Median Valley. The single additional core is located in a broad plain between Union and Eickelberg seamounts. In these cores, Zn values are particularly high (200-340 ppm) and are comparable to those in metalliferous sediments from the East Pacific Rise (Table 2). Mn levels in Unit 2 from these cores are approximately five times higher than in average Pacific pelagic clays, but other trace elements are comparable to or lower than average Pacific pelagic clay concentrations.

Unit 3

This unit appears to be "transitional" not only visually between Units 2 and 4 but geochemically as well. Trace element values fall between those of the over- and underlying units for Zn, Cu, Pb and Ni.

Unit 4 and 3-4 (undiff.)

The lowest concentrations of all elements except Fe and Ca were found in the lowermost units. Values are commonly less than 20 per cent of those reported for average Pacific clay.

Figure 7. Graph of Ca determined by atomic absorption spectrophotometry against $CaCO_3$ determined by weight loss after acidification.

Unit 5 (basal sediments - core 13)

The dark brown, stiff lutite found at the base of core 13 contained the highest concentrations of Cu, Pb, Ni, Co and Fe measured in this study, and are equal to or greater than those found in metalliferous sediments associated with the East Pacific Rise (Table 2; Fig. 8). In particular, Cu, Pb and Co are high compared to other ferromanganoan sediments. Although the Mn and Zn concentrations are not the highest measured in this study they are in the same range as values in metalliferous sediments from the equatorial and southeastern Pacific. The Mo and Ca content of Unit 5 is also notable as it is very near the low end of the range of values observed.

Discussion

The depositional model presented by Boström and Peterson (1969) for the formation of metalliferous sediments at active oceanic ridges appears to be supported by this study. They suggested that the first sediments overlying newly formed seafloor would be rich in Mn and Fe and associated trace elements. With increasing distance from the ridges this zone of enrichment would then be covered by normal pelagic sediments. The basal metalliferous sediments are produced principally through the local addition of metals from the discharge of hydrothermal fluids onto the seafloor and secondly, as hydrogenous minerals deposited by slow chemical precipitation from seawater.

Heat flow studies in the vicinity of the Explorer and Juan de Fuca ridges suggest that hydrothermal circulation is both extensive and efficient in ventilating heat from the crust (Lister, 1970). Heat flow in the vicinity of the Explorer and Juan de Fuca ridges displays tremendous variability ranging from 50 to more than 1300 mWm² (Hyndman et al., 1978; Davis et al., 1980). Davis et al. (1980) conclude that absolute levels of heat flow are regionally low compared to values expected from oceanic crust of similar age because heat is dissipated rapidly and efficiently by hydrothermal circulation to fault scarps or other basement outcrops. Significantly higher heat flows were found near many of the numerous normal faults in the region.

Recent studies concerning the origin of basal metalliferous sediments (Heath and Dymond, 1977; Rona, 1978; Hékinian et al., 1978; Bonatti, 1975; Hoffert et al., 1978) have attempted to distinguish between hydrogenous and hydrothermal deposits on the basis of elemental concentrations and ratios. In a single bulk sediment sample, however, it is usually difficult to ascribe a unique mode of formation: "metalliferous sediments of hydrothermal origin may mix with and/or exhibit transitional characteristics with metalliferous sediments of hydrogenous origin." (Rona, 1978) The sample from the base of core 13 (Unit 5) has an Fe/Mn ratio of approximately 4, consistent with either a hydrogenous or hydrothermal origin, and a Ni + Co + Cu content of 2430 ppm, a value somewhat high for purely hydrothermally derived sediments. On the ternary diagram (Fig. 9) Fe-Mn-(Ni + Co + Cu), the sample falls in the uppermost part of the metalliferous sediment field suggesting perhaps a predominance of hydrogenous processes.

Cronan (1976) concluded that most of the Fe in the basal D.S.D.P. core samples he studied is hydrothermal and that Mn and other transition elements are derived from seawater. Heath and Dymond (1977) partitioned Fe, Mn and other trace elements among hydrothermal, hydrogenous, biogenic and detrital sources for the East Pacific Rise, Bauer Deep, and Central Basin of the Nazca plate. They concluded that: (1) most Fe, Mn, Ni, Cu and Zn are hydrothermally derived on the ridge crest; (2) Ni is mainly hydrogenous in the basins; (3) 30-50 per cent of the Cu and Zn is hydrogenous in the basins; (4) on the ridge crest, biogenic contribution of Zn and Cu is important; and (5) detrital Fe and Zn are important

Figure 8

Fe/Mn against (Cu + Ni) showing the relationship between sediments analysed in the present study and metalliferous sediments and nodules from elsewhere in the Pacific (modified from Bischoff and Rosenbauer, 1977). EPR = East Pacific Rise.

in the Central Basin. The scenario they propose involves: leaching of Fe, Mn and transition metals from newly formed basalt by hydrothermal fluids; as hydrothermal fluids enter oxygenated seawater, Fe forms amorphous hydroxide flocs which adsorb other elements, including transition metals, from seawater and the hydrothermal solutions; a small fraction of the Fe reacts with available silica to form Fe-rich smectites; Mn and most transition metals are rejected by smectite and persist as hydroxides to become further enriched in Ni and, to a lesser extent, Cu, Zn, and Mn added from seawater; additional trace elements, directly particularly Zn and Cu, are released through oxidation of organic matter and dissolution of carbonate and opaline silica, and are taken up by the hydroxide components; and, in basinal areas up to one-sixth of the Zn is contributed from Their model thus involves a complex detrital sources. interaction of several sources in the production of the ultimate metalliferous sediment.

The basal section of core 13 has within it fragments of both basalt and ferromanganese oxides and is comparable in both trace element concentration and elemental ratios to the basal sediments described by Cronan (1976) from D.S.D.P. holes in the eastern Pacific and to East Pacific Rise and Bauer Deep sediments. On the basis of low-frequency echosounding profiles over the site and the occurrence of basaltic fragments in the sample, we feel that the ferromanganoan sediments at the core 13 site are probably very thin. Despite the fact that many other cores were obtained in areas of very thin sedimentary cover, none appears to have penetrated a basal metal-rich unit, which suggests that, if present throughout the area, such a layer is probably very thin.

Since the thickness and "grade" of metalliferous sediments in the vicinity of active spreading centres is a function of the area of supply of mineralizing solutions from the newly formed crust, their dissipation by seafloor currents, and the rate of pelagic sedimentation (Boström and Peterson, 1969; Chester and Aston, 1976; Bender et al., 1971) we suggest that the apparent absence of extensive, thick, metalliferous sediments in this area is a result of the close proximity of the western Canadian continental margin and the consequent high rates of pelagic and hemipelagic sedimentation. These rates are many times more rapid than those encountered on the East Pacific Rise and in the Bauer Deep: Dymond and Veeh (1975) reported rates of 0.14 cm/10³ a for a core in Bauer Deep with a CaCO₃ content of 1.2 per cent to 0.43 and 0.93 cm/10³a, in cores on the flank and crest of the East Pacific Rise, respectively, with CaCO3 contents of about 90%. It is, therefore, perhaps not surprising that mineralized precipitates from hydrothermal sources along the Juan de Fuca and Explorer ridges are drastically "diluted" by sedimentation within a very short distance of their origin.

The concentration of Mn and many other trace elements in Unit 2, relative to other lithologic units, is not apparently related to the processes which have emplaced the basal metal-rich sediments. Rather, this zone reflects the commonly observed remobilization of these elements through

interstitial waters from lower more reducing parts of the sedimentary sections and their reprecipitation in the upper oxidized layers. Bonatti et al. (1971) discussed the postdepositional mobility of several elements in an East Pacific core and conclude that in terms of mobility $Mn \gg Ni$, Co > Fe, Cu. The cores analyzed in this study tend to support these conclusions. Mn values in Unit 2 are from 6 to 8 times greater than those in Units 4 and 3-4 (undiff.) whereas Fe undergoes no significant changes in the cores whatsoever and appears unrelated to almost all other elements analyzed as shown by the very low correlation coefficients (Table 3; Fig. 10). This lack of any correlation between Mn and Fe is in marked contrast to the very high correlation coefficients found between the two elements for the Mn-Fe-enriched sediments in the eastern Pacific basal (Cronan, 1976).

Figure 9. Ternary diagram Fe-Mn-(Ni+Co+Cu) showing the geochemical distinction between hydrogenous and hydrothermal sources for metal-rich deposits (after Rona, 1978).

