This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

PAPER 67-14

DEPARTMENT OF ENERGY, MINES AND RESOURCES

COMPUTER PROGRAM FOR THE ANALYSIS OF MULTIVARIATE SERIES AND EIGENVALUE ROUTINE FOR ASYMMETRICAL MATRICES

F. P. Agterberg and G. D. Cameron

PAPER 67.14

COMPUTER PROGRAM FOR THE ANALYSIS OF multivariate series and eigenvalue ROUTINE FOR ASYMMETRICAL MATRICES
F. P. Agterberg and G. D. Cameron
(c) Crown Copyrights reserved

Available by mail from the Queen's Printer, Ottawa,
from the Geological Survey of Canada,
601 Booth St., Ottawa
and at the following Canadian Government bookshops:
otTAWA
Daly Building, Corner Mackenzie and Rideau
TORONTO
221 Yonge Street
MONTREAL
Eterna-Vie Building, 1182 St. Catherine St. West
WTNNIPEO
Mall Center Bldg., 499 Portage Avenue
Vancouver
657 Granville Street
or through your bookseller
A deposit copy of this publication is also available for reference in public libraries across Canada

Price, 75 cents Cat. No. M44-67-14

Price subject to change without notice

Roger Duhamel, f.r.s.c.
Queen's Printer and Controller of Stationery
Ottawa, Canada
1967

CONTENTS

Page
Abstract v
Introduction. 1
Formation of transition matrix 2
End corrections. 4
Extraction of components from transition matrix. 5
Method of programming used for eigenvalue routine 8
Standardized estimates of trend vectors and eigenvectors 9
Interpretation 11
Artificial example 13
Comparison to factor analysis 16
Application to Quenouille's practical example (U.S. Hog Series) 17
Operational instructions 17
Input Formats 17
Concluding remarks 18
References. 20
Appendix I, Listing of Input and Output 21
Appendix II, Program. 37
Illustrations
Table 1. Input listing for three-variate series of artificial example (AREX) 14
Figure 1. Flow chart for usage of the indexes 19
.

ABSTRACT

A computer program is presented by which the transition matrix for a multivariate series can be calculated. The solution is based on the assumption that the series satisfies a Markov scheme of the first order. By means of the eigenvalue routine, the transition matrix is divided into separate components of two types: (l) components consisting of real numbers only, and (2) components consisting of complex numbers.

The trend factors extracted from components of the first type indicate linear combinations of the variates $w i t h$ a variation pattern that is close to a smooth curve when the eigenvalue for the component is clase to unity.

Components of the second type occur in conjugate pairs and may describe cyclical variations of the variates.

COMPUTER PROGRAM FOR THE ANALYSIS OF MULTIVARIATE SERIES AND EIGENVALUE ROUTINE FOR ASYMMETRICAI MATRICES

INTRODUCTION

This computer manual is largely based on a method discussed by Quenouille (1957) for the analysis of multiple time series with econometric applications. The practical example used by Quenouille at the end of his monograph will also be used as an example in this manual.

Apart from a listing of the program and operational instructions, this paper contains a discussion of the theory that underlies the method and emphasis is put on those aspects which may be useful for the analysis of multivariate series in geology.

The number of computations that will be carried out by the program and the methods that will be used are controlled by a header card that contains ten different indexes. For instance, the program can be used to calculate means and standard deviations for data on a number of variates and to produce a graphical plot of the standard deviates. A job can be discontinued when these calculations have been made. One or more out of sixteen different methods can be chosen to compute the transition matrix for the series.

The program is an extension of techniques used by one of us to determine the dominant components of real eigenvalue from the transition matrix (Agterberg, 1966). When there are p variates, p separate components can now be extracted from the transition matrix by sending it to the eigenvalue routine.

Some of the components may form pairs of conjugate matrices consisting of complex numbers. A pair of conjugate complex components indicates that there is an oscillatory constituent in the multivariate system. Thus, cyclical variations for groups of variates can be isolated from the trends in the system. Average values for the periodicity and possible shifts in phase angle for individual variates may be computed. This method of analyzing the oscillatory constituent in a geological multivariate series has not been discussed before. The isolation of an oscillatory constituent from the system is done with the help of an application of Sylvester's theorem that is fully discussed by Frazer, Duncan, and Collar (1958).

Although this results in numerically precise estimates of an oscillatory constituent, little is known about the interpretation of the results. The application to an artificial example will be discussed in this paper. However, this manual, in the first place, shows how the necessary computations can be carried out using a digital computer. The method should be applied to more cases before definite conclusions on its points of advantage and limitation can be drawn.

The program was written for the CDC 3100 computer with 16 K memory. The maximum number of variates is eight; the maximum number of simultaneous observations is 100. Problems with more variates and observations can be treated by changing the dimension statements but more memory core will be necessary in that case. A machine method for calculating the eigenvalues and eigenvectors of an asymmetrical matrix is discussed by Francis (1961), who uses the QR transformation. The latter method was programmed for the CDC 1604 and 3600 computers by the University of Wisconsin Computing Center.

The following theoretical parts will successively deal with the formation of the transition matrix which is computed in the main part of the program, and the extraction of the components from the transition matrix which is performed by the eigenvalue routine.

FORMATION OF TRANSITION MATRIX

A multivariate series can be represented by an array of data X_{j}, k where the subscripts i and k denote variate and position of observation, respectively. When there are n observations and p variates, $X_{i, k}$ consists of n columns \underline{x}_{k} and pxn elements $x_{i, k}$.

A series $X_{i, k}$ possesses the Markov property when each of its observations can be predicted from the observation which precedes it in the series. The transition matrix U by which the prediction is carried out is computed from the entire series. The Markov schemes used in this paper are linear. By including more than one previous observation in the prediction, higher order Markov schemes could be constructed. Such schemes will not be considered here.

The matrix $X_{i, k}$ consists of the observations for the variates. It may be advisable to apply some transformation to the raw data before the computations are carried out. The program of this paper has the logarithmic transformation as an option. When a transformation is applied, the transformed data will be called $X_{i, k}$ instead of the raw data.

The transition matrix can be computed either from the deviations from the mean or from the standard deviates for the variates. These deviations and standard deviates will be called $y_{i, k}$ and $z_{i, k}$, respectively. For all values of i and k :

$$
\begin{array}{r}
\quad y_{i, k}=x_{i, k}-\bar{x}_{i}, \\
\text { and } \quad z_{i, k}=\frac{y_{i, k}}{s\left(y_{i}\right)}=\frac{x_{i, k}-\bar{x}_{i}}{s\left(x_{i}\right)},
\end{array}
$$

where the bar symbol represents the mean and s the standard deviation:

$$
s\left(x_{i}\right)=s\left(y_{i}\right)=\sqrt{\frac{\Sigma y_{i, k}^{2}}{n-1}} .
$$

Graphical plots of the $z_{i, k}$ values can be obtained by the program for successive values of i.

The $y_{i, k}$ values form a matrix $Y_{i, k}$, and the $z_{i, k}$ values form $Z_{i, k}$. For $Z_{i, k}$, the Markov scheme consists of the following p equations:

The values $e_{i, k+1}$ are random numbers.
The set of equations (I) may also be written as

$$
\begin{equation*}
\underline{z}_{k+1}=\mathrm{U}_{\underline{z}_{k}}+\underline{\mathrm{e}}_{\mathrm{k}+1} \tag{2}
\end{equation*}
$$

where $z_{k+1}, \underline{z}_{k}$, and e_{k+1} are column vectors as in Eq_{q}. (1), and the transition matrix U consists of pxp elements $u_{i j}$.

