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APPLICATIONS OF THERMODYNAMICS IN METAMORPHIC PETROLOGY 

Abstract 

This paper summari zes the principles of che mical thermodynamics in a form which is 
convenient for dea ling with problems encountered in metamorphic petrology . Particular 
effort has b een made to illustrate thermody nami c concep ts by means of graphical represen ­
tation. The concept of the equilibrium constant and the choice of standard states are 
discu ssed in detail. A brief introduction to nonideal sol utions deals with re latively simple 
binary solution models based on the method of Margules. Various applications of" thermo ­
dynamics and guides for specific calculations are presented, with some emphasis on 
oxidation and sulphidation r eac tions. 

Resume 

Cette etude rappelle les principes de la thermodynamique chimique sous une forme 
applicable aux problemes de petrologie des roches metamo rphiq ues. L'auteur insiste 
particulierement sur /'importan ce de la representation graphique pour illustrer les concepts 
de la thermodynamique . La notion de constante d'equilibre et le choix d'etats standards 
y sont etudi es en detail. Une courte introduction au probleme des solutions non ideales 
traite de modeles relativement simples de so lutions binaires, bases sur la methode de 
Margules . Diverses applications de la thermodynamique et des marches a suivre pour 
de s calculs specifiques , particulierement en ce qui co ncerne les reactions d 'oxydation 
et de su lfuration, y sont presentees. 

Introduction 

This paper is based on a series of lectures given 
at the University of Gottingen in October 1973. 
Professor H. Winkler kindly invited me to spend three 
weeks at the Mineralogical- Petrological Institute. I 

Institute, I was introduced to experimental petrology 
and had many discussions concerning phase equ ilibria 
with P. Metz and G. Hoschek. My early attempts in 
thermodynamic analysis were guided by T. N. Irvine. 

a m particularly grateful to the Sonderforschungsbereich 
Gottingen of the Deutsche Forschungsgemeinschaft for 
financial s upport, which made this visit possible. 

As indicated by the title, applied aspects of thermo­
dynamics are stressed. Recent years have seen a 
ben eficial integration of field work and experimental 
investigations in metamorphic petrology. These two 
approaches have, of course, a common goal and, in the 
study of certain aspec ts of metamorphism, they share 
a common theore tical framework, i. e. the principles of 
chemical equilibrium. The theoretical framework con­
stitutes a unifying element for the results obtained in 
field work and experiments and provides a firm footing 
for a part of metamorphic petrology. Although thermo­
dynamics can be applied only to some aspects of meta­
morphism , it is gratifying that these can be studied 
with some degree of rigour. 

The treatment of various topics is uneven. The 
theoretical analysis is biased towards an understanding 
of the thermodynamics of a chemical reaction with 
particular emphasis on the equilibrium constant. No 
attempt is made to deduce complete phase relations in 
a chemical system; there is no discussion of 
Schreinemaker' s rules. The selection of examples 
reflects my own interest and background. 

Contac t with various persons has significantly 
s haped my interest and thinking. D.R. E. Whitmore 
introduced me to the study of metamorphosed sulphide 
deposits. During a previous s tay at Prof. H. Winkler's 

In more recent years, I have particularly benefitted 
from an association with T. M. Gordon and G. B. Skippen. 

I am much obliged to Prof. H. Winkler for arrange­
ments to have most of the figures drafted at his Institute. 
His constant encouragement provided the decisive 
imp etus in writing this paper. N. D. Chatterjee critically 
read an earlier manuscript. 

NOTATION 

a activity of a component in a solution 

c heat capacity 

f fugacity of a gas 

G Gibbs free energy 

H enthalpy 

K equilibrium constant 

p pressure 

q heat absorbed by a system 

R gas constant 

s entropy 

T temperature 

u internal energy 

v volume 

w work done by a system 
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X mole fraction 

y activity coefficient 

<p fugacity coefficient 

If M designates a molar property of a substance 

M0 molar property in its standard s tate at a specified 
temperature (solids and liquids - pure s ubstance 
at 1 atm; gases - hypothetical perfect gas at 
1 atm) 

M* molar property of the pure substance at a 
specified pressure and temperature 

M partial molar property 

Midpartial molar property in a solution following 
"d 

Raoult's Law (JVf = M* +RT ln X) 

-ex -ex - _-jd 
M excess partial molar property CM = M - !VJ ) 

M~ excess partial molar property at infinite dilution 

THE THERMODYNAMIC APPROACH 

In the study of metamorphic rocks, many aspects 
confront the observer at the same time. These are no 
doubt interrelated in the evolution of the rocks but this 
relationship is complex and difficult to grasp. For this 
reason, there is a tendency to group aspects according 
to methods employed in their study. This is not a 
natural subdivision with regard to the origin of the 
rocks and may, at times, be a hindrance in an integrated 
view of the metamorphic process and its geological 
setting. However, this approach is dictated to some 
extent by the theoretical tools availabl e in the study of 
metamorphic rocks. Before proceeding with the 
analysis of selected aspects, it is advisable to realize 
that such studies are by themselves "out of context" 
geologically and provide at best fragmentary answers. 
Nevertheless, there is some justification for this 
approach. 

The complex nature of metamorphic rocks makes 
it very difficult to state precisely the question one is 
asking, yet a problem cannot be solved unless it is 
logically defined. Consequently, there is a tendency, 
if not necessity, to make an at temp t of understanding 
the rocks in terms of a model based largely on 
plausibility. One might assign to an association of 
metamorphic rocks a geological history which "makes 
sense", based on imprecise reasoning involving elements 
of intuition, imagination, analogy , and "gap-filling" 
to provide continuity . This reasoning is not necessarily 
wrong but it cannot be proven right because it lacks 
sufficient factual and logical checks. Nevertheless, 
these models are essential in geology. They provide 
direction and inspiration in geological studies. Intuitive 
insight might eventually even b e proven right in some 
instances; it certainly suggests lines of attack. 
Limiting attention strictly to the few facts which can 
be rigorously established would make any coherent 
view impossible and overshadow unifying elements 
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among the diversity of observations. This then is the 
fundamental compromise in any geological study. 
How ever , in order to make such models closer approxi­
mations to reality, it is advisab le to include as many 
factual and logica l restrictions as possible in any aspect 
of theoretical model building. There is no reason to 
stop model building but such enterprise should be 
made as difficult as possible. It is in this spirit that 
specialized investigations are undertaken: They pro­
vide restrictions, not complete understanding. No 
present theory suggests that metamorphic rocks are 
precipitates from a primordial ocean. This r estriction 
has not laid bare all secrets of metamorphic rocks but 
has led to a more probable model. 

Having made this declaration about the unity of 
nature, a fragmentation will be allowed in the interest 
of methodology, contrasting two groups of aspects in 
metamorphic rocks: 

1. Features reflecting the past history of the rocks. 
These include deformation paths, sequ ences of 
mineral assemblages reflected by textural disequi­
librium, and mechanisms of recrystallization. 
Problems of kinetics and reaction rates loom large 
in such a list. 

2. Features characterizing· the quenched state of the 
rocks. 

For geological reasons, we are very inte r ested in 
the first group. But the fact that a theoretical tool, 
thermodynamics, is available in the study of the second 
group leads to an emphasis of these aspects in many 
investigations. 

The repetition of the same mineral assemb lages in 
rocks of different ages and orogenic belts suggests 
equilibration of minerals over short distances. This 
encourages the application of thermodynamics to meta­
morphic rocks. The usefulness of thermodynamics lies 
in the fact that it provides a relationship among variables 
at equilibrium; one of its limitations is that it 
presupposes equilibrium. Thermodynamics cannot be 
used to prove or disprove equilibrium. If equilibrium 
is conceded, the rocks are subject to the laws of 
thermodynamics and geological mod els should not 
violate them any more than the law of gravity. 

It is readily accepted that a portion of matter is 
characteri zed not only by its mass but a lso by its energy 
content. It turns out that the energy may be stored in 
forms of different stability. Spontaneous changes 
strive to reach an arrangement of maximum stability . 
Thermodynamics defines a function, entropy , which 
is maximized for a given amount of mass and energy 
content. From this function many relationships among 
variables may be deduced. Some of these variables 
can be measured and others may then be calcula ted. 

For a chemical reaction a very convenient relation­
ship among variables is given by the equilibrium 
constan t, deduced from thermodynamics. It is an 
expression involving partial pressures and/or chemical 
compositions of reactants and products a t equilibrium 
and is itself a function of pressure and tempera ture. 
It provides for each equilibrium a link between 



measurable variables, i. e., compositions of minerals 
and non - measurable variables, i. e., pressure, tem ­
perature and partial pressure of volatiles. 

For a solid-solid reaction, the equilibri um constan t 
can be measured. This gives a relationship between 
P and T b ut not both variables. For a reaction involving 
gases, only a portion of the equilibrium constant can 
be measured, leaving more unknowns. The key to 
determining as many unknowns as possible is the 
simultaneou s solution of equations based on several 
equilibrium constan ts. 

One of the goals of metamorphic petrology is 
mapping the distribution of non - measured variables. 
Then it may become apparent whether, for example, 
PH 0 is imposed by the environment, i . e. uniform over 
a 15rge ar ea. or controlled by the mineral assemblages, 
i . e. variable from rock to rock. Having established the 
variab les of the environment, it is possible to charac­
terize types of metamorphism according to the relation­
ship among these variables, e . g. paths traced out in a 
P- T diagram. Also, it will be possible to tes t various 
models proposed for the environment, e. g. PHzO = Ptotal • 
PH zO + Pco 2 = Ptotal. or PH zO « Ptotal· . . . 

In order to do quantitative work, eqmhbrium con­
stants must be calibra ted eit her directly or from free 
energy c hanges (a thermodynamic function involv ing 
entropy) of reac tions. Such data may be obtained from 
calorimetric, electrochemical , and spectroscopic 
measurements or from addition of various reactions. 
The free energy change, like the heat of reaction, is 
an additive property. 

The application of thermodynamics, e. g. the 
interpretation of natural mineral assemblages in terms 
of equilibrium constants, is logically independent of 
the method of calibration . Even in the absence of 
quantitative data, the relationship among variables is 
qualitatively corr ect and in itself useful. 

Some methods are more convenient and accura te 
than others, but in applying thermodynamics , it does 
not matter how thermochemical properties are obtained. 
Calibrations based on experimental reactions are valid 
even if s eh reac tions do not occur in nature. A good 
experiment provides thermochemical data; it is not 
meant to model a natural process. In fact, frequently 
geologica lly insignificant reactions are experimentally 
investiga ted, for reasons of convenience or kinetics, 
and then combined to give equilibrium constants of 
more useful reac tions . The thermodynamic approach 
cannot be criticized because some experimental ca libra­
tions are not "c lose to nature". 

The validity of the thermodynamic approac h may 
be questioned on the basis of it s inherent limitations . 
Two problems are encountered: 

1. Lack of equilibra tion over distances greater than 
a few centimeters and other disequilibrium features, 
i. e. zoning and reaction rims. 

2. Difficulty of determining compatible mineral 
assemblages in some rocks. 

Because all thermodynamic relationships and deri ­
vations presuppose the concept of equilibrium, thermo ­
dynamics does not provide criteria of equilibrium; it 
describes features of eq uilibrium , e. g . relationships 
among variables. In order to apply thermodynamics, 
this assumption must be conceded. 

BASIC CONCEPTS OF THERMODYNAMICS 

Introduction 

Thermodynamics is concerned with the relationship 
among properties of macroscopic bodies. Although the 
fundamental relationships are set out in numerous texts, 
it is advantageous to list the concepts and present them 
in a form which is most convenient for the present 
purpose. In the development of ideas , as well as in 
notation , mainly the book by Denbigh (1966) will be 
follow ed. 

Essential to thermodynamic analysis is the concept 
of a system. This is a portion of matter or a given 
volume which is separated from its s urroundings by 
boundaries having definite properties. A closed system 
refers to a fixed amount of matter. An open system 
commonly refers to a solution . Transfer of matter 
changes the concentration and, thereby, the properties 
of the constituents. 

A given amount of a homog·eneous substance is 
characterized by a set of macroscopic properties; these 
define the thermodynamic state. Furthermore, if this 
state is altered by changing some of the variables, it 
is possible to return the substance to its original state 
without leaving any traces of such a process in the state 
variables, i . e. the state variables are not affected by 
the past hi s tory. If a particular thermodynamic state 
persists with time, the substance is in a state of 
equilibrium. It has been observed that at equilibrium, 
two variables are sufficient to specify the thermodynamic 
s tate of a given mass of a homogeneous substance; 
there are only two independent variables. Thus at 
fixed p and V, all other properties like refractive index, 
viscosity etc. are specified. 

Accepting P and V as state variables familiar from 
mechanics, thermodynamics leads to the recognition of 
three new state variables: temperature T, internal 
energy U, and entropy S. The principles of chemical 
equilibrium are based on the interrelationship of these 
five variables. In this chapter, the symbols for the 
exten sive properties, e. g. V, U, and S, refer to the 
whole system. In some cases, this will be emphasized 
by a subscript. 

Temperature 

Since two variables determine the state of a 
pure substance at equilibrium, temperature may be 
defined as a function of P and V 

T =f (P,V) 

For example if we want to use the functional relation­
ship of PV of a substance and T, it is necessary to 
assign temperatures to two PV values. If the same 
procedure is adopted for another substance, a different 
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PV 
(col) 

0 100 

TEMPERATURE ( °C) 
Figure 1. Thermometers based on real subs tances. 

functional relationship exists and at temperatur es other 
than the two fixed poin ts, the two thermometers give a 
different reading (Fig. 1). 

