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INTRODUCTION
"Du choc des esprits jaillit la lumigre"

The modern geologist tends to 1limit his activities to an ever nar-
rower field of observations. This may be the price to pay to unravel the
great complexity of our science, but by the same token, this creates insuper-
able obstacles between disciplines.

To obviate such obstacles in a modest and limited way,
D.K. Norris conceived the idea of this conference. It was to bring together
a dozen or so specialists in the field of brittle failure and of kink bands, and
to choose these people about evenly among laboratory men and field men. By
bringing these specialists together and leaving them ample time for discus-
sions, it was hoped that cross-pollination would operate to everybody's
advantage. Enthusiasm of the participants and promise of similar future
meetings were to justify these hopes.

An organizing committee comprised of D. K. Norris, A.J. Baer,
P. Clifford and W.K. Fyson was formed, and the National Advisory
Committee on Research in the Geological Sciences in Canada accepted to
sponsor the workshop. Canadian universities were invited to send discus-
sants who would agree to read preprints of papers presented at the confer-
ence, and to participate in discussing them,
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This volume follows fairly closely the program of the
conference, which is contained in Appendix III. Discussions
following individual papers are taken from taped records and,
whenever possible, from written versions submitted by the parti-
cipants. Questions raised about specific papers during periods
of general discussions have been regrouped following papers to
which they refer, Remarks have been edited to varying degrees
and discussants have had an opportunity to examine the edited
version,

The committee wishes to thank speakers, session
chairmen and participants who were the 'raison d'étre! of the
meeting; the National Advisory Committee which supplied the
financial backing; and the University of Ottawa and Dr. D.D.
Hogarth, acting chairman of the Department of Geology. We
are especially grateful to Dr. Y,O., Fortier, Director of the
Geological Survey of Canada, for his support and participation,
as well as for authorizing publication of these proceedings as
a Survey report.

Dr. P. Harker, Chief Scientific Editor, acted as
editorial consultant for the layout and design of the volume
whichwas completed by Mrs. LL,R. Mahoney and Miss D. Snowden;
the final typescripts were prepared by Mrs. B+ Richard and
Mrs. H. Ainsworth.

OQOur gratitude goes also to all those who operated the

equipment, tape recorders, slide projectors or copying machines
so efficiently as to make themselves invisible.

The Organizing Committee.



CONFERENCE ON RESEARCH IN TECTONICS
KINK BANDS AND BRITTLE DEFORMATION

OPENING REMARKS

Y.O. Fortier
Director
Geological Survey of Canada

As Chairman of the National Advisory Committee on Research in the
Geological Sciences and Director of the Geological Survey of Canada, I have the honour
and pleasure of welcoming you to this workshop on "Brittle Deformation and Kink
Folding in Rocks". My Canadian colleagues join me in extending friendly greetings to
our visitors from the United States and the British Isles. You are most welcome in
Ottawa which, especially for the occasion, greets you with a fresh mantle of snow.

Nearly 20 years ago several prominent Canadian geologists including the
late Dr. J.E. Hawley of Queen's University, the late Dr. J.B. Mawdsley of the
University of Saskatchewan, Dr. H.C. Gunning of the University of British Columbia
and Dr. J.E. Gill of McGill University were instrumental in forming the National
Advisory Committee on Research in the Geological Sciences. It was decided to
associate the Committee with the Geological Survey, the focus of federal government
geological activities. It was also decided to have as permanent Chairman, the Director
of the Survey - perhaps mainly because it was thought at that time that through the
Survey, funds might be obtained for more fundamental research in the geological
sciences. At the Committee's urging, funds were made available by the Survey but
once the need was shown the National Research Council stepped in and has become the
main source of research grants to our universities.

We continue to experiment in ways and means by which the many disciplines
of the geological sciences may be assisted in their development. For many years the
various subcommittees of the National Advisory Committee assembled the material for
their annual reports by correspondence instead of round-table discussions and work-
shops. Within the last few years it has become financially possible for the sub-
committees to meet to discuss projects and suggested projects, and to prepare annual
reports advising the main Committee on fruitful lines of research and the means of
carrying them out. This workshop is a further development along this line; we are
drawing on the best national and international talent to explore a highly specialized
field of tectonics.

This workshop is not an exploration of the whole realm of structural
geology but is confined to the discussion by a relatively small group of specialists
of brittle failure and the mechanics of folding; it is a new venture and we expect
much of it. The only stipulation we make is that the proceedings are published. The
Geological Survey will be pleased to publish them on behalf of the National Advisory
Committee, but you are free to publish them where you please as long as your findings
are made available to scientists at large.
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Last evening I had the good fortune to meet a number of you and could not
help but be excited at learning of the barriers you are breaching. You are moving
from observation of structural phenomena in the outcrop to mechanical and mathemati-
cal modelling in the laboratory, and back to the field to test your models and measure-
ments.

You have two days to discuss and test your ideas against those of your
colleagues; to sharpen your wits and to be stimulated by the clash of conflicting
hypotheses. I hope this will prove enjoyable and profitable to each of you personally,
and later, when the proceedings are published, to the scientific community at large.

I know you will want me to thank the originator and the organizers of this
workshop. The concept shows originality; with such a gathering of talent so full of
optimistic enthusiasm, the workshop cannot help but be a success. Good Luck!

Ottawa,
March, 1968.
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MECHANICS OF NATURAL EXTENSION FRACTURING
AT DEPTH IN THE EARTH'S CRUST

Donald T. Secor, Jr.
University of South Carolina, Columbia

Abstract

In a previous paper (Secor, 1965) the writer proposed that some
joints are natural hydraulic fractures developed perpendicular to the least
principal stress direction. Mechanical considerations indicate that this kind
of jointing can occur to depths of several thousand feet when the ratio of fluid
pressure to overburden weight is hydrostatic., At greater depths abnormally
high ratios of fluid pressure to overburden weight are required for jointing.
The present paper is essentially an elaboration of this hydraulic fracturing
hypothesis for jointing.

By using the results of Sneddon (1946) it is possible to calculate
the volume of fluid contained in a crack or flaw just before it begins topropa-
gate and develop into a joint. Energy considerations indicate that the forma-
tion of a macroscopic joint is a slow process consisting of numerous short
quick episodes of fracture propagation interspersed with longer periods of
quiesence during which pore fluid from the surrounding rock percolates into
the crack and wedges it open. The growth rate of a joint is controlled by the
rate that pore fluid seeps into the joint. The length of a single joint fracture
is probably limited both by ductile behavior of the rock at the crack tip and by
the development of other nearby joints.

The fluid volume needed to wedge open a systematic array of
joints comes from both the elastic expansion of the ambient pore fluid and
from the closure of other non-propagating cracks and flaws. Calculations
indicate that most rocks contain sufficient pore fluid to produce the joints
observed in them. The porosity necessary for the formation of a particular
joint set of assumed geometry is fixed by selection of appropriate material
parameters, but given a particular value of porosity it is not presently pos-
sible to determine which of the many possible joint geometries will actually
develop. For example, a joint set containing a few long fractures may
require the same porosity as another set of short closely spaced fractures.
The geometry (fracture length, longitudinal and lateral separation) of a par -
ticular joint set is probably related to rock permeability and to the rate of
decrease of the least effective principal stress at the time of fracturing. In
a rock sequence of uniform porosity, a slow rate of stress decrease and high
‘permeability would favor the development of a few long joints, whereas a
rapid rate of stress decrease and low permeability would favor the develop-
ment of numerous short joints.