Figure 10. Mn versus Fe for all samples in this study showing the apparent lack of significant correlation between the two elements.

	and the second se	and the second se	TATA AND AND AND AND AND AND AND AND AND AN	and the second se	the second se		the second s		
	Zn	Cu	Pb	Ni	Со	Mn	Мо	Fe	Ca
Zn Cu Pb Ni Co	1.0 0.68** 0.64** 0.71** 0.15	1.0 0.64** 0.94** 0.73**	1.0 0.66** 0.33 *	1.0 0.65**	1.0	UN	IT 1		
Mn Mo Fe Ca	0.61** 0.17 -0.04 -0.55**	0.85** 0.36** -0.16 -0.15	0.58** 0.18 -1.10 -0.26 *	0.84** 0.27 * 0.01 ~0.30 *	0.59** 0.24 -0.11 0.32 *	1.0 0.56** -0.26 * -0.19	1.0 -0.26 * -0.07	1.0 -0.42**	1.0
Zn Cu Pb	1.0 0.58** 0.46**	1.0 0.45**	1.0	1.0		LIN	17.2		
Co	0.18	0.74**	0.24**	0.61**	1.0	1.0	1 1 <i>L</i> .		
Mn Mo	0.73**	0.43**	0.42**	0.66**	0.24**	0.76**	1.0	1.0	
Fe Ca	0.04 -0.43**	-0.09 0.16	0.04 -0.22 *	0.04	-0.15 0.57**	-0.11 -0.17	-0.09 -0.33**	1.0 -0.39**	1.0
Zn Cu Pb Ni	1.0 0.74** 0.85** 0.88**	1.0 0.75** 0.86**	1.0	1.0		UN	IT 3		
Co	-0.27	0.30	-0.07	0.14	1.0	1.0			
Mn Mo	-0.19	0.61**	-0.01	-0.01	0.37 *	0.28	1.0		
Fe Ca	0.36 * -0.81**	-0.14 -0.39 *	0.27 -0.65**	0.17 -0.53**	-0.34 * 0.65**	-0.18 0.11	-0.49** 0.21	1.0 -0.41 *	1.0
Zn	1.0	1.0							
Pb	0.53**	0.76**	1.0 0.70**	1.0		UN	IT 4		
Co	0.39**	0.82**	0.66**	0.71**	1.0	1.0			
Mn Mo	0.25**	0.60**	0.19**	0.16 *	0.27**	0.21**	1.0		
Fe Ca	0.53** 0.38**	0.07 0.08	0.01	0.18 *	0.01 0.11	-0.12 0.23**	0.01 0.02	I.0 -0.79**	1.0
Zn	1.0	1.0							
Pb	0.82**	0.84**	1.0	1.0		LIN	TT 28-4 (LININE		
Co	0.58**	0.72**	0.82**	0.64**	1.0	UN	II JQ4 (UNDIF	Γ.)	
Mn Mo	0.63** 0.04	0.69** 0.06	0.64** 0.06	0.61** 0.06	0.63** 0.06	1.0 0.24 *	1.0		
	0 34**	0.23	0.19	0.25 *	0.26 *	0.10	0.10	1.0	1.0

Table 3. Correlation coefficients between elements in each of the five major lithologic units using log-transformed data

			Corre	lation Coe	efficients	(r)	
Lithologic Unit	Zn	Cu	Pb	Ni	Со	Мо	Number of samples
2	0.73	0.76	0.50	0.79	0.52	0.76	63
4	0.25	0.60	0.42	0.52	0.75	0.21	166
Significance of difference between r's	9%	95%	n.s.	99%	99%	99%	

Table 4. Comparison of correlation coefficients between Mn and other rare elements in Units 2 and 4 $\,$

Ni, Mo, Cu and Zn appear to be depleted in Unit 4 and enriched in Unit 2. Their association with Mn is shown in Table 4 where correlation coefficients are presented for Units 2 and 4. A statistical comparison of the coefficients for the two units shows that significantly higher (95% level) correlations between Mn and Zn, Ni, Mo and Cu occur in Unit 2 than in Unit 4, suggesting a coprecipitation of these elements with Mn in the more oxidizing upper parts of the cores.

Two principal differences exist between our results and those of Bonatti et al. (1971). First, Co does not appear to be enriched significantly in the oxidized zone and, in fact, shows a significantly greater association with Mn in Unit 4 than in Unit 2. At present, we have no good explanation for this observation, but it is interesting to note that Co routinely displays high positive correlations with Ca in these samples (Table 3) an association not previously noted by other investigators. Secondly, Cu appears to be more mobile and to undergo a greater enrichment in Unit 2 than would be predicted from the results of Bonatti et al. (1971).

The reasons for the occurrence of the grey Unit l, rather than the dark brown Unit 2, at the surface of many cores is somewhat problematical. Unit 1 sediments are depleted in all trace elements relative to the underlying Unit 2. Mn and related trace elements migrate upwards in the sediments until redox and pH conditions permit their precipitation. With high rates of sedimentation, the necessary conditions of oxidation may be met several centimetres below the seawater-sediment interface (J.A.J. Thompson, personal communication, 1979). Consequently Mn and other trace elements accumulate in a zone overlain by "normal" pelagic sediments. Because of the high rates of terrigenous dilution, there is also little opportunity for manganese oxides and other hydrogenous sediments to be precipitated or adsorbed from seawater at the seafloor as occurs in areas of low sedimentation. Mn is 2 to 3 times higher in Unit 1 than in Units 3 or 4 suggesting a possible slight addition directly from seawater or, possibly, from the underlying Unit 2, but levels are still considerably below those of even average Pacific deep-sea clays; elements other than Mn do not even show this trend. In cores which do not have a surficial grey unit, either the sediment was "missed" in coring or sedimentation is sufficiently slow at these sites to permit the Mn accumulating from depth in the core, to merge with the zone of Mn concentration at the sediment surface derived directly from seawater.

CONCLUSIONS

Very thin iron- and manganese-rich sediments with significant concentrations of trace elements were found in one core north of the Explorer Ridge at the base of the sedimentary section. Because of the dilutive effect of high sedimentation rates, which are an order of magnitude higher than those in the vicinity of the East Pacific Rise in equatorial areas, we conclude that metalliferous sediments comparable in thickness and extent to those found in the equatorial and southeast Pacific do not occur in the northeastern Pacific Ocean. This conclusion does not preclude their localized accumulation in areas of low sedimentation, such as on fault scarps or other bedrock outcrops, where hydrothermal fluids are likely emanating from fractured basaltic crust.

REFERENCES

- Barr, S.M.
 - 1972: Geology of the northern end of Juan de Fuca Ridge and adjacent continental slope; Unpublished Ph.D. Dissertation, University of British Columbia, 286 p.

Bender, M., Broecker, W., Garnitz, V., Middel, V., Kaye, R., Sun, S.S., and Biscaye, P.

1971: Geochemistry of three cores from the East Pacific Rise; Earth and Planetary Science Letters, v. 10, p. 425-433.

Bischoff, J.L. and Rosenbauer, R.J.

1977: Recent metalliferous sediment in the North Pacific manganese nodule area; Earth and Planetary Science Letters, v. 33, p. 379-388.

Bonatti, E.

1975: Metallogenesis at oceanic spreading centers; Annual Review of Earth and Planetary Science, v. 3, p. 401-431.

Bonatti, E., Fisher, D.E., Joensuu, O., and Rydell, H.S.

1971: Post-depositional mobility of some transition elements, phosphorus, uranium, and thorium in deep-sea sediments; Geochimica et Cosmochimica Acta, v. 35, p. 189-201.

Boström, K. and Peterson, M.N.A.

1969: The origin of aluminum-poor ferro-manganoan sediments in areas of high heat-flow on the East Pacific Rise; Marine Geology, v. 7, p. 427-447.

Bramlette, M.N.

1961: Pelagic sediments; American Association for the Advancement of Science, Publ. 67, p. 345-366.

Chester, R. and Aston, S.R.

1976: The geochemistry of deep-sea sediments; in Chemical Oceanography, v. 6, J.P. Riley and R. Chester, eds.; Academic, London, p. 281-290.

Cronan, D.S.

1976: Basal metalliferous sediments from the Pacific Ocean; Geological Society of America Bulletin, v. 87, p. 928-934.

- Davis, E.E., Lister, C.R.B., Wade, U.S., and Hyndman, R.D.
 1980: Detailed heat-flow measurements over the Juan de Fuca ridge system; Journal of Geophysical Research, v. 85, p. 299-310.
- Dymond, J., Corliss, J.B., Heath, G.R., Field, C.W.,
- Dasch, E.J., and Veeh, H.H.
 - 1973: Origin of metalliferous sediments from the Pacific Ocean; Geological Society of America Bulletin, v. 84, p. 3355-3371.
- Dymond, J. and Veeh, H.H.
 - 1975: Metal accumulation rates in the southeast Pacific and the origin of metalliferous sediments; Earth and Planetary Science Letters, v. 28, p. 13-22.

Ewing, J., Ewing, M., Aiken, T., and Ludwig, W.J.

1968: North Pacific sediment layers measured by seismic profiling; in The Crust and Upper Mantle of the Pacific Area, L. Knopoff, C.L. Drake, and P.J. Hart, eds.; American Geophysical Union, Geophysical Monograph 12, p. 147-173.

Fryer, B.J. and Hutchinson, R.W.

1976: Generation of metal deposits on the sea floor; Canadian Journal of Earth Sciences, v. 13, p. 126-135.

Goldberg, E.D. and Arrhenius, G.O.S.

1958: Chemistry of Pacific pelagic sediments; Geochimica et Cosmochimica Acta, v. 13, p. 153-212.

Heath, G.R. and Dymond, J.

1977: Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca plate; Geological Society of America Bulletin, v. 88, p. 723-733.

Heath, G.R., Moore, T.C., Jr., and Dauphin, J.P.

- 1976: Late Quaternary accumulation rates of opal, quartz, organic carbon and calcium carbonate in the Cascadia Basin area, northeast Pacific; Geological Society of America, Memoir 145, p. 393-409.
- Hékinian, R., Rosendahl, B.R., Cronan, D.S., Dmitriev, Y.,
- Fodor, R.V., Goll, R.M., Hoffert, M., Humphris, S.E.,

Mattey, D.P., Natland, J., Petersen, N., Roggenthen, W.,

Schrader, E.L., Srivastava, R.K., and Warren, N.

1978: Hydrothermal deposits and associated basement rocks from the Galapagos spreading center; Oceanologica Acta, v. 1, p. 473-482.

Hoffert, M., Perseil, A., Hékinian, R., Choukroune, P.,

- Needham, H.D., Francheteau, J., and Le Pichon, X. 1978: Hydrothermal deposits sampled by diving saucer in Transform Fault "A" near 37°N on the Mid
 - in Transform Fault "A" near 37°N on the Mid-Atlantic Ridge, FAMOUS area; Oceanologica Acta, v. 1, p. 73-86.