However, as P -+ 0 different gases give very nearly 
the same termperature read ings, i. e. a linear r el a tion­
ship between PV and T is approac hed . The PV produ c t 
at zero pressure can be obtained by extrapolatin g 
measured PV products to zero pressure. It i s the n 
possible to plot lim (PV)p-+ o = 0 vs. T (Fi g . 2) . 
Assigning 0°K to the value of lim (PV)p -+ 0 = 0 a nd 
273. 16°K to the triple point of water, temper ature is 
defined as 

lim (PV)p .... Q 

T=273.16 
lim (PV)p_. 0 at triple point 

Since lim (PV) P-+O at the triple point for one mole of 
a gas is 542. 815 cal 

lim CPV) P-+ O 
T = 

R 

where R = 542. 815/273. 16 = 1. 98717 cal /deg 
On this scale, the normal freezi n g poin t of water is 
273 . 15°K and the normal boiling point is 373. 15°K. A 

particularly good discussion of the defini ti on of tempera­
ture is given by Rossini (1950). 

The First Law 

The first law of thermodynamics develops a relation ­
ship between the work performed and the heat received 
by a system. This treatment will be con cern ed only 
with work due to expansion or compression , given b y 

o w= PdV 

Commonly such slow expansion s will be considered tha t 
P of the system is equal to the external pressure on the 
system. Work is taken as positive if the system expands 
(dV =positive), i. e . the system performs work. 

In order to develop the con cept of heat , it is 
advantageous to define two types of wall s or boundaries 
between a s ubstance (the system) u nder con sid er a tion 
and the surrroundings . A boundary w hich allows the 
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Fi gure 2. Zero pressure gas thermom ete r. 

establis hm ent of thermal equ ilib r ium i s ca lled di a therma l, 
whereas a boundary with very hig h in s ula ting qua lities 
i s known as adi ab a tic. A p erfect adiab atic boundary, 
conceivable as a limiting case of a real boundary, would 
allow th e maintena nce of a temper atu re difference between 
the sys tem a nd the surroundings i n d efinit e ly . 

T he exp erim ents of J oule s how ed th a t the expendi ­
ture of a cer tain amount of work on a giv en a mount of 
subs ta nce in an adiab a tic container r esulted i n a 
definite temper ature increase. The temp erature was 
r aised by tran sferring en ergy to the body in the form 
of wor k . The same cha nge can b e accomplis hed by 
puttin g the s ubs ta nce into a d ia therm a l container , 
k eeping the v olume cons tant , and b r inging it into contact 
with a body of h igher temperature. Energy a gain is 
tra n s ferred to the s ubsta nce, thi s tim e in r esponse to 
a t empera ture d iffer en ce. Energy tra n s fer red in this 
ma nner i s d efin ed as h eat. Heat i s tak en a s positive 
if ab sorbed by the syste m. 

The s ta te of a homogen eous s ubs ta nce in a c losed 
system i s specified by a ny two variable s . It c a n be 
ad equa tely represented e. g . in a P - V dia g ram (Fig . 3). 
If the s ta te i s c hanged fr om A to B, th e a mount of work 
p erform ed b y the system, given b y the area under the 
curve, dep ends on the path in the P - V dia gram, i. e . 
on the n ature of the process . Simila rly, the h eat 
ab sorbed b y th e system varies. However , it ha s b een 
fo u nd tha t the differ ence (q - w) i s the same for any 
path. It dep ends only on th e initia l a nd fin al sta te and, 
therefor e, i s a s ta te variable . Thus , a lthoug h n either 
work nor heat ar e s t a te v ariables, their difference is 
and ma y b e u sed to d efin e a n ew s tate v ariable known 
as the internal ene rgy U 

UB - U A = 6 U = q - w 

or in differ entia l form 



A surroundings 

p 

v 
Figure 3. Illu stration of the first law . 

The differential dU is exact and its integ·ral is indepen ­
dent of path; the differ e ntials ,Sq and bw are inexact and 
their integrals are path- dependent. 
Thus for a cyclic process 

f dU = 0 

This is not true of bq a nd b w. 
For some particular paths, work and heat are state 

variables . Because ,5>q = 0 for an adiabatic system 

dU = -dw 

If expansion i s very slow, so that the external pressure 
differs infinit esimally only from the pressure of the 
system 

dw = PdV 

If a p rocess takes place at constant volume, dV i s zero 
a nd 

dqy = dU 

and if it takes p lace a t constant pressure 

dqp = dU + PdV 

dqp = d (U + PV) 

The combina tion (U + PV) is a ne w function of state 
call ed the entha lpy or heat content. 

The heat capacity of a s ub stance is defined as 

C=~ 
dT 

It is convenient to recogni ze heat capacities for two 
s p ecified paths of heat trans fer, a t cons tant volum e and 
at consta nt pressure 

_ ~ -(au) 
CV - dT - a T V 

-~ -(aH ) cP - dT - aT P 

The Se ond La w 

Chan ges taking place within a system have direction 
an d pro eed towards equilibri um. The conditions at 
equilibr ium ar e govern by the s ubs ta nces in the system 
and by the nature of it s boundaries. As equilibr ium is 
ap proac h ed a s a limit, the c hanges become reversible, 

p 

A surroundings 

system 
reversible changes 

oq 

v 

dS 
Oq rev 
- T-

Figure 4. Illustra tion of the second law. 

i. e . they occur at an infinitesimal rate at conditions 
only infinitesimally removed from equilibrium. Thus 
a reversible change represents a succession of 
eq uilibrium states. At each stage of the change, all 
s tate variables are defined. 

If a system is brought from state A to state B, the 
heat ab sorbed is, in general, dependent on th e path. 
However, it has been observed that if inside the system 
only reversible changes occur, the ratio qrev I T is 
the same for any path (Fig. 4). It depends only on the 
initial and final state and defines a new state variable 
known as entropy S 

qrev 
SB - SA = t.S - T 

or in differential form 
b qrev 

dS = -T-

Thus the differential dS is exact, i t s integral is 
independent of path and 

f dS = 0 

The nature of the First and Second Law has been 
expressed by Nash (1962) in a particularly lucid 
paragraph: 
"For the purposes of classical thermodynamics we 
n eed say no more than that the internal energy U is a 
function of state defined by the equation dU = q - w, and 
this is a statement of the first principle. And for the 
pu rposes of classical thermodynamics we need say no 
more than that the entropy S is a function of state 
defined by the equation dS = qrev / T, and this is a 
statement of the second principle. Some have argued 
tha t the urgency of our quest for a "something constant" 
in all change leads us to invent the concept of energy 
and to enforce it as a convention. But the fact that, 
however q and w may vary individually, the difference 
(q - w) i s a constant for any given change of state - that 
is a discovery, providing a firm empirical footing for 
the first principle. Conceivably one might equally 
argu e that the urgency of our quest for a "something 
pointing" the direction of all spontaneous change drives 
u s to invent the concept of entropy. But the fact tha t, 
however qrev and T may vary individually, the 
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quotient qrev/T is a constant for a given c hange of 
state - that is a discovery, providing a firm em pir ical 
footing for the second principle. " 

Changes in a Closed System 

Changes inside a system must conform to th e fi rs t 
a nd second law. By combining the two laws, useful 
relationships among the five fundamental s tate variables 
are obtained. This derivation will be carried out b y 
considering the same change brought ab out in three 
different paths (Fig. 5). 

chem .·1rr. 

Oq chem. irr. 

v 
Figure 5. Changes in a c losed system . 

1. All changes are reversible, includin g PV wor k . 

In this case 

dU = bqrev - b Wrev 

dU = TdS - PdV 

2. There is some irreversibility in the PV wor k of 
expansion or compression, here desi g nated as 
mechanical irreversibiltiy 
Therefore, 

and 

b qmech. irr. f. TdS 

bwmech. irr. F PdV 

dU =clqmech.irr. - bwm ec h . irr. 

However, dU must be th e same in both cases 
since the change in s ta te fro m A to B i s identical. 
Therefore, 

dU = TdS - PdV= oqmech . irr . - 6w mec h . irr. 

bqmech. irr. = TdS - PdV + bw mech. ir r . 

3. There is irreversibility d u e to c han ges like e limi ­
nation of temp erature gradient s, diffusion , mix ing, 
and chemical reaction s, here desi gn ated collectively 
as chemical irreversib ility. Hen ce one can 
distinguish two possibilities a ) a n d b) 
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a) With mec ha nical irreversibility . For s u c h 
cha n ges it is always observed tha t 

6 q ch em. irr . < Td S - PdV+6wmec h . irr. 

The fir s t law i n thi s case is 

d U = 6q chem. irr. - 6w mec h . irr. 

Eq u a ting 

oqc hem. irr . = dU +bwmec h. irr . 

< TdS - PdV + 6w mech. irr . 

dU < T d S - PdV 

b ) Without mec ha ni cal irrever s ibility . For s uc h 
c han ges i t i s always ob served tha t 

cl q c h em. irr. < TdS 

The firs t law in thi s case i s 

d U =6q c h em. irr . - PdV 

Equ a tin g 

b q ch em. irr . = dU + PdV < T dS 

d U < TdS - PdV 

We thus obta in in both cases (dU +PdV - TdS) < O 

T he equa tion 

(dU + Pd V - TdS) (' 0 
i s the mo s t gen era l thermody na mic d escr iption of 
c han ges in a c losed system. Since the d eriva tion pre­
s upposes the concept of equilibrium , the equa tion 
codifies fea tures of equilibrium r a ther tha n cons tituting 
a cr i terion of equilibrium (Rei ss , 1965) . T h e equ a l 
s ig n refers to reversible ch an ges and those i nv olv ing 
mech anical irreversib i lity . The inequality refer s to 
irr ev er sible ch emical c ha n ges with or wi thout 
mechanical ir reversibility . 

If P a nd T can be imposed on the system by the 
surr oundings a nd maintaine d cons ta nt , the r elation­
s hip among the five fund a me nta l thermody n amic vari ­
ables b ecomes mor e r es tric ted 

d (U + PV - TS) (' 0 

for a c los ed sys tem at cons ta nt P , T . The combina tion 
of v ariables (U + PV - TS) is k nown as the Gibbs fr ee 
en ergy G. 

The Va ria tion of the Gibbs Free Energy 

The Gibbs free en er gy d efin ed by 

G = U + PV - TS 

i s a s tate variable. For a fi xed amount of a homogen eous 
substance of specifie d composition it i s a func tion of 
any two s ta te v a riables. We a r e partic ula rly inter ested 
in its v a riation with P and T. This i s obtained by 
differentiating G. 



dG = dU + PdV + VdP - TdS - SdT 

and since dU = TdS - PdV 

dG = VdP - SdT 

or (aG) = v and (aG) = -S 
aP T aT p 

These equations apply to either a pure substance 
or to a solution of fixed composition. Commonly the 
properties of a pure substance are of particular con­
cern. Even in case of a solution it is desirable to 
"divide" the state properties of the system among the 
components and thus assig·n definite properties to 
particular substances even if they occur in a solution. 
Although ther e is no physical significa nce to this, it 
is a convenient procedure. It is accomplished by 
defining the par tial molar free energy G (or chemical 
potential) 

(
aGsystem) 
an· Gi 

1 P ,T, nj 
where G refers to the free energy of the system, ni to 
the number of moles of component i, and nj to the 
number of moles of all other components. This defini­
tion may be represented as the tangent on plot of G vs. 
ni (Fig. 6). 

G 

of the 

System 

0 

~ 

~(aGsystem\ 
/ \:ani 7 P T n · 

' ' 1 

n· I 

Figure 6. Definition of the partial molar free energy. 

The partial molar free energy may be thought of as the 
free energy of one mol e of s ub s.!_ance i in a solution of 
par ticular composition. Since Gi varies with composi­
tion, i t wou ld be of interest to know the relationship 

(~) P ,T 

T hermodynamics, however, does not provide an 
answer in this case. 

G~ 
I 

0 ln Xi -- - <>o 

Figure 7. The partial molar free energy of a component 
in a solution. 

In some instances it is p~ssible to measure Gi at various 
concentration. Plott~ng Gi vs. Xi suggests a logarithmic 
variation. Plotting Gi vs. ln X shows that many solu­
tions plot close to a straight line and become tangential 
to a straig·ht line with slope RT a t Xi = l, even if the 
mole fractions Xj are varying (Fig. 7). This sugg·ests 
the model of an ideal solution defined by the equation 

( aGj ) =RT 
a1nxi P,T 

THERMODYNAMICS OF REACTION EQUILIBRIA 

Introduction 

A state of equilibrium in a closed system is char­
ac terized by thermodynamic functions derived from a 
combination of the first and second law. A chemical 
equilibrium is stated in the form of a mass balance 
equation and the mass involved in the reaction is con­
sidered as a closed system. Thermodynamics provides 
an energy balance based on the mass balance. In case 
of a chemical reaction it enables the comparison of two 
en ergy states of an isochemical aggregate. 

The Gibbs free energy of a substance is determined 
if three parameters are stated: Pressure P, temperature 
T, and composition state X, i. e. pure substance or mole 
fraction in a solution of fixed composition. If these 
parameters are given for each reactant, the energy of 
the left side of the reaction equation is specified 
(Greactants). The energy of the right side may be 
similarly specified (Gproducts). If P, T, and X are 
fixed for each reactant and product, then at equilibrium 

t.G = G - G = 0 
reaction products reactants 

Because it is physically impossible to equilibrate reac­
tants a nd products at different temperatures, only 
cases with a uniform temperature are considered. It 
is common, however, to have various reactants and 
products in different composition states at equilibrium 
and the pressure of the gas species generally is not the 
same as that of liquids and solids. If the P-T-X con­
ditions of any reactant or product are changed, the 
equilibrium is s hifted. Therefore, the variation of G 
with P, T, and X will be considered next. 
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Gid _G*= RT ln X 

- * G- G = RT ln a 

G 

0 ln X 
Figure 8. The definition of activity and activity coefficient. 

From here on, the symbols for the extensive pro­
perties refer to one mole of a substance, unless spe­
cifically stated otherwise. However, if preceded by 
the symbol t.., the property change refers to a reaction . 