INTRODUCTION

The ultimate objective of any science is to understand as thor -
oughly as possible the collective phenomena on which it is based. Scientific
inquiry normally begins with the observation of some fundamental facts of
either a natural or experimental nature and then proceeds to the development
of a number of working hypotheses explaining the observations. These hypo-
theses in turn may suggest additional experiments or observations that ulti-
mately result in the confirmation, modification or rejection of the original
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ideas. The various working hypotheses are continually and impartially
assessed and modified as the work progresses. The successful hypotheses
which survive the’ final judgement are added to our general body of knowledge
and may then be used to assist in the solution of related problems. However,
even a successful hypothesis should remain tentative in the sense that it must
periodically be evaluated in the light of new knowledge (Chamberlin, 1897).
The sciences of chemistry and physics have made great progress in this man-
ner because many of the fundamental laws are relatively simple and involve
only a few variables. Geology has also made great progress, but it has been
more difficult to establish reliable working hypotheses because of the com-
plexity and inexact nature of its fundamental phenomena.

During the last two centuries, the majority of geologists have been
concerned with collecting the basic facts of earth history. In structural geol-
ogy one begins with data on the attitudes, ages and distribution of rock types,
and then proceeds to determine the deformation pattern using the method of
multiple working hypotheses along with geometric methods. It is now clear
that the local deformation of a considerable portion of the earth's crust canbe
expressed in terms of a few simple types of geologic structures such as folds,
faults, cleavage, joints, or their combinations, which have been repeatedly
generated in time and space. It is apparent that an understanding of the phys-
ical processes -responsible for generating geologic structures might be useful
in establishing the environment of deformation. For this reason structural
geologists have attempted to set up simple mechanical models (or working
hypotheses) for the formation of geologic structures. In some instances the
initial attempts to do this were unsuccessful, because the mechanical con-
siderations indicated that it would be impossible to form the structures under
the assumed conditions. Mechanics has therefore led us into such paradox-
ical problems as the movement of broad thin thrust plates (Hubbert and
Rubey, 1959, pp. 122-129; Lawson, 1922; Longwell, 1945; Oldham, 1921), the
generation of deep focus earthquakes (Reid, 1911; Orowan, 1960; Griggs and
Handin, 1960) and the origin of slaty cleavage (Maxwell, 1962, pp. 281-311),
In recent years there has been renewed interest in the mechanics of geologic
structures coupled with laboratory experiments in rock physics, and some of
the long standing problems have been resolved, at least in part, by the appli-
cation of more rigorous methods of analysis using experimental data on the
physical properties of rocks.

No completely satisfactory mechanical model has yet been pro-
posed for the phenomenon of rock jointing, although considerable progress has
been made in understanding certain aspects of the mechanics (Price, 1966,
pp. 110-164). As used in this paper, the word "joint" is a field term applied
to natural fractures which show little or no lateral displacement. Almost all
consolidated rocks are jointed to some extent, and in some places joint sets
are systematic over broad areas and through considerable thickness of strata.
Because of the abundance, apparent simplicity, and systematic nature of
joints, geologists have long sought to use them as indicators of the paststress
and strain history of rock masses. Consequently, a great quantity of data on
joint geometry and orientation from many parts of the world have accumu-
lated. In some instances the interpretations made from this data are contro-
versial and uncertain, because the physical processes responsible for jointing
are not generally understood. The purpose of this papex is to propose a
mechanical model which logically explains the origin of at least some kinds of
joints. It is hoped that the interpretations of field data can thereby be made
more reliable and useful.
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In all likelihood the joints studied by field geologists have multiple
origins (Price, 1966, p. 127), Some may be natural shear fractures of small
lateral displacement (Parker, 1942; Muehlberger, 1961), whereas others may
be natural extension fractures (Nickelsen and Hough, 1967). It may be pos-
sible for natural extension fractures to form normal to compressive least
effective principal stresses, whereas others may form normal to tensileleast
effective principal stresses (Griggs and Handin, 1960, pp. 347-352). Natural
tension fractures may form near the earth's surface where tensile total prin-
cipal stresses are possible (Anderson, 1951, p. 159; Hubbert, 1951, p. 367),
or they may form at depth where only effective tension is possible and where
the pore fluid is important in fracture genesis (Secor, 1965). The mechanical
model presented in this paper is applicable only to joints in this last category.
It is presented in the spirit of a tentative working hypothesis which needs
much testing by field and experimental geologists. The model does seem to
explain many of the puzzling geometric characteristics of natural joint pat-
terns.

GROWTH OF A TENSION FRACTURE
AT DEPTH IN THE EARTH'S CRUST#*

The Griffith Theory

One of the fundamental problems in engineering mechanics has
been to understand the factors which control the strength of solid materials,
Calculations based on the known strengths of molecular cohesive forces have
indicated that solid materials ought to be 10 to 100 times stronger than they
really are (Griffith, 1921; Cottrell, 1959). This discrepancy between the
theoretical and actual strengths of materials led Griffith (1921) to postulate
that solids are greatly weakened by the presence of internal or surface
cracks, and that premature failure is caused by high stress concentrations at
crack tips. Griffith (1925) derived expressions for the tensile strength and
failure envelope of a two dimensional elastic material containing an array of
randomly oriented cracks., In the terminology of the present paper the
expressions for tensile strength are as follows:

K =] TME (for plane stress), (1)

2E ¢
- ,’Trc(l-— ¥t *%* (for plane strain), (2)

where —K is the tensile strength (tension considered negative), E is Young's
Modulus, ) is Poisson's Ratio, ¥ is the specific surface energy of the
material, and C is the half length of the cracks, Griffith also derived the
following failure criteria for a two dimensional elastic material;

* A major revision was received after the text of this volume
had been typed. These changes were best made by using the
author's typescript. - The editors.

*% This expression is incorrectly given as -K =-J2€XU -y)/nc
by Griffith (1925). The correct expression shown above is

taken from Sack (1946) and Sneddon (1946)
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1f 5 ¢ +3K, Sg=~K , 3

1f 52 +3k, (s-5)~8K(5+S) =0, (4)

where S, and S; are the greatest and least principal stresses respectively,
with tension considered negative. The tensile strength of a brittle material
is therefore a constant, as long as the greatest compressive principal stress
( s') is less than three times the tensile strength as given in equations (1)
or (2). When S, exceeds +3K , the strength of the material is a function of
both S, and S, as specified by equation (4).

The Griffith theory has been extended to three dimensions by Sack (1946)

and Sneddon (1946), both of whom derived the following equation:

/ TE &
-K = — J2c{1-»2} ’ &)

for the theoretical tensile strength of a three dimensional elastic solid
containing a penny-shaped crack of radius C perpendicular to the tension
direction.

In recent years there has been considerable research on the applicability
of the Griffith theory to fracturing problems in rocks. Almost all rocks
contain cleavage or grain boundary cracks that might be expected to behave as
Griffith flaws during deformation. Most recent research has been directed
toward the application of the Griffith theory to the phenomenon of shear
fracture in response to compressive effective principal stresses (Brace, 1961,
1964; Brace, Paulding and Scholz, 1966). McClintock and Walsh (1962) pre-~
sented a modification of the Griffith theory that included the effect of
frictional stresses developed along the walls of cracks closed in compression.
Brace and Bombolakis (1963) and Bombolakis (1964) found from photoelastic
studies of uniaxial compression that a critically oriented crack will propagate

out of its initial plane into a position of parallelism with the direction of

compression. They concluded that a macroscopic shear fracture could develop
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by the coalescence of special en echelon arrays of critically oriented
cracks. The experiments of Brace, Paulding and Scholz (1966) have shown
that crack opening and/or growth begins well below the stress necessary
for the formation of a macroscopic shear fracture. The failure criterion
for crack growth must therefore differ from the criterion for shear
fracturing.