The transpose of \underline{z}_{k} is a row vector that will be denoted by z_{k}. When both sides of Eq. (2) are postmultiplied by $\underline{z}_{k}^{\prime}$ and when the results are summed for the entire series, it follows that

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \underline{z}_{\mathrm{k}}+{ }_{\mathrm{I}} \underline{z}_{\mathrm{k}}^{\prime}=\mathrm{U} \sum_{\mathrm{k}=1}^{\mathrm{n}} \underline{z}_{\mathrm{k}} \mathrm{z}_{\mathrm{k}}^{\prime}
$$

The correlation matrix R_{0} for $Z_{i, k}$ satisfies:

$$
\begin{equation*}
R_{0}=1 / n-1_{k=1}^{n} \underline{z}_{k} z_{k}^{\prime} \tag{3}
\end{equation*}
$$

By correlating each variate to all p variates from the observations that are one place behind in the series, a correlation matrix R_{1} for lag l, is obtained with

$$
\begin{equation*}
\mathrm{R}_{1}=1 / \mathrm{n}-1 \sum_{\mathrm{k}=1}^{\mathrm{n}} \underline{z}_{\mathrm{k}+1} \underline{\underline{z}}_{\mathrm{k}}^{\prime} \tag{4}
\end{equation*}
$$

It follows that Eq. (2) may be written as

$$
R_{1}=U R_{0}
$$

from which U can be solved by

$$
\begin{equation*}
\mathrm{U}=\mathrm{R}_{1} \mathrm{R}_{0}^{-1} \tag{5}
\end{equation*}
$$

In the previous derivation, the matrix $Z_{i, k}$ can be replaced by $Y_{i, k}$ with slightly different results. When the variance-covariance matrices that correspond to R_{0} and R_{1}, are called C_{0} and C_{1}, respectively, the resulting estimate for U becomes $\mathrm{C}_{1} \mathrm{C}_{0}{ }^{-1}$.

Further estimates of U can be obtained by computation of the matrix R_{2}.

$$
\begin{equation*}
R_{2}=1 / n-1 \sum_{k=1}^{n} \underline{z}_{k+2} \underline{z}_{k}^{\prime} \tag{6}
\end{equation*}
$$

leading to the estimate $\mathrm{U}=\mathrm{R}_{2} \mathrm{R}_{1}{ }^{-1}$.
This estimate can be obtained by the present computer program as well as the estimate $C_{2} C_{1}^{-1}$. In general, $U=R_{s} R_{S-1}^{-1}$ or $U=C_{S} C_{S-1}^{-1}$, with $s=1,2,3, \ldots s$. For possible advantages of using estimates of U with $s>1$, see Quenouille (1957).

End corrections

These are required before Eq. (4) can be applied. By defining the cyclical scheme with $\underline{x}_{n+1}=\underline{x}_{1}$ and $\underline{x}_{n+2}=\underline{x}_{2}$, Eq. (4) can be maintained in the form as it was reported before. A visual appreciation of the graphical plot of $Z_{i, k}$ may learn whether the application of a cyclical scheme is reasonable or not. In general, the following equations for the lagged correlation matrices should be preferred (Quenouille, 1957, p. 51):
${ }^{r}(\mathrm{ij})_{\mathrm{s}}=$

$$
\sum_{k=1}^{n-s} x_{i, k+s} x_{j, k}-\binom{n-s}{\sum_{k=1} x_{i, k+s}}\binom{n-s}{\sum_{k=1} x_{j, k}} /(n-s)
$$

$\sqrt{\left[\left\{\sum_{k=1}^{n-s} x_{i, k+s}^{2}-\left(\begin{array}{c}n-s \\ \sum_{k=1} \\ i, k+s\end{array}\right)^{2} /(n-s)\right\}\left\{\sum_{k=1}^{n-s} x_{j, k}^{2}-\left(\begin{array}{c}n-s \\ \sum_{k=1} \\ j, k\end{array}\right)^{2} /(n-s)\right\}\right]}$
with $s=1$ and $s=2$.
Either this end correction or that for the cyclical scheme can be obtained by the program.

EXTRACTION OF COMPONENTS FROM TRANSITION MATRIX

In its canonical form, the matrix U becomes:

$$
\begin{equation*}
\mathrm{U}=\mathrm{V} \Lambda \mathrm{~V}^{-1} \tag{8}
\end{equation*}
$$

The matrix Λ is a diagonal matrix with the eigenvalues of U along its diagonal Vconsists of p columns \underline{X}_{i} which are the eigenvectors of U. The subscript i indicates the eigenvalue λ_{i} to which \underline{V}_{i} corresponds. The λ_{i} are defined so that their magnitude decreases when i increases. The inverse of V will be written as T with p rows $\underline{t}_{i}^{\prime}$.

Eq. (8) may also be written as

$$
\begin{aligned}
U & =\lambda_{1} v_{1} \underline{t}_{l}^{*}+\lambda_{2} \underline{v}_{2} \underline{t}_{2}^{\prime}+\ldots \ldots+\lambda_{1} \underline{v}_{i} \underline{v}_{i}^{\prime}+\ldots . .+\lambda_{p} \underline{v}_{p} \underline{t}_{p}^{\prime} \\
\text { or } U & =\sum_{i=1}^{p} \lambda_{i} v_{i} \underline{t}_{i}^{\prime}
\end{aligned}
$$

The component U_{i} for root λ_{i} is defined by $U=\lambda_{1} y_{i}{ }^{\perp}{ }_{i}$.
Hence $U=\sum_{i=1}^{p} U_{i}$ which can be used to check the precision of the computations once all components U_{i} have been computed.

Raising U to the power s results in

$$
\begin{equation*}
U^{s}=\lambda_{1}^{s} \underline{y}_{1} t_{1}^{\prime}+\lambda_{2}^{S} \underline{y}_{2} \frac{t}{-2}+\ldots \ldots+\lambda_{p}^{s} \underline{v}_{p} \frac{t}{p}^{\prime} \tag{10}
\end{equation*}
$$

- 6 -

The previous equations apply to both real and imaginary values for λ_{i}. When the largest root λ_{1} is real, U^{S} will converge to the form $\lambda_{1}^{s} \underline{\Sigma}_{1} \perp_{1}^{\prime}$. It may also occur that U^{s} converges to $\lambda_{1}^{s} \underline{y}_{1} \underline{t}_{1}^{\prime}+\lambda_{2}^{s}{ }_{2} \underline{t}_{2}^{\prime}$ when λ_{1} and λ_{2} form a conjugate pair of complex roots with

$$
\lambda_{I}=\mu+i \omega \text { and } \lambda_{2}=\mu-i \omega
$$

Both possibilities will be considered.
If the dominant root is real, the elements of $\mathrm{U}^{\mathrm{s}+1}$ can be divided by the elements of U^{s} and the elements of the resulting matrix will all be equal to λ_{1}, when convergence has been reached. In that case, U_{1} is found from $U_{1}=U^{S} / \lambda_{1}^{s-1}$, and Σ_{1} and Σ_{1}^{\prime} can be readily extracted from the matrix $\mathrm{U}^{\mathrm{s}} / \lambda_{1}^{\mathrm{s}}$.

When U_{1} is subtracted from U, raising of the difference $U-U_{1}$ to a high power will yield λ_{2} when this is a real number. All components can be successively estimated, provided that the method is extended to account for the case of complex roots.

In the latter case, the coefficients of the vectors \underline{V}_{2} and $\frac{t}{f}$ are conjugate to those of \underline{v}_{1} and $\underline{E}_{1}^{\prime}$. The same applies to the elements of U_{1} and U_{2} in this case. The sum $\mathrm{U}_{1}+\mathrm{U}_{2}$ consists of real elements and will be written as $U_{1,2}$.

In order to determine $U_{1,2}, \underline{V}_{1}$ and $\frac{t}{1}$, use is made of Sylvester's theorem. When all roots are distinct, Sylvester's theorem for any polyno~ mial of U is:

$$
\begin{equation*}
P(U)=\sum_{i=1}^{p} P\left(\lambda_{i}\right) Z_{0}\left(\lambda_{i}\right) \tag{11}
\end{equation*}
$$

where $Z_{0}\left(\lambda_{i}\right)$ is the square matrix

$$
\begin{equation*}
Z_{0}\left(\lambda_{i}\right)=\prod_{j \neq i}\left(\lambda_{j} I-U\right) \quad \prod_{j \neq i}\left(\lambda_{j}-\lambda_{i}\right) \tag{12}
\end{equation*}
$$

I represents the pxp unit matrix.
The equations (9) and (10) are special cases of (11) with $Z_{0}\left(\lambda_{i}\right)=x_{i} t_{i}$ and $P(U)=U$ and $P(U)=U^{S}$, respectively.