T he Variation of G of Liquids and Solids with P 

The equation 

= v 

may be integrated between two states 

Gp - GP' =f p VdP 
P' 

In order to evalua te this integral precisely, the iso­
thermal compressibility must be known. For liquids 
and solids, the lower limit of the integral is generally 
taken a t a standard state pressure of one atm. In this 
paper, the equation will be applied to pure substances 
on ly. Thus 

G* - G0 =Jp VdP 
1 

where G0 and G* refer to the Gibbs free en ergy of the 
pure substance at one atm and specified pressure P, 
respec tively. 
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The Variation of G with X 

The defining equation of an ideal solution 

( aG ) =RT a ln x 
P,T 

may b e integra ted between any two compositions. A 
convenient low er limit for many purposes is X = 1 

G - G* =!~ = l RT d ln X 

G - G* =RT ln X 

where G is the Gibbs free energy of one mole of the 
component in solution at any given P and T, G* is the 
molar free energy of the pure substance at the same 
P and T, and X is the mole fractiQn. For real solutions, 
the RT ln X term is not equal to G - G*. The deviation 
may b e expressed by a term RT ln y. Thus 

G - G* =RT ln X +RT ln y =RT ln yX 

The product yX is known as the activity and y as the 
ac tivity coefficient. Both are defined by appropriate 
energy differences (Fig. 8). 

The complex n ature of many solid solutions 
found in minerals presents some special problems. 
The equation valid for an ideal solution 

G - G* =RT ln X =RT ln a 

r efers to one mole of a component in a solution. For 
instance, if Fe and Mg are th e mixing units in olivine, 



0 

multiplied by 2 

----- - 00 

lnX =ln ( Fe ) 
\ Fe +Mg 

0 

2 RT In X = 

RT In aFe2Si04 

--oo 

In X =In (}::MgJ 
Figure 9. The ac tivity in a solution with multiple mixing units. 

0 

2 RT In X 

--oo 

lnX • ln (~\ 
\fe +Mg) 

RT In Y 

0 

Figure 10. The activity of fayalite in olivine. 

the equatio n r efers to one mole of FeSio. 5o2. If the 
formu la i s doubled, the energy difference between 
Fe2Si04 in solution and pure Fe2Si 04 is twice th e energy 
difference between FeSio. 502 in solution a nd pure 
FeSio. 502. It is often convenient to define a n activity 
on the b asis of the energy difference for the unit 
Fe2Si04 in solution and pure Fe2Si04 (Fig. 9). Thus 

aFeSi
0

. 
5

o
2 

=(xFeSi
0

. 5 o 2)=~ FeF: Mg J 
but 

a Jx )2 j_ Fe ) 2 
Fe 2Si0 4 \ FeSio. 5 02 \Fe +Mg 

in a binary solution. If the mixing unit is multiplied by 
some number , the activity is equal to the mole fraction 
raised to a power eq ual to that number . 

In many solid solution s, mixing takes place on 
more than one lattice site. For example, if Si and Ge 
occupy the tetrahedral position of olivine, this con­
tributes a further energy drop with respect to an end 
member. It is now convenient to define an activity on 
the basis of the total energy drop (Fig. 10): 

G . G* . 
Fe 2S10 4 - Fe 2S10 4 =RT ln aF S. O 

e2 i 4 

Fe Si 
= 2 RT ln -F M +RT ln -s· G e+ g i+ e 

Therefore, 

aFe2SiO 4 =(Fe ~eMg ) 2( Si :iGe ) 

This type of model involving ideal solutio!1 in more than 
one lattice site was first discussed by Temkin (1945) 
and introduced into the geological literature by 
Ringwood (1958). 

The components (Fe, Mg) and (Si, Ge) were 
tr eated as separate solutions and the equation of an 
ideal solution 

( 
aG ) =RT 

alnX P,T 

was integrated for each constituent, from Fe = 1 
Si Fe+ Mg 

and from S. G = 1. This is appropriate because 
i + e 

these atomic fractions are unity in Fe2Si04. In biotite, 
mixing of atoms also takes place in the octahedral and 
tetrahedral positions. However, in the end member 
annite K Fe3 (Si3Al) o10 COH) 2, not all atomic fractions 
of concern are unity. Therefore, the following lower 
integration boundaries are used: 

X = Fe = 1 
Fe+ Mg+ Al 

in the octahedral position 

Si y 
Si+ Al 

Al 
z =Si +Al 

0. 75 in the tetrahedral position 

0. 25 in the tetrahedral position 
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Figure 11. The activity of annite in biotite. 
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Figure 12 . The definition of fugacity. 

The activity again is d efined on the basis of the total 
energy difference (Fig. 11): 

RT ln aKF e3(Si3Al)O10 (OH) 2 = 3 RT ln X + 

3 (RT ln Y - RT ln 0. 75) +(RT ln Z - RT ln 0. 25) 

Therefore 

(Fe+~=+ A1)

3 

(si ~~1 / 
0

· 
75

) 

3 

(At: Si / 
0

· 
25

) 

Variation of G of a Gas with P and X 

For a perfect g·as, the general equation 

(~~) =V 
T 

10 

may be integrated as follows 
p p 

G - G
0 -1 V dP -1 

po po 

p 
RT d ln P = RT ln-po 

At a sta ndard state pressure of P0 = 1 a tm , G0 is the 
molar Gibbs fr ee energy a t one a tm . 

For a real gas, the energy difference G- G0 may be 
used to define the fugacity. This concept will be intro­
duced following essentially the tr eatment of Rossini 
(1950) . It can be s hown (see e. g. Beattie and 
Stockmayer, 1951) that a real gas at zero pressure has 
the same internal energy and entropy as a perfect gas. 
Furthermore, the PV product of a real gas at zero 
pressure is equal to RT. Therefore, also the en thalpy 
a nd Gibbs free energy of a gas at zero pressure are 
those of a perfect gas. However, the difference in vol ­
ume between a real a nd a perfect gas does not become 
zero at zero pressure; it has a finite limiting value 
(Van Ness, 1964). Defining Z = PV / RT, the volume of 
a real gas is vreal = ZRT / P. Thus 

a = Vperf _ Vreal =RT _ ZRT = RT (1 - Z) 
p p p 

As P approaches 0, (1 - Z) also approaches 0. In order 
to evaluate the limit, the enumerator and denominator 
are differentiated with respect to P (L'Hopital' s rule) . 
Therefore, a a t zero pressure = - RT (aZ/aP)T. 
It is customary to express the properties of a real 
gas in terms of deviations from perfect behaviour. 
It would b e desirable, therefore, to use Gp=O as 
the lower boundary of integration in both cases. 
Thus 

and 

Greal _ Greal 
P=O 

p 

=f P=O 
Vreal dP 



Since Greal = Gperf 
P=O P=O 

p p 
Greal _ Gperf { Vreal dP -J Vperf dP 

P=O P=O 

These integrals cannot be evaluated because V -+ 00 as 
P-+ 0. However, although both vreal and vperf-+ oo 

as P -+ 0, it has been shown that the difference vreal -
vperf = - a approaches a constant. Therefore, the 
following integral may be evaluated 

p 
Greal _ Gperf 1 _ a dP 

P=O 

If the molar free energy of the perfect gas at 1 atm, G~ 
is taken as the standard state, the molar free energy 
of a real gas may be expressed by two energy terms 

Greal _ Go = (Gperf _ Go) + (Greal _ Gperf) 

p fp 
=RT ln - - a dP 

po P=O 

This energy difference may be used to define the 
fugacity (in atm) of a real gas at pressure P (Fig. 12), 
if the fugacity in the standard state i'° is taken as 1 atm. 
The standard state for this purpose is the perfect gas at 
P0 = 1 atm and having an energy G0

; the real g·as has 
the same energy G0 but its pressure is such that its 
fugacity is one a tm , i. e. F = 1 atm. 
Thus 

p 
real f P J G - G0 =RT ln - =RT In - - a dP 

i'° po P=O 

Since both P0 and F are 1 atm 

f p 

RT ln-p = -~=O a dP 

The ratio f / P, designated by cp (commonly also X· y, 
or v) is know n as the fugacity coefficient and may be 
evaluated from PV measurements by plotting 

_ a = Vreal _ Vperf = Vreal _ RT 
p 

against P and measuring the area under the curve. 
The variation of the Gibbs free energy of a constit­

uent in a gaseous solution is given by the same formula 
as that of a solid solution 

G - G* =RT In X +RT In y 

How ever, in the case of a gaseous component,_it is 
convenient to measure the energy in solution G from 
G0 rather tha n from G*. This is easily obtained by 
adding two energy differences, one due to the varia!jon 
of G with pressure and one due to the variation of G 
with composition (Fig. 13): 

G"- - G0 = 

G - G* = 

RT ln P + RT In cp 

RT ln X +RT In y 

G - G0 =RT ln P +RT ln cp +RT In X +RT In y 

This energy difference is used to define the fugacity 
of a component in a gaseous solution 

G - G0 =RT In f 

For a perfect gas species (cp = 1) in an ideal solution 
(y = 1) 

G - G0 =RT ln f =RT In P +RT ln X =RT In P . l 
partia 

For a real gas in an ideal solution (y = 1) 

G - G0 = RT In f =RT In P . I + RT In cp 
partla 

Thus f = P partial . cp, where cp is the fugacity coefficient 
of the species at the total pressure P of the solution. 
This is known as the Lewis and Randall rule. It is a 
useful approxima tion for many gaseous solutions. (The 
rule may also be stated as f = f"X; wh(;?re f"'is the 
fugacity of the pure gas at the same pressure as that 
of the solution). 

It is generally difficult to obtain activity coefficient 
of gaseous solutions. Shaw (1967) imposed a known 
fugacity of hydrogen on a solution of Hz and H2o by 
using platinum as a membrane permeable to hydrogen. 
Knowing also the total pressure of the solution, the 
fugacity coefficient of pure hydrogen at this pressure, 
and th e composition of the solution, it is possible to 
calculate y from the relationship 

f=PcpXy 

More commonly activiy coefficients are obtained by 
measuring partial molar volumes. It is generally 
assumed that at zero pressure gases mix ideally. 
Therefore the following relationship may be 
integrated at constant composition 

- -i.d p 
RT ln y = G - G = J (V - V) dP 

P=O 

t~> 
- - ----------- - --- G" 

· ; 
real gas rn a nomdeal solution -/->/;-,' __ 
perfect gas in an ideal / 

solut ion -1--/.w / 
1 

I / : 
/!/ / }-----

real gas in an ideal solut ion 

'/ / 
;/'/ 

f 
G 

In X 

_v 6' 
0 

RTln<1> 

RT In P 

Figure 13. The fug·acity of a component in a gas mixture. 
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The Variation of G with Temperature 

The formula 

is valid for each reactant and product. It will be more 
convenient, however, to apply an equivalent formula to 
the energy change of a reaction, particularly with all 
substances in their standard states. Thus 

(
ati.G

0
\ = _680 

aT }p 

The Equilibrium Constant 

At constant temperature, the variation of G with 
pressure and composition is given by the relationships 
shown in Table 1. 

Table 1 The variation of th e Gibbs free energy 

Solids and liquids Gases 

Pressure P G* - G0 
/, VdP G - G0 =RT ln f/fO 

,composition X G - G* =RT In a 
I 

It is important to remember tha t in thi s paper G0 

a lways refers to the molar free energy of a pure sub­
stance a t standard pressure, i. e. one atmosp here for 
solids and liquids and a pressure making the fugacity 
eq ual to one a tmosphere for gases. G* refers to the molar 
free energy of the pure s ubstance a t any particular 
stated pressure. In g·ases the variation of G with 
pressure a nd composition is accounted for by the 
expression RT ln f /fO . 

Now it is possible to compare the energy levels of 
the two sides of a reaction equation (i. e . consider the 

difference 6. Greaction = Gproducts - Greactants) at 
differ ent values of P and X for various reactants and 
products. This will be done with the example of a 
simple reaction 

The variation of Ggas with P and X is accounted 
for by the fugacity and may be plotted on a diagram 
of G vs. ln f. The variation of Gliquid may be shown 
by contours of activities of H 2o on a diagram of G vs. 
P (Fig. 14). In order to relate these two energy levels 
it is necessary to know ti. G of reaction in one case, 
with P and X for both substances specified. These 
conditions need not be the same for both s ubstances. 
In tabulations of thermochemical data it is convenient 

H2 perfect gas and t 0 2 perfect gas at 25°C and 1 atm 
0 .-~~.-~~.---~~.--~~-.--~~~---=-~--.~~~~~----,,--~~~~~-r--~~~~~ 

-54 

Go 
of gas 

-55 

- 56 

Go 
of liquid 

-57 

12 

-4 -3 

6Gf of 
gaseous H20 

6 G0 

of 
reaction 

___________ !g_u~i~r~~~ at these conditions - - - - \)- - - -

- 2 - 1 

In f H20 

Figure 14. 

0 

''°' ~ \, 
Q. '07-0 

1000 

Pressure atm 

The equilibrium between liquid and gaseous H
2
o. 