In the present paper the three dimensional Griffith theory is applied
only to tension fracturing, and the difficulties encountered in applying the
theory to compressive stress states are avoided. In tension fracturing the
critically stressed cracks are oriented perpendicular to the tensile dir-
ection. At the point of incipient fracture the cracks are open, because
the normal stress across them is tensile. Frictional stresses on crack
walls are impossible both because the cracks are open and because they are
in a principal plane. When the plane of an elliptical crack is perpendicular
to a tensile principal stress direction, the point of greatest tensile stress
concentration occurs on the major axis of the ellipse at the tip of the
crack (Inglis, 1913). Tension cracks therefore propagate in their initial
plane, and the failure criterion for crack growth and for macroscopic
tension fracturing are identical.

A number of experimental studies have indicated that the presence of
a pore fluid pressure in rock has a profound effect on strength. Hubbert
and Willis (1957), Hubbert and Rubey (1959) and Jaeger (1962) have,predicted
on theoretical grounds that critical principal effective stresses should con-
trol rock strength, and this prediction is verified by the experiments of
Handin, Hager, Friedman and Feather (1963), Jaeger (1963) and Brace (this
conference). An effective principal stress is defined as the corresponding

total principal stress less the pore pressure:

O3 = Su,m— P (6)
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The effective stress does not correspond to any physically tangible fraction
of the total stress, however the theoretical and experimental studies cited
above indicate that the failure criteria for rocks with pore pressure should
be expressed In terms of critical effective stresses as defined by equation
(6). Hence the failure criteria for tension fracturing of rocks with in-

ternal pore pressure is:

TEY
Oy = =K = — / 2C(1—)?) . ¢))

Volume Equations

Equations (6) and (7) indicate that a crack oriented normal to the least
principal stress will become unstable and spread whenever the pressure of the
pore fluid ( p ) exceeds the total least principal stress ( S5) by an
amount equal to the tensile strength of the rock. Sneddon (1946) proved that
the shape of a crack containing pressurized fluid in a three dimensional
elastic medium is that of a oblate ellipsoid, and he found that the component
of surface displacement at the center of the crack ( € , the semi-minor axis)
was related to the elastic properties of the solid medium, the crack radius

and the fluid pressure as follows:

e - 4U=ypc 8
TE

Combining this result with the formula for the volume of an oblate ellipsoid:

vV=a4fzTec C))
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an expression for the volume of fluid in the crack is obtained:

V= -§|~§E—-(I—-])2)pC3 . (10)
In deriving equation (8) Sneddon assumed that the stresses at infinity in the
elastic medium were zero. Before Sneddon's results can be applied directly
to the problem of tension fracturing in rocks, it is necessary to consider
the effect of total external principal stresses on the volume of the crack.
In general a crack will be closed (V=0 ) if the total compressive least
principal stress ( $;), acting perpendicular to the crack, is greater than
the pore pressure ( p ). Conversely the crack will be wedged open by the
pore fluid if p exceeds Sy . Only that fraction of p which exceeds
S3 will be effective in opening the crack. The quantity P in equation
(10) should therefore be replaced by (P—S3 )3

v=—g§.—(|-y2)(p—sa) e 11)

Combining this result with equation (6):

v=——%$E—(1~»=)o;c’ . (12)

it is seen that the crack volume is directly proportional to the magnitude of
the least effective principal stress. It is important to remember that it is
not possible for a crack to have negative volume, and so the applicability of
equation (12) is limited to the case where Uz is tensile and hence negative.

The upper limit of applicability of equation (12) is governed by the tensile
strength of the rock. When O; reaches the critical limit specified by

equation (7), the crack will begin to propagate, and the actual volume will

be greater than that given by equation (12). Substituting equation (7) in (12),

we obtain an expression for the critical crack volume just prior to propagation:

V=§- wﬁgv} . ¢, (13)
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Crack Propagation

Introduction

Theory developed thus far does not predict how far a crack will propagate
once the critical conditions specified by equations (7) and (13) are attained.
The rapid propagation of a fracture can only occur when there is a net decrease
in the various forms of potential energy stored in the rock. The potential
energy lost during the fracturing process is converted into kinetic energy of
rapid crack growth:

Decrease in Potential Energy = Kinetic Energy (14)

There are four kinds of potential energy associated with fluid saturated rocks
that could conceivably undergo major change during the fracturing process:

1. Potential of external forces.

2. Strain energy of the rock.

3. Compressional fluid energy.

4, Surface energy of the crack.

In order to determine the amount of crack propagation that is likely to occur in
any particular case, it is necessary to estimate the changes in the four potential
energy terms resulting from the introduction of a fluid filled crack into a

stressed medium.

Potential of External Forces and Strain Energy

The change in the sum of the first two potential energy terms in the above
list, resulting from the introduction of a fluid filled crack into a rock mass,
can be calculated by determining the amount of work done on the crack walls by

the pressurized fluid as the crack is opened up. Imagine a penny-shaped crack
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of radius € , oriented perpendicular to the $; direction, which is opened
up by an increase in internal fluid pressure so that the pressure and volume
just before crack propagation are p, and V, respectively (Figure la). The

work necessary to open the crack will be given by:
Vo (15)

Wiea ® _/qp)dv .

c
Solving equation (11) for p , and substituting the result in equation (15):

Yo A _—
Wiaoas = _o_/l_e|-»2)c3 dv +-°-/?s=)dv )

2

LA
32(1—-»2)¢3

+ 85V . (L7

The first term on the right side of equation (17) represents the change in
rock strain energy, whereas the second term represents the increase in pot-
ential of the least principal stress ( $3;). When V, reaches the critical
limit specified by equation (13), the crack will become unstable and propagate
distance AC (Figure 1b). After crack growth the final pressure ( p, ) will be
less than the original pressure ( Py ), and the final volume ( V, ) will be
greater than the initial volume ( V, ). The change in the sum of the first
two potential energy terms that would result from the introduction of a fluid
filled crack of radius C, = C +AC into the same rock mass can be calculated as

before:
3EV,
)
Wiiaz) ® 32(1-v%) C} + S5 (18)

The net increase in the sum of the potential of external forces and the strain

energy after propagation will be:

2 2
= w' 3E Vv Ve
AWiia® Wiia = Vi ® 330039 (—é'? = —C%) + S5V, —V,) . (19)
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The first term on the right side of equation (19), representing the change in
strain energy, could be either positive or negative depending on the sign of
the quantity in parenthesis. The second term, representing the change in
potential of the least principal stress, will be positive because V, > V,

Energy release during fracturing could occur only if:

(20)

3EVg 3EV]
-V > e oSN
and the amount of energy released (AW, ,,) must be less than the ex-

pression:
W, §EV92
AWav2 < 330-y9) ¢ ) -

At the time of incipient propagation the volume of fluid in the crack (V, )

will be given by equation (13):

2
Vo & /—L——“ Z('E"" e (13)

Substituting in expression (21):

2
SBUeT ¢ 4/3TAC > AW, o

In the case of an ideal incompressible fluid:

Vi = Yo, (23)

and equation (19) reduces to;

A2 = 32(13-%;2) (_c',’ - c3) . k)

It is apparent that straln energy would be released even in the case of an ideal

incompressible fluid because C, >C,
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Fluid Compressional Energy

As a crack propagates and opens up, the fluid inside the crack is permitted
to expand, and the potential energy stored in the compressed fluid decreases.
The energy released by fluid expansion inside the crack is available for con-
version to the other kinds of potential energy or kinetic energy associated
with crack growth. In most places the pressure and temperature of underground
water are such that there is an approximate linear relationship between pressure

difference ( dp ) and volumetric strain (-%¥ ):

= -4+ (49 . (25)

where k 1is the fluid compressibility. Integrating we obtain:

pt—-—}(—lnv + ¢ (26)

The constant of integration ¢ can be evaluated by applying the boundary

condition:

otpspo,V'Vo .