When the roots of greatest modulus are $\lambda_{1}=\mu+i w$ and $\lambda_{2}=\mu-i \omega, P(U)$ can be chosen as

$$
\begin{gather*}
-7- \\
P(U)=U S P_{0}(U) \tag{13}
\end{gather*}
$$

with $P_{0}(U)=\left(\lambda_{1} I-U\right)\left(\lambda_{2} I-U\right)$.
$P_{0}(U)$ is independent of s.
For large s:

$$
\begin{gather*}
U^{s} P_{0}(U)=\lambda_{1}^{s} P_{0}\left(\lambda_{1}\right) Z_{0}\left(\lambda_{1}\right)+\lambda_{1}^{s} P_{0}\left(\lambda_{2}\right) Z_{0}\left(\lambda_{2}\right) \quad \text { or } \\
U^{s}\left(\lambda_{1} I-U\right)\left(\lambda_{2} I-U\right)=N \tag{14}
\end{gather*}
$$

where N is the pxp null matrix.
As in the case for a real dominant root, this relationship applies to all elements of U^{s}. Hence, with Eq. (13), it is found for an element e_{s} of U^{S} that

$$
\begin{equation*}
\left(\mu^{2}+\omega^{2}\right) e_{s}-2 \mu e_{s+1}+e_{s+2}=0 \tag{15a}
\end{equation*}
$$

where e_{s+1} and e_{s+2} refer to elements of U^{s+1} and U^{s+2} that take the same position as e_{S} in U^{s}. For another element indicated by f :

$$
\begin{equation*}
\left(\mu^{2}+w^{2}\right) f_{s}-2 \mu f_{s+1}+f_{s+2}=0 \tag{15b}
\end{equation*}
$$

The modulus $r=\sqrt{\mu^{2}+\omega^{2}}$ or

$$
r=\sqrt{\frac{e_{s+1} f_{s+2}-f_{s+1} e_{s+2}}{e_{s} f_{s+1}-f_{s} e_{s+1}}}
$$

can be tested for convergence.
When convergence has been reached, μ and ω are solved by Eqs. (15a) and (15b).

The component $\mathrm{U}_{1,2}$ is found as follows. When in Eq. (13), $P_{0}(U)$ is put equal to $P_{0}(U)=\lambda_{2}{ }^{I}-U$, for large s :

$$
Z_{0}\left(\lambda_{1}\right)=\frac{U^{s}\left(\lambda_{2} I-U\right)}{\lambda_{1}^{S}\left(\lambda_{2}^{-\lambda_{1}}\right)}
$$

The elements of $Z_{0}\left(\lambda_{2}\right)$ are the conjugates of those of $Z_{0}\left(\lambda_{1}\right)$. From $Z_{0}\left(\lambda_{1}\right)=\underline{v}_{1} \underline{t}_{1}$ and $Z_{0}\left(\lambda_{2}\right)=\underline{v}_{2} \underline{t}_{2}^{\prime}$, it follows that the first rows of $Z_{0}\left(\lambda_{1}\right)$ and $Z_{0}\left(\lambda_{2}\right)$ can be used as estimates for t_{1}^{\prime} and t_{2}^{\prime}, respectively. The first columns of these matrices can be used to obtain corresponding estimates for \underline{v}_{1} and \underline{y}_{2} after the elements of the se columns are divided by the first element. This method was followed by Quenouille (1957) and these estimates of $\underline{t}^{\prime \prime} \underline{t}^{\prime}{ }_{2}, \underline{\mathrm{v}} 1^{\prime}$, and \underline{v}_{2} will be referred to as "Quenouille's estimates".

In this computation, the value λ_{1}^{5} is readily computed by writing λ_{1} in its polar form:

$$
\lambda_{1}=r(\cos \theta+i \sin \theta)
$$

with $\theta=\arctan \omega / \mu$.
Hence:

$$
\lambda_{1}^{s}=r^{s}(\cos s \theta+i \sin s \theta) .
$$

The combined components $U_{1,2}=\lambda_{1} Z_{0}\left(\lambda_{1}\right)+\lambda_{2} Z_{0}\left(\lambda_{2}\right)$ are subtracted from U. When the difference is raised to a high power, it will converge either to a form determined by U_{3} when the dominant root is real, or to a form determined by $U_{3,4}$ which designates the combined components for a pair of complex roots. It is defined that $U_{i, i+1}$ refers to the combined components for the pair of complex roots λ_{i} and λ_{i+1}.

Method of programming used in the eigenvalue routine

The process of convergence for higher powers can be very slow when successive eigenvalues are approximately equal to one another. The following scheme of powering results in precise solutions for the eigenvalues in most instances.
$2{ }^{2}$ From U, the following matrices are successively computed: $U^{2}, U^{4}, U^{8}, U^{16}, U^{32}, U^{64}, U^{128}, U^{256}, U^{512}, U^{1024}, \ldots \ldots$ In consequence, very high powers of U can be reached within a relatively short time.

For each power U^{S}, the matrices U^{s+1}, U^{s+2}, and U^{S+3} are also computed. When e and f refer to the first two elements of the first rows of these matrices, the values $p_{1}=e_{s+1 / e_{s}}$ and $p_{2}=e_{s+3 / e_{s+2}}$ can be
computed. When convergence is satisfactory:

$$
\Delta \mathrm{p}=\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|<\mathrm{c}_{\mathrm{R}},
$$

where c_{R} is a small positive constant that can be entered on the header card of the program (columns 31-40).

When $\mathrm{p}>\mathrm{c}_{\mathrm{R}}$, values r_{1} and r_{2} can be computed as follows:

$$
\begin{equation*}
r_{1}=\sqrt{\left|\frac{e_{s+1} 1_{s+2}-f_{s+1} e_{s+2}}{e_{s} f_{s+1}-f_{s} e_{s+1}}\right|} \tag{16a}
\end{equation*}
$$

and r_{2} is the expression for r_{1} with s replaced by $s+1$.
When $\Delta r=\left|r_{1}-r_{2}\right|<c_{I}$, convergence for the case of two complex roots is accepted. c_{I} can also be entered on the header card (columns 41-50). If no values are entered in columns 31-50 of the header card, c_{R} and c_{I} are put equal to .000005 and .0000005 , respectively.

On the CDC 3100 computer, the exponent of decimal numbers should have a resultant between 10^{-308} and 10^{308}. In order to avoid overflow of the exponent, which may happen for very high powers of U, all elements of U^{S} are divided by the first element of $U^{S}\left(e_{S}\right)$ when $e_{S}>150$. Subsequent computations are corrected using the relationship

$$
(c U)^{s}=c^{S} U^{s},
$$

where c is a constant.

Standardized estimates of trend vectors and eigenvectors

The rows of the T-matrix (t_{i}^{\prime}) are referred to as trend vectors, and the columns of the V-matrix $\left(v_{i}\right)$ are called the eigenvectors. In both cases of a real root and of a pair of complex roots, the trend vector and eigenvector are first estimated by putting the first coefficient of v_{i} equal to 1 . In the case of a pair of complex roots, these estimates are printed and labelled "Quenouille's estimates".

When λ_{i} is real, the linear combination $\underline{t}_{i}{ }^{\prime} z$ is called the ith trend factor and the individual values of $\underline{t}_{i} z_{k}$ are the trend factor scores for $t_{i}^{\prime} z$ 。

Before they are printed out, the trend vector and the eigenvector are standardized by multiplication by $1 /$ STF and STF, respectively. STF represents the standard deviation of the trend factor scores. The latter are also multiplied by $1 / \mathrm{STF}^{2}$ before they are printed out and appear in the graphical plot of the program.

When λ_{i} and λ_{i+1} form a pair of complex roots, the Quenouille's estimates of the real and imaginary parts of the trend vector ($t_{i R}$ and $t i=$ are divided by STFR and STFI, respectively. The latter two standard deviations apply to the values of the "real trend factor scores" ($\hat{V}_{R} \underline{Z}_{k}$) and the "imaginary trend factor scores" ($t_{1}^{\prime}{\underset{k}{k}}^{\prime}$), respectively. Real and imaginary trend factor scores are listed and plotted using standard scale. The real and imaginary parts of the eigenvector are multiplied by $2 x S T F R$ and $-2 x S T F I$, respectively.