2000 3000 



Table Z 

The equilibrium between liquid and gaseous HZO 

HZO (liquid) 

left s ide 

G t t = AGf of liquid HZO reac an 

+Ip v 
HZO 

dP 

p = 1 

+RT ln a liq 
HZO 

At equilibrium AG 
= G 

product 

to s ta te this energy difference with each substance in 
its s tandard state, i. e. for liquids and solids the pure 
substance at P = 1 atm and for gases the pure substance 
at f = 1 a tm. This energy difference is known as the 
standard free energy change, designated by A G0

• In 
some books (e. g. Kubaschewski et al., 1967), A G0 of 
various reactions is given. Mor e often the standard 
free energy of formation from the e l eme·nts is given 
(Robie and Waldbaum, 1968; JANAF Tables) and A G0 

of reaction is obtained by difference. At Z5°C 

t OZ (gas, f = 1 atm) +HZ (gas, f = 1 atm) 

= HZO (gas, f = 1 atm) 

AG[= -54. 635 kcal 

t OZ (gas, f = 1 atm) +HZ (gas, f = 1 atm) 

= HZO (liquid, P = 1 atm) 

AG[ = - 56. 688 kcal 

HZO (liquid, P = 1 atm) = HZO (gas, f = 1 atm) 

AG 0 
. = +Z. 053 kcal 

reaction 

The molar volume of water is 18. 069 cm 
3 

or 

18 . 069 cm 
3 

= 0. 43759 cal/atm 
3 

41. Z9Z cm - atm /cal 

(from Robie et al., 1967) 
It is convenient to assign zero energy to the elements 

in their standard s ta te (at any temperatu re) and "build 
up" the energy content of both sides of a reaction from 
this d atu m. Thus G at given values of P and X, is 
obtained as shown in Table Z. 

= 

-

HZO (gas) 

G 

right side 

G d = AG[ of steam pro uct 

+RT ln fH O 
z 

= 0 
reactant 

It follows that at equilibrium 

AG 0 = (t..G[ of steam - t..G[ of liquid HZO) 

fH 0 P 
-RT ln -.z- - ( t.. V

1
. dP 

ahq j P=l iq 
HZO 

[Note: t..V liquid of the reaction is - VHzO of liq. HzO; 
ass umed to be constant in Fig. 14]. In metamorphic 
processes reactions commonly involve solids and gases. 
For such reactions the last relationship may be 
generalized 

t..G 0 =-RTlnK- rp AV dP 
j P=l s 

where K is the equilibrium constant in terms of activities 
and fugacities. From the first and second law t..G0 = 
t..H 0 

- Tt..S 0
; therefore 

AH°-Tt..S0 =-RTlnK-rp AV dP 
j P=l s 

Now two apparoximations will be discussed which 
are appropriate in many circumstances. The heat 
capacities of reactants and products often are sufficiently 
similar so that very nearly AC'f> = 0 over a limited 
tempera ture range ~400°C). This implies that AH0 

and t..S 0 are constant because 

(
ac,.so) = t..q, and (at..Ho) c,.cop 
aT P ~ aT P 

AS 0 and AH 0 are independent of pressure because the 
standard state specifies the pressure. 

The isothermal compressibility and the isobaric 
expansion of solids usually are sufficiently similar so 
that t.. V solids is constant over a limited range of P and 
T C ~10 kb, ~ 400°C). 
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0 
u 
x 

6 Fe at P = 1atm 
3 Si at P = 1 atm 
7 02 perfect gas 

6 Fe at P = 1 atm 
3 Si at P = 1 atm 
7 0 2 perfect gas 

atP=1atm at P= 1 aim 
627°C 

o.----~--'--,~~~~~-'-~~~~~-'-T,~~~~~~~~---. 

1 : 36Gf'. 5 ,02= - 536 040 

-600 

- 700 

-800 

-900 

3 6 G
0
f F s 0 = - 848 082 

' 12 I l. 

.... t.::i:;:;:::i v5,
02

(P-1)=+ 3 252 

2 6 G
0

1 F 0 = - 394 946 
'

1 3 4 

Figure 15. The oxidation of fayali te. 

With these two approximations one can write 

t..G 0 = t..H 0 
- Tt..S 0 = - RT ln K - t..V (P-1) 

s 
And plotting t..G0 = - RT ln K - .6.Vs (P-1) vs. Twill 
yield a straight line with slope - t..S 0

. 

Or, rearranging and dividing by RT 

1 K=-t..Ho+t..so_t..Vs (P-1) 
n RT R RT 

Plotting Jn K + ~~s (P-l) vs. 1/T yields a straight 

line with slope· -t..H0 /R. It is significant to retain the 
term involving t.. V s· 

Another illustration of a chemical equilibrium 

3 FezSiO 
4 

+ Z OZ=:-;;: Z Fe
3
o 4 + 3 SiOZ 

is shown in Fig. 15. The thermochemical data are 
taken from Robie and Waldbaum (1968). It is important 
to note that equilibrium may be established at various 
combination of total pressure, activities, and fugacities 
as long as the relationship 

t..G0 = - RT ln K - t..V (P-1) 
s 

is satisfied. In the chosen example the equilibrium 
constant is 

14 

Tabulation of Thermochemical Data 

Thermochemical properties are listed for substances 
in their standard states. For solids and liquids the 
standard state for G, H, and S, is the pure substance 
at a pressure of one atm. For gases the standard state 
for G, H. and S is the hypothetical perfect gas at a 
pressure of one atm. If the perfect gas has a standard 
fre e energy G0 at one atm, the real gas has the same 
energy at a different pressure where fO = 1 atm. At 
thi s pressure G (real) = G0 (perf') but 1-1 (real) i 1-1° 
(perf) and S (real) i S0 (perf) . 

The enthalpy of a perfect gas is independent of 
pressure. This can b e seen from the following relation­
ships. Substituting 

G = G0 +RT Jn P 

and -S = (~~ )P= (~~
0

) + R In P 

into th e formula 

1-1 = G + TS 

one obtains 

1-1 = G0 
- T (~~o) 

Therefore, the enthalpy of a real gas can b e equal to 
that of the perfect gas only at zero pressure. 

The entropy of a real gas is equal to that of a per­
fect gas at some pressure which is different from the 
pressure where the free energies are equal. These 
relations are shown in Fig. 16 . Thus, althouth the 
standard state of a gas for G is the real gas at f0 = 1, 
this is not true for 1-1 and S. 

The experimental determination of the hea t capacity 
of a substance makes it possible to integrate the 
equations 

(
a1-1 °) 
aT P 

The lower limits of integration are H2gs and S~ero· 
According to the third law of thermodynamics the 
en tropy of a pure crystalline substance is zero at 
absolute zero. Thus results are listed as CH'T - H2 gs) 
and S1:.. For each s ubstance 

GT= HT - TST 

Subtracting 1-1:rns from each side 

CGT - 1-1:rns) = <HT - Hzgs) - TST 

This function for a substance or combination of s ub ­
stances (one side of a reaction equation) is easily 
plotted, e. g. Hz + ~ Oz, each a perfect gas at 1 atm, 
and HzO steam perfect gas at 1 atm). Tables commonly 
list the function CG'if - 1-1cz 98 ) / T called the Gibbs free 
energy function, a somewhat misleading name. 

In order to relate the two (GT - Hzgs) curves for 
two sides of a reaction equation it is necessary to know 
either t..1-1° or t..G 0 at some temperature. t..H'if is obtained 



G 

from calorimetric measurements. t.G 0 may b e obtained 
from determining the equilibrium constant or from 
reactions in galvanic cells. 

If 6HT is known, 6GT may be calculated from the 
relationship 

6G0 = 6H0 
- T6S0 

T T T 
For insta nce, consider the following example (Fig . 17 
and Table 3): 

Hz (perfect gas, 1 atm) + ~ Oz (perfect gas, 1 atm) 
:.: HzO (perfect gas , 1 atm) 

Go 

-TS0 

: .,,,,...­• 

-TS 

-o.o 0 

ln P 
Fi gure 16. The s tandard s tate of a gas. 

Cl 
u 
~ 

o~ 

"U 
c 
Cl 

0 
I 

At 500°K 

6G5o o = 6H~ 00 - 500 (6s5 00 ) 

= -58Z75 - 500 (49 . 33 - 34. 806 - Z6. 357) 

= -5Z359 ea! 

6G0 of this reaction is the standard free en erg·y of for ­
mation of s team. The reac tants are the e lements in 
their standard s tate; the product is in its standard 
state. Therefore it is designated by 6G1_ 500 _ 

Commonly the standard enthalpies of formation a t 
Z98. 15°K are listed as (6H?_ z98 ). The following 
relationships exist: 

products 

= b.H'f. Z98 + 6 CH~r - H';rn8) 

Thus at 500°K 

reactants 

t.H'f. 500 = -5 7796 + (1654 - Z133) = -58Z75 cal 

6G0 

f, T [HZ98 + (GT - HZ98) l [H z98 + ea;, - Hz98) l 

0 

-10 

-20 

-30 

.. 40 

-50 

-70 

.. 80 

products 

= t.H [, Z98 + 6(GT - HZ98) 

H
0 

of Hi • i~--- --- --~ . .,-.,..,-.--:-::-:--.:-:-... ... .... . l ... . 

i 
r 
I 
I 

reactants 

(G:00-H~98 )= -28448 
I of H2 •101 

... J ... 

o I 
6 Hf 298 : -57796 

I 

I 
I 

I 
i 

.I .. 

J 6 G~ soo• -52 359 
I . 

-~H:~.~~s~~:-:-.-:::+-:-.~ .. ~ -~ -~:-:------------

i 
(G

0 

500 - H~98 ) = - 23011 
I of steam 

700 

TEMPERATURE °K 

Figure 17 . Thermochemical properties of steam. 
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Thus at 500°K 

6 Gf, T = -5 7796 + C23011 + 28448) = - 52359 

SOLID - SOLID REACT IONS 

Garnet - Cordierite Equilibria 

The assemblage quartz-sillima nite-garn et ­
cordierlte is common in hi g h- grade p elitic rocks Ce. g. 
Reinhardt , 1968). These miner als are rela ted by the 
equilibr ia 

Solving for T 

T6V C2) CB (1) + R In KCl)) = 

- 6V Cl )6VC2) P +6VC1) 6VC 2) -A(l) 6VC 2) 

T6VCl) CBC 2) +R In KC 2)) = 

- 6V (1) 6V C2) P + 6V (1) 6V C2) - AC 2) 6V Cl) 

2 Mg3Al 2Si30l2 + 4 Al2Si05 + 5 Si02 ::!:;:" 3 Mg2Al4Si50l8 C2) Assuming· ideal ionic solution in garne t and cordierite 

It i s commonly possible to express 6 G0 as a linear 
fu nction of T : 

6G0 =A +BT CT in °K) 

wher e A = 6H0 a nd B = - 6S 0
• Thus for th e two r eactions 

one can writ e 

A (l) + B Cl) T = - RT ln KCl) - 6V (1) CP-1) 

AC 2) + B c2? = - RT ln KC 2) - 6V C2) CP - 1) 

T CBCl) +RlnKCl)) =- 6V(l/+6VCl) - A(l) 

T CBC2) +RlnKC2)) =-6Vc2/+6VC2) - AC2) 

Solving for P 

T CB Cl) + R ln KCl)) CB C2) + R ln KC 2)) 

CBC 2) +RlnKC 2)) C6V(l) - ACl)) 

- P6V Cl) CBC 2) + R ln KC 2)) 

T CB(l) +RlnKCl)) CBC 2) +RlnKC 2)) 

CBCl) +RlnKCl)) C6VC 2) - AC 2)) 

- P6VC 2) CBCl) +RlnKCl)) 

CBC 2) +R ln KC 2)) C6VC l ) -ACl)) 

- P6V Cl) CBC 2) + R ln KC 2)) 

=CB (1) + R ln KCl)) C6 V C2) - AC 2)) 

- P6V C2) CB Cl) + R ln KCl)) 

CBC l ) +R ln KCl)) C6VC 2) - AC 2)) 

- CBC 2) +R lnKC 2)) C6VCl) - ACl)) 

p = --------------------

and 

gar 
aFe

3
Al

2
Si

3
o

12 

[ Fe ) 
3 

\ Fe+Mg+Mn+Ca ' 

gar 

a Mg 3Al 2Si3012 

It is now possible to write the equilibrium constants 
in the form of a tomi c fractio n s: 

(Fe+~;+Mn ) 
6 

cor 

( 
Fe ) 6 

Fe +Mg·+Mn+Ca 
gar 

( 
Mg ) 6 

Fe +Mg+Mn 
cor 

( Mg ) 6 
Fe +Mg+Mn+Ca 

gar 

Th us the two equilibrium cons ta nts may be calc ula ted 
for each pair of a na ly zed garn et a nd cordierite. The 
volume c ha nges of the r eac tions may b e ob tained from 
Robie et al. Cl967). And if the standard free en ergy 
changes for both reac tions a r e known , it i s possible 
to solv e for P and T. 
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Hutcheon et al. (1974) have used the followin g 
values of ti.G0 to estimate P and T of some rocks from 
the Daly Bay Complex, N. W. T. : 

ti.G 0 (l) = 6590 - 18 . 0 T; ti.V (1) = 3. 6480 cal / bar 

ti.G 0 
(
2

) = - 9030 - 22. 95 T ; ti.V (
2

) = 3. 82 52 cal / bar 

Froese ( 197 3) calculated the free e nergy c hange 
of reaction (1) with the pure solids a t 2 kb. In the 
present notation thi s corresponds to ti.G 0 + ti. V (2000- 1) ; 
therefore ti.G0 = ti.G a t 2kb - ti. V (2000- 1). The s ta nd ard 
free energy c hange of reactio n (2) was es timated by 
Hutcheon e t al. (1974). 

Exc hange Reaction s 

Exc hange reactions are impor ta nt examples of solid ­
solid reactions . For instance, the distribution of iron 
a nd magnesium between cordierite and anthophyllite 
may be r epresented by the following equilibrium: 

Assuming ideal ionic so lution 

position 

~ 
0.8 

>. 
r. 
c. 
0 0.6 £ 
c 
c -0 
~ 0.4 

~If ....___..... 
0.2 

0 
0 0.2 0.4 

(~=+Mg J of 

( s~:Al) 
8 

tetrahedral 
position 

Ko= 2.7 

0.6 0.8 

cord ierite 

(3) 

1.0 

Analogous relations hold for the Mg e nd members. If 
anthophylli te contains no Al 

a~~~1802 2(0H)2 =(Fe:_~g ) 7 

and 

1 Fe Mg 
14 anth Fe+M cor 

K (3) 

(Fe:~g ) anth cor 

The expres sion on the ri ght side of the eq u ation is 
know n as the distribution coefficient Kn. A common 
method of representing Kn , introduced into the geo­
logical literature by Kretz (1961), is plotting Fe / (Fe+Mg) 
in anthophyllite vs. Fe / (Fe+Mg) in cordierite. 