@n
Substituting in equation (26):
¢ = p + ‘&""Vo , (28)
Therefore:
pr-—-blnv 4+ ~-inv, + p,. (29)

The potential energy released by fluid expansion inside the crack as it grows

will be given by:

Yi
AW, =_/(.p) av (30)
Yo
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or: Vl

s /(= v s b ey o

Vo
Where V, and V, are the fluid volumes before and after propagation res-—
pectively. If equation (30) is integrated, and if V| is expressed in terms
of V, » p, and p from equation (29), the equation for the released com~

pressional energy becomes:
(32)

aw, = eklpgp)y, (it —j‘—) ~ Vo(po+ —k) ,

where e 1s the natural logarithmic base. The quantity ( P, ) in equation
(31) is not known, but it is unlikely that P, could decrease below the
magnitude of the total least stress ( Sz ), because the crack would be com—
pletely closed under these stress conditions. Therefore an estimate of the
maximum possible compressional energy available for crack propagation ( AWs )

can be obtained by replacing P, by Ss in equation (31):

= (33)
oW, eklPo™ S v°~(53+-|';') - V°(Po+Lk) .

Potential Surface Energy

The potential surface energy of a crack will be given by the product of

the area of the crack times the specific surface energy ( ¥ ):

2
W, = 2mCY . o5
If C is the crack radius prior to propagation and AC is the increase in
length of the crack radius after propagation, then the increase in potential

surface energy ( AW, ) will be:

awe= 2Ty [c+acy = = 2myiacac +aé) (35)
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If AC 1is small:

oW, = amrycac (36)
or:

s . _ow 37

c ATy C?

The Energy Balance

The foregoing discussion has indicated that during the short period of time
in which a crack is propagating, the potential of external forces and the pot-
ential surface energy both increase, whereas the potential strain energy in the
rock around the crack and the potential compressional energy in the crack fluid
both decrease. The net decrease in potential energy is converted into kinetic
energy. If equations (21) and (33) are added, an equation for an energy quantity

(AW ) that must exceed the increase in surface energy potential (AWh ) is

obtained:
AW > aw, (38)
. _3EVE kips S,) I (39)
S moyaee e P (s 1) —Volet )

In order to estimate the maximum amount of crack propagation that could
occur from equation (39), it is necessary to assume some values for the physical

parameters and constants which appear in equatiomns (12), (13), (33) and (35):

k = 1.94 X (108 fr. 2/1b. at 10,000 ft. depth
k =1.72 X (10”8 fe. %/1b. at 20,000 ft. depth
K = 1.63 X (10°%) £t. 2/1b. at 30,000 ft. depth
¥ = .0687 1b./ft.
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£ =720 x (10%) 1bs./ft.2

Yy = .250

Three different depths (10,000, 20,000, and 30,000 feet), and six initial crack
lengths (.001, .01, .1, 1, 10, 100 feet) at each depth were chosen for analysis.
It was assumed that the original flaw lengths prior to the initiation of fract-
uring were .001 feet and that the original tensile strength of the rock con-
taining the flaws was 288,000 1bs./ft.2. The listed value of ¥ can be cal-
culated from equation (7) assuming the above tensile strength and flaw length.
This value of surface energy is near the upper limit measured for quartz (Brace
and Walsh, 1962), but is less than the surface energies measured for sandstone
by Perkins and Bartlett (1963). Average values of E and Y were chosen from
data tabulated by Birch (1966). The initial fluid pressure in unfractured rock
was taken as the minimum value necessary for tension fracturing at the depth
considered (Secor, 1965), and S; was calculated from equation (6) assuming that

O3 was -288,000 lbs./ft.z. The internal pressure ( Po ) in the longer cracks,
that had undergone previous episodes of propagation, was assumed to exceed S;
by an amount equal to the tensile strength of the rock containing flaws of the
same length as the longer cracks. The fluid compressibility ( k ) was estimated
from the data of Holser and Kennedy (1958) and Kennedy, Knight and Holser (1958)
as tabulated in Sharp (1962), assuming a normal geothermal gradient (Birch, 1955).
Crack volumes just prior to propagation ( V, ) were calculated from equation (13).

Values for AW have been calculated from equation (39) for a variety of

depths and initial crack lengths, using the physical constants and parameters
previously listed. The results are shown in Figure 2a. For comparison pur-
poses, equation (35) has been plotted in Figure 2b for a variety of initial

crack lengths. Remembering that:

(38)
AW > AW,
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Figure 2.

(A) A graph showing the relationship between an energy quantity
( AW ) that must exceed the energy available for crack
propagation, and initial crack length. 1/ depth 30,000
feet, 2/ depth 20,000 feet, 3/ depth 10,000 feet.
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(AW, ) as a function of propagation distance (AC ), for

(B) A graph showing the increase in surface energy potential
various initial crack lengths.

Figure 2.
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it is apparent from comparison of Figures 2a and 2b that the amount of energy
available for crack propagation, during any single episode of propagation, will
only be sufficient for the crack to be extended a small fraction of its initial
length.

In light of this conclusion, one might wonder how it is possible for a
single tension fracture ten or one hundred feet long to originate from the
growth of a small grain boundary flaw. At the end of any particular episode
of crack growth, the final pressure ( P, ) is less than the initial pressure
( Py ), because the crack volume has increased and the contained fluid has
expanded. The crack fluid will therefore be at a lower potential than the
fluid in the pore spaces of the surrounding rock, and the pore fluid will be
driven down the potential gradient into the crack. The pressure of the fluid
. in the crack will therefore gradually increase and the crack will be wedged
open. Eventually the critical volume specified by equation (13) will again
be reached, and another episode of propagation will occur. The growth of a
macroscoplc tension fracture must be the result of numerous episodes of short
propagation interspersed with longer periods of quiesgence during which the
pore fluid in the surrounding rock percolates into the crack. The macroscopic
rate at which a natural tension fracture grows therefore depends on the por-
osity and permeability of the surrounding rock. The rate of growth must de-
crease rapldly as the crack becomes longer, because the volume of fluid needed
to wedge the crack open increases as the 5/2 power of the radius, whereas the
surface area of the crack, across which the incoming fluid must percolate,
increases as the square of the radius.