When there are p variates, there are p patterns of trend factor scores which are shown graphically. The coefficients by which the individual elements describe these patterns are given by the coefficients of the eigenvectors.

In the case of complex roots, the elements describe the pattern of the real trend factor scores by the coefficients of the real part of the (standardized) eigenvector, and the pattern of the imaginary trend factor scores by those of the imaginary part of the eigenvector. Summarizing, it may be said that the variation pattern for the multivariate series Z_{k} is analysed in terms of the trend factors by using the following equation.

When q of the p eigenvalues are real, each observation \underline{z}_{k} is divided into

$$
\begin{align*}
& \underline{z}_{k}=\Sigma \underline{v}_{i}\left(t_{i}^{\prime} \underline{z}_{k}\right)+\Sigma\left[\underline{v}_{j R}\left(t_{j R}^{\prime} R_{k}\right)+\underline{v}_{j I}\left(t_{j I}^{\prime} I_{k}\right)\right] \tag{18}\\
& q \quad \frac{p-q}{2} \\
& \mathcal{I}_{k}=\text { column vector for observation } k \\
& v_{i}=\text { eigenvector for real root } \lambda_{i} \\
& \text { (t. }{ }_{i} \mathcal{Z}_{k} \text {) }=\text { trend factor score for real root } \lambda_{i} \\
& \underline{v}_{j R}=\text { real part of eigenvector for complex roots } \\
& \lambda_{j} \text { and } \lambda_{j+1} \quad \begin{array}{l}
(j \text { labels pairs of complex roots while } \\
i \text { goes from } I \text { to } p)
\end{array} \\
& \left(t^{\prime} R^{Z_{k}}\right)=\text { real trend factor score for complex roots } \\
& \lambda_{j} \text { and } \lambda_{j+1} \\
& v_{j I}=\text { imaginary part of eigenvector }\left(\lambda_{j} \text { and } \lambda_{j+1}\right) \\
& \left(t_{j I}^{\prime}{ }_{k}\right)=\text { imaginary trend factor } \operatorname{score}\left(\lambda_{j} \text { and } \lambda_{j+1}\right) \text {. }
\end{align*}
$$

Eq. (18) is equivalent to

$$
\begin{equation*}
\underline{z}_{k}=V\left(T z_{k}\right), \text { because } T=V^{-1} \tag{19}
\end{equation*}
$$

From Eq. (2), it follows that

$$
\left.\begin{array}{l}
\underline{z}_{k+1}=V \Lambda\left(T \underline{z}_{k}\right)+\underline{e}_{k+1} \tag{20}\\
\underline{z}_{k+s}=V \Lambda^{s}\left(T \underline{z}_{k}\right)+\underline{e}_{k+s}
\end{array}\right\}
$$

When both sides of these equations are premultiplied by T, it follows that for each trend factor i

$$
\left.\begin{array}{l}
t_{i}^{\prime} z_{k+1}=\lambda_{i}\left(t_{i}^{\prime} \underline{z}_{k}\right)+e_{k+1}^{*} \tag{21}\\
t_{i}^{\prime} \underline{z}_{k+s}=\lambda_{i}^{s}\left(t_{i}^{\prime}{\underset{z}{k}}^{k}+e_{k+s}^{*}\right.
\end{array}\right\}
$$

where the values of e^{*} are random numbers. When the expression $E(.$. denotes 'expectation', it follows that

$$
\left.\begin{array}{l}
E\left(t_{i}{\underset{i}{k+1}}\right)=\lambda_{i}\left(t_{i}^{z} z_{k}\right) \tag{22}\\
E\left(t_{i} \frac{z_{k+s}}{}\right)=\lambda_{i}^{s}\left(t_{i} z_{k}\right)
\end{array}\right\}
$$

These relationships hold also true when irefers to a complex root.
When λ_{i} is real, it represents the first serial correlation coefficient of a one-variate Markov scheme. As a check for the precision of λ_{i}, the first serial correlation coefficient for the series of $\underline{t}_{i} \underline{Z}_{k}$ can be computed.

The first trend factor t z represents the linear combination of the p variates that, out of all possible linear combinations, has the strongest serial correlation or 'most' trend in its pattern of $\underline{t}_{1} z_{k}-$ values. When λ_{2} is also real, the second trend factor represents the linear combination with most trend for a reduced system from which the effect of the first trend factor has been eliminated.

Linear combinations of the variates that result in a relatively smooth pattern may have physical significance. In geological multivariate series, the measured variates may have been controlled by physical agencies that were subject to a gradual change. Such controlling agencies may be linearly related to the first one or more trend factors.

The individual variates follow a trend factor with amplitudes given by the coefficients of the eigenvector.

It may not be possible to assign direct geological significance to the coefficients for the individual variates in the trend vectors and eigenvectors when approximate linear relationships between the variates do exist. For example, when there is such a relationship $a^{\prime} z_{k} \approx 0$ for all observations k, with a " being a row vector, then $t_{1} z_{k}+\underline{c}_{a_{2}^{\prime}}^{Z_{k}}$, where c is an arbitrary constant, may have nearly the same variation pattern as $\underline{t}_{i} \underline{z}_{k}$, but the coefficients of the new linear relationship may be quite different. Approximate linear relationships are likely to show up in the estimated coefficients of trend vectors and eigenvectors. As yet, no solution has been found to eliminate their effect.

Examples of geological series with a first trend factor of real root that may have physical significance are discussed by one of us (Agterberg, 1966).

For a trend factor of real root, the expectation $E\left(t_{i}{ }_{i} Z_{k}\right)$ decreases exponentially when s increases for all points k. Hence, the expectations $E\left(\Sigma_{1} t_{i} z_{k}\right)$ of all variates j also show an exponential decrease for increasing s.

When the roots form a complex pair, the following interpretations can be made. If

$$
\mu \pm i \omega=r(\cos \theta \pm i \sin \theta)
$$

and
it follows that
results in:

$$
\left.\begin{array}{l}
E\left(t^{t} R^{z} z_{k+s}\right)=r^{s} p_{k} \cos \left(\theta s+\psi_{k}\right) \tag{23}\\
E\left(t^{\prime} I^{z} k+s\right)=r^{s} p_{k} \sin \left(\theta s+\psi_{k}\right)
\end{array}\right\}
$$

The expressions for the expected real and imaginary parts of the trend factor are the same, except for a shift in phase angle of 90°. The expression $r^{s} p_{k} \cos \left(\theta s+\psi_{k}\right)$ consists of the parts $r^{s} p_{k}$, which reflects an exponential decrease that is different for each point k, and a set of stationary oscillations
$\cos \left(\theta_{s}+\psi_{k}\right)$, with a phase given by ψ_{k} that is different for each point k, but angular frequency θ that is independent of position along the series. The corresponding periodicity T is equal to $T=2 \pi / \theta$. It represents the number of sampling intervals over which an oscillation is completed.

When the eigenvectors $V_{R} \pm i \underline{V}_{\mathcal{I}}$ are written as $q(\cos \underline{\underline{1}} \mathrm{i} \sin \underline{\varphi} \underline{\text {) , }}$ where q and $\underline{\varphi}$ are column vectors consisting of the elements q_{j} and φ_{j} for the variates \bar{j}, the pattern which the variate j describes for the components $\mathrm{U}_{\mathrm{j}, \mathrm{j}+\mathrm{l}}$ is

$$
\begin{align*}
z_{j, k+s} & =r^{s} p_{k} q_{j} \cos \left(\theta s+\psi_{k}+\varphi_{j}\right)+i \sin \left(\theta s+\psi_{k}+\varphi_{j}\right)+ \\
& +r^{s} p_{k} q_{j} \cos \left(\theta s+\psi_{k}+\varphi_{j}\right)-i \sin \left(\theta s+\psi_{k}+\varphi_{j}\right) \\
& =2 r^{s} p_{k} q_{j} \cos \left(\theta s+\psi_{k}+\varphi_{j}\right) \tag{24}
\end{align*}
$$

This is the pattern of the real part of the trend factor

$$
r^{s} p_{k} \cos \left(\theta s+\psi_{\mathrm{k}}\right)
$$

with the following two additions:
(1) a shift in phase angle equal to φ_{j}
(2) a factor of $2 \mathrm{q}_{\mathrm{j}}$ added to the amplitude.