If anthophyllite contains some aluminum, e . g. 2. 5 
a tom s per formula unit (Fe, Mg) 5. 75 Ali. 25 Si6. 75 
Ali. 25 02 2COH)2, 

but , because of cancellation , Kn remains the same . 
Figure 18 s hows the distribution of Fe and Mg 

b etween anthophyllite and cordierite b ased on two 
a na lyses r eported by Lal a nd Moorhouse (1969). The 
distribution curve corresponds to tie lines in a con ­
ventional phase diagram, also shown in Figure 18. 

The iron- magnesium di s tr ibution among silicates 
commonly is not very te mperature-sensitive a nd s ubtl e 
variations may b e obscured by uncertainties i n th e 
a na ly ses . 

anthophylli te 

Fe O MgO 

Figure 18. The distribution of iron and magnesium b etween cordierite and anthopyllite. 
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Table 4 

The decomposition of muscovite + quartz 
KAl

2
Si

3
Al0

10
coH)

2 
+ Si0

2
:,;: KA!Si

3
o

8 
+ Al

2
Si0

5 
+H

2
o 

muscov ite 

p = p 
H

2
o tota l T°C 

kb 

o. 5 52 0 

o. 5 560 

l 55 0 

I 570 

2 590 

2 605 

3 620 

3 640 

4 660 

4 670 

5 690 

5 705 

21 

20 

19 

ln Ko 
18 

17 

16 

15 
13 12 11 10 

1000/T°K 

quart z sanidine a ndal u site 

PH 0 
2 

cpH 0 
2 

atm 

493 0.681 

493 o. 739 

987 o. 551 

987 0. 585 

1 974 o. 507 

1 974 o. 531 

2 961 o. 543 

2 961 0. 575 

3 948 o. 638 

3 948 0.653 

4 935 o. 745 

4 935 o. 770 

Ko 

09 0 8 

fl-l 0 
2 

a tm 

336 

365 

544 

577 

1 001 

1 048 

l 608 

1 702 

2 519 

2 578 

3 676 

3 800 

/iV (P- 1) 
s 

ea! 

- 37 

- 37 

- 74 

- 74 

- 149 

- 149 

- 224 

- 224 

- 298 

-298 

- 373 

-373 

600 700 
Temperature •c 

!iGo 

cal 

- 9 131 

- 9 731 

-10 229 

- 10 578 

- 11 701 

- 11 987 

- 12 879 

- 13 276 

- 14 224 

- 14 423 

- 15 340 

- 15 649 

Figure 19. Variation of the distribution coe ffi ci ent with 
temp erature a nd pressure. 

For example, by s ubtrac ting reaction (1) from 
reac tion (2) , the following exc h ange r eac tion i s obtained 

2 Mg
3

A1
2
si

3
o

12 
+ 3 Fe

2
Al

4
Si

5
o

18 

:,;3 Mg
2

A1
4
si

5
o

18 
+ 2 Fe

3
Al

2
Si

3
o

12 

1 Fe (_ML 
6 Fe +Mg· cor 

K(4) Fe 
Fe+Mg cor 

AG0 = - 15620 - 4. 95 T; AV = 0. 177 2 cal/bar 
s 

AG 0 = - 6 RT ln KD - AV s (P-1) 

(4) 

In Figure 19, the variation of Kn with temperature a nd 
pressure i s shown. 
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(Chatt er jee a nd Johanne s, 1974) 

550 600 

TEM PERA TURE 0
( 

650 700 

Figure 20. The decomposition of muscovite +qu art z . 

DEHYDRATION REACTIONS 

The Decomposition of Mu scovite + Quart z 

A very importa nt reac tion during· me ta morphi sm is 
the dehydration of mu scovit e i n the presence of q uartz: 

muscovit e quartz san idin e a n dal u site 

The most recent experimental determina tion of this 
reaction is tha t of Ch a tt erj ee and Johannes (19 74). 
For each experimenta l bracket (Table 4) it is possible 
to calculate 

6G(5) = - RT ln f Hz° - AV s (P - 1) 

The press ure was conver ted to a tmospheres to be 
strictly con s i s tent with the standard s t a te u sed in this 
paper. The fu gacity coeffi c ient s of H 2o a t each P and 
T were take n from Burnham et al. (1969) a nd the molar 
volume of the solids from Robi e et al. (1967) . On a 
plot of AG 0 vs. T (Fig. 20) a s t raight line may be 
passed through a ll brackets. Disregarding th e large 
bracket a t 0. 5 kb, the deviations in AG0 h ave been 
minimized. The equation of th e s traight line is 

AGc°
5

) = 19920 - 36. 5 T (Tin °K) 

It follows tha t AS 0 is 36 . 5 cal/deg a nd Mf 0 i s 19920 cal. 
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It is now possib le to calcula te the equilibr ium s u r­
face of the reac tion in P - Ptt

2
o - T space (Fig . 21) . 

The s u rface may b e shown b y contours in variou s 
projections. 

0 
N 

I 
0... 

Fi gu re 21. The s tability of mu scovite +quart z. 

Biot ite-Garnet Eq uilib ria 

A very com mon miner al assemblages in high-gr ad e 
pelitic rocks i s quart z-K feldspar-biotite- ga rnet ­
sillimanite. This a ssembla g e is easily r epr esented on 
a tria n gular d iagr a m wi th corners A = Al203 - K20, F 
= FeO and M = MgO (e . g. Froes e, 1963). The 
assemblage plots as a s ubtria ngle in s u c h a diagram. 
T his s ubtrian gle will s hift in r esponse to cha nges of 
P , PH

2
o. and T . In or der to express this v a riation 

q uantita tively the following procedure may b e use d. 
T he minera l s a r e r e la ted by the equilibria 

20 

KFe
3
Si

3
Al0

10
COH)

2 
+ Al

2
Si0

5 
+ 2Si0

2 

KMg
3
Si

3
Al0

10
(0H)

2 
+Al

2
Si0

5 
+ 2Si0

2 

~ KA1Si
3
o

8 
+ Mg

3
Al

2
Si

3
o

12 
+ H

2
0 

bio 
aKMg

3
Si

3
Al0

10 
(OH) 

2 

(6) 

(7) 

T he fo llowi n g rela tion s hip s hold 

b.G
0 

( 6) = A (6) + B (6) T = - RT ln fH O 
2 

- b.Vs (6) (P - 1) 

b.G
0 

( 7) = A (7) + B (7) T = - RT ln fH
2
0 

a ga r . 
Mg

3
A1

2
s1

3
o

12 
- b. V s (7) (P - 1) 

or , abbreviating the ac tivity r atio par t of the equilibrium 
cons tant by L 

A( 6) +B(6)T+RTlnfH
20

+RTlnL( 6) +b.Vs (6) (P - 1) = 0 

A (7) + B ( 7) T +RT ln fH
2
0 +RT ln L ( 7) +b. V s (7) (P - 1) = 0 

Subtracting 

T = 

A - A 
(6) (7) 

+ T [ (B ( 6) + R ln L ( 6)) - (B ( 7) + RT ln L ( 7) ) ] 

+ (P - 1) (b.Vs(6) - b.Vs( 7)) = 0 

(A(7) - A(6)) - (P - 1) (b.Vs (6) - b.Vs (7)) 

(B (6) + R ln L(G)) - (B (7) + R ln L( 7)) 

For a ny given rock, T may b e c alculated at an assum ed 
P. Then ln fH

2
0 is given by 

ln f __ ( A(6) +B(6) T +RT ln L( 6) +b.Vs( 6) 

ttp - \ RT 
(P ') 

The volume change b. V s for both r eactions may b e 
obtaine d from Robie et al. (1967). 

Froese (1970 , 1973b) studie d rocks with thi s 
assemblage from the Thor- Odin g n eiss dom e and 
reported analyses of coexisting p a irs of garnet a nd 
biotite. The geological setting of the a rea is given 
by Re esor (1970) and Reesor a nd Moore (1971). Most 
sa mples came from unmigmati zed gneisse s mantling a 
migmatitic core. The activity r a tio parts of the equi­
librium constants may be calcula te d from the c hemical 
an alyses by assuming ideal ionic solution in biotite 
and garnet. 

The free energy changes of reactions (6) and (7) 
ar e not known . In order to assess differences in meta ­
morphic conditions from rock to rock, the s e were 
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Figure 22. Metamorphic conditions for some rocks from the Thor - Odin gneiss dome. 

assumed for one sample (No. 279- 3): T = 550°C, 
P = 3 kb , P820 = 1 kb. On this basis t.G 0 may be 
calcula ted: 

t.G0 
(
6

) = - RT ln K(
6

) - t.V s( 6) (P - 1) = - 10 200 cal 

t.G0 
(
7

) = - RT ln K( 7) - t.V s( 7) (P - 1) = - 4245 cal 

Assuming a dehydration entropy of 32 cal / deg mole 

t.G 0 
(
6

) = 16140 - 32. 0 T 

t.G0 
(
7

) = 22100 - 32. 0 T 

For each particular rock, the activity ratio parts 
of the equilibrium constants can be regarded as given. 
For biotite and garnet of that particular composition , 
the equilibrium surface of reaction (6) and of reaction 
(7) plots as a s urface in P - P820 - T space.. The 
intersection of the two surfaces, corresponding to the 
simultaneous solution of the two equations, gives a line 
(Table 5) . The rock with this particular biotite and 
garnet composition is stable only along this line . The 
line may be terminated by 

1. The intersection with the muscovite equilibrium 
s urface . At P820 greater than this point, musco­
vite forms a nd the mineral assemblage b ecomes 
uns tab le. 

2. The intersec tion with the surface of th e b eginning 
of melting . 

The stability line of th e mineral assemblage of reactions 
(6) a nd (7) may b e projected onto any conve nient sur­
face. Three rocks from the Thor - Odin gneiss dome are 
s hown projected onto the P - T plane (Fig. 22). 

NONIDEAL SOLUTIONS 

Introduction 

_ The mola r free energy of a component in solution 
Gi is defined by 

G. = ( aosystem) 
1 \ an. 

1 P, T, nj 
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Table 5 

P - PH 
0 

- T conditions of quartz - sillimanite - K feldspar -
2 

garnet - biotite rocks from the Thor-Odin gneiss dome, B. C. 

No Jn 1(3) ln L ( 4) Ptotal T°C fH 0 bars cpH 0 PH 0 bars 
2 2 2 

2 kb 1 559 139 . 461 300 

M 179- 2 2. 137 - 1. 537 4 kb 57 337 . 500 670 

6 kb I 590 782 . 650 1 200 

I 
M 10-la 1. 918 - 1. 418 2 kb I 643 396 . 600 660 

4 kb 

6 kb 

66-2 1. 800 - 1. 313 2 kb 

4 kb 

It represents the energy change when one mole of sub­
stance i is added to an infinite reservoir of solution, 
thus the other moles ni remaining constant. Since it 
is a partial derivative, it is commonly called the partial 
molar free energy. It is helpful to remember, however , 
that it refers to one mole of a s ubstance in a solution of 
fixed composition, and not to a fraction of a mole. 

Although therm.12_dynamics provides no r elationship 
for _the variation of Gi with com position, the variations 
of G of the components of a solution are related by the 
Gibbs-Duhem equation. It will be derived for binary 
solutions following some definitions. In a bi_!lary so~­
tion, there may be a systematic variation of GA and GB 
with composition, which permits adequate representa ­
tion by a solution model. Solution models facilitate 
various calculations (see e. g. Chatterjee and Froese, 
1975) and make it possible to derive ac tivity coefficients 
from phase diagrams . 