Field observations have indicated that most joints are relatively short,
extending for a few feet or yards before being replaced by another fracture of

the same attitude In offset position. It is interesting to consider the question
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of why a particular tension joint might stop propagating. It is theoretically
possible for a tension fracture in an ideal elastic medium to continue prop-
agating indefinitely, and given enough time it might attain a length of hun-
dreds or thousands of feet. However two natural mechanisms operate to limit
the extent of natqral tension fractures. As a crack gets longer and as its
growth rate decreases, a limit is eventually reached where the extreme tensile
stresses at the crack tip are relieved by ductile creep more rapidly than they
are increased by opening of the crack. This mechanism would tend to limit the
extent of crack growth even in the absence of other factors. It is also un-
likely that only one tension fracture would develop in a critically stressed
rock mass. In all likelihood numerous tension cracks will begin to develop
throughout the rock mass when a critical value of Oz is attained. Each crack
will have only a limited amount of fluid available to it, and when the ambient
pore pressure had decreased below the critical limit specified by equations (6)
and (7), all of the cracks will cease propagating. Therefore, both ductile
creep at crack tips and the development of multiple fractures in a rock mass,

will 1limit the length of any one fracture.
Summary

The foregoing analysis has indicated that the growth of a tension fracture
at depth in the earth's crust is macroscopically a slow process, consisting in
detail of numerous short quick episodes of crack propagation interspersed with
longer periods of quiescence during which the pore fluids from the surrounding
rock percolate into the crack and wedge it open. Energy considerations have
indicated that the increase in crack length, during any single episode of crack
propagation, is a small fraction of the initial length. Equation (13) can
therefore be used, with only small error, to calculate the volume of fluid in

the crack during any stage of its growth.
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RELATIONSHIP BETIWEEN JOINT GEOMETRY AND POROSITY

Introduction

The model for natural tension fracturing proposed in the preceeding
sectlon predicts that the fluid volume necessary for the development of

a fracture of radius C, will be given by:

Y & '_36. /llz(J.E:LzL - ¢/ 13)

This fluid volume may originate from elastlc expansion of the ambient

pore fluid in the rock, or from compaction and porosity reduction during

the fracturing episode, or from closure of other non-propagating cracks.

The question of whether a particular rock can supply enough fluid to generate
the joint pattern observed in it is a test which the proposed model must pass
if it is to be generally accepted. In order to answer this critical question,
it is first necessary to develop a quantative way of expressing the geometry

of a joint set.

Quantification of Joint Geometry

Imagine a rectangular block of rock with edge lengths X, Y and Z
(Figure 3), containing an array of circular fractures parallel to the front
face of the block. The fractures are assumed to occur in a series of planes
separated by distance d . Within any one plane the fractures have diameter 2¢,,
and are separated from other fractures in the same plane by distances A and B
(Figure 3). In a plane parallel to the front of the block there are L joints

in each vertical row and N joints in each horizontal row. There are M plane
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Figure 3. A block of rock containing a regular array of joint fractures.

groups of joints between the front and back of the block. From the geometry

of the block:

X = L{(2C+A) (39
Y = dMm (40)
Z = N(Zc-,"' B) (41)

The total volume of the rock will be:
XYZ = LMN(ZC,+A)(2C,+B)(d) (42)

The total volume of fluid in all of the joints in the block will be equal to

the number of joints (LMN ) multiplied by the volume of one joint:

Total volume of all joints = LMN —'36— ,H‘zl-gﬁ-— . /2 (43)
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Dividing equation (43) by equation (42) we obtain an expression for the volume

of fluid in the joints per unit volume of rock:

e 16 [Tyu=2F) | .5
Volume of fluid in . —.{T—E—— (oh 48

Joints per unit =
Volume of rock td)(2¢c,+ A)(2C+ B)

This result will be used subsequently in a comparison with the volumes of fluid
available in rocks. It should be noted that there is nothing fundamental about
the joint geometry illustrated in Figure 3. Other systematic fracture dis-
tributions could have been assumed. However, the present geometry has the
virtue of simplicity and can be adjusted to approximate many natural joint

patterns by appropriate choice of the parameters A,B, C, and d.

Amount of Fluid Available
For Jointing In Rocks

Introduction

The amount of fluid available for jointing in a particular rock mass is
critically dependent on the amount and nature of porosity. If the pores are
all spherical or tube-shaped, the porosity will remain constant during a
jointing episode, and all of the fluid contained in joint cracks must come
from elastic expansion of the pore fluid. Conversely, if the pores are all
crack-shaped, the fluid contained in joint fractures could come from both
elastic expansion of the pore fluid and from the closure of other non-prop-
agating cracks or flaws. Most rocks probably contain both spherial pores
and crack shaped pores, and it is impossible to make a single generally
applicable assumption about the nature of the porosity. Therefore, two
porosity models are assumed here, representing the end extremes of all
spherical pores (constant porosity) and all crack-shaped pores (variable

porosity).
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The Constant Porosity Model

Let ¥ , the fractional porosity, represent the amount of fluid in a
unit volume of rock. During an episode of jointing, the increase in fluid
volume per unit volume of rock ( AV ) will be given by:

AV = - kV,Ap (45)

where k is the fluid compressibility, V,is the initial fluid volume and —-Ap
is the pressure decrease. The initial volume of fluid will be equal to the

fractional porosity, and equation (45) reduces to:
AV = —kfap (46)
At any stage in the period of joint growth the relationship between the total

least stress ( Sz ), the effective least stress ( Uz ) and the pore pressure

( p ) will be given by equation (6):

S3= Gz + p (6)
The change in the magnitude of the pore pressure ( Ap ), during an episode of
jointing, must be balanced by the changes in $§; and O3

Ap = AS3;— AOCs (47

In an environment where the earth's crust is extending in the S3 direction

(the "constant stress case'), $; might remain constant so that:
AS,= 0 (48)

and equation (47) reduces to:

i = e (49)

Just prior to the initiation of a jointing episode, O3 will be given by

equation (7):
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s - ,'LE..!_
s 2C(1~32) (7)

where C is the initial flaw radius. At the end of an episode of jointing O3
will be just slightly less than the critical magnitude necessary for additional

joint growth:

. _ [Tex
03 3 c'.I!r;'-»fi %))

where C, is the final radius of the joints. The change in O3 must therefore

be:
!
AD; = - ——FE{—”,__Z(é—J—C;) (50)

Substituting in equation (49):

(51)

Substituting in equation (46):

<5 . [Te e =
av kfap = kf W:X;ﬁ (\/-5 Je ) . (52)

The volume of fluid accommodated within the joint fractures must be equal to
the volume of fluid resulting from elastic expansion of the pore fluid.

Equating equations (52) and (44):

16 = 52 5
I (J___l), N T, (53)
20— Jc ﬁ" (dX2CF AN2C+8)
Solving for f:
6 ._,f( __Jcm)
¢ HAENE-E/ o (54)

(d)(2¢,+AN2C+B)
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Equation (54) can be used to calculate the original constant porosity ( f )
necessary for the formation of any joint pattern of assumed geometry, in an
environment where the total least stress ( 53) remains constant during the
jointing episode. In Figure 4, the required porosity is plotted as a function
of fracture spacing ( d ) for a variety of fracture geometry and initial crack
lengths ( € ), assuming the following rock and fluid properties:

1.72 (1078 . 2/ 1.

k =
E =720 (10% 1. / £t.2
Y = .250

The results illustrated in Figure 4 show that the porosities normally encountered
in sedimentary rocks (1-10%) are adequaté for the development of joint sets in
which the fractures are short and widely spaced, but excessively high porosities
are required for joint sets in which the fractures are long and closely spaced.

The derivation of equation (54) was based on the assumption that the joint-
ing occurred in an environment where the total least stress ( Sz ) remained

constant (the

'constant stress case"). It is also possible for jointing to be
initiated by the development of high pore pressures in an environment where no
regional extension occurs in the Sy direction (the "constant volume case").

In this case, the volume increase inside the joint fractures must be balanced

by elastic shortening of the rock slabs between the joints. Referring to Figure 3,
the lengthening of the rock block ( AY ) caused by the development of the joint

set will be equal to the total volume of all of the joints divided by the area

of the front of the block.