Artificial example

The previous interpretation for an oscillatory constituent in the multivariate system is illustrated by the following example. In Table l, a three-variate series is listed which was obtained as follows:

$$
\begin{aligned}
& x_{1, k}=\sin (10 k-10)^{\circ}+e_{1}(0,0.5) \\
& x_{2, k}=\sin (10 k-30)^{\circ}+e_{2}(0,0.5) \\
& x_{3, k}=\sin (10 k-60)^{\circ}+e_{3}(0,0.5) \text { with }=1,2, \ldots, 36 .
\end{aligned}
$$

The random numbers e ($0,0.5$) come from a normal distribution with zero mean and standard deviation equal to 0.5 .
$x_{i, k}$ describes a complete sine-curve that begins at $k=1$. A random normal residual was added to each of the 36 individual values which are 10° apart. $x_{2, k}$ and $x_{3, k}$ describe similar sine-curves but with shifts in phase angle of 20° and 50°, respectively.

TABLE 1

Input listing for three-variate sexies of artificial example (AREX)

| AREX | 300000101010001010101 | .000005 | |
| ---: | ---: | ---: | ---: | ---: |
| 1 | . .23200 | -.24502 | -.84704 |
| 2 | .24215 | .42235 | -.71079 |
| 3 | 1.56952 | -.25050 | .01650 |
| 4 | .33850 | .03715 | -.24052 |
| 5 | .60879 | 1.03902 | .05035 |
| 6 | .91404 | .22250 | .37400 |
| 7 | .72203 | .61979 | -.03785 |
| 8 | 1.58869 | .92654 | .12602 |
| 9 | 1.10531 | 2.33853 | .15500 |
| 10 | .52150 | 1.92669 | 1.02079 |
| 11 | 1.01481 | .85581 | -.04296 |
| 12 | -.32331 | 1.20600 | .69353 |
| 13 | . .60353 | 1.20431 | .68419 |
| 14 | . .66904 | .92219 | -.04069 |
| 15 | . .91429 | 1.31903 | .77150 |
| 16 | -.27900 | .50954 | .87581 |
| 17 | .43552 | .38029 | 1.36819 |
| 18 | -.42135 | .79750 | .63353 |
| 19 | .01100 | .78252 | 1.45204 |
| 20 | .08885 | -.29335 | .75529 |
| 21 | .4 .0098 | .78950 | .68900 |
| 22 | $-.677 \cup 0$ | -.09315 | .72252 |
| 23 | -.95979 | -1.28452 | .26415 |
| 24 | -.41754 | -.31450 | -.36800 |
| 25 | -.40303 | -.05329 | .30635 |
| 26 | -.25219 | -1.29354 | -1.10702 |
| 27 | -.59231 | -.86253 | -.63000 |
| 28 | -1.48150 | -.55519 | -.58279 |
| 29 | -1.41131 | -.49931 | -1.00704 |
| 30 | -1.87219 | -.64400 | -.02703 |
| 31 | -.35503 | -.43981 | -.96819 |
| 32 | -.99704 | -1.25519 | -1.59931 |
| 33 | -.01229 | -.99353 | -1.24300 |
| 34 | $1.260 N$ | -1.11704 | -.55681 |
| 35 | -.05652 | -1.39329 | -1.18519 |
| 36 | -1.09915 | -.74400 | -1.85753 |

The purpose of the statistical analysis is to determine the periodicity of the system and the phase differences between the three variates.

The transition matrix as computed from R_{0} and R_{1} (cyclical scheme) is:

$$
\mathrm{U}=\left[\begin{array}{rrr}
.41 & .39 & -.20 \\
.21 & .67 & -.05 \\
-.04 & .49 & .39
\end{array}\right]
$$

The first two eigenvalues of U appear to form a complex pair with

$$
\lambda_{1,2}=.665 \pm .084 i
$$

It follows that $r=.670$, and $\theta=.126$ (radians).
From $T=2 \pi / \theta$, it follows that the periodicity $T=49.9$.
This value is higher than the periodicity of 36 sampling intervals assigned to the series before the random residuals were added.

The Quenouille's estimates of $t_{R}, t_{I}, \underline{v}_{R}$, and \underline{v}_{I} are

$$
\dot{t}_{R}=\left[\begin{array}{r}
.221 \\
.337 \\
-.150
\end{array}\right] ; \dot{t}_{I}=\left[\begin{array}{r}
-.233 \\
-.152 \\
.242
\end{array}\right] ; \underline{v}_{R}=\left[\begin{array}{c}
1.000 \\
1.735 \\
2.048
\end{array}\right] ; z_{I}=\left[\begin{array}{r}
.000 \\
-1.266 \\
-.286
\end{array}\right]
$$

From $\underline{y}_{R} \pm i \underline{y}_{\underline{L}}$, the vectors q and $\underline{\underline{L}}$ can be estimated

$$
q=\left[\begin{array}{l}
1.000 \\
2.147 \\
3.514
\end{array}\right] \text { and } \varphi=\left[\begin{array}{r}
.000 \\
-.630 \\
-.949
\end{array}\right]
$$

where φ_{j} is reported in radians.
For the original series without random residuals the shift in phase angle of x_{2} and x_{3} with respect to x_{1} are 20° and 50°, respectively, or

$$
\varphi_{0}=\left[\begin{array}{r}
.000 \\
-.349 \\
-.873
\end{array}\right]
$$

When U is estimated from R_{1} and R_{2}, the computed periodicity is $T=44.3$ and

$$
\underline{\varphi}_{2}=\left[\begin{array}{c}
.000 \\
-.471 \\
-.895
\end{array}\right]
$$

In evaluating the results obtained by the method discussed here, in general, two types of error will occur:
(1) estimation errors due to the fact that the series is not infinitely large;
(2) errors inherent to the model that assumes a first order Markov scheme for the series, which, in most cases, is an approximation only.

Comparison to factor analysis

The linear model that is generally used in factor analysis (Harman, 1964, p. 16) is

$$
\begin{align*}
& z_{1}=a_{11} F_{1}+a_{12} F_{2}+\ldots a_{1 m} F_{m}+a_{1} U_{1} \\
& z_{2}=a_{21} F_{1}+a_{22} F_{2}+\ldots a_{2 m} F_{m}+a_{2} U_{2} \tag{25}\\
& \ldots \ldots \sum_{1} \ldots \ldots a_{p m} F_{m}+a_{p} U_{p} \\
& z_{p}=a_{p 1} F_{1}+a_{p 2} F_{2}+\ldots a_{1}
\end{align*}
$$

where $m \leq p$. Each variate z_{j} is expressed in terms of m common factors F_{i} and its unique factor U_{j}. The common factors are linear combinations of the p variates and have unity variance. Hence, they can be compared to the trend factors and the coefficients $a_{j i}$ to the coefficients of the eigenvectors. In the method of Markov schemes there is no equivalent for the unique factors.

The coefficients $a_{j i}$ and a_{i} in the factor model are computed from the correlation matrix R_{0} as follows. The unit values along the leading diagonal of R_{0} are replaced by the communalities $h_{j}^{2}=1-a_{j}^{2}$, which are estimated after making an assumption on the number of relevant factors present in the system (m). The resulting modified correlation matrix R is divided into separate components similar to the components extracted from U in this paper. This leads to an initial factor matrix solution consisting of $\mathrm{p} \times \mathrm{m}$ elements, which is generally subjected to some rotation in order to make it possible to assign direct physical meaning to the m common factors and the coefficients $a_{j i}$. Methods of factor analysis have been refined extensively. Similar refinements are not available for the method of Markov schemes.