Definitions 

An ideal solution may be defined by the relationship 

(a lane x ) = RT 
P,T 

If the molar free energy of a component in a solution is 
plotted against ln X, it is found that the solution 
becomes ideal as X -> 1 and as X -> 0 (Fig. 8). For the 
present purposes, we will use X = 1 as the lower limit 
for integrating the ideal solution equation 

22 

-id 

JG dG 

G* 

x j d ln X 
X=l 

Gid - G* =RT ln X 

660 882 . 638 1 320 

677 2 111 . 813 2 600 

710 779 . 684 1 140 

727 1 629 . 770 2 200 

where G* is the molar free energy of the pure compon ent. 
The behaviour of the real solution will now b e compar ed 
with this type of ideal solution . In real solutions, the 
RT ln X term is not sufficient to account fo r the e nergy 
differ ence G - G*. Instead, it consists of a n id ea l term 
and an excess term. However, it is conveninet to define 
a new function, the activity a, on the basis of this 
energy difference: 

G - G* =RT ln a 

Thus the following relations hips exist (Fig. 8): 
- - id - - id 

(G - G*) = (G - G*) + (G - G ) 

RT ln a = RT ln X +RT ln y 

The departure from ideal behaviour is expressed 
by an energy difference G - iJid, the excess free 
energy of one mole of component in the so lution and the 
ac tivity coefficient y is defined by it. It follows that 

y = a/X. .d 
The energy difference G - G

1 
will be abbreviated 

by (Jex . It may be expressed by an enthalpy and 
entropy term. Thus 

Gex = Hex - TSex = RT ln y 

Similarly one can write for an ideal solution 

(Gid - G*) =(Hid - H*) - T(Sid - S*) = RT ln X 

Differentiating 

CGid - G*) =RT ln x 



with respect to T we obtain 

(
aGid \ _ (aG * ) = (a RT ln x) 
~ P,X aT P ,X aT P,X 

-id 
or - S + S* = R ln X 

Substituting this, it follows that 

Hid = H* 

Differ e ntiating 

(Gid - G*) = RT ln X 

with r esp ect to P 

(
a aid) _ ( aG* ) = O; Vid = V* 
aP T,X aP T ,X 

The Gibbs - Du hem Equation 

At constant pressure and temperature , the Gibbs 
free energy of a binary solution i s a function of th e two 
mole numbers: 

G = f (nA, nB) system 

Gener al differentiation of this function gives 

d G system = GA dn A + GB dnB 

How ever , Gsystem is a homogeneous function of the 
first degree (see Klotz , 1950) and , according to Euler's 
theorem , 

Gsystem =GA nA +GB nB 

This equation again may b e diffe rentiated to give 
- - - -

d G system = GA dn A + n A d GA + GB dnB + nB d ~ 

Equating the two expressions for d Gsystem we obtain 

This is the Gibbs - Duhem equation. Division by 
(nA + ns) produces a more convenient form: 

Since 

G = G* +RT ln a, where G* is a constant, 

or since a = Xy 

Also for a binary system 

x = 1 - x 
A B 

or dXA = - dXB 

or 

X ( dX A\ = - X ( dXB ) 
A XA I B XB 

or 

X A d ln X A = - XB d ln XB 

Substituting this into the previous form of the Gibbs ­
Duhem equ ation w e obtain 

If the variation of ln a with XB is known, the equation 
may be integrated b etw een appropriate limits (Fig. 23). 
As a lowe r limit of integration both activ ities a t one 
composition (XB initia l) must be known 

ln a A a t XB 

f d ln aA 

ln a A a t XB initial ln aB at XB initia l 

ln a A a t XB - ln a A a t XB initial = area und er th e curve 

Since at XB = 0, ln aA = 0, it would b e desirable to u se 
thi s as the lower boundary . How ever, then ln aB -+ - 00 

and b ecau se of a "tail to infinity" the integral becomes 
imprecise . 

It is b etter, therefore , to integrate th e Gibbs-Duhem 
equation in the form involv ing ac tivity coefficients. At 
XB = 0, In y A = 0 a nd ln yB =a constant. 

In y A a t XB 

f d In y A 

In y A =O at XB =0 

The ac tivity coefficient In y A at any value of XB is given 
by the area und er the cu rve (Fig" 23). 

X9 
- XA 

In 0 8 
at x8 initial 

ln a6 

ln 0 8 
at Xe 

X9 
- XA 

ln OB 

Figure 23. Integration of th e Gibbs-Du hem equation. 
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Determination of Activity Coefficients 

1. By measuring· the energy difference G - G*. This 
determines RT ln a. By s ubtrac tin g RT ln X, 
RT ln y is obtained. 

A. In many cases it is possible to measure the 
fugacity of a component in the satura ted vapour 
over a solution. 

For the pure liquid 

G* (liquid) = G (vapour) = G0 +RT ln f9 

For the solution 

G (solution) = G(vapour ) = G0 +RT ln f 

where G0 is the molar free energy of the gaseous 
component at unit fugacity and f9 is the fugacity in 
the vapour equilibrated with the pure liquid com­
ponent. Subtracting we obtain 

- f 
G - G* =RT ln f- =RT ln a 

f 
a =r-

B. In many cases, it is impossible 1:_9 measure the 
fugacity, but the energy difference G - G* may be 
obtained by performing a reaction involving the 
pure compon ent a nd then repeating the reaction 
involving the component in solution. This method 
is often useful in oxidation reactions, e. g. 

It is essential that Fe3o 4 and Si02 remain pure 
phases, even when FeSi0 3 occurs in solution. 

For the reaction involving pure FeSi0 3 

3 G* . + HG0 +RT ln f9 ) = G* + 3 G* . 
FeS10

3 
0

2 
Fe

3
0 

4 
S10

2 

For the reactio n involving the solution 

3 GFeSi0
3 

+ HG0 +RT ln f
02

) = G* + 3 G* Fe
3
o 

4 
Si0

2 

Subtracting 

C. The energy difference may be obtained from 
galvanic cells if the cell reaction consists of a 
transfer of a component from th e pure phase to a 
solution and does not involve the electrolyte. 

2. If the activity coefficients of one component in 
a binary solution are known, the activity coefficients 
of the other component may be determined by 

The Variation of RT ln y in Binary Solutions 

The excess molar free en ergy of a component in 
solution 

-ex - - id 
G = G - G = RT ln y 

is a complicated function of temperature, pressure, 
and composition. In multi-component solutions, y of 
a compon ent varies not only with its own mole fraction 
but also with th e ratio among other mole fractions. In 
binary solutions there is only one composition variable 
a nd the variation of y is less complicated. Nonid eal 
solution models are based on regularities in the varia­
tion of RT ln y with composition and temperature, at 
co n stant pressure. 

At constant te mperature, the logarithms of the 
activity coefficients in many solutions fall a long relatively 
simple curves. (Fig. 24). 

The two curves are subject to two restrictions 

1. Raoult' s Law. It has been observed tha t real 
solutions become id eal as X -> 1. Thus at X = 1 

(~) - RT a ln X P, T -

G - G* =RT ln X =RT ln a 

a= X and y = 1 

Raoult's Law cannot be derived from thermo­
dynamics but represents an independent 
empirical observation. 

2. The Gibbs-Duhem equation for a binary 
solution. 

constant P and T 

tn 0; -

integrating the Gibbs- Duhem equ ation . O 1..--....::::::... ______________ .=-.--.J 

3. 

24 

Activity coefficients may be obtained from phase 
diagrams if solution models are assumed. The 
experimental data required are either a solvus 
in a two-component system or a se t of tie lines 
between two binary solutions. 

A 

Figure 24. 

Xs 
B 

Variation of activity coefficients in a binary 
solution. 



This relates the slopes of the curves but does 
not determin e their s hape. At each mole frac ­
tion, the s lopes mu st be opposite. This i s bes t 
seen by dividing both sid es b y dXB 

The two curves must also b e consisten t with Henry's 
Law, w hich can be derived from Raoult's Law and the 
Gibbs-Duhem eq ua tion. According to Henry' s Law, a 
solu tion again b ecomes id eal as X -7 0. A solution 
following Henry's Law has the same slope aCi; a ln X 
as one following Raoult ' s Law. 

Therefore, the difference in G of a compone nt in a 
solution following Henry' s Law a nd one following 
Raoult 's Law mus t b e consta nt. 

Thus 

(G - Gid) a t i nfinite dilution = c;t,x = RT ln y 00 

where yoo is a constant. Since a = Xy, a t infinite 
dilution a = X·constant. 

The derivation is as follows: 

The Gibbs-Du hem eq ua tion may be writ te n as 

For component A following Raoult' s Law 

ln a A= ln XA 

Substituting this into the Gibbs- Duhe m eq uation 

dX A = - XB d ln aB 

Also for a binary solution 

Therefore 

B = - d ln a R)dX 

XB B 

On gen eral integration 

ln a B = ln XB + a n integration con s tant 

aB = XB . constant 

Thus each ac tivi ty curve must s tar t a t 

ln y = 0 and X = 1 

and inte rsec t the ln y axis (cannot b ecome tangential) 
a t 

ln y = ln y 00 and X = 0 

For many solutions the variation of ln y with composition 
may be empirically expressed by a power series, as 
sug·gested by Margules (1895) 

+ ...... . ln y A 

ln YB + ...... . 

These expressions are consistent with Raoult' s an d 
Henry's Laws . Furthermore, the two activity coefficients 
must conform to the Gibbs - Duhem eq uation: 

Therefore, the con stants in th e tw o power series are 
not ind ependent. If the power series are limited to 
three terms, the following· rela tionship exists . 

Differentiating both series we obta in 

(
d ln YA) 
d XB 

or since dXa = - dXB 

(

d ln y8) z 
= - A. - 2a X - 313 X 

d XB B B A B A 

These two expression s are s ubstituted into the Gibbs ­
Duhe m equa tion and (l-X

8
) is s ubs tituted for XA 

2 
(l - X8 ) ( A.A + 2aAXB + 313AXB ) 

2 
- XBCA.

8 
+ 2a

8 
{1-XB} + 313

8 
{l -X

8
} ) = 0 

2 2 3 
A.A+2aAXB+ 313AXB -A.AX8 -2aAXB -313AXB 

2 2 
-A.BXB - 2aBXB + 2a8 XB - 313BXB + 613BXB 

3 
- 313

8
x

8 
= 0 
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Collecting terms for each power of X 

xoB (A.A) 

+ XB (2aA - A.A - A.B - 2aB - 3pB) 

2 
+ XB (3p A - 2a A + 6pB + 2aB ) 

3 
+ XB (-3 pA - 3pB) 

= 0 

T hi s eq ua tion can only be equal to 0 if the coefficient s 
of eac h power of X are equ al to zero . This requires 

A.Band A.A= O 

3 
aB = aA + 2 p A 

PB= - PA 

Now the fo llowing relationships ar e obtained: 

ln YA= aA + p A 

1 
ln Y'B = aB + PB = a A + 2 p A 

In view of these rela tionships, Carlson and Colburn 
(1942 ) expressed the constants in the two power series 
in terms of the activity coefficients a t infinite dilution 

2 
ln yB = (2 ln yA - ln yB) (1 - XB) 

+ 2(lnyB - lnyA ) (1 - XB) 
3 

The excess fr ee e nergy of a component in a solution is 
given b y 

-ex - - id 
G = G - G =RT ln y 

At infinite dilution 

G~= RT ln yoo 

The equa tions proposed by Carlson and Colburn may 
b e multiplied by RT giving 

-ex -ex 2 
RTlnyA =(2GB -GA) (1 - XA) 

+ 2(G~ - G~) (1 - XA)
3 

A B 

These may be rearranged to give a form used by 
Thompson (1967) 

RT 1 x
2 [G~ + 2x cc~- G~) J n YA = B A A B A 

2 [G~ + 2x ea~ - G~)J RT ln y B = X A B B A B 
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-ex 
In Thompson' s notation G 00 = W G · 

If the power series are terminated after the second 
power term , the variation of RT ln y is symmetrica l 

-ex -ex 
and GA =GB 

-ex 2 
RT ln y A= G00 (1-XA) 

RT ln yB = G~ (1 -XB) 
2 

Thus solutions may b e classified according to the 
number of cons tants required to d escribe the variation 
of RT ln y with composition . The one- constant 
Margules model is called a s imple mix ture by 
Guggenheim (1967) and often r e ferred to as a "regular" 
solution in the literature. The term "sub-regular" has 
bee n proposed by Hardy (1958) for the two-constant 
Margules mod el. 

Next, the variation of RT ln y with tempera ture at 
constant composition will be considered . It is conv eni ent 
to specify ln y 00 , the ac tivity coefficient a t infinite 
dilution. The rela tions hip 

G~x = RT ln y 00 

may b e expressed by corresponding entha lpy and 
entropy terms 

-ex -ex 
Hoo TS oo =RT ln yoo 

Over a limited temperature range (about 300- 400°C) it 
ha s b een observed tha t tt~ and s~ are approx ima te ly 

. . . -ex. 
constant. This im~ies that Cp is very s ma ll. The 
assumption that 8 00 and s~ are con s tant Ci. e . that 
-ex . . 
Cp = 0) is so commonly made that no s pecial name 
has been given to a solution conforming to this . It 
follows tha t in this case ln yoo will v ary linearly with 
1/ T . 

It has b een found tha t for some solutions ,S E&,X is 
very small and one can recognize as a limiting b e haviour 
that S~ is zero. These are known as regular solutions. 
Again ln y oo will vary linearly with l/T. 

As a nother limitin5f type of solution one could 
think of the case of H~ being zero . Such solutions 
have b een called a thermal. There are only very few 
examples of this b e haviour among real solutions. 

The v aria tion of RT ln y with composition and with 
temperature may be combined to g ive various solution 
models (Table 6). 

The ex cess molar free energy of a component a t 
infinite dilution al so varies with pressure. This is 
seen from the r ela tionship 

G~ = ijE&,X + PV~ - TS~ 

The excess molar volume of a component at infinite 
dilution commonly is approximately con s tant over a 
limited P- T range. 



Variation of G'2x=RT lny 

Table 6 

N onideal binary solution models 

One - constant 

c;'2&l Margules model 

Two- constant 

Margules mode l 

with composition RT 

at constant T 

"Regular " 

solution 
"Sub-regular" 

solution 

Variation of 

c;e£~ RT lny 
00 

with T 

X8 

r:r: 

a r e constant 

A 

RT lnyA 

- ex G oo 

RT lnyA 

RT lny
8 

"Simp l e mixture" 

TS'2£) (l - XA)
2 

TS'2£) (l - X
8

) 2 

A 

RT lnyA 

Substitute 

B 

(2G8£ - G8£ J (1-x ) 2 
B A A 

+2(Get;1 - c;e&l) (1 - X ) 3 
A B A 

(2(;861 (;8t;l) (1 - X ) 2 
A B B 

+2((;8£ - (;8&l) (1 - X ) 3 
B A B 

- e x G oo 
A 

(;8£ 
B 

se£ = o ; 

X8 r(j Regular solution 

RT lnyA (Fr£ ) (l - XA)
2 

(Fr£ ) (1 - XB) 
2 

Substitute 

RT lnyA 

Athermal solut i on RT lny
8 

( - Tset;l) (1 - XA) 2 

( - Tse£ ) (l - X
8

) 
2 

Substitute 

Activity Coefficients from Exc h ange R eactions 

In some exp eriments it i s possible to measure the 
compos itions of two coexisting binary solutions . 
Similar data may b e obtained from rocks. Davidson 
(1968) reported the an alyses of coexisting orthopyroxene 
and clinopyroxene from granulites, which h e considered 
to have c rystalli zed at the same temperature. Treating 
these minera l s as binary solutions, it is possible to 
derive ac tivity coefficients (Froese and Gordon, 197 4). 

