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APPLICATIONS OF THERMODYNAMICS IN METAMORPHIC PETROLOGY

Abstract

This paper summarizes the principles of chemical thermodynamics in a form which is
convenient for dealing with problems encountered in metamorphic petrology. Particular
effort has been made to illustrate thermodynamic concepts by means of graphical represen-
tation. The concept of the equilibrium constant and the choice of standard states are
discussed in detail. A brief introduction to nonideal solutions deals with relatively simple
binary solution models based on the method of Margules. Various applications of thermo-
dynamics and guides for specific calculations are presented, with some emphasis on

oxidation and sulphidation reactions.

Cette étude rappelle les principes de la thermodynamique chimique sous une forme

applicable aux problémes de pétrologie des roches métamorphiques.

L'auteur insiste

particuliérement sur l'importance de la représentation graphique pour illustrer les concepts
de la thermodynamique. La notion de constante d'équilibre et le choix d'états standards

y sont étudiés en détail. Une courte introduction au probléme des solutions non idéales
traite de modéles relativement simples de solutions binaires, basés sur la méthode de
Margules. Diverses applications de la thermodynamique et des marches & suivre pour
des calculs spécifiques, particulierement en ce qui concerne les réactions d'oxydation

et de sulfuration, y sont présentées.

Introduction

This paper is based on a series of lectures given
at the University of Goéttingen in October 1973.
Professor H. Winkler kindly invited me to spend three
weeks at the Mineralogical-Petrological Institute. I
am particularly grateful to the Sonderforschungsbereich
Gottingen of the Deutsche Forschungsgemeinschaft for
financial support, which made this visit possible.

As indicated by the title, applied aspects of thermo-
dynamics are stressed. Recent years have seen a
beneficial integration of field work and experimental
investigations in metamorphic petrology. These two
approaches have, of course, a common goal and, in the
study of certain aspects of metamorphism, they share
a common theoretical framework, i.e. the principles of
chemical equilibrium. The theoretical framework con-
stitutes a unifying element for the results obtained in
field work and experiments and provides a firm footing
for a part of metamorphic petrology. Although thermo-
dynamics can be applied only to some aspects of meta-
morphism, it is gratifying that these can be studied
with some degree of rigour.

The treatment of various topics is uneven. The
theoretical analysis is biased fowards an understanding
of the thermodynamics of a chemical reaction with
particular emphasis on the equilibrium constant. No
attempt is made to deduce complete phase relations in
a chemical system; there is no discussion of
Schreinemaker's rules. The selection of examples
reflects my own interest and background.

Contact with various persons has significantly
shaped my interest and thinking. D.R.E. Whitmore
introduced me to the study of metamorphosed sulphide
deposits. During a previous stay at Prof. H. Winkler's

Institute, I was introduced to experimental petrology
and had many discussions concerning phase equilibria
with P. Metz and G. Hoschek. My early attempts in
thermodynamic analysis were guided by T.N. Irvine.
In more recent years, I have particularly benefitted
from an association with T. M. Gordon and G. B. Skippen.

I am much obliged to Prof. H. Winkler for arrange-
ments to have most of the figures drafted at his Institute.
His constant encouragement provided the decisive
impetus in writing this paper. N.D. Chatterjee critically
read an earlier manuscript.

NOTATION

activity of a component in a solution
heat capacity

fugacity of a gas

Gibbs free energy
enthalpy

equilibrium constant
pressure

heat absorbed by a system
gas constant

entropy

temperature

internal energy

volume

T < CH ®» 3L YR TN O™ Qe

work done by a system



X mole fraction
v activity coefficient
¢ fugacity coefficient
If M designates a molar property of a substance

M° molar property in its standard state at a specified
temperature (solids and liquids — pure substance
at 1 atm; gases — hypothetical perfect gas at
1 atm)

M* molar property of the pure substance at a
specified pressure and temperature

M partial molar property

Mldpartial molar property in a solution following

Raoult's Law (IVlid =M* +RT In X)
IVIexexcess partial molar property (IVIex =M - IVlid)
M% excess partial molar property at infinite dilution
THE THERMODYNAMIC APPROACH

In the study of metamorphic rocks, many aspects
confront the observer at the same time. These are no
doubt interrelated in the evolution of the rocks but this
relationship is complex and difficult to grasp. For this
reason, there is a tendency to group aspects according
to methods employed in their study. This is not a
natural subdivision with regard to the origin of the
rocks and may, at times, be a hindrance in an integrated
view of the metamorphic process and its geological
setting. However, this approach is dictated to some
extent by the theoretical tools available in the study of
metamorphic rocks. Before proceeding with the
analysis of selected aspects, it is advisable to realize
that such studies are by themselves "out of context"
geologically and provide at best fragmentary answers.
Nevertheless, there is some justification for this
approach.