The usefulness of the present method, which applies to series only, is twofold:
(1) The first one or more trend factors may provide estimates of the linear combinations of the variates that show a relatively smooth variation pattern. The first trend factor represents the linear combination that has the largest first serial correlation coefficient that is possible.
(2) When oscillatory constituents are present in the system, they may be computed and described in terms of the complex components. When more than one of the variates are subject to an oscillatory constituent but when there are shifts in phase angle between the variates, these properties of the system can be described by the present method as it was illustrated by the preceding analysis of an artificial example.

APPLICATION TO QUENOUILLE'S PRACTICAL EXAMPLE

 (U.S. HOG SERIES)Appendix I shows the input and part of the output obtained by the program for the practical examples discussed by Quenouille (1957, pp. 88-101). In the input, the five variates of Quenouille's Table 8. la are listed by year. In the graphical plots of the output, the 82 observations are coded 1-82. The fine columns of the input consist of transformed values for number of hogs ($x_{1, k}$), price of hogs (x_{2}, k), price of corn ($x_{3, k}$), supply of $\operatorname{corn}\left(x_{4}, k\right)$, and farm wage rate ($x_{5, k}$), respectively.

The computed values for the oscillatory constituent are close to those obtained by Quenouille who stated: "... this approach involves considerable computation with as many as five variates. While it may be possible to do this rapidly on an electronic computer, no programme was available for this purpose. .."

The oscillatory constituent corresponds to the third and fourth eigenvalues. The oscillations can be seen in the graphical plots for the real and imaginary trend factor scores. A shift in phase angle of about T/4 or 90° as predicted by Eq. (23) between the two patterns seems to be present. In the graphical plots, the trend factor scores are shown as xes. Their five-point moving average is indicated by asterisks.

The listings for the example are followed by a listing of the computer program (Appendix II).

OPERATIONAL INSTRUCTIONS

The logical flow of the program is determined by a set of 10 indexes which are read from the header card of each data set. The indexes are summarized in the listing of the source program and in the flow chart (Fig. 1). The indexes 3, 5, 9, and 10 are "stopping" indexes, inasmuch as if any of them is zero, a problem is terminated at this point.

Input Formats
Each problem is defined by one header card which must be brought in from the card reader whether or not the data cards are on magnetic tape. Its format is as follows:
cols. 1-4 (R4) alpha-numeric identification;
cols. 5-6 (I2) NVAR = number of variates per observation
(maximum number allowed in present compilation is 8);
cols. 7-26 (1012) the 10 indexes in 102 -col. fields;
cols. 27-30 not used;
cols. $31-40$ ($\mathrm{F}^{2} 10$) value of tolerance for convergence in case of dominant real roots. If this field is left blank, a value of . 000005 is assumed.
cols. 41-50 (F10.0) value of tolerance for convergence in case of dominant pair of imaginary roots. If this field is left blank, a value of .0000005 is assumed.

Columns 27-30 and 51-80 are not read and may be punched with any alpha-numeric information.

The data cards are formated as follows: (If magnetic tape is used, the records on tape must be in this card image format)
cols. l-4 (R4) any non-blank alpha-numeric identification, may differ from card to card;
cols. $5-14,15-24,25-34,35-44,45-54,55-64,65-74$ (7F10.1) values of the variates, in order, up to 7. In case 8 variates are used, a second card follows with Flo.l in cols. 1-1, 0 .

For each observation, there are thus 2 cards (or card images on tape) if 8 variates are used, and 1 card (or card image) if 7 or less variates are used.

Concluding remarks

The program will accept up to 100 observations per problem, and up to 8 variates per observation. This restriction is imposed by the amount of memory core on the computer on which the program was compiled. For other computers, this may be changed by altering the dimension statements in the main program and all subroutines. It is noted that most doubly dimensioned variates are 9×9. This is because the matrix inversion subroutine used requires an extra row and extra column for scratch storage, and this must be allowed for in the dimension statements.

There is no limit on the number of problems that may be run simultaneously. Each problem is independent of all others and its flow is controlled by the information of the header card. When the input is from cards only, each individual job is followed by the same number of blank cards as there are cards per observation in that job. Therefore, if there are 8 variates per observation, so that each observation requires two cards, then two blank cards must follow that problem before the header card of the next problem. If there are 7 or less variates per observation, a problem is followed by a single blank card only. When the input data are from magnetic tape, each problem is separated by an end of file check.

Figure 1. Flow chart for usage of the indexes.

In order to terminate processing at the end of a complete run, one final dummy header card is inserted which is actually a blank card. Therefore, when there are 8 variates per observation, a run is terminated when there are 3 blank cards following the last problem. When there are 7 or less variates, there are 2 blank cards at the end.

The input formats are controlled by format statement No, 1 for the header card, and No. 2 for the data cards. The input formats can be altered by changing these format cards in the main program.

In subroutine ROOT, 6 statements beyond statement 1540 , the exponent of the first element of U^{S} is compared to 150 . This number was chosen because all decimal numbers in the matrices US-Us+3 must have a resultant between 10^{-308} and 10^{308} (see theoretical part). For other computers, a number different from 150 may be used.

In subroutine ROOT, 1 statement beyond statement 1590 , the power s of U^{S} is compared to 10,000 . When $\mathrm{s}>10,000$, a job is discontinued. The purpose of this test is to safeguard the computer from unlimited powering when the structure of the matrix U would be such that $U S$ will not converge.

It may be assumed that the results obtained by subroutine ROOT are numerically precise when the elements of the check sum matrix printed at the end of a problem solution are nearly equal to those of the original transition matrix (see theoretical part).

In the graphical plots of the output, the x-es represent the standard deviates, and the asterisks their 5 -point moving average values. Values equal to or larger than 4 and equal to or less than -4 are plotted as 4 and -4 , respectively.

REFERENCES

Agterberg, F.P.
1966: The use of multivariate Markov schemes in petrology; J. Geol., vol. 74, pp. 764-786.

Francis, J.G. 1961: The QR transformation: Computer J., 4, pp, 265-271, and 332-340.
Frazer, R.A., Duncan, W.J., and Collar, A.R.
1960: Elementary matrices; Cambridge University Press.
Harman, H. H. 1960: Modern factor analysis; The University of Chicago Press.
Quenouille, M.H.
1957: The analysis of multiple time-series; London, Charles Griffin and Co.

APPENDIX I

LISTING OF INPUT AND OUTPUT

\qquad

.9923
.2411
1.3309
.1485
STANDARD DEVIATIONS
.6993
82.0828

-26 -

REAL ROOT NO.	1 AFTER POWER	64	ROOT $=9.779271$	94E-01
TREND VECTOR $2.44208 \mathrm{E}-01$	T(J) γ STF $\text { 2. } 08064 \mathrm{E}=01$	3.42308E-01	4.17409F-01	4.04604E-02
EIGENVECTOR $=V(I) * S T F$				
8.15445E-01	1.00248E 00	7.28816E-01	7.15428E-01	1.0ヶ198E 00
STANDARD DEVIATION OF RAW TREND FFACTOR = STF 8.15444971E-01				
COMPONENT $=$ UC ($[, J)$				
1.94742E-01	1.65920E-01	2.72972E-01	3.32861F-01	3.22650E-02
2.39409E-01	$2.03974 \mathrm{E}-01$	3.35580t-01	4.09204F-01	3.96686E-02
1.740b4E-01	1.48293E-01	2.43972E-01	2.97499E-01	2.88388E-02
1.708S7E-01	1.45569E-01	2.39491E-01	2.92035E-01	2.83073E-02
2.60783E-01	2.22185E-01	3.6554 EE-01 $^{\text {a }}$	$4.45738 \mathrm{E}-01$	4.32105E-02