It is possible to write the following exch an ge 
reaction 

The equilibrium con s tant in terms of mole fractions 
(X's) a nd ac tivity coefficients (y's) i s given by 

xopx. xcpx . opx . cpx 

( 

FeS10 3 CaMgS12o6)(y FeS10 y CaMgSi O ) 
K = 3 2 6 

(8) Xopx . Xcpx . opx . cpx 
MgS10

3 
CaFeS1

2
o

6 
YMgS10

3 
y CaFeSi

2
o

6 

The term comprising the mole fractions is the distribu­
tion coefficient KD; ther efore, 

ln K = ln K + ln y opx - ln y opx 
D FeSi0

3 
MgS10

3 
cp x cpx 

+ ln y C M S · 0 - ln y F a g 1
2 6 

Ca eS1
2
o

6 

Using a one - consta nt s olution mod el for both pyroxenes, 
the activi ty coefficients are given by 

ln y~~~i0 3 = lny=,opx (1 - Xopx )2 
FeSi0

3 

ln opx = ln 00
, op x (Xopx ) 2 

YMgSi03 y -reSi03 

1 cpx _ 1 =, cpx (Xcpx ) 2 
n y C M s· 0 - n y a g 1

2 6 
CaFeSi

2
0 

6 

ln cpx = ln 00
, cpx (1 -Xcpx ) 2 

y CaFeSi
2
0

6 
y CaFeS i

2
o

6 
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Substituting these expressions for the activity 
coefficien ts, the following rela tionship, previously 
derived by Mueller ( 1964 ), is obtained 

)( ;.n 
c. .. 
0 u. 
>< 

I 

4.5 
o Anoly zed pyroxenes (Davidson , 1968 ) / 

4.0 

3.5 

3.0 

2.5 Derived distr ibution 
curve --------... 

2.0 

1.5 

h 

f 

I 
I 

/, 

/:%.........._ Distribution for ideal solution i 
K=Ko=l.51 

Figure 25. Iron- ma gnesium distribution between 
pyroxenes. 
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Figure 26. Iron- magnesium distribution between 
pyroxenes . 
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4.5 

In K = ln KD + ln y 
00

' opx (1 - 2X~~~i0 3 
- ln yoo,cpx (1 - 2Xcpx . ) 

CaFeS1
2
o

6 
It is seen that the distribution coefficient is dependent 
on composition if either one or both pyroxenes are 
nonideal solutions. Davidson (1968) demonstrated 
such dependence for pyroxenes from Quairading, 
Australia (Figs. 25 and 26) . 

For each pair of coexisting pyroxenes, X~~~i03 • 

X~~;eSi206 . and in KD are known; thus there is an 

equation in three unknowns ln K, ln y 
00

' opx, and 
ln y 00

• cpx. The compositions of at least three pair s of 
coexisting pyroxenes must be known to solve for the 
unknowns. Davidson (1968) reports analyses of 11 
pairs, neglecting one sample which shows sign s of 
textura l disequilibrium. The three unknowns obtained 

so from a least - squares fit to the available data are: 

ln K = 0. 412 (K = 1. 51); ln y 
00

' opx = O. 447; 

ln y 
00

' cpx = O. 625 

It is possible to substitute a more complicated solu­
tion model and solve for more unknowns but commonly 
th e data are not sufficiently accurate to warrent this. 
For instance, in applying this method to the distribution 
of Fe and Mg between olivine and aqueous solution, 
Saxena (1972) found that only the one- constant model 
gave consis tent results. 

It is more common to u se at least a two-constant 
model if the activity coefficients of one solution are 
known. As an example, the exchange of K and Na 
between aqu eous solution and sanidine will be considered 
(Orville, 1963; Thompson and Waldbaum, 1968): 

(9) 

Aqueous solutions and KCl and NaCl a t 2 kb and high 
tem peratures are practically ideal and one can write 
at constant P, T and Cl concentration 

K( 9) = (-:Or_x_~::)(Yor ) 
Ab XK y Ab 

where the term comprising the mole fractions is the 
distribution coefficient KD. Therefore: 

ln K = ln KD + ln y Or - ln y A b 



Into this equation one can substitute 

2 
ln y

0 
= (2 ln yoob - ln y 00

0 
) (l - X

0 
) 

r A r r 

3 
+ 2(ln yoo - ln yoo ) (1 - X ) 

Or Ab Or 

There now is an equation in three unknowns ln K, 
ln Yor' a nd ln yAb for each pair of a nalyzed sanidine 

and solution. If more than three pairs are available, 
the unknowns may be determined by a least - squares 
method. 

This method was u sed by Saxena and Ribbe ( 197 2) 
to derive activity coefficients in plagioclase, based on 
Orville's (1972) exp eriments . The exchange reac tion 
in this case is 

2 NaA1Si
3
o

8 
+ CaC1

2 
~CaA12Si 2o 8 + 2 NaCl+ 4 Si0

2 
(10) 

At constant P, T and Cl concentration 

K = ( XAn x!a)(Y An) 
(10) 2 x 2 

XAb Ca y Ab 

where XAn and XAb are the mole fractions An/ (Ab +An) 
and Ab/ (Ab +An) and XNa and Xca are the atomic 
fractions Na/(Na +Ca) and Ca / (N a +Ca) in solution. 
Designa ting the term comprising the X's as Kn 

ln K = ln KD + ln y An - 2 ln y Ab 

Again, a two-constant solution model for plagioclase 
may be substituted into this equation resulting in the 
unknowns ln K, lnyAn' and lnyAb. 

Activity Coefficients from the Solvus 

Exchange reactions involve two binary solutions 
in a three-component system. Therefore , there i s a 
bundle of tie lines at one temperature . In contrast, if 
a two-component system exhibit s a solvus, there is 
only one tie line at each temperature. 

But , at each temperature there are two equilibria 

K(lla) 

A (in solid I) ~A (in solid II) 
B (in solid I) ~ B (in solid II ) 

(lla) 
(llb) 

K (llb) 

II XII II 
aB B YB ----

- I - XI I 
aB B YB 

However, the standard state of A in both phases is the 
same, i. e. the solid phase of pure A. For thi s reason 

t.G 0 = 0 and sin ce 6G0 = - RT ln K, K = 1 and 

For the same reason 

Or , in logarithmic form 

I I 
lnXA +lnyA ln XII + 

A 
II 

ln y A 

1 XII II n B + ln YB 

Substituting a two - constant solution model for the log­
arithms of the activity coefficients it is possible to 
solve two equations for two unknowns, ln YA. and 
ln y 00 , at each te mperature. 

lfi.ctivity coefficients have been derived for sanidine­
albite (Thompson and Waldbaum , 1969 a; Luth and 
Fenn , 1973) halite-sylv ite (Thompson and Waldbaum , 
1969 b; Green, 1970), muscovite - paragonite (Eugster 
et al., 1972); and magnetite-h ercynite (Froese , 1973a). 

OXIDATION AND SULPHIDATION REACTIONS 

Stability of Iron Sulphides and Magnetite 

Toulmin and Barton (1964) measured fs 2 a t various 
temperatures over pyrrhotites of known composition. 
They expressed the composition of pyrrhotite by the 
mole fraction NFeS in the system FeS - S2 and calculated 
the activity of FeS in pyrrhotite by applying the Gibbs ­
Duhem equation to this system. 

This choice of components for the purpose of 
integrating the Gibbs-Duhem equ a tion is not s trictly 
correct because FeS is an intermediate compound in the 
system Fe - S. The Gibbs - Duhem_equation for the 
Gibbs free energy is valid only if G -> - 00 as X -> 0. 
Therefore, the fugacity in the vapour equilibrated 
with the solution must approach zero. However, in 
analogy with other intermediate compounds, it is 
probable that fs 2 over stoichiometric FeS remains finite. 
But as the stoichiometric composition is approach ed 
there is a very rapid decrease in fs 2 and the approxi­
mation that fs 2 -> Oas Ns 2 -> 0, inherent in applying 
the Gibbs-Duhem equation to the system FeS - S2, 
probably is reasonable . In order to be consistent, it 
is appropriate to use a hypothetical component FeS 
having the property tha t log fs 2 -> - 00 as NFeS-> 1. 
However, for practical purposes, the properties of 
hypothetical FeS and stoichiometric FeS may be regarded 
as b eing the same. 

The activities of S 2 and hypothetical FeS in 
pyrrhotite are related by the Gibbs-Duhem equ ation: 

NFeS d log aFeS = (NF eS - 1) d log as 
2 
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integration limit of 
Toulmin and Barton 
(1964) log aFeS at NFeS = 096 

log t5 2 

Figure 27. Integration of the Gibbs - Du hem equation for 
pyrrhotite in terms of activities. 

The activity of S 2 in pyrrhotite is given by 

fs 
2 over pyrrhotite 

or 

f9 S over S 
2 

with pyrrhotite s tructure 
2 

log as = log fs - log r-s 
2 2 2 

Since r-s 2 over s 2 "pyrrhotite" is constant a t fix ed P 
and T 

d log as = d log fs 
2 2 

a nd the Gibbs - Duhem equation may be written as 

NFeS d log aFeS = (NFeS - 1) d log fS 
2 

This equation may be integrated, in principle, from the 

boundary condition aFeS = 1 at NFeS = 1 and fs = 0 at 
NFeS = 1. Thus 2 

log aFeS log fs 
2 

f d log aFeS !C~::s-
1

) 
d log fs 

2 

log aFeS = 0 log f = - "" 
s 2 

This integration poses a problem because log fS 
2 

a t NFeS = 1. Toulmin a nd Barton (1964), therefore, 

used fs corresponding to the coexistence of pyrrhotite 
and iro~ as the lower integration limit (Fig. 27). This 
i s known from the reaction 

Fe + ~ s
2 

:'.::; FeS (12) 

G0 (l 2) = - 35 910 + 12 . 56 T 

30 

-006.---,----,----,.---,----,,---,----,---~ 

T o 600 °C 

-005 

_________ N_y~~~~~ ------------ --
-0.04 

-003 

-002 

-001 

0 L__......,~l:2ljfil 
-11 -10 -9 -8 -7 -6 -5 - 4 -3 

log fs2 - log Ns2 

Figure 28. Integration of the Gibbs - Duhem equ ation for 
pyrrhotite in terms of activity coefficients. 

The value for the standard free energy change is taken 
from Ri chardson and Jeffes (1952). At 600°C, log fs = 
- 12. 49 . Neglecting the area at very low fs turns ou1 
to be a satisfactory approximation. 2 

Because of the "tail to infinity" problem, the Gibbs ­
Duhem equation is more commonly integrated in the 
the form 

NFeS d log YFeS = (NFeS - 1) d log Ys 
. 2 

The activity coefficient of S 
2 

is given by 

as fs 
2 2 

Y s - N s _r-_s __ N_s_ 
2 

2 2 2 

This activity cannot be obtained, b ecause f9s the 
fugacity over pure S2 "pyrrhotite" cannot be 

2
measured . 

However 

log y S = log fs - log N S - log f9 S 
2 2 2 2 

And since f9s
2 

is a constant 

d log Ys = d(log fs - log Ns ) 
2 2 2 

Now it is possible to integrate from the boundary 
condition yF S = 1 at NF S = 1 and (f /N ) = constant 

e . e s2 s2 
a t NFeS =1 (Fig. 28). 

log YFeS 

f d log FeS 

log YFeS = 0 

fi(
~og fs

3 
~)log Ns/ 

= ~es d (log fs - log Ns 
FeS 2 2 

(log fs - log N S ) = constant 
2 2 



Table 7 

The pyrrhotite-vapou r equilibrium at 600°C and 1 atm 

NFeS XFeS aFeS log fs 
2 

1. 0000 1. 0000 1. OOO - 00 

*O. 9988 0. 9977 0. 998 - 12.49 

o. 9900 o. 9802 0. 969 - 9. 68 

0. 9800 o. 9608 0. 917 - 8.1 0 

0. 97 00 0. 9417 0.850 - 6.8 1 

0. 9600 0. 9231 0.774 - 5. 68 

o. 9500 o. 9048 0. 692 - 4.65 

0. 9400 o. 8868 0. 609 - 3.69 

0. 93 00 0.8692 0. 528 - 2. 80 

** 0. 9202 

I 
0. 8522 0. 453 - 1. 98 

* Coexisting with iron 
** Coexi s ting with pyrite 

Table 8 

The pyrrhotite-vapour equilibrium at 600°C and 2 kb 

NFeS 

1. 0000 

*O. 9989 

0. 9900 

0. 9800 

o. 9700 

0. 9600 

0. 95 00 

0. 94 00 

0. 9300 

**O. 9233 

XFeS aFeS log f
8 

2 

1. 0000 1. OOO - 00 

0. 9979 0. 998 - 12.22 

0. 9802 0. 969 - 9. 33 

o. 9608 o. 917 - 7. 75 

o. 9417 o. 85 0 - 6. 46 

0. 923 1 0. 774 - 5. 33 

0. 9048 o. 692 - 4. 30 

0. 8868 0. 609 - 3. 34 

0.869 2 0. 528 - 2. 45 

0.8576 o. 476 - 1. 89 

*Coexisting with iron 
**Coexisting wi th pyrite 

log f
0 

2 

- 24. 38 

-2 2. 19 

-2 0. 97 

- 19. 96 

- 19. 05 

- 18 .2 0 

- 17 . 40 

- 16 . 64 

- 16. 15 

' 

I 

I 

Instead of graphical integration, a more convenient 
analytical procedure may be used. From now on, the 
composition of pyrrhotite will be expressed by the mole 
fraction X in the system FeS - o S. This cor -
responds toethe solution mechanism, i. e. the omission 
of iron a tom s. The composition of pyrrhotite is often 
stated in terms of a tomic fractions. The following 
rela tionships hold: 