Horn, D.R., Horn, B.M., and Delach, M.N.

1970: Sedimentary provinces of the North Pacific; in Geological Investigations of the North Pacific, J.D. Hays, ed.; Geological Society of America, Memoir 126, p. 1-21.

Hyndman, R.D., Rogers, G.C., Bone, M.N., Lister, C.R.B., Wade, U.S., Barrett, D.L., Davis, E.E., Lewis, T., Lynch, S., and Seemann, D.A.

1978: Geophysical measurements in the region of the Explorer ridge off western Canada; Canadian Journal of Earth Sciences, v. 15, p. 1508-1525. Hyndman, R.D., Riddihough, R.P., and Herzer, R.H.

- 1979: The Nootka Fault Zone a new plate boundary off western Canada; Royal Astronomical Society, Geophysical Journal, v. 58, p. 667-683.
- Keen, C.E. and Hyndman, R.D.
 - 1979: Geophysical review of the continental margins of eastern and western Canada; Canadian Journal of Earth Sciences, v. 16, p. 712-747.
- Krumbein, W.C. and Graybill, F.A. 1965: An Introduction to Statistical Models in Geology; McGraw-Hill, New York, 475 p.

Lister, C.R.B.

1970: Heat flow west of the Juan de Fuca Ridge; Journal of Geophysical Research, v. 75, p. 2648-2654.

Mammerickx, J. and Taylor, I.L.

1971: Bathymetry of the Pioneer survey area, north of 45° Latitude; Scripps Institution of Oceanography, Special Chart, No. 1.

McManus, D.A., Holmes, M.L., Carson, B., and Barr, S.M.

- 1972: Late Quaternary tectonics, northern end of Juan de Fuca Ridge; Marine Geology, v. 12, p. 141-164.
- Murray, J. and Renard, A.F. 1891: Deep-sea deposits; Rept. "Challenger" Expedition (1873-1876), London, 525 p.

Opdyke, N.D. and Foster, J.H.

 1970: Paleomagnetism of cores from the North Pacific; in Geological Investigations of the North Pacific, J.D. Hays, ed.; Geological Society of America, Memoir 126, p. 83-119.

Piper, D.Z.

- 1973: Origin of metalliferous sediments of the East Pacific Rise; Earth and Planetary Science Letters, v. 19, p. 75-82.
- Piper, D.Z., Veeh, H.H., Bertrand, W.G., and Chase, R.L. 1975: An iron-rich deposit from the northeast Pacific; Earth and Planetary Science Letters, v. 26, p. 114-120.

Riddihough, R.P., Currie, R.G., and Hyndman, R.D.

1980: The Dellwood Knolls: an active triple junction off western Canada; Canadian Journal of Earth Sciences, v. 17, p. 577-593.

- Riddihough, R.P.
 - 1977: A model for recent plate interactions off Canada's west coast; Canadian Journal of Earth Sciences, v. 14, p. 384-396.

Rona, P.A.

1978: Criteria for recognition of hydrothermal mineral deposits in oceanic crust; Economic Geology, v. 73, p. 135-160.

Sayles, F. and Bischoff, J.L.

1973: Ferro-manganoan sediments in the equatorial East Pacific; Earth and Planetary Science Letters, v. 19, p. 330-336.

Tiffin, D.L., Bornhold, B.D., Yorath, C.J., Herzer, R.H., and Taylor, G.C.

1978: Bottom sediments – vicinity of Juan de Fuca and Explorer ridges, northeast Pacific Ocean; in Current Research, Part A, Geological Survey of Canada, Paper 78-1A, p. 533-537.

von Huene, R. and Kulm, L.D.

1973: Tectonic summary of Leg 18; <u>in</u> Initial Reports of the Deep Sea Drilling Project XVIII, U.S. Government Printing Office, Washington, p. 961-976.

Appendix A

Description of cores obtained in the vicinity of Explorer and Juan de Fuca Ridges in 1977.

Core END 77-7

	Core END 77-1	
Water depth	3015 m	Latitude 50° 12.01'N Longitude 131° 26 16'W
0 - 1 cm	LUTITE, 10 YR 3/3 (dark	brown), soft, slightly silty
1 - 16 cm	LUTITE, 5Y5/1 (gray), m with a few thin lamin silty clay.	oderately stiff, slightly fine sandy, ae (3-4 mm) of 10YR3/3 (dark brown)
	Core END 77-2	
Water depth Core length	3030 m 42 cm	Latitude 50° 10.56'N Longitude 131° 10.58'W
0 - 4 cm	SILTY LUTITE, 5Y5/1-6/1 scattered rounded, fr lower contact.	(light gray to gray), very soft, osted, fine quartz sand, sharp
4 - 8.5 cm	LUTITE, mixed 5Y3/2 (da olive gray), very sof lower contact.	rk reddish brown) and 5Y6/2 (light t, slightly silty and sandy, gradational
8.5 - 42 cm	SILTY LUTIITE, 5Y5/1-5/2 widely scattered, fin slightly mottled, vag	(gray to olive gray), firm, e, well-rounded quartz sand grains, ue suggestion of horizontal stratification.
Diatoms are ab	oundant throughout the co	re.
	Core END 77-3	
Water depth Core length	2650 m 60.5 cm	Latitude 50° 05.64'N Longitude 130° 44.96'W
0 - 2 cm	SILTY LUTITE, 2.5Y6/2 (of underlying brown u forams common, sharp	light brownish gray), soft, 'wisps' nit within this zone, highly diatomaceous, lower contact.
2 - 11 cm	SILTY LUTITE, 10YR3/4 (common but less abund lower contact.	dark yellowish brown), soft, diatoms ant than above, minor forams, sharp
11 - 17 cm	LUTITE, 5¥5/2 (olve gra diatoms rare, gradati	y), firm, slightly silty, homogeneous, onal lower contact.
17 - 60.5 cm	LUTITE, 5Y5/1-5/2 (gray silty, becoming more mottled, abundant dia	to olive gray), very firm, slightly firm with depth, homogeneous, slightly toms.
	Core END 77-4	
Water depth	2540 m	Latitude 50° 05.65'N
0 - 7.5 cm	LUTITE, 10YR5/1 (gray),	very soft, disseminated forams,
7.5 - 15 cm	SILTY LUTITE, 10YR3/3-3 brown), very soft, di contact sharp.	/4 (dark brown to dark yellowish sturbed, minor fine sand, lower
15 - 86 cm	LUTITE, 5Y5/3 (olive), horizontal laminae (1 and olive (5Y5/3) bet	firm, slightly mottled, prominent cm) of alternating olive gray (5Y5/2) ween 69 and 86 cm, sharp lower contact.
86 - 131 cm	LUTITE, 2.5Y5/0 (gray), lower contact.	very firm, homogeneous, sharp
131 - 152 cm	LUTITE, alternating zon 5%5/2 (olive gray), t 142, 147 and 149.5 cm	es (2-4 cm) of 5Y5/1 (gray) and hree fine sand layers (0.5 cm) at , diatoms and forams sparse.
	Core END 77-5	
Water depth Core length	2690 m 59 cm	Latitude 50° 05.25'N Longitude 130° 19.07'W
0 - 3 ст	SILTY LUTITE, 10YR3/3 (obsidian sand grains,	dark brown), fluid, disseminated sharp lower contact.
3 - 59 cm	LUTITE, 2.5Y5/2 (grayis disseminated obsidian	h brown) firm, homogeneous, grains.
Cutter and rebasaltic frag	tainer – coarse obsidian ments; large fragment (6–	sand and large angular obsidian and 8 cm diam.) of olivine-zeolite-obsidian.
	Core END 77-6	
Water depth Core lengyh	1805 m 155 cm	Latitude 50° 04.24'N Longitude 130° 09.31'W
0 - 16 cm	SILTY LUTITE, 5Y6/2 (11 sand, more sandy zone frosted quartz at 11-	ght olive gray), soft, minor fine of coarse black grains and subrounded 14 cm, gradational lower contact.
16 - 68 cm	LUTITE, 5Y6/1 (gray), f suggestion of horizon	irm, slightly sandy, mottled, vague tal stratification, sharp lower contact.
68 - 155 cm	SILTY LUTITE, 5Y5/1 (gr (4-5 cm thick) of mor rounded to subrounded	ay), stiff, minor sand, zones e silty and sandy lutite, sand is quartz, mottled, homogeneous.