TP 2 (55)
2E

|6
T o0
= Xz
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If the Poisson effect is neglected, this lengthening caused by the development
of the joints must be balanced by the elastic shortening of the block due to an

increase in S5 ¢
(As3) Y
3 (56)

AY =
where E is Young's Modulus, and ASy is the increase in the total least prin-
cipal stress. Equating equations (55) and (56) and solving for A4Sz

(1~ 2
AS,= SN e ¢ e

XYz

Substituting equations (39), (40) and (41):

I T (-8 (58)
as, = EX3 L . cpve
® dlzc+AaNizc+B

An expression for the change in pore pressure, during jointing in an en-
vironment where no crustal extension can occur, is obtained by substituting
the expressions for A$; and AQ; from equations (58) and (50) respectively into
equation (47):

N SR
2(1-y2) \[a c

d(2¢c,+A)2C,+8)

When equations (59), (46) and (44) are combined an expression involving porosity

( f' ) as the only unknown is obtained:

16 p1-pPy MCiC . 52
il o N
d(2c+A)(2C+ B)

)(|+kEf') o0y

Comparison of equation (60) with equation (54) reveals that the bracketed term

is the expression for the porosity in the conskant stress case. Therefore the
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original porosity required to produce a particular joint geometry in the constant
volume case ( f ) is a simple function of the original porosity required to produce

the same geometry in the constant stress case ( f ):

f' = £ +kEF) (61)
Solving for f' :
(62)
s . —f
1 |—kEf

Equations (62) and (54) can be used to calculate the required porosity for

any desired joint geometry, assuming constant bulk volume of the rock during

the jointing episode. The results of such calculations are shown in Figure 5.
Apparently, very closely spaced joints are impossible under the assumed conditions

in rocks of normal porosity.

=t

The Variable Porosity Model

Most rocks contain some crack-shaped pores and in crystalline rocks of low
porosity almost all of the fluid is contained in grain boundary and cleavage
cracks. It has been shown that a tensile least effective principal stress of
considerable magnitude (equation 5) is necessary for the initiation of a mac-
roscopic tension fracture from a small pre-existing flaw. At the time of
fracturing there must therefore be a considerable range of directions, sub-
parallel to the O3 direction, along which the effective stress is tensile. If
a flaw is perpendicular to the O3 direction, equation (12) can be used to

calculate its volume:

v — é—g-(l—»z) 03 C3 12)
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Figure 6. Coordinate systems used in projecting poles of cracks to a reference
sphere of radius ( R ).
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If the crack is not perpendicular to the O3 direction, equation (12) can still

be used to calculate its volume providing:

1. That the term ( O3 ) is equation (12) is replaced
by ( 0" ), the component of effective stress per-
pendicular to the plane of interest:

g o J i
vV = 3—6E—(I »)o C (63)
2. That this normal effective stress is tensile.
3. That the component of shear stress parallel to the

plane of interest does not have a major effect on
the volume of the crack.

Recent compression experiments on rocks with pore pressure by Brace (this con-
ference) have indicated that rocks become dilatant when the differential stress
is about one half the value necessary for the formation of a shear fracture.
Apparently crack opening can be caused by high shear stress even when the mac-
roscopic effective principal stresses are all compressive. The experimental
results of Brace suggest that shear stress will tend to increase the volume
of cracks, and so crack volumes calculated from equation (63) will be too low
because the shear effect is neglected. The use equation (63) to estimate crack
porosity changes during jointing will therefore give a conservative estimate of
the amount of fluid available for the jointing process.

Imagine a spherical element of rock of unit volume located at the center
of an x, y, z coordinate system (Figure 6). The radius of the element is
assumed to be large with respect to the flaw length ( ¢ ), but small with
respect to the radius ( R ) of an enclosing reference sphere. The orientation
of the radius ( R ) of the reference sphere is fixed by the angular spherical
coordinates © and ¢ . If infinitesimally small variations (d© ,dv ) are permitted
in © and ¢ , the radius R will scribe an infinitesimal area on the reference
sphere having edge.lengths R(dq&) and RSinIl‘i (d® ). If the spherical element

of rock at the center of the coordinate system contain n randemly oriented
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cracks, a small fraction of the cracks will have poles located inside the infinites~

imal area on the reference sphere. This fraction will be given by:

Total number of cracks _ ¢ Area of element ) = sm%agae (64)
with poles in element Half area of sphere 2

The volume of fluid ( dV ) contained in the cracks that have poles in the

infinitesimal area will be given by:

av = — ("—ii"—g-Tgr—‘”—di-) (&u-»100) (65)

P (66)

o n
ol 3ME

+ o sinpdpde
The component of effective normal stress in the direction of R will be given by:

2
O« sinjCofec; + sinjsinec; + Cosho; (67

where Oy , Oy, and O; are the principal stresses in the x , y, and z directions
respectively. Substituting in equation (66) and integrating:

3 68
¥ s _Qr';‘_!ﬁi)_c__/_ (sicy Cos® 0 + Sin{ Sin6 G5 + Sinf Cos o 7) dedq;( )

()

In performing this integration it is important to permit the direction of the radius
R to vary only in those directions where the normal stress is tensile, because
the applicability of equation (63) is limited to the case where O 1is tensile. In
the special case where Ox, Oyand O: are all tensile, the limits on © and U

are (2T, 0 ) and (Tl'/é,o) respectively, and equation (68) reduces to:

y = =16n0-9) ¢

SE i+ 0y + Gz) (69)

In the special case where Oy and O, are equal and compressive, the limits on ©

and § will be:

[ Ox
(21,0) , (Arccos G-0, ° 0)
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respectively, and equation (68) reduces to:

(70)

. _ 1eni-¥1¢ 0
V= oF (/525 -200 + 2G + 0z)

In the special case where O: is compressive and where Ox and Oy are equal and

tensile, the limits on @ and § will be:

(2m, 0), (Tl'/z, Arccos /0;?;0; )

respectively, and equation (68) reduces to:

. _ leni-AC? Ox
v SE - 12ay] TG (71)

Equations (69), (70) are mutually compatible in the sense that they both con-

verge to the same result:

. _ 1ea01-y) ¢? (72)
v =S (0,1}
when @, = 0,20 . Likewise equations (69) and (71) converge to the result:
2, A3
A6n() ~V7) C
Ve l8UPIC (o0, (73

when ;-0 and when (;=¢; . Mathematical difficulties have so far precluded the
derivation of a general equation for the case where the principal stresses all
have different magnitudes, and where at least one of the principal stresses is
compressive. The fluid volumes calculated from equations (69), (70), and (71)

are equal to the fractional crack porosity if the small spherical rock element

in Figure 6 is considered a unit volume.

Equations (69), (70) and (71) comprise a theoretical model for the fract-
ional crack porosity of a rock, and can be used to estimate porosity changes
induced by changes in the effective principal stresses. In the present paper
these equations will be used to estimate the quantity of fluid squeezed out of

crack shaped pores into opening joint cracks, during an episode of jointing.
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In a rock with crack porosity:

Fluid volume = Volume from elastic Volume from porosity
occupying joints expansion of the + reduction of the
pore fluid. rock. (7%)

The fluid volume occupying joints can be calculated from equation (44):

Y ~97) c3/2
S et o

Fluid volume occupying joints = d (ZC‘+A)(2C,+ B)

In an environment where the least total principal stress remains constant during
the jointing episode, equation (52) will give the fluid volume available

from elastic expansion of the pore fluid:

Volume from elastic TEY , I )
expansion of the pore = kf"[sr= Gl ) Rt (52)
fluid v2(-v7) (J'c.' J&

Just before the beginning of a jointing episode, the fractional porosity ( §')

will be given by equations (69), (70) or (71). If the jointing is occurring in

an environment where O; and Oz are compressive and equal:

(70)
R (-7 (£ 20 XN
f oF e o.(ao;)+2oa+0'z)
solving for n :
f“
—~ie{l—-y2) c3 75
5 (J555, 200 +20; + 03) $05)
The fractional porosity ( fi ) of the rock after the jointing episode has been
completed will be given by:
; = 3 (76)
#: - lenlfic ( g (200) +20 +07)
where O} , Oy and O; are the new values of effective principal stress. The
volume of fluid available from porosity reduction of the rock will be given by:
Volume from porosity _ - g a7

reduction of the rock
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Substituting equation (75) and (76) into (77):

Volume from porosity _ f,,((_éau(‘ZO})-l-ZO’i o) ) (78)

reduction of the rock , [} ( 20;) + 20, +C; )

Sample calculations for typical jointing episodes has indicated that there is

very little residual tensile stress left in the rocks after fracturing has occurred:

0:—>0 (79)
When equation (79) is substituted in equation (78), the bracketed term in (78)
approaches zero:

——--——r X X o_z
(( / (-20%) +20% + )) -0 (80)

(—201) 420, + 0,
Z

and equation (78) reduces to:

Volume from porosity

= L[]
reduction of the rock =~ f (B

Apparently the near elimination of effective tensile stress from a rock mass
during a jointing episode results in the closure of all non propagating flaws,
so that all of the original fluid contained in grain boundary cracks is
available for jointing.