GRAPHICAL PLOT OF TREND FACTOR SCORES

GRAPHICAL PLOT OF TREND FACTOR SCORES

MOUILLUS $=0$. Hのら゙7152ot－01
REAL PART OF HNOIS
5．勺ذ784098E－01
4－113093657E－01
PERIOUICITY IN NO UF SAMHLING INIERVALS $=1.00132790 E 01$
QUENOUILLE ${ }^{*}$ S ESTIMATE OF REAL PAKT OF THEND VECTORS
3．04831E－01－1．月0157E゙－01－2．187ロとE゙－01－2．06683F－01
QUENUUILLE＊S ESTIMATE OF IMAGINAHY PART UF TREND VECTORS
－ $4.34187 E-02 \quad-0.00868 E-01 \quad 3.34002$ E－01 $3.54784 F-02$
QUENOUILLE゙\＆S HSTIMAIE UF REAL PART OF EIUENVECTORS
1．00000E 00－ $3.53683 E-01$－ 1.1016 OE 00 7．64188F－01
QUENOUILLEFS FSTIMATE OF IMAGINARY PART UF EIGENVECTORS
－ 2.68941 － 01 1．71597F－01
2．24223518F－01

STANDARD UE゙VIATION FIUR IMAGINAKY PAHY

1．35950E 00－8．30゙くでタF－01
IMAGINARY PART OF THENID VECTURS
$1.28138 E \quad 00$
N
0
1
u

\sim
N
M
M
0
i
$1.21290 \mathrm{~F}-01$
$3.42698 \mathrm{E}-01$
1.14391 E $\cup 0$
-4.94010 t－01

IMAGINARY RART OF EIGENVECTOKS

U	－3．36975E－01	$3.32840 \mathrm{E}-01$	－1．00387E－01	－4．74276E－02
REAL PART OF COMPONENTS $=2 R([, J)$				
3．04831E－01	－1．86157E－01	－2．18788E－01	－2．06683E－01	2．24701E－01
－2．06480E－01	5．05062E－01	－5．91430E－03	1．56047E－01	－4．07764E－01
－3．88953E－01	－1．36788E－01	4．31387E－01	2．47868E－01	－3．42839E－02
2．48979E－01	－3．91519E－02	－2．24612E－01	－1．64033E－01	1．07397E－01
－5．54978E－02	$8.75348 \mathrm{E}-02$	1．85010E－02	4．02266F－02	－7．72467E－02
IMAGINARY PAR	OF COMPONENT	7I（I．J）		
－9．34187E－02	－6．00868ビ－01	3．34602E－01	3．54784E－02	3．74814E－01
2．55354E－01	4．05843E－01	－4．11735E－01	－1．49346E－01	－1．90618E－01
－7．05208F－02	7．67830E－01	－2．44121E－01	7．85074F－02	－5．40737E－01
－1．90814E－02	－4．91120E－01	？．18156E－01	－8．35401E－03	3．24986E－01
4．41949E－02	1．10217E－01	－8．75171E－02	－2．41547E－02	－5．99492E－02
SUM COMPONENTS＝UC（I．J）				
4．14154E－01	2．77486E－01	－5．12950E－U1	－2．58345F－01	－5．23999E－02
－4．35380E－01	2．342．25E－01	3．25362E－01	2．93858E－01	－2．99585E－01
－3．7ち494E－01	－7．71063E－01	6．76323E－01	2．12230E－01	3．97827E－01
2．92140E－01	3．52415E－01	－4．25546E－01	－1．75599E－01	－1．42621E－01
－9．78747E－02	$8.44574 \mathrm{E}-03$	9．11203E－02	6．41879F－02	－3．75347E－02

GRAPHICAL PLOT FOR REAL TRENO FACTOR SCORES

GRAPHICAL PLOT FOK IMAGINARY THEND FACTOK SCORES

REAL RUOT NO.	5 AFTER POW	1	ROOT $=7.53043066 \mathrm{E}-02$	
TRENU VECTOR $=T(J) /$ STF				
1.56759t 00	5.3916.3E-01	-3.17851E-02	-1.64866E 00	-5.64223E-01
EIGENVECTOH $=$ V(I) STF				
1.06897E-01	1.37718E-01	3.91999E-01	-4.46820E-01	-6.02291E-02
STANDARO DEVIATION OF RAW TREND FACTUR $=$ STF $1.06896722 E-01$				
COMPONENT $=$ UC (I, J)				
1.26188E-02	4.34015E-0.3	-2.55863E-04	-1.32714E-02	-4.54187E-03
1.62571E-02	5.59154E-03	-3.29636E-04	-1.70979E-02	-5.85142E-03
$4.62740 \mathrm{E}-02$	1.59157E-02	-4.38270E-04	-4.86672F-02	-1.66554E-02
-5.27454E-02	-1.81415E-02	1.06449E-03	$5.54732 \mathrm{E}-0.2$	1.89846E-02
-7.10982E-03	-2.44538E-03	$1.44162 \mathrm{E}-04$	7.47752F-03	2.55904E-03

graphical plot of trend factor scores

20

$-1.09731 \mathrm{E}-01$
$3.96971 \mathrm{E}-01$
$8.38887 \mathrm{E}-01$
$-3.16745 \mathrm{E}-02$
$1.24010 \mathrm{E}-01$

MATRIX

APPENDIX II

LISTING OF PROGRAM

呙
uou
$202 \operatorname{SO}(I)=\operatorname{SQRTF}((\operatorname{SUM2}(\mathrm{T})-(\operatorname{SIIM}(I) * * 2 / I K) /(I K-1))$