Water depth Core length	2070 m 283 cm	Latitude 50° 03.99'N Longitude 129° 59.20'W
Section 1		
0 - 22 cm	LUTITE, 10YR5/1 (gray), soft, sl lower contact.	lightly fine sandy, sharp
22 - 27.5 cm	SILTY LUTITE, 2.5Y6/4 (light yel slightly fine sandy (obsidian),	llowish brown), soft, gradational lower contact.
27.5 - 145 cm	SILTY LUTITE, 5Y5/2-5/3 (olive p mottled, alternating laminae silty and less silty lutite, of subrounded, frosted quartz gra concentration with depth.	gray - olive), firm, slightly (2 mm to 1 cm thick) of disseminated basaltic and ains increasing in size and
Section 2		
145 - 283 cm	continuation of above 253-257 cm fine sand layer co subrounded, clear and frosted grains, and planktonic forams	mposed of subangular to quartz, angular basaltic , sharp upper and lower contacts.
	Core END 77-8	
Water depth Core length	2550 m 190 cm	Latitude 50°04.67'N Longitude 129°54.22'W
Section 1		
0 - 6 cm	LUTITE, 5Y6/1 (gray), soft, slip lower contact.	ghtly fine sandy, sharp
6 - 9 cm	SILTY LUTITE, 10YR4/4 (dark yel. disseminated fine sand compose quartz sand and Mn micronodule	lowish brown), softy, common ed of clear and frosted es, gradational lower contact.
9 - 73 cm	LUTITE, 5Y5/2 (olive gray), fix laminae (1 cm) at 19 cm and 2 for vague impression of horiz 17 and 37 cm.	m, slightly mottled, silty 3 cm, structureless except ontal stratification between
73 - 95 cm	LUTITE, 5Y4/2 (olive gray), fir structureless except for 1-cm 90.5 cm, forams common.	m, slightly mottled, layers of gray lutite at 82.5 and
Section 2		
95 - 190 cm	Continuation of above with more stratification (1 cm bands) f core becomes slightly more gr more silty and sandy sediment 127 and 146 cm.	apparent horizontal rom 95 to 160 cm; 160 - 190 cm ay, motles filled with darker , sandy laminae (1-1.5 cm) at
	Core END 77-9	
Water depth Core length	2350 m 133 cm	Latitude 49° 57.16'N Longitude 129° 43.74'W
0 - 6 cm	LUTITE, 5Y4/2 (dark grayish bro sandy with sand content incre- lower contact.	wn), very soft, slightly asing with depth, gradational
6 - 133 cm	LUTITE, 5Y5/2 (olive gray), firm suggestion of horizontal stra laminae (0.5 cm) of slightly	m, slightly mottled, slight tification with occasional more silty and fine sandy lutite.
	Core END 77-10	
Water depth Core length	2465 m 152 cm	Latitude 49° 49.50'N Longitude 129° 43.86'W
0 - 5 сш	LUTITE, 5YR3/3 (dark reddish bro lower contact.	own), very soft, sharp
5 - 152 cm	LUTITE, 5Y4/2 (olive gray), sof depth, slightly mottled, sugg stratification, becoming more zones of somewhat more silty :	t becoming firm to stiff with estion of horizontal apparent 110 - 152 cm, lutite common throughout.
	Core END 77-12	
Water depth Core length	3240 m 167 cm	Latitude 49° 38,97'N Longitude 132° 04.04'W
0 - 12 cm	LUTITE, 5Y5/1 (gray), very soft, contact	, homogeneous, sharp lower
12 - 36 cm	SILTY LUTITE, 5YR3/3 (dark redd: gradually more gray with deptl at base of unit, disseminated lower contact.	ish brown) becoming h to 5Y5/2 (grayish brown) fine sand, gradational
36 - 167 cm	LUTITE, 2.5Y5/0 (gray), homogene higher increase in sand-size b	eous, no mottling, markedly basaltic grains in lower 20 cm.

	Core END 77-13	
Water depth Core length	3260 m 166 cm	Latitude 49° 40.45'N Longitude 131° 56.24'W
0 - 2 cm	LUTITE, 10YR4/3 (brown - dark br lower contact.	rown), very soft, sharp
2 - 11 cm	LUTITE, 5Y6/1 (gray), soft, hom	ogeneous, sharp lower contact.
11 - 94 cm	SILTY LUTITE, 2.5Y6/2-6/4 (light becoming slightly more gray w overall slight mottling with : (5Y6/1) zone from 61-63 cm, ve	t brownish gray - light yellowish brown ith depth, firm to stiff, Intensely mottled dark gray ery gradational lower contact.
94 - 156 cm	SILTY LUTITE, 5Y5/3-5/2 (olive becoming very stiff with dept silty zones (e.g. at 109-111 128 cm, sharp lower contact.	to olive gray), stiff n, occasional slightly more cm), small pebble (1 cm) at
156 - 166 cm	SILTY LUTITE, 5Y5/1 (gray), ver fragments abundant.	y stiff, manganese oxide
Cutter and ret	ainer - Fe-Mn oxide fragments an in a very stiff silty lutite.	d angular basaltic fragments

Core END 77-14

Water depth Core length	3170 m 193 cm	Latitude 49° 40.11'N Longitude 131° 38.20'W
Section 1		
0 - 3 ст	LUTITE, 5Y6/l (gray), soi radiolaria, diatoms, sh	ity, disseminated fine sand, forams, arp lower contact.
3 - 11 cm	SILTY LUTITE, 10YR3/3 (da and more silty with dep	urk brown), soft, becoming stiffer oth, gradational lower contact.
11 - 20 cm	SILTY LUTITE, alternating and 5Y6/l (gray), firm,	; 10YR3/3 (dark brown), 5Y5/3 (olive) gradational lower contact.
20 - 101 cm	LUTITE, 5Y6/1 (gray), soi of more olive (5Y5/3) s fine-medium quartz san (1-2 cm thick) of more homogeneous with only s stratification, unit be	t-firm, a few zones (5 cm thick) ediment (e.g. 43-48 cm), disseminated i, in upper 45 cm of unit intervals sandy and silty sediment, overall light suggestion of horizontal comes darker gray with depth.
Section 2		
101 - 105 cm	Continuation of above uni	t, sharp lower contact.
105 - 193 cm	LUTITE, 5Y6/1-5/1 (gray) layer of fine sand (ma underlain by a sand-fi	lighter than above unit, soft-firm, inly clear angular quartz) from 168-169.5 cm led burrow from 171-176 cm.
	Core END 77-15	
Water depth Core length	2760 m 121 cm	Latitude 49° 42.40'N Longitude 130° 56.03'W
0 - 2 cm	LUTITE, 10YR3/4 (dark ye forams, sharp lower co	llowish brown), very soft, disseminated ntact.
2 - 8 cm	LUTITE, 5Y5/3 (olive), s and underlying units.	oft, transitional between over-
8 - 121 cm	LUTITE, 5Y5/1 (gray) ove 5Y5/3), firm, locally 40-43 cm), slightly mo (1 cm diam.) containin at 93 cm).	rall with local zones of olive more silty intervals (e.g. 63-68 cm, ttled with occasional burrows g very dark gray soft lutite (e.g.
<u></u>	Core END 77-16	
Water depth Core length	2855 m 85 cm	Latitude 48° 37.51'N Longitude 130° 14.81'W
0 - 4 cm	SILTY LUTITE, 5Y3/2 (dar sharp lower contact.	k reddish brown), soft, homogeneous,

4 - 83.5 cm LUTITE, 5Y5/1 (gray), firm, vague suggestion of horizontal stratification, sharp lower contact.

83.5 - 85 cm SILTY LUTITE, 5Y6/1 (gray), firm, homogeneous.

Core END 77-17

Water depth Core length	2845 m 146 cm	Latitude 48° 41.04'N Longitude 130° 21.77'W
0 - 4.5 cm	LUTITE,	5Y5/1 (gray), very soft, sharp lower contact.
4.5 ~ 13 cm	LUTITE, lower	5YR3/3 (dark reddish brown), soft, gradational contact.
13 - 146 cm	LUTITE,	5Y5/2 (olive gray) becoming more gray near the ba

- 146 cm LUTITE, 5Y5/2 (ollve gray) becoming more gray near the base, intervals (4-5 cm thick) of more stilty sediment at 39, 53 and 122 cm, thin, fine sandy and silty graded laminae at 95-96 cm and 143-144.5 cm, sandy layers are 5Y4/1 (dark gray), moderately motiled, suggestion of horizontal stratification of gray and olive gray.

Core END 77-18

√ater depth Core length	2830 130	m cm	Latitude Longitude	48° 130°	44.34'N 27.21'W	

0 - 12.5 cm SILTY LUTITE, 5Y3/2 (dark reddish brown), soft, sharp lower contact.

12.5 - 130 cm LUTITE, 5Y5/2 (olive gray), firm, more silty and more gray 22-61 cm, prominent laminae (1 cm thick) of silty lutite at 75, 78, 81, 84, 86, 89, 93, 97, 104, 117 cm, burrows are common and are filled with softer, more gray sediment (e.g. 65, 79, 87-94, 110 and 117 cm.

	Core END 77-19	
Water depth Core length	3405 m 218 cm	Latitude 48° 52.03'N Longitude 130° 45.07'W
Section 1		
0 - 3 cm	LUTITE, 5Y5/1 (gray), very soft	t, sharp lower contact.
3 - 13 cm	SILTY LUTITE, 5Y3/2 (dark redd: (3-6 cm) becoming soft at bas sharp undulating lower contac	ish brown), very soft se of unit, scattered forams, ct.
13 - 29 cm	LUTITE, 5Y5/3 (olive) at top to slightly silty, soft becoming sharp lower contact.	o 5Y5/l (gray) at base, g firm with depth, structureless,
29 - 52 cm	SILTY LUTITE, 5Y5/1 (gray), st horizontal stratification, M abundant, sharp lower contact	iff, mottled, suggestion of a micronodules common, forams t.
52 - 107 cm	SILTY LUTITE, 5Y4/2 (olive gray overlying unit, gray silty 1 80, 84, 95, 100, 103 cm, pyr in silty laminae. unit inten	y), softer and less silty than aminae (1 cm) at 63, 66, 69, 74, itized burrows (1-2 mm) common sely burrowed at top.
Section 2 107 - 218 cm	Continuation of above Prominent gray silty interva 216-217 cm.	ls at 123-128, 165-170, and

Core END 77-20

Water depth Core length	3225 m 182 cm	Latitude 49° 21.55'N Longitude 132° 21.90'W
Section 1		
0 - 6 cm	LUTITE, 10YR6/1 (gray) very soft	, sharp lower contact.
6 - 35 cm	LUTITE, 5YR3/3 (dark reddish bro 5Y5/3 (olive) at base, soft ne more silty near base, sharp lo	wn) near top grading to ar top to firm near base, wer contact.
35 — 89 cm	LUTITE, 10YR6/1 (gray), soft-fir sandy laminae (1 cm thick) at moderate degree of mottling, c in lenses at 71 and 83 cm, gra	m, with more silty and fine 52, 55, 60, 71, and 83 cm, lear, angular quartz sand dational lower contact.
89 - 96 cm	SILTY, FINE SAND, 5Y5/1 (dark gr	ay).
Section 2		
96 - 109 cm	Continuation of above unit. 100 to 102 cm - softer and mor underlying sediment, 107R6/1 (dark, fine sand with prominent throughout; sand becomes coars is clear, angular quartz and o	e silty than over- and light gray); 102-109 cm - . horizontal laminae er towards base of unit; sand paques, sharp lower contact.
109 - 182 cm	LUTITE, 10YR6/1 (gray), firm, si silt laminae at 124, 150-154, burrow at 152 cm, sand layer (colour variations throughout w	milar to 35-89 cm interval, and 164 cm; prominent 1 cm thick) at 163 cm; some fith units from 3 to 10 cm thick.