When equations (44), (52), and (81) are substituted in equation (74),

we obtain:

16 /TA0DP) 572
T 2E cl = f"( K ILE_%_( | i ! ) + |)
d(2C+ AX2C+ B) 2:MWVT T JC (82)

The bracketed term on the right side of (82) may be neglected because it is a

small fraction much less than one. Therefore:

T3 (-0%) 572
f“ 5 2E ! % 83
d(2C,+A)(2C,+8) (52
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The initial crack porosity ( f' ) necessary for the formation of a joint pattern
of any assumed geometry can be calculated from equation (83). Im Figure 7,
the required porosity is plotted as a function of fracture spacing ( d ) for

a variety of fracture geometries, assuming the following parameters:

g = B0 e o 1bs
=720 (10 &) 1bs./ £t.2

+250

o ¥ m
]

= .0687 1bs. / ft.

The results show that an extremely small initial crack porosity could produce
most commonly observed joint patterns.
In the constant volume case:

Bp = B 0% 7

where:

2“;5»2) (\r‘lc-" - \'['—'E‘)

(50)

and where:

16, ]’m;(l-vz) 5/2
483 = ik 7 T (55

d(2¢,+A)2C+B)

The volume of fluid available from elastic expansion of the pore fluid will be
given by:
Volume from elastic *

expansion of the = —kf'dp = —kf"(as;-00), (46)
pore fluid -

where ( " ) is the initial crack porosity of the rock. Substituting equations

(50) and (58) in (46):
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Volume from elastic (E) V/r______ (84)
o ‘—k fm
- i Easale e d(zc,+A)(zc.+ B) 557 ( &

Equation (81) will give the volume of fluid available from poresity reduction

during an episode of jointing:

Volume from porosity _ ,w
reduction of the rock (81

Substituting (81), (84), and (44) in (74):

16 /Ir30-»%) > TEUDE] L5372
3v "~ 2E G f"(l-— e /IGE + [IEL (L - Ly )
d(2c+A)N2C,+B) d(2c+ A)(2C+A) 2(1-p?) \/'E' \/'E'

(85)

The bracketed term is a small fraction much less than one so that:

16 / Ty (129 52
fm " 3 2E ! .
d(2C,+A)(2C,+ B)

which is identical with (83). The calculated results illustrated in figure 7
therefore are applicable also in the case of variable porosity and comstant
bulk volume.

The results illustrated in figures (4), (5) and (7) suggest that most rocks
contain sufficient pore fluid for the formation of the joint patterns commonly
reported by field geologists. The constant porosity model predicts that joints
one hundred feet long and spaced one foot apart could form in a rock of 10%Z porosity.
The crack porosity model predicts that porosities much less than one percent will

be required for the formation of most commonly observed joint patterns. Almost

all rocks contain some crack-like pores, and in igneous and metamorphic rocks
most of the fluid is contained in grain-boundary and cleavage cracks. It is
concluded that most rocks contain sufficient fluid for the formation of the joint

patterns observed in them.
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DISCUSSION

When a geologic phenomenon is analyzed using the methods of physics and
mathematics, the results tend to have an aura of precision and elegance which
is not justified. It must be remembered that rocks are extremely complicated
systems, and the application of physical equations to characterize rock behavior
is at best a crude approximation and a poor substitute for emphirical data on the
behavior of rocks in the environment of interest. However, theoretical con-
sideration of jointing mechanics 1s presently justifiable, because the results
will be useful in guiding future field and laboratory investigations. The
numerical results presented in the preceeding section are only crude approxi-
mations to reality and should not be taken seriously beyond the first sign-
ificant figure. However, even with this qualification in mind, the following

conclustions seem justified:

1. When natural tension fracturing occurs at depth in the
earth's crust, in the presence of high pore pressures,
macroscopic fracture growth in a slow process consisting
in detail of numerous short, quick episodes of fracture
propagation interspersed with longer periods of quiesence
during which pore fluid from the surrounding rock per-
colates into the crack and wedges it open.

2. Both ductile creep of rock at crack tips, and the deve-
lopment of multiple fractures in the same rock mass will
tend to limit the length of any one joint fracture.

3. Most rocks appear to have porosities adequate for the
development of the joint patterns observed in them.

The development of equations relating porosity and fracture geometry has
revealed that tension fracturing at depth in the earth's crust is an incredibly
complicated process. Inspection of equations (44), (52), (78), (79), and
(83) indicated that the porosity required to produce a particular fracture geo-
metry 1s functionally dependent on the following parameters: E, M, ¥, kK, C,

OT 5 CE, and O;. Moreover the required porosity depends on whether the pores
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are spherical or crack-shaped, and whether the fracturing is occurring in a "constant
stress" or a "constaht volume" environment. The variety of rocks and pore fluids
available in nature permit considerable -latitude in the choice of E, ¥ , C and & ,
and this could result in an order of magnitude variation in the calculated porosity.
*Variations in pore geometry and stress environment have an even greater effect on
calculated porosity. An obvious extension and improvement of the work presented
here would result from machine computation of required porosities over a wider

range of values for the environmental stresses and rock and fluid properties.

The volume of fluid available for jointing is fixed by selection of app-
ropriate material and environmental parameters. Howeyer, inspection of equation
(54) reveals that an infinity of different fracture geometries are possible from any
given fluid volume. It is possible to calculate the. porosity needed for the for-
mation of a fracture set of assumed geometry, but given a particular value of
porosity, it presently is not presently possible to determine which of the many
posgible fracture geometries will actually develope.

Some qualatative considerations may be useful in understanding natural
fracture geometries. Equation (13) indicates that the fluid volume needed for
the growth of a particular fracture is proportional to the 5/2 power of the crack

radius. The final length of a fracture is dependent on how easy it is for pore

fluids from the surrounding rock to mowe into the fracture. In an environment
where subjacent permeable and impermeable rock masses are being jointed under
identical stress conditions, one would predict that fractures in the impermeable
rocks would be short and closely spaced, whereas the fractures in the permeable
rock would be long and widely spaced. This may explain the commonly observed
wide spacing of joint fractures in massive sandstones as compared with the close
spacing in enclosing shales and siltstones. The rate at which the least effective
principal stress changes during the beginning of an episode of fracturing may also

be important in controlling fracture geometry. If the critical stress condition
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for jointing results from a very slaw decrease in the least effective principml
stress, tension fractures would be initiated at a few particularly long flaws
before the stress became small enough for the initiation of fractures at more
numerous shorter flaws. However, i1f the stress decrease was rapid, numerous
tension fractures would be initiated at about the same time throughout the
rock mass. Changes in the magnitude of the least effective principal stress
could reésult from either changes in the pore pressure or changes in the total
least principal stress. The rate at which Oy changes will therefore depend
on the rate at which S; and p change in the local environment. A slow de-
crease in Op would result in a few long joints, whereas a rapid decrease in Oz

would result in more numerous short joints.