~ FeS 1 
FeS + s

2 
-2 (~) - Fe+ S 

XFeS = F:Se~ o S) = ( FSe ) 

The excess par tia l molar free energy of the two 
components in pyrr hotit e may be expressed by a two ­
constant Margules model: 

RT 1 = c2 C.~ - G~) x
2 

n Y0 s FeS o S FeS 

+ 2 (Ge,,,,x - c,e,,,,x ) X3 
o S FeS FeS 

RT ln yF = (2 c,e,,,,x - G~ ) ( 1 - X ) 
2 

eS o S FeS FeS 

+2CG~ -G~) c1 - x )
3 

FeS o S FeS 

T he coexistence of pyrrhotite and sulphur vapour 
implies the following equilibrium 

S (in pyrrhotite) = ~s 2 (in vapour) (13) 

ln K = ! ln f - ln (1 - XFeS) - ln Y.
08 s 2 

or 

RT ln K A G0 = i2 RT ln f 
= - u (13) s2 

- RT ln (1 - XFeS) - RT ln Yo s (13a) 

By s ubstituting the solution model for RT ln YoS at any 
given T, log fs 2• and XFeS • an equa tion in three 
~nknowns in obtained, i. e. D..G0 (13), c,e,,,,Fx , and 

ex . . P.S d GO'S. By assumin g a hnear te mperature a:epen en ce 
for the thr ee unknowns, each may be expressed by a 
s lope and intercept. Thus the rela tion s hip (13a) a t 
any given T, log r82 , and XFeS becomes a linear equa ­
tion in s ix unknowns . The author and A . Gunter picked 
30 combinations of pyrrhotite composition a nd tempera­
ture within the experime ntal range of Toulmin and 
Barton (1964). For each composition, log fs was 
calcula ted according to their equation (8). !treating 
T , log fs

2
• and XFeS as given in each case, a linear 

equ a tion m six unknown, i. e. slope and intercept of 
-ex -ex 

D..G0 (13) GFeS a nd Gas, was calcula ted. Solving for 
th e unknowns by the method of least-squares, the 
following results were obtained: 

D..Go (13) 

-ex 
G FeS 

c;e~ 
o S 

57 966 + 34. 824 T 

- 141563 + 126.825 T 

93 911 + 59. 250 T 
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It is now possible to calculate aFeS and 1\::is a t a·ny 
FeS and, therefore, plot reactions (12) and (13) on a 
diagr a m of log fs 2 vs. XFeS (Fig. 29, T able 7). 

Now consider the reaction 

(14) 

The composition of pyrrhotite coexisting· with pyrite is 
known (Toulmin and Barton, 1964). The ac tivity 
coefficients of FeS a nd o S may be calculated at the 
appropriate temperature and composition. According 
to reaction (13) this determines fs . Knowing both 
aFeS and fs 2, it is possible to calcDlate t.G0 (14). In 
the temperafure range 599 - 743°C, t.G (l 4) may be 
expressed by the following equation 

t.G (1
4

) = -36 774 + 36. 006 T 

Reac tion (14) is also plotted in Figure 29. The inter­
section of reaction (13) with reaction (12) and (14) 
gives the composition of pyrrhotite coexisting with 
iron and pyrite, respectively. 

All reactions so far have been considered at 1 atm. 
If the molar volumes of pyrrhotite (Fleet, 1968) are 
plotted against XFes• an approximately linear relation­
ship is obtained (Fig. 30) . This means that there is 
no excess volum e of mixing. Since 

(_ acex \ =(aRTlny) =Vex 
\ aP ) T aP T 

it follows that the activity coefficients are independent 
of pressure. 

In order to solve for log fs
2 

a t any composition a t 
a pressure other than 1 atm, the following formula i s 
used 

t.G0 = - RT ln K - t.V (P - 1) 
s 

The molar volume of the solids is g·iven by Robie et al. 
(1967) except that of o S in the pyrrhotite structure. 
This is obtained by extrapolating the molar volumes 
(Fleet, 1968) to~ = 1 (XFeS = 0). The three reactions 
discussed so far have been plotted at 2 kb (Fig. 29, 
Table 8). 

Following Holland (1959), it is convenient to plot 
the stability of the iron oxides and sulphides on a 
diagram of log fo 2 vs. log fs 2 (Fig. 31). First, the 
following reaction is required 

(15) 

The s tandard free energy change of this reaction may 
be obtained from Eugster and Wones (1962). The 
pyrrhotite- magnetite boundary i s given by the r eaction 

(16) 
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This i s obtained by combining reactions (12) and 
(15) . For reaction (16) there is the relationship 

t.Go (16) 
- , ( fo2 ) 2 ( aFes) 3 

- - RT ln18J-12-- - t.V (P - 1) 
s 

At any pyrrhotite composition, YFeS and YoS are known. 
From reaction (13) log fs is obtained . Now the above 
equation may be solved fo

2
r log fo

2 
(Table 8). In this 

way, the pyrrhotite- magnetite boundary is plotted at 
any given pressure and temperature . Thermochemical 
data for reactions (12) to (16), used in the construction 
of Fig. 31, are li s ted in Table 9. 

T ~ 500°c 

-4.0 

-6.0 

Ji -8.0 

-10.0 

- 12.0 2 kb ---- -
lotm 

-14 .0 ~-~---'----~--~-~---'-----'----'-----' 
1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 

Compos ition of pyrrhotite X FeS 

Figure 29. Reactions in the system iron-sulphur. 

18 .2~---~-~~~~~~~~~---.~~~--. 

rt) 

E 18 .1 u 
Q.I 

E 
:J 18.0 -0 
> 
"-_g 
0 

17.9 

~ 

17.8 
1.00 0.98 0.96 0.94 0.92 0.90 

Mole fraction XFeS 

Figure 30 . Molar volume of pyrrhotite. 



-12 

-1 4 

-16 

T able 9 

Equilibria in the system Fe- S- 0 

Reaction 

(12) Fe + t s
2 

"'=; FeS 

(13) oS in po :=; t s
2 

in vapour 

(14) FeS + t s
2 

:=; FeS
2 

(15) 3 Fe + 2 o
2 

"'=; Fe
3
o 

4 
(16) 3 

+ 202 Fe
3
o

4 
+ 2 s

2 
"'=; 3FeS 

T = 600oC ; P = 2 kb 

Xcor 
Contours of F~ Al 2 Sii_sOg 

- - 0.1 - - - - - · - -

- - - - - - 0.2 - - - -

- - - --0.4 - --- --

.C.G0 at 600°C .C.V cal 
sbar 

1999 .c. v 
s 

- 24 943 . 2655 531 

- 27 559 - . 3455 - 691 

- 5 335 . 1372 274 

- 195 932 . 5556 1111 

121 103 . 2408 481 

Beyond the tripl e point pyrrhotite- magnetite­
pyrite, there is the reaction 

Fe 0 + 3 S :'.::;:3 FeS + 2 0 (17) 
3 4 2 2 2 

The slope of this reaction is obtained from th e reaction 
equation 

(foJ 2 

~ -18 

~· 

--·- --0.6--- - ~ // 

----· - 0.8 --- 7/ // 

K(l7)=N3 

~ - · - ---10 - - ~/// 

. ~//// 
magnetite ~// / / pyrite -20 

#// / / 

-22 

pyr rhoti te 

-24 

iron 

-2 6 
-14 -12 - 10 -8 -6 -4 - 2 0 

log fs2 

Figure 31. Stability of iron s ulphides and magnetite. 

constant P.T 
constant Gk 

system 

s um of all 

j componen ts l: n j 
is fi xed 

Figure 32. 

G system 

0 

Equilibrium in an open system. 

2 

log K = 2 log f
0 

- 3 log f
8 

2 2 

=~ 1 f +~ 2 og S 2 
2 

The slope on the log f
0 

vs . log f
8 

diagram is 3/2. 
2 2 

The Oxidation and Sulphidation of Cordierite 

Froese (1973) derived the fr ee energy change of 
the reac tion 

Fe AI
2
Si

2
_ 

5
o

9 
+ ~ o

2 

~ i Fe
3
0 

4 
+ Al

2
Si0

5 
+ ~ Si0

2 
(18) 

The designation .C.G0 in that paper is , according to the 
present nota tion, .C.G0 +.C. V (2000 - 1). 
At 600°C s 

1 
t.G

0 

+ 1999 (.C. V s) = - 12 530 = - RT In (r J16(a cor ) 

0 Fe cor 

Writing the formula of cordierite with one iron atom a nd 
assuming ideal solution 
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Al20 3 - ( Na20 +Cao) 

PH2o = Ptotol = 2 kb 

T = 600°C 

andalusite 

+quartz 
+ plagioclase of 

composition An 3s 
+magnetite 
+ilmenite 

:::: :::: : :::::::::::::·h"c;~~:ti'(~·~d~·:::::::::. ~ ::::: : :::::::::::: : ::: ::: ::: : :: : : 77::: 
i_::;:: :l :: i :: ~ :: } .: 'j ·:· t :· 1 ·:•:t :•: l :: t :: f \ :: \; :;t::{::\::{::{:::::: :: :: 

tie lines to epidote · 
------ pyrrhotite pyrite----

Figu re 33. Mineral assemblages from the Coronation mine. 

Oxidation reactions may be plotted as a series of 
contours in the magnetite stability field of a log fo

2 
vs. 

log fs diagram (Froese, 1971). For cordieri te thi s i s 
2. . 1 shown m Fig 3 . 

Some contours intersect the pyrite-magnetite 
boundary and traverse the pyrite field with a s lope 
given by the reaction 

FeA1
2
Si

2
. 

5
o 

9 
+ S 2 

~ FeS
2 

+ Al
2
Si0

5 
+ ~ Si0

2 
+ 1 o

2 (19) 

log K = 1 log f
0 

- log fs 
2 2 

or log f = 2 log fs + 2 log K 
0 2 2 

34 

T hese contours intersect the pyrite - pyrrhotite boundary 
and pass into the pyrrhotite field. Other contours enter 
into the pyrrhotite field by intersecting the magn etite ­
pyrrhotite boundary . Within the pyrrhotite field, the 
contours represent the reaction 

FeA12Si2. 
5
o

9 
+ 1 s 2 

=; FeS + Al
2
Si0

5 
+ ~ Si0

2 
+ 1 0

2 
(20) 

Because aFeS is less than one, the slope will be some­
what steeper than one. 

At 600°C and 2 kb, the triple point magnetite ­
pyrite-pyrrhotite occurs a t log f0 = - 16. 15. For this 
oxygen fugacity, the correspondiJg composition of 
cordierite (X Al Si 

0 
= 0. 36) may be obtained from 

Fe 2 2 5 9 
reac tion (18). · 



Graphical Representa tion of Sulphidation Reactions 

In the graphical representation of mineral 
assemblages it is convenient to regard systems with 
fixed amounts of some components (j) a nd open with 
respect to ot~er compone nts (k). The partial molar 
free en ergy Gk of the k components is imposed on the 
system by the boundary conditions (Thompson, 1970) . 
Consider a system with one k compon ent 

G t <E G. n . + Gk nk sy s em J J 

wher e n refers to the number of moles. 
If Gk is constant, Gsystem is a linear function of nk 
(Fig. 32). For any given Dk..'.. Gsystem is a minimum 
a t equilibrium; therefore, E Gj nj is a minimum . This 
rela tionship can be generalized to a system contai ning 
several k components . 

Therefore, a system with fixed a mount s of j 
com ponents is comp let~ly determined by the imposed 
conditions of P , T a nd Gk of the k components . At 
constant pressure a n d t emp eratu re, the molar free 
energy of a gas species in an ideal gaseou s solution is 
determin ed by specifyin g its partia l pressu re. The 
molar fr ee energy of a solid constituent is determined 
by its presence as a pure phase or as a component in 
a phase of specified composition. Thus the presenc e 
of quartz, plagioclase of fixed composition , magn etite, 
a nd ilmenite determines the molar fr ee energies of 
Si0 2, Na201\.1 203, CaO·Al203, Fe2o3·Fe0 a nd Ti02· 
FeO. These may b e regarded as k components a nd 
the oxides not combined in the k components constitut e 
j components d efi ned a s follows 

A= Al
2

0
3 

- (Na
2
0 + CaO) 

F = F eO - (Fe
2
o

3 
+ Ti0

2
) 

M = MgO 

Mineral a3semb lages from the Coron ation mine in 
Saskatchewan (Froese, 1969a a nd b ; Whitmore, 1969 ) 
may b e conveniently shown on a tria ngular diagram 
using these compon ents (Fig. 33). The tie lines 
shown are based on the fo llowing distribution of iron 
and ma gnesium: 

cordierite-anthophyllite (Lal and Moorhou se, 1969) 
cummingtonite-anthophyllite (Stout, 1971) 
cummingtonite-hornblende (Stout , 1971) 

On this diagram, the tie line a ndalusite-cordierite 
coexisting with pyrite an d pyrrhotite (in the presen ce 
of q uartz and magnetite) may be plotte d . The composi ­
tion of cordierite was calcula ted in the previous section 
CXF Al S. 

0 
= 0. 36). Bachinski (197 4) measured 

e 2 12. 5 9 

the composition of two cordierites from the Coronation 
mine coexisting with magnetite, pyrite, pyrrhotite and 
anthophyllite (XF Al S . 

0 
= 0. 19 and 0. 22). The 

e 2 12. 5 9 

tie line with X . = 0. 22 is shown in Fig. 33. 
FeA1

2
S1

2
_ 

5
o

9 
It is part of a boundary dividing the diagra m into a Mg­
rich portion coexistin g with pyrite and an Fe-rich 
portion coexisting with pyrrhotite. This boundary 
has b een extended diagrammatically from anthophyllite 
to hornblende. 
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