	Core END 77-21B	
Water depth Core length	3215 m 165 cm	Latitude 49° 19.26'N Longitude 132° 14.21'W
0 - 12 cm	LUTITE, 5¥5/1 (gray), very so	oft, sharp lower contact.
12 - 19 cm	LUTITE, 5YR3/2 (dark reddish 7.5YR4/4 (brown), soft, sli lower contact.	brown) grading downwards to ghtly mottled, gradational
19 - 33.5 cm	LUTITE, 5Y5/3 (olive), soft a slightly more silty than at	at top becoming firm near base, bove, sharp lower contact.
33.5 - 165 cm	LUTITE, 5Y5/1 (gray) overall, mottled, many large burrows gray sandy lutite (e.g. at prominent silty laminae (1	, soft to firm, intensely s filled with very soft, dark 56, 62, 70-80, 103 cm), cm thick) from 80 to 165 cm.

	C	ore END 77-22	
Water depth Core length	3260 m 298 cm		Latitude 49° 13.59'N Longitude 131° 54.19'W
Section 1			
0 - 27 cm	LUTITE, 5	Y5/l (gray), soft,	homogeneous, sharp lower contact.
27 - 49 cm	LUTITE, 5 7.5YR4/- Mn micro	YR3/2 (dark reddis) 4 (brown) to 5Y5/3 onodules, sharp low	a brown) at top grading through (olive) at base, rare disseminated wer contact.
49 - 148 cm	LUTITE, 5 interva and abu	Y5/l (gray), alter ls, sand lense at l ndant opaques.	mating soft and stiff (silty) 42 cm of fine, angular quartz
Section 2			
148 - 298 cm	continuat 195-280	ion of above. cm homogeneous, be	coming darker gray with depth.
	C	ore END 77-23	
Water depth Core length	3235 m 300 cm		Latitude 49° 11.30'N Longitude 131° 48.47'W
Section 1			
0 - 9 cm	LUTITE, 5 sand, s	Y5/l (gray), slight cattered forams, sh	ly silty with trace very fine warp lower contact.
9 - 26 cm	LUTITE, 5 to 5Y5/ base, s	YR3/2 (dark reddis) 2 (olive gray), so lightly more silty	n brown) in upper 3 cm grading Et near top becoming firm near near base, sharp lower contact.
26 - 147 cm	LUTITE, 5 silty 1 layers	Y5/l (gray) overal: aminae of darker g (< l cm) at 38, 53	l with local very fine sand and cay, soft to firm; sandy, silty , 95, 109, 121, 133 cm.
Section 2			
147 - 300 cm	continuat Sandy, 215, 23 285-288	ion of above. silty laminae (< 1 7 and 258 cm, thic cm and 295-300 cm	cm) at 156, 175, 188, 206, ter silty, sandy intervals at
	C	Core END 77-24	
Water depth Core length	3245 m 298 ст		Latitude 49° 09.70'N Longitude 131° 42.04'W
0 - 17 cm	LUTITE, 5 becomin part of gradati	YR3/2 (dark reddis g 5Y5/2 (olive gra unit moderately m onal lower contact	n brown) at surface (0-4 cm) y) near base, soft to firm, lower ottled, scattered Mn micronodules,
17 - 298 cm	LUTIITE, 5 interva darker	Y5/1 (gray), soft ls and laminae of gray, slightly mot	to very firm, occasional silty fine sand and silt, slightly tled.
	C	Core END 77-25	
Water depth Core length	3480 m 287 cm		Latitude 48° 55.83'N Longitude 133° 23.12'W
Section 1			
0 - 9 cm	LUTITE, 5	Y5/1 (gray), yery :	soft, sharp lower contact.
9 - 28 cm	LUTITE, 1 5Y5/4 (very fi lower c	OYR3/4 (dark yellor light olive brown) rm near base, mott contact.	wish brown) in upper 5 cm becoming near base of unit, soft becoming led in lower part, gradational
28 - 42 cm	SILTY LUT (olive	ITE, 5Y5/4 (light o gray) at base, sti	olive brown) at top to 5Y5/2 ff, sharp lower contact.
42 - 152 cm	LUTITE, 5 occasio	Y5/1 (gray) and 5Y onal silty laminae	4/1 (dark gray), soft to firm, at 60, 76, 82, and 140 cm.
Section 2			
152 - 287 cm	continuat Silt la layer a	ion of above, yer at 250 cm; pro: ut 285-287 cm, larg	minent dark fine sandy-silty e sand-filled burrow at 280-285 cm.

	Core END 77-26	
Water depth Core length	3280 m 209 cm	Latitude 49° 04.29'N Longitude 133° 09.27'W
Section 1		
0 - 3 cm	LUTITE, 5YR3/2 (dark red sharp lower contact.	ddish brown), soft, forams abundant,
3 - 11.5 cm	LUTITE, 7.5YR4/2-5/2 (b)	cown), very soft, sharp lower contact.
11.5 - 52 cm	LUTITE, 5YR3/2 (dark red (grayish brown) at bas mottled with gray sed abundant 47-52 cm, fa:	ddish brown) at top becoming lOYR5/2 se, soft becoming firm with depth, base ment from underlying unit, forams irly sharp lower contact.
52 - 72 cm	SILTY LUTITE, 5Y6/2 (11) forams, slightly mott	ght olive gray), stiff, abundant Led, sharp lower contact.
72 - 103 cm	LUTITE, 5Y5/1-5/2 (gray fewer forams than about lutite 100-103 cm, sha	to olive gray), firm; less silty, re, slightly mottled; 5¥4/1 (dark gray) arp lower contact.
103 - 149 cm	SILTY LUTITE, 2.5Y6/2 (intervals and laminae 124, 132-139, 141 and gradational lower con	light brownish gray), overall with of 2.5Y5/2 (grayish brown) at 113, 148 cm, firm, forams common, tact.
149 - 152 cm	LUTITE, 5Y5/l (gray), se	oft, slightly silty, slightly mottled.
Section 2		
152 - 188 cm	continuation of above un 161~188 cm, 5Y4/1 (day	nit. rk gray), sharp lower contact.
188 - 209 cm	FORAM LUTITE, 5Y6/2 (11)	ght olive gray) firm, slightly mottled.

	Core END 77-27	
Water depth Core length	3165 m 240 cm	Latitude 49° 22.48'N Longitude 132° 39.13'W
Section 1		
0 - 3 ст	LUTITE, 5Y5/1 (gray), soft, sca contact.	ttered forams, sharp lower
3 - 30 cm	LUTITE, 7.5YR4/4 (brown) at top olive gray), soft to firm, sl and radiolaria common, sharp	grading to 5Y6/2 (light ightly silty, mottled, forams lower contact.
30 - 137 cm	LUTITE, 5Y5/1 (gray), firm but mottled, 130-137 cm layer of lutite, sharp lower contact.	locally stiff and silty, dark gray, dense, silty
137 - 148 cm	LUTITE, 5Y6/1 (light gray), fir	m, mottled, forams common.
Section 2		
148 - 160 cm	continuation of above. 157-160 cm 5Y4/1 (dark gray)	interval.
160 - 186 cm	LUTITE, 5Y6/1 (light gray) to 5 common, ash layer at 178 cm.	Y5/l (gray), firm, forams
186 - 240 cm	LUTITE, 5Y6/1 (light gray) and (several cm) of stiff silty lu	5Y5/l (gray), firm, intervals stite, mottled.

Core	END 77-28		

Water depth Core length	3725 m 238 cm	Latitude 48° 15.60'N Longitude 134° 30.27'W
Section 1		
0 — 3 ст	FORAM 00ZE, 2.5Y6/2 (light brown) lower contact.	ish gray), soft, sharp
3 ~ 9 сш	LUTITE, 10YR3/2 (dark grayish bro	own), soft, sharp lower contact.
9 - 14 cm	LUTITE, mixed 10YR3/2 (dark gray) (light brownish gray), soft, mo over- and underlying units.	ish brown) and 2.5¥6/2 ottled, transition between
14 - 55 cm	FORAM OOZE, 2.5Y6/4-6/2 (light ye mottled and darker 50-55 cm, gr	ellowish brown), soft, more radational lower contact.
55 - 78 cm	LUTITE, 2.5Y5/2 (grayish brown), abundant throught except for 70	firm, mottled, forams D-75 cm, sharp lower contact
78 - 133 cm	FORAM 00ZE, 2.5Y6/4-6/2 (light ye 78-115 cm, mottled with horizon gradational lower contact.	ellowish brown), structureless atal stratification 115-133 cm,

	Core END 77-28 (continued)
133 - 148 cm	LUTITE, 2.5Y5/2 (grayish brown), firm silty less foram-rich than above.
Section 2	
148 - 162 cm	continuation of above. Gradational lower contact.
162 - 170 cm	FORAM 002E, 2.5Y6/4-6/2 (light yellowish brown), firm, 164-166 cm and 167-170 cm darker lutite intervals, pebble (1 cm diam.), rounded, dark at 166 cm, sharp lower contact.
170 - 201 cm	SILTY LUTITE, 2.5Y5/2 (grayish brown), firm, suggestion of horizontal stratification, slightly darker from 198-201 cm, sharp lower contact.
201 - 209 cm	FORAM LUTITE, 2.576/2 (light brownish gray), firm, mottled, slightly silty, sharp lower contact.
209 - 230 cm	SILTY LUTITE, 2.575/2 (grayish brown), firm, with small lenses of lighter foram ooze at 221 and 234 cm, sharp lower contact.
230 - 238 cm	FORAM 00ZE, 2.5Y6/4-6/2 (light yellowish brown), firm, slightly mottled.