G0 $T 07020$

6687 NOX $=2$

6687	NoX = 2 PRINT 1400, IDENT, NOX DO $506 \mathrm{I}=1$, NVAR
506	WRITE (61,307) (R2(I,J), J = 1,NVAR)
600	IF (INDEX (9)) 4545, 980, 4545
4545	IF (INDEX(8)) 2323. 1199, 2323
1199	DO $7123 \mathrm{I}=1, N \mathrm{CAR}$
	D0 $7123 \mathrm{~J}=1$, NVAR
	$\operatorname{RO}(I, J)=\operatorname{covolI}, \mathrm{J})$
	R1(I,J) $=\operatorname{CoVl}(I, J)$
2323	IF (INDEX(7)) 7132, 7123, 7132
7132	R2 (I, J) $=\operatorname{Cov} 2(I, J)$
7123	CONTINUE
C	
C	CALCULATE TRANSITION MATRICES
C	
	```CALL XINVR(RO,NVAR,NVAR,DFT,KZ,KZ) DO 602 I=1,NVAR```
	$00602 \mathrm{~J}=1$, NVAR
602	$\operatorname{CoV} 0(I, J)=R 1(I, J)$
	IF (INDEX (7) ) 2384, 2387, 2384
2334	CALL XINVR(RI,NVAR,NVAR, DET,KZ,KZ)
2387	WPITE (61,603)
603	FORMAT (IHl,21H INVERSE OF RO MATRIX) DO $604 \mathrm{I}=1$, NVAR
604	WRITE (61.307) (R0 (T, J), J=1, NVAR)
	IF (INDEX (7)) 7384, 7387, 7384
7384	WRITE (61,605)
605	FORMAT (///.21H INVERSE OF RI MATRIX) DO $606 \mathrm{I}=1$, NVAR
606	WRITE(61.307) (R1(I.J), J = 1,NVAR)
7387	IF (INDEX (10)) 2183, 980, 2183
2183	IF (INDEX(Q)) 3183, 3184, 3183
3183	D0 4185 I $=1, N$
	DO $4185 \mathrm{~J}=1$, NVAR
4185	$X(I, J)=X(I, J)-X \operatorname{ARAR}(J)$
	G0 T0 701
3184	D0 4186 I = 1, N
	D0 $4186 \mathrm{~J}=1$, NVAR


4186 X(I, J) $=(X(I, J)-$
701 WRITE (61,702)IDENT
7 O2 FORMAT(1H1,25H TRA

R1
R2.
ALL XMULT ( R
DO $703 \mathrm{I}=1$,
WRITE $(61.307$ )
WRITE (61.704)
FOHMAT (1H0,//,3H UZ)
Dก $705 \mathrm{I}=1$, NVAR
705 WRITE $(61,307)(C O V Z(I, J), J=1, N V A R)$
703
3114)
COVI,NVAR)
CIGENVALUE ROUTINE FOR Ul//
(7)
9116 FORMAT(1H1, 26 H EIGENVALUE ROUTINE FOR U2//)
CALL ROOT (COV2,NVAR)
GO TO 980
1120 WRITE (59, 801)
H01 FORMAT(20H PROCESSING COMPLETE)
STOP
END

> SIJRROUTINE XINVR(X,N,NN,DET,NI,N2) DIMENSION $X(9,9), Y(9)$ (NN - NZ) + 1 NET=1.0 ICOUNT=1
> $10 \times(N 1, N K)=1.0$
> D $04 \mathrm{I}=\mathrm{NS}, \mathrm{N}$
o

1850 LINE(J)

SURROUTINF XMULT(X, Y, Z: M, N, K) DTMENSION $x(4,9), Y(9,9), Z(9,9)$ $\begin{array}{ll}\text { On } 10 \quad I=1, M \\ \text { DO } 10 \text { J } & =1, K\end{array}$
$\begin{array}{rl}2(I, J) & =0 \\ 0 & 20 \\ 0020 & =1, K \\ 020 & =1, M \\ 0 & =1, N\end{array}$
$Z(I, L)=7(I, L)$
$\underset{-}{=}$
ㄷ
SUBROUTINE ROOT（U，N）
PROGRAMMED BY

1740 FOHMAT (1H0, IZH AFTFR POWER, I5,37H ALL ELEMENTS ARE DIVIDED RY A( C1.1) $=$ E E15.8)


[^0] C GHFOOT $=$, El5.8)
$540 \quad T(J)=D(1, J) /$ R2M3
OO $550 \mathrm{I}=1, N / \mathrm{N}(1,1)$
CONTINUE
DO $560 I=1 . N$

CO
$\operatorname{CSUM}(I \cdot J)=\operatorname{CSINM}(I \cdot J)+\operatorname{UC}(I, J)$
Do $700 \mathrm{~K}=1$,NN
Dの $800 \mathrm{~K}=1, N \mathrm{~N}$
$800 \mathrm{~J}=19 \mathrm{~N}$
$800 T F(K)=T F(K)+(T(, J) * X(K, J) / S D(J))$
640
655
645
650
$$
\text { STF }=\text { SQRTF }\left(\text { SUM } /\left(N_{N}-1\right)\right)
$$
$$
00640 \mathrm{~J}=1, \mathrm{~N}
$$
$$
T(J)=T(J) / S T F
$$
$$
V(J)=V(J): 9 T F
$$
$$
I F(T(1)) 645,655 \cdot 645
$$
$$
\text { GO To } 1590
$$
$$
\text { PHTNT } 650
$$
$0 \varepsilon 9$
PRINT 660.(T(I), $1=1, N)$
PRINT 6 60. (V(I), $I=1, N)$
FOHMAT (// IHO, $45 H$ STANDARD DEVIATION OF RAW TREND FACTOR $=$ STF,
Fl5.8)
695 FOUMAT $(/ / /, 1$ HO, POH COMPONENT $=\operatorname{UC}(I, J))$
DO $770 \mathrm{I}=1, \mathrm{~N}$
PNINT B6G.(UC (T,J), J=1,N)
FOHMAT (1HO, ठ (E13.5. 2X))
$T F(K)=T F(K) / S T F$
TREND FACTOR SCORES = TF (K) / STF)
PHINT 660, (TF (I)
FOHMAT ( $1 H \mathrm{H}$, ЗAH GRAPHICAL DLOT OF TREND FACTOR SCORES////)
CALL GHPLOT (TF,NN)
IF (L - N - 1) 1400. 1490. 1490
FOKMAT ( $1 H 1,27 H$ ORIGINAL TLANSITION MATRIX//)
DO PIIO I $=1, N$



WRITE(6I.G60) (CSHM (I,J), J = I,N)
[in 2140 I $=1 \cdot N$
$1002140 \mathrm{~J}=1 \cdot \mathrm{~N}$
$\operatorname{CSIJM}(I, J)=\operatorname{CSIM}(I \cdot J)-\operatorname{UnRIG(I,J)}$
WRITE (61,2150)

FQRMAT (/////,1HO,SOH CHECK SUM MATRIX MINUS ORIGINAL TRANSITION MAT
CHTX)
DO $4130 \quad 1=1 \cdot N$
NHITE (61,660) (C
iOn 810 $I=1, N$
in $810 \mathrm{~J}=1, N$
H(I, J) $=A(I, J)-$
UC(I, J)
NHITE (61,660) ( $\operatorname{CSUM}(1, J), J=1, N)$
1400

## $\begin{array}{ll}\mathrm{Cn}= & 1 . \\ \mathrm{Gn} \text { TO } & 154 n\end{array}$

* $C(1,1)$
\& $C(1,2)-H(1,2) * C(1,1)$
$\# R(1,2)-U(1,2) * B(1,1)$
$1 N / P(9)$
*D(1,2)-C(1, C) * $D(1,1)$ $2 N / P 1 N)$
21


## $I F(Q I-C I) 1570,1540,1590$ <br> $M=2-10000) \quad 910 \cdot 920.920$ $I F(M-1000$ <br> $\begin{array}{lll}0 & \approx \\ \sim & \approx \\ \sim\end{array}$

FOHPAT 36 H NO CONVERGENCE AFTER POWER OF 10000 , C 5 H R()OT, Ib////////)
FOKMAT ( $1 \mathrm{H} 0,25 \mathrm{H}$ CONTTIVUE NOW TO NEXT JOK)
RETURN
CALL XMULT (U, U, B,N.N, N)
DO $1600 \mathrm{I}=1 \cdot \mathrm{~N}$
$\begin{array}{ccc}\infty & 0 \\ \underset{\sim}{n} & \stackrel{y}{n} & n \\ n\end{array}$
413
$=$
$=$
$=$
$=$
$\cdots$
$\cdots$
$=$
$P 1=\triangle B S F$
$P_{1}=$
$=$ SDHTH
$P 2 N=C(1.1)$
1050
940
910
$D 600 \mathrm{U} 1600 \mathrm{~J}=1, \mathrm{~N}$
ouo
1570 LPI = L + 1
1000 PRINT 100n.
10 PRMAT (1H1, 1
calcilate pair of complex components
1035 FORMAT ( $1 \mathrm{HO}, 42 \mathrm{H}$ PERIDOICITY IN NO OF SAMPLING INTERVALS $=$ =e15.8) $C C=A A / C \operatorname{Cosf}(n+2)$ AHP $=$ CM2 $\operatorname{COSF}(P 20)$
IMAGINARY PART OF ROOTS, $5 \mathrm{X}, \mathrm{E} 5.8 / 1)$
${ }^{4}$
REAL PART OF ROOTS, $10 X$, E15.8)
(1. P2
CO *PZ
10, P
ORMAT $\left(1 H_{0}, 10 \mathrm{H}\right.$ MODULUS $=$, E15.8/ $)$
? ? $=(P 2 H P 2) /(C O * C O)$
$A N=B(1,1)$
$A A=A N / A n$
P?2AA $=P$ ?2 $-(A A * A A)$
IF $F$ (P2RAA 1590.1590 .1591 Cl2H
 $A A=A A * C$
$R R=R B * C$ PRINT 1020, PRINT 1030. BB
1591
1020 FOKMAT I IHO. 24
WRITE $(61,1035)$ EE
$A D$
$B D$





$1210 U C(I, J)=2 \cdot * A A * Z H(I, J)-2 \cdot * B B * Z I(I, J)$ 1210
1780
FOHMAT (//.1HO,25H SUM COMPONENTS = UC(I,J))

PRINT 660, (UC (T., J) D() $5006 \quad T=1, N N$
TFR(I) $=$ TFR(I) / STFR
FOPMAT FREND FACTOR SCORFS FOR ROOTS, I5, 4 H AND I5)
TFI(I) $=$ TFI(I)
PHINT $1240, \mathrm{~L}$, LPI
PRINT 660.(TFR(I).
PRINT 1250 SORES

FOHMAT (IH1,49H GRAPHICAL PLOT FOR IMAGINARY TREND FACTOR SCORES///
CALL GHPLOT(TFI,NN)
GO TO 1270
END


[^0]:    CALCIJLATE REAL COMPONENT
    5 SO FOKMAT ( $1 \mathrm{Hl}, 14 \mathrm{H}$ REAL ROOT NO., I5, 12 H AFTER POWER. I5, $10 X$