It is important to remember that the mechanical model proposed in this
paper is applicable only to joints that originate as natural tension fractures
in rocks with pressurized pore fluid. The model is not applicable to joints
forming near the earth's surface where tensile total stresses are possible,
nor is it applicable to the development of "shear" joints (if shear joints
do indeed exist).

Field observations in metamorphic terranes often indicate that the joint
pattern is symmetrically oriented with respect to fold axes and linear structures.
This symmety may be a consequence of rock anisotropy; it may also be a consequence
of residual stresses remaining in the rock after the main phase of the deformation.
These facts are not basically incompatible with the hydraulic fracturing hypothesis
proposed here. The present model could be extended in include a degree of
anisotropy and/or residual stress in a rock mass undergoing jointing.

Studies of field examples of jointing have always been handicapped by the
lack of adequate criteria for recognizing the various kinds of joints. How can
tension joints formed in a surficial environment be differentiated from natural

hydraulic fractures formed at depth in the earth's crust? The presence of
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mineral druses indicative of metamorphic conditions might be useful but such
fillings are relatively rare and indicate only that the fracture was open at
depth. How can natural tension fractures be distinguished from natural shear
fractures of small lateral displacement? The presence of two acutely intersecting
fracture directions have often been used as a criterion for a shear origin.
However, a pair of acutely intersecting fracture directions could have originated

as two sets of tension fractures formed st different times. Slickensides are

indicative of shear, and yet a set of tension fractures could suffer shear
displacement during a later deformation. It is also very difficult to establish
the relative ages of a number of intersecting joint sets because such sets often
indiscriminately cut each other without apparent lateral displacement.

It appears that we have made a beginning in understanding the origin of some
kinds of joints, but the traditional goal of using joints in structural interpretation

seems as elusive as ever.
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DISCUSSION

D.F. Coates asked the speaker to elaborate somewhat on basic
criteria concerning the necessary condition of his theory, and asked inpartic-
ular what the limitations on the principal stresses were.

The author replied that one has of course to consider a brittle
material containing some type of cracks. The value of the tensile strength
can be figured out mathematically. As to limitations onthe principal stresses,
if tension fractures are to form, the least effective stress has to equal the
tensile strength and the greatest effective compressive stress cannot be
greater than three times the tensile strength or else the workwill fail in shear.
This is a consequence of the Griffith theory of brittle fracture, and has been
demonstrated experimentally by W.F. Brace,

P.S. Simony asked for some more details concerning the second
model developed by the author, and in particular about the walls of the cracks
which, at one time appeared impermeable, and at another time appeared
permeable.

The author explained that if a crack propagates, its volume
increases and therefore the fluid pressure inside the crack decreases. As a
consequence, fluid in the rock around the crack will tend to flow into the crack
again. The wall of the crack is probably permeable at all times but the dif-
ference between the rate of propagation of the crack (possibly the speed of
sound) and the rate of seepage of fluid into the crack (possibly measured in
tens or hundreds of years) explains that during crack propagation, effects of
seepage are negligible.

G.R. Stevens asked if solubility of the rock in the pore fluid might
play any role.

The author said that he had always felt that when a fluid flows
from a higher pressure environment into a lower pressure environment, some
of the matters in solution in the fluid might precipitate and that one oftenfinds
joints filled with mineral matter.

J.B. Currie asked what would be critical field relationships that
could help to test the theory developed by the author.

The author suggested that investigations of joint geometry including
a large number of joints in rocks of different permeabilities might be useful,
but he also warned that there might not be enough geometric variables to
determine the origin of joints. The difficulty was, he said in thelarge number
of variables on which joint geometry depends, namely Young's medulus,
Poisson's ratio, the surface energy, oy, 03, 03, the nature of the porosity,
permeability, and the way the stress field changes during jointing.
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A DYNAMIC MECHANISM FOR THE DEVELOPMENT OF
SECOND ORDER FAULTS

N. dJ. Price
Department of Geology, Imperial College
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Abstract

The initiation and development of second order faults cannot satisfactorily
be explained by analyses based on a study of the static stress fields before and after
movement along a first order, strike-slip fault. However, increments of displacement
on faults commonly occur so abruptly that vibrations of the rock masses are generated.
In certain circumstances, the frequency and amplitude of the shock waves and the
stresses associated with these vibrations can so alter the static stress field that the
orientation and intensities of the principal stresses are momentarily such that small
second order fractures may develop. These small fractures, it is suggested, propa-
gate and extend with the passing of every shock wave and during subsequent increments
of movement of the first order fault, until these small fractures eventually attain the
magnitude of second order faults. The angle which the second order fault makes with
the first order structure, and whether the movement on the secondary fractures is
strike slip or dip slip, depends upon a number of factors which include the value of the
vertical principal stress, the pore-water pressure and the intensities of the inertial
stresses associated with the rock vibrations.

INTRODUCTION

Relatively small scale shear structures which are associated with main,
or 'first order', faults in the manner indicated in Figure 1 have been termed secondary
or 'second order' faults. When these subsidiary fractures occur near the end of the
first order structures they are sometimes referred to as splay faults. The movement
sense along the second order fault is such that they are obviously not complementary
to the first order structure.

The possible origin of these second order shears has been discussed by a
number of authors. Anderson (1951) presented an analysis of stress distribution
around a vertical, strike-slip fault which, in the analysis, was represented in plan as
an open, elliptical fracture. He concluded that although, in general, fault movement
reduced the stress intensities in the vicinity of the fault plane, in small areas near the
ends of the fault, the stresses actually increased. Moreover, the orientation of the
principal stresses changed so that splay faults with the orientation and movement
sense indicated in Figure 1 might in fact develop near the ends of first order faults.
Elsewhere along the first order fault, according to this analysis, stress levels are
insufficient to promote second order shears.
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Figure 1. Showing typical angular relationship and movement sense of first order
and second order faults

Anderson's physical model and his analysis of stresses around a fault may
be criticised from a number of viewpoints. However, the most obvious one is that the
faults are not open structures. Consequently, it is imperative to include in an analysis
the influence of frictional effects along the surface of the fault.

McKinstry (1953) carried out just such an analysis and concluded that if the
axis of maximum principal stress (¢4) originally makes an angle of 30° with the first
order fault, then, after movement, the principal stress takes up a new position and
makes an angle of 60° with the main fault plane, so that second order faults may then
form at 30° or 90° to the main fault.

Chinnery (1966) has recently criticised McKinstry's argument and has
shown that the maximum principal stress, after faulting, rotates in the opposite sense
from that suggested by McKinstry. Such a reorientation of the stresses is completely
unable to give rise to second order faults with the orientation and movement sense
shown in Figure 1.

Chinnery also presented an analysis of the stresses before and after fault-
ing along a first order, strike-slip fault and also showed that splay development is
possible in the vicinity of the ends of the first order fault. However, the pattern of
second order fractures ig, he predicts, much more camplicated than that suggested by
Anderson. He does, however, support Anderson’s other main conclusion, that the
stress levels in the vicinity of the central portion of first order faults, which develop
in homogeneous and isotropic material, are too low to propagate second order fractures.

In all these analyses, the stress change after fault displacement has been
considered from the static viewpoint, that is, two separate states are considered; the
first is the system of stresse