Core END 77-29

	Water depth Core length	3695 m 589.5 m	Latitude 48° 34.24'N Longitude 133° 56.69'W
	0 - 2 cm	SILTY LUTITE, 10YR3/4 (dark yell common, sharp lower contact.	owish brown), soft, forams
	2 - 27 cm	FORAM-DIATOM 00ZE, 2.5Y7/2 (ligh gradational lower contact.	t gray), soft, mottled,
	27 - 71 cm	LUTITE, 5Y4/2 (olive gray), soft mottled, gradational lower con	to firm, forams common, tact.
	71 - 82.5 cm	LUTITE, 10YR4/1 (gray), soft to fairly sharp lower contact.	firm, forams rare to absent,
	82.5 - 128.5 c	m LUTITE, uppermost 23 cm 5Y5/2 5Y6/2 (light olive gray), lowe grayish brown), firm, mottled, unit in upper 7 cm, fortams con but highest in middle 15 cm in	(olive gray), middle 15 cm rmost 8 cm 2.5Y4/2 (dark inclusions from overlying mon, silt content variable terval, sharp lower contact.
	128.5 - 203.5	FORAM LUTITE, 2.5Y7/2 (light gra (grayish brown), firm, 5 disti at 137, 140, 145 and 152 cm, m 40 cm, gradational lower conta	y) grading to 2.5Y5/2 nct dark silty laminae (1 cm) wderately mottled in lowermost ct.
20	3.5 - 534.5 cm	LUTITE, 5Y5/2 (olive gray), firm locally common, large burrows diatomaceous and foram lutite sharp lower contact.	, mottled, forams rare to filled with soft at 408 and 523.5 cm,
53	4.5 - 589.5 cm	FORAM 00ZE, 2.5Y6/2 (light brown lowermost 5 cm very light brow	ish gray), firm, mottled, n and highly foraminiferal.

Core END 77-31

	0010 210 11 58			
Water depth Core length	3230 m 103 cm	Latitude 49° 04.75'N Longitude 131° 27.14'W		
0 - 16 cm	LUTITE, dark brown i brown in lowermost gradational lower	n upper 3 cm grading to medium 13 cm, soft to firm, mottled, contact.		
16 - 103 cm	LUTITE, medium to da 1.5 cm lamina at 6 silt content dimir	rk gray, firm, forams rare to common, 7 cm of greenish gray silty lutite, ishes with depth.		
Core END 77-32				
Water depth Core length	3290 m 115 cm	Latitude 49° 00.07'N Longitude 131° 15.92'W		
0 - 10 cm	SILTY LUTITE, dark b	brown, soft, sharp basal contact.		
10 - 12 cm	SILTY LUTITE, olive underlying unit, §	gray to brown, firm, transitional to gradational lower contact.		
12 - 115 cm	LUTITE, dark gray, f sandy lutite (0.5 of similar sedimer	firm, laminae of soft silty and fine cm) at 16 cm and 49 cm and interval nt 32-34 cm.		

Core END 77-33

Water depth Core length	2775 m 169 cm	Latitude 49° 43.43'N Longitude 130° 38.87'W
0 - 14 cm	LUTITE, 5Y5/1 (gray), soft, b unit occurs within lowermos irregular lower contact.	prown sediment from underlying pt 2-3 cm of unit, sharp,
14 - 17 cm	LUTITE, 7YR3/2 (dark brown), lower contact.	soft-firm, gradational
17 - 19 cm	SILTY LUTITE, 5Y6/2 (light ol zone, gradational lower com	ive gray), firm, transition atact.
19 - 169 cm	SILTY LUTITE, 5Y4/1 (dark gra (olive gray) from 116-153 c thin laminae of coarse silt	ay) overall with 5Y4/2 m, firm, 94-113 cm several , dark olive gray.

Core END 77-34

Water depth Core length	2445 m 115 cm	Latitude 49° 18.14'N Longitude 130° 12.76'W
0 - 1.5 cm	LUTITE, 5Y5/1 (gray) soft, sca lower contact.	attered forams, sharp
1.5 - 4 cm	LUTITE, 7.5Y3/4 (dark yellowis contact.	sh brown), soft, sharp lower
4 - 12 cm	LUTITE, 5Y5/3 (olive), firm, gradational lower contact.	transition zone, silty,
12 - 115 cm	SILTY LUTITE, 5Y5/1 (gray) wi	th intervals of 5Y4/1

(dark gray) at 29-31, 45, 71 and 83 cm; thes are more silty and contain very fine sand.

Core END 77-36

Water depth Core length	2605 m Latitude 48° 00.54'N 91 cm Longitude 128° 48.50'W
0 - 8 cm	LUTITE, 5Y5/1 (gray), soft, sharp lower contact.
8 - 14 cm	SILTY LUTITE, 5Y2.5/2 (dark reddish brown), soft, sharp lower contact.
14 - 22 cm	LUTITE, 5Y5/2 (olive gray) at top grading to 5Y5/2 (olive gray) at base, firm, scattered forams, very gradational lower contact.
22 - 91 cm	LUTITE - SILTY LUTITE, 5Y54/2 (olive gray) in silty lutites and 2.5Y4/0 in lutites, firm, scattered forams, lower 41 cm has distinct silt layers at 68, 74, 76, 79, and 85 cm.

Core END 77-37

Water depth Core length	2540 m 188 cm	Latitude 48° 03.15'N Longitude 128° 53.56'W
0 - 16 cm	LUTITE, 5Y5/1 (gray), soft, s steeply inclined (45°) low	scattered forams, sharp, er contact.
16 - 22 cm	SILTY LUTITE, 5Y3/2 (dark red forams, inclined (35°) lowe	ddish brown), soft, scattered er contact.
22 - 23 cm	SILTY LUTITE, 5Y5/3 (olive), contact gradational.	soft, forams common, lower
23 - 188 cm	LUTITE, alternating 5Y5/1 (gr (olive gray - olive) inter- sand lenses at 88, 90, and lamina at 98 cm, 131-132 cr 171, 174, 175 cm fine quari	ray) and 5Y4/2-4/3 vals, firm, silt and fine 104 cm, very fine sand n foram sand layer, 142-146, tz sand with abundant opaques.

	Core END 77-38										
Water depth Core length	2565 m 225 cm	Latitude 48° 07.34'N Longitude 129° 10.47'W									
0 - 2.5 cm	SILTY LUTITE, 5Y5/1 (gray),	soft, sharp lower contact.									
2.5 - 9 cm	LUTITE, 5YR3/2 (dark reddish 5Y5/3-5/2 (olive to olive scattered forams, finely d lower contact.	brown) changing to gray) in basal 5 cm, soft, isseminated opaques, sharp									
9 - 74 cm	LUTITE, 5Y54/2 (olive gray), locally abundant, gradatio	firm, scattered forams, nal lower contact.									
74 - 83 cm	LUTITE, 5Y5/3 (olive), firm,	gradational lower contact.									
83 - 225 cm	83 - 225 cm LUTITE, alternating 5Y4/2 (olive gray) and 5Y4/1 (dark gray), firm, several black silty-sandy laminae, layer of fine, black sand at 199-205 cm.										
	Core END 77-39										
Water depth Core length	2700 m 115 .cm	Latitude 48° 11.14'N Longitude 129° 23.50'W									
0.10	TURTER JOURS /S (and and b										

		-
0 - 19	cm	LUTITE, 10YR2/2 (very dark brown), soft to firm, sharp, inclined (45°) lower contact.
19 - 26	сш	SILTY LUTITE, 5Y5/2-5/3 (olive gray to olive), scattered forams, gradational lower contact.
26 - 11	5 сш	SILTY LUTITE, 5Y4/2-3/2 (olive gray to dark olive gray), firm to stiff, scattered forams.

Core END 77-40

Water depth Core length	2680 m 102 cm	Latitude 48° 14.54'N Longitude 129° 30.98'W
0 - 13 cm	SILTY LUTITE, 5Y5/2.5/2 (dark firm, scattered forams, gra	reddish brown), soft to dational lower contact.
13 - 21 cm	SILTY LUTITE, 5Y5/2-5/3 (oliv gradational lower contact.	e gray to olive), firm,
21 - 102 cm	SILTY LUTITE, 5Y4/2 (olive gr silty laminae at 78 and 95	ay), firm to stiff, very cm.

Core END 77-41 Water depth Core length 2820 m 281 cm Latitude 48° 17.16'N Longitude 129° 36.49'W 0 - 47 cm SILTY LUTITE, 5Y4/1 (gray), soft, sharp lower contact. 47 - 58 cm LUTITE, 5YR2.5/2 (dark reddish brown), soft, sharp lower contact. 58 - 61 cm SILTY LUTITE, 5Y4/2-4/3 (olive - olive gray) firm, gradational lower contact. 61 - 281 cm SILTY LUTITE, 5Y4/1-4/2 (dark gray - olive gray), firm, gradational lower contact.

	Core END 77-42	
Water depth Core length	2475 m 53 cm	Latitude 48° 27.15'N Longitude 128° 39.41'W
0 - 3 cm	SILTY LUTITE, brown, fi lower contact.	rm, scattered forams, sharp
3 - 53 cm	SILTY LUTITE, gray, fin	-101 .
	Core END 77-43	
Water depth Core length	2440 m 101 cm	Latitude 48° 27.77'N Longitude 128° 36.83'W
0 - 0.5 cm	SILTY LUTITE, dark brow	vn, firm, gradational lower contact.
0.5 - 11.5 cm	SILTY LUTITE, olive gra near base, sharp low	ay, firm, abundant forams especially er contact.
11.5 - 101 cm	SILTY LUTITE, alternat: firm to stiff, scatte	ing dark gray and olive gray, ered forams.
	Core END 77-44	
Water depth Core length	2425 m 140 cm	Latitude 48° 28.42'N Longitude 128° 32.56'W
0 - 6 cm	SILTY LUTITE, mixed gr forams, sharp lower	ay and dark brown, soft, scattered contact.

6 - 140 cm SILTY LUTITE, dark gray, firm, fine, dark sand layers common (< 0.5 cm), vague horizontal stratification, small pockets of foram ooze.

Appendix B

Elemental analyses of core subsamples used in this study. Values are expressed as $\mu\,/g$ except for Fe and Ca (percent).

CORE	DEPTH CM	ZN	CU	PB	NI	co	MN	мО	FE %	CA %	CORE	DEPTH CM	ZN	cu	PB	NI	co	MN	MO	FE %	CA %
1	0	290	84	10	118	24	3500	3	4.30	2.60	17	17	325	128	17	156	24	1840	3	5.60	3.60
1	10	96	28	10	36	12	960	3	4.25	2.65	17	100	108	46	10 14	78 56	20 17	930	4 3	5.70	2.30 3.00
2	0	240	78 96	12	112	20	4350	7	4.75	2.10	17	140	72	28	8	40	14	660	3	4.45	2.65
2	42	255	96	19	146	22	1140	3	5.75	2.70	17	145	94	46	10	48	18	950	2	5.55	3.35
3	0	210 210	68 74	22 18	104	18 18	3000 1480	5	4.40	2.95	18	0	300	126	21	250	30	33500	48	4.90	1.70
3	5	230	76	18	144	22	11000	17	5.00	1.75	18	16	290	130	18	136	22	1780	ź	4.40	3.50
3	14 56	240	80 62	22	95 10	14 22	940 910	3	5.75	1.75 4.10	18	49	225	92 40	14	116	20	1090	4 4	5.40	3.90
4	0	178	66	18	92	18	1590	4	5.25	2.80	18	125	106	46	9	56	16	880	5	5.90	2.70
4	12	220	76	20	112	20	5300	5	5.80	1.85	19	4	212 250	112	12 18	206	28 32	13800 29000	26 35	5.40 4.70	2.20
4 4	18 46	245 240	80 78	20 18	108	16 20	740	3	5.90 5.90	2.25	19	14	260	118	20	118	22	1220	4	5.30	2.10
4	81	130	56	15	72	25	840	4	6.50	5.45	19	100	96	38	10	52	16	800	4	5.90	2.40
4	92 145	80	28	11	34	16	750	3	6.00 4.75	3.00	19	150 200	92 100	34 42	8	50 54	15 16	760 820	5	5.90	2.20
5	0	142	70	18	78 78	16 16	650	3	5.45	1.95	19	218	108	46	15	58	18	1720	4	5.90	2.50
5	59	178	76	15	80	18	700	5	4.80	1.90	20	2	102	46	8	52	20	960	4	5.30	3.40
6	0 5	96 100	38 38	16 12	38 38	15 16	850 820	10	4.45	3.60 3.90	20	7	158	112	12	205	34	7000	7	4.90	2.65
6	12	86	34	9	34	15	700	3	4.90	4.20	20	30	104	36	6	66	18	720	3	6.20	2.25
6	73	80	32	8	39	15	780	2	4.70	2.85	20	50 91	104 64	48 20	7	53 26	20 12	800 740	4	6.20 4.60	4.70
6	155	108	44	13	50	18	790 760	4	5.80	2.35	20	105	42	14	8	20	10	570	3	3.50	4.50
7	8	96	38	10	38	16	740	3	4.85	4.15	20	155	102	46	10	40	18	940	5	6.30	2.50
777	25 50	116 94	46 32	13 8	54 34	15 18	560 820	3	5.15 5.50	3.80 3.70	20	182	68	26	9	30	14	800	3	5.00	4.40
7	75	106	38	12	36	18	780	3	5.30	3.10	21	4	110	66	9	46	18	1050	12	4.95	4.35
7	125	1102	40	10	38	20	800	4	5.40	3.45	21	10 18	102 152	42	7 17	235	19 35	930 7400	4	5.75 4.90	3.80 3.50
7	145	108	42	12	40	18	760	4	5.50	3.50	21	28	124	82	16	78	30	1950	4	5.20	8.50
7	200	106	38	8	34	18	900	3	5.80	3.10	21	50	92	38	9	44	16	800	3	5.30	4.60
7	225 250	112 86	36 34	12 11	38 32	18 16	900 800	5	5.65 5.00	3.10	21	100	110	54 84	10	62 59	22	860	5	6.10 5.00	2.80
7	254	60	24	7	23	12	630	3	3.95	3.90	22	2	108	54	10	58	21	710	6	6.30	3.00
7	280	100	40	8	32	17	880	3	5.40	3.50	22	25 35	106 152	106	9 17	100	20 35	880 3500	4	6.20 5.70	3.10
8 8	0	112 100	46 46	22	43 42	18 20	1020	11 3	5.40	3.00	22	43	138	84	17	88	35	2950	4	5.45	4.30
8	9	98	38	13	42	16	1070	4	5.10	2.75	22	100	102	84	10	59	20	780	3	6.45	2.25
8	23 50	106	46	12 12	46	17	760	3	5.40	3.70	22	150	118	48	10	53 39	20 16	970 755	4	6.35 4.90	3.70
8	146	88	40	8	36	18	820	4	5.30	3,65	22	250	104	50	12	58	19	830	3	6.30	2.70
9	190	148	58	19	68	14	1410	12	5.90 4.95	3.50	22	300	88 86	38	11	47	16	875 770	4	5.20	3.20
9	3	154	66 62	16	70	15	1630 680	4	5.30 5.70	1.70	23	12	174	114	20	245	32	11000	14	5.45	2.30
9	100	96	36	11	34	16	780	3	5.50	3.35	23	19 32	170	84	15	118	39 18	4300 850	5 3	5.65 5.70	3.50 8.30
10	132	102	74	20	38 98	18	9800	8	5.85	3.80	23	50	92	84	10	59 45	17	750	5	5.60	3.80
10	10	176	74	20	92 82	18 16	4600	6	5.50	1.80	23	147	80	34	9	48	17	800	4	4.70	4.40
10	100	186	70	18	89	20	1030	3	5.85	1.80	23	200	102	54 56	10	53 69	22	1400	3	6.00 5.45	5.40
10 12	150	106 112	52 52	12 12	53 58	18 20	950 1420	4	5.00 5.55	5.30 3.10	23	300	114	52	11	59 180	20	1250	3	5.80	3.85
12	6	104	40	8	40	18	880	3	5.80	3.25	24	10	150	88	16	94	25	1900	3	5.45	4.70
12	30	126	64	14	63	23	1870	2	4.20	7.40	24	19 50	118 88	66 42	14 11	102 52	19 17	740 740	3 4	6.40 5.55	3.10
12	50 100	106 106	48 40	6 7	46 33	19 18	760 840	3	5.10 5.50	3.30	24	100	86	42	10	51	15	740	4	5.35	2.80
12	150	78	28	8	28	14	800	2	5.15	3.70	24	200	102	54	10	53	20	1000	3	6.50	3.40
13	15	148	74	18	96	34	2750	2	6.70	4.40	24	250 297	86 96	42 52	10 11	45 64	17	895 890	5	5.65	3.80
13	50 100	134	74 62	18 11	80 73	28 27	940 920	3	5.60 5.30	3.30	25	4	92	38	10	40	16	880	4	5.70	3.50
13	150	108	54	12	76	22	790	4	4.10	14.40	25	23	156	124	18	128	36 54	8200 5600	6	5.75	2.70
13	160	320	1400	340	540	490	29500	2	12.20	1.60	25	36 50	132 120	50 52	10	64 62	18 18	945 870	3 4	6.30 6.50	5.00
14	0	198	114	22	178 130	29 32	7500 5900	11	4.90	2.40	25	100	98	40	9	52	18	810	3	5.70	3.20
14	16	190	114	19	100	26	1770	2	5.80	3.20	25	200	102	52	9	57	20	925 765	э 3	5.95	2.55
14	25 50	102	50	10	64	22	890 760	э З	5.75 4.90	3.80	25	250 287	116	52	9 10	48	22	930 765	5	6.40	3.45
14	95	84	30	87	31	14	850	4 4	5,00	3.40	26	0	224	160	14	290	48	13600	7	5.40	4.80
14	110	91	36	7	32	17	880	3	5.50	3.70	26	8	188	142	19	345 73	45	9700	20	5.00	3.70 8.50
14	150 190	106 88	40	9 11	38 44	18 17	940 800	5	6.45 5.60	2.85 2.70	26	12	188	1.72	20	188	48	11500	3	5.10	4.40
15	0	255	98	22	178	32	14000	19	5.40	1.70	26	45	134	88	15	126	49	6700	5	3.90	15.20
15	17	290	104	20	133	22	1020	3	5.70	2.50	26	58 100	116 98	80 50	10	75 73	30 21	1500 1300	3	4.20	16.00
15	50	108	40	10	39	20	1000	4	6.10	3.20	26	112	66	52	10	49	19	1750	4	2.80	23.00
15	115	140	60	13	72	26	1760	4	5.00	5.20	26	147	192	64	20	121	35	2350	3	4.30 5.90	5.60
16	0	300 290	126 126	64 22	200 190	36 30	19500 17000	21	4.90 4.40	2.50	26	170	168	108	12	94	30	1150	3	5.80	1.75
16	11	320	134	20	144	22	1620	3	5.60	4.00	26	204	66	62	10	57	19	2200	1	2.70	23.00
16	86	76	28	14	41	12	680	4	4.80	2.70	27	0	118 112	68 62	16 11	81 75	24 25	2600 1850	4	4.70 5.00	7.30
16	90	76 170	40	12	43	14	670 5950	3	4.60	2.85	27	5	164	114	18	200	33	8850	5	4.20	5.80
17	2	104	42		56	16	1070	5	5.70	2+45	27	27	144	54	11	89	22	1150	2	6.40	5.00
17	8	290	120	14	225	21	21000	12	2+00	200	27	50 100	116 110	42 82	10 16	64 78	29 31	1250 1600	3 5	6.45 4.50	3.10 11.80

CORE	DEPTH CM	ZN	CU	РВ	NI	c0	MN	мо	FE %	CA %	CORE	DEPTH CM	ZN	cu	PB	NI	co	MN	мо	FE %	CA %
27	129	112	62	14	76	26	1000	2	5.10	6.70	34	5	130	60	13	74	20	2700	4	4.95	3.10
27	135	128	48	11	94	28	1150	3	5+95	3.10	34	16	126	54	12	69	16	680	<u>э</u> ц	5.20	3.60
27	162	70	42	13	47	13	930	3	2.65	20.00	34	31	72	30	9	45	15	570	4	4.20	2.40
27	170	172	104	13	88	30	1200	3	6.20	1.80	34	50	100	50	10	49	18	825	5	5.70	2.80
27	178	92	54	12	60	29	980	3	4.20	16.00	34	83	76	40	8	43	16	710	4	5.00	3.90
27	200	134	140	15	81	32	1200	2	5+45	5+50	34	109	104	50	14	92	22	4450	7	5.20	4.75
27	240	210	136	24	107	39	895	5	5.70	1.80	35	22	156	76	15	90	20	700	5	5.15	5.90
28	0	90	92	14	89	39	4100	8	3.40	13.80	35	42	132	66	15	77	20	810	2	5.00	5.30
28	2	74	76	11	64	31	3150	7	3.00	21.00	35	59	88	42	8	49	19	740	4	4.70	3.50
28	14	148	172	21	200	60	9500 3600	9	5.20	6.70	36	4	148	60	10	73	19	935	2	4.80	2.20
28	26	64	68	12	44	23	930	4	2.90	22.00	36	10	260	104	15	140	20	18500	11	4.45	1.60
28	50	52	48	13	42	20	970	3	2.25	28.00	36	15	310	118	18	124	15	1400	3	4.75	1.70
28	66	118	120	19	103	54	5200	5	4.10	11.80	36	50	182	80	13	104	19	1300	5	5.30	3.80
28	106	50	46	19	48	23	1950	4	2.20	27.00	30	87	205	36	15	54	14	6100	4	4.60	2.70
28	130	86	76	16	68	29	1700	5	3.60	16.20	37	3	290	108	18	139	22	4300	4	5.10	2.10
28	145	130	124	20	84	37	1600	3	5.40	2.05	37	18	310	118	18	172	24	21000	7	5.30	1.50
28	165	100	100	15	68	37	2100	4	2.90	22.00	37	24	305	110	19	139	18	1900	3	5.55	1.80
28	200	134	158	20	134	70	5200	3	5.30	3.10	37	98	290 80	38	10	54	18	1400	3	2.40	2.50
28	220	120	126	18	96	46	3400	3	4.90	8.40	37	114	102	52	11	57	20	1100	4	5.60	2.95
28	235	78	78	14	70	39	3600	5	3.30	18.00	37	143	80	38	11	52	17	745	3	4.80	2.50
29	15	124	122	15	134	45	2150	11	4.10	14.00	37	160	104	36	16	44	18	760	4	5+55	2.10
29	50	142	176	23	190	79	13000	8	4.85	8.70	38	0	250	94	22	124	20	13000	15	5.10	2.50
29	55	154	126	20	99	56	4500	6	5.35	5.50	38	1	240	96	20	124	24	5100	7	5.75	3.80
29	68	230	198	24	185	124	13000	9	6.00	1.30	38	4	300	116	22	172	24	26500	14	5.55	1.75
29	100	188	134	24	107	34	1050	ź	6.30	1.20	38	11	310	120	23	125	19	4400	5	5.45	2.00
29	120	118	116	24	72	24	1500	6	4.90	7.60	38	66	235	114	22	150	28	1850	3	6.10	2.70
29	140	66	84	11	72	43	3650	3	2.50	24.00	38	76	240	104	18	140	24	1700	3	5.70	4.65
29	170	64	54	13	49	18	1400	4	2.80	21.80	38	100	94	42	12	69	20	855	2	5.30	2.50
29	235	134	122	17	79	35	1850	3	2.30	1.65	38	125	116	72	15	70	28	1900	3 4	5.45	4.50
29	275	134	128	17	94	51	2850	4	5.50	1.60	38	203	76	34	16	42	18	690	4	4.70	2.80
29	305	100	106	17	96	65	5950	7	3.70	14.00	39	0	268	136	20	92	28	34000	15	5.40	1.60
29	345	138	156	19	98	39	2100	3	5.80	2.10	39	10	295	140	22	172	24	35500	14	4.95	1.70
29	380	118	122	19	85	39	2600	5	4.70	7.70	39	30	350	156	23	179	24	4700	24	5.80	2.50
29	395	118	120	16	78	39	2300	3	4.85	7.00	39	50	340	160	28	169	30	2800	4	6.30	3.10
29	440	100	92	16	79	35	3400	4	4.20	11.00	39	90	182	86	20	104	32	2550	5	5.30	6.30
29	450	124	120	19	97	39	2900	3	4.90	6.70	40	110	232	136	20	196	26	23200	5	5.20	2.20
29	500	148	192	21	148	60	5200	ŭ	5.40	2.00	40	4	335	134	27	184	28	31000	11	5.25	1,95
29	525	96	134	16	118	63	5500	5	3.50	16.40	40	21	365	118	26	182	26	3150	3	5.60	2.40
29	540	94	88	14	72	36	3200	5	3.30	18.00	40	70	275	134	22	152	27	2950	4	6,05	4.10
27	575	200	136	15	295	35	12000	13	5.20	1-65	40	0	200	92	17	109	29	3300	7	5.10	2.80
31	15	154	88	16	94	24	2100	4	5,50	3.00	41	15	170	86	16	110	24	2000	3	5.25	2.60
31	20	188	74	12	102	19	670	4	6.55	2.50	41	50	340	152	23	186	24	38000	26	5.20	1.40
31	50	100	48	11	69	19	670	3	5.45	1.80	41	100	370	120	24	92	29	5850	4	5.70	2.50
31	83	112	56	- 1	63	22	780	4	6.65	2.15	41	150	100	54	10	59	19	1000	4	5.60	2.30
31	105	98	46	9	52	19	750	4	5.65	2.50	41	200	108	66	9	42	19	2500	4	4.60	8.25
32	0	260	46	22	295	34	24500	24	5.30	1.55	41	234	68	34	14	54	25	750	3	4.30	3.05
32	15	250	66 54	21	149	22	1300	3	5.80	2.90	42	205	144	64	24	100	20	2640	2	5.00	2.00
32	73	110	62	9	69	20	860	4	5.15	2.90	42	1	200	72	19	96	20	4550	4	4.95	1.50
32	104	108	40	10	66	22	815	4	6.50	2.50	42	2	290	76	17	109	18	865	2	5.60	2.00
32	112	104	56	10	66	22	800	2	5.45	2.40	42	18	142	40	16	93	19	540	2	5+10	4+10
33	6	245	92	19	116	22	3100	3	5.20	2.35	43	0	134	60	24	79	18	2750	4	5.10	1.80
33	14	235	100	20	137	28	14500	8	4.90	1.80	43	10	88	48	14	57	17	470	3	4.70	7.70
33	18	260	104	20	116	22	1700	2	5.30	2.05	43	15	94	42	16	50	18	480	3	5.90	3.20
33	120	250	76	13	750	32	4000	5	5.20	1.80	43	100	94	40	17	50	17	460	4	5.50	2 • 10
33	136	134	76	14	73	34	8300	4	5.55	5.00	44	0	530	64	18	78	19	1500	4	4.80	2.65
33	158	112	50	10	42	23	1300	3	5.90	2.90	44	1	178	60	17	78	19	1700	44	4.90	2.80
33	170	110	52	9	44	20	1200	3	5.70	2.70	44	6 50	138	56	15	78	19	675	3	4.90	2.95
34	0	112	50	12	62	19	2520	2	4,50	3.10	44	100	58	24	11	40	20	575	3	3.90	3.10
9.1						A -		Ŭ		0110	44	133	98	42	18	38	19	545	4	5.40	2.40