The complex nature of metamorphic rocks makes
it very difficult to state precisely the question one is
asking, yet a problem cannot be solved unless it is
logically defined. Consequently, there is a tendency,
if not necessity, to make an attempt of understanding
the rocks in terms of a model based largely on
plausibility. One might assign to an association of
metamorphic rocks a geological history which "makes
sense", based on imprecise reasoning involving elements
of intuition, imagination, analogy, and "gap-filling"
to provide continuity. This reasoning is not necessarily
wrong but it cannot be proven right because it lacks
sufficient factual and logical checks. Nevertheless,
these models are essential in geology. They provide
direction and inspiration in geological studies. Intuitive
insight might eventually even be proven right in some
instances; it certainly suggests lines of attack.
Limiting attention strictly to the few facts which can
be rigorously established would make any coherent
view impossible and overshadow unifying elements

among the diversity of observations. This then is the
fundamental compromise in any geological study.
However, in order to make such models closer approxi-
mations to reality, it is advisable to include as many
factual and logical restrictions as possible in any aspect
of theoretical model building. There is no reason to
stop model building but such enterprise should be
made as difficult as possible. It is in this spirit that
specialized investigations are undertaken: They pro-
vide restrictions, not complete understanding. No
present theory suggests that metamorphic rocks are
precipitates from a primordial ocean. This restriction
has not laid bare all secrets of metamorphic rocks but
has led to a more probable model.

Having made this declaration about the unity of
nature, a fragmentation will be allowed in the interest
of methodology, contrasting two groups of aspects in
metamorphic rocks:

1. Features reflecting the past history of the rocks.
These include deformation paths, sequences of
mineral assemblages reflected by textural disequi-
librium, and mechanisms of recrystallization.
Problems of kinetics and reaction rates loom large
in such a list.

2. TFeatures characterizing the quenched state of the
rocks.

For geological reasons, we are very interested in
the first group. But the fact that a theoretical tool,
thermodynamies, is available in the study of the second
group leads to an emphasis of these aspects in many
investigations.

The repetition of the same mineral assemblages in
rocks of different ages and orogenic belts suggests
equilibration of minerals over short distances. This
encourages the application of thermodynamics to meta-
morphic rocks. The usefulness of thermodynamics lies
in the fact that it provides a relationship among variables
at equilibrium; one of its limitations is that it
presupposes equilibrium. Thermodynamics cannot be
used to prove or disprove equilibrium. If equilibrium
is conceded, the rocks are subject to the laws of
thermodynamics and geological models should not
violate them any more than the law of gravity.

It is readily accepted that a portion of matter is
characterized not only by its mass but also by its energy
content. It turns out that the energy may be stored in
forms of different stability. Spontaneous changes
strive to reach an arrangement of maximum stability.
Thermodynamics defines a function, entropy, which
is maximized for a given amount of mass and energy
content. From this function many relationships among
variables may be deduced. Some of these variables
can be measured and others may then be calculated.

For a chemical reaction a very convenient relation-
ship among variables is given by the equilibrium
constant, deduced from thermodynamics. It is an
expression involving partial pressures and/or chemical
compositions of reactants and products at equilibrium
and is itself a function of pressure and temperature.

It provides for each equilibrium a link between



measurable variables, i.e., compositions of minerals
and non-measurable variables, i.e., pressure, tem-
perature and partial pressure of volatiles.

For a solid-solid reaction, the equilibrium constant
can be measured. This gives a relationship between
P and T but not both variables. For a reaction involving
gases, only a portion of the equilibrium constant can
be measured, leaving more unknowns. The key to
determining as many unknowns as possible is the
simultaneous solution of equations based on several
equilibrium constants.

One of the goals of metamorphic petrology is
mapping the distribution of non-measured variables.
Then it may become apparent whether, for example,
PHzO is imposed by the environment, i.e. uniform over
a large area, or controlled by the mineral assemblages,
i.e. variable from rock to rock. Having established the
variables of the environment, it is possible to charac-
terize types of metamorphism according to the relation-
ship among these variables, e. g. paths traced out in a
P-T diagram. Also, it will be possible to test various
models proposed for the environment, e. g. PHy0 = Ptotals
PHo0 +PCcog =Ptotal, or PH9Q << Piotal-

In order to do quantitative work, equilibrium con-
stants must be calibrated either directly or from free
energy changes (a thermodynamic function involving
entropy) of reactions. Such data may be obtained from
calorimetric, electrochemical, and spectroscopic
measurements or from addition of various reactions.
The free energy change, like the heat of reaction, is
an additive property.

The application of thermodynamics, e.g. the
interpretation of natural mineral assemblages in terms
of equilibrium constants, is logically independent of
the method of calibration. Even in the absence of
quantitative data, the relationship among variables is
qualitatively correct and in itself useful.

Some methods are more convenient and accurate
than others, but in applying thermodynamics, it does
not matter how thermochemical properties are obtained.
Calibrations based on experimental reactions are valid
even if such reactions do not occur in nature. A good
experiment provides thermochemical data; it is not
meant to model a natural process. In fact, frequently
geologically insignificant reactions are experimentally
investigated, for reasons of convenience or kinetics,
and then combined to give equilibrium constants of
more useful reactions. The thermodynamic approach
cannot be criticized because some experimental calibra-
tions are not "close to nature".

The validity of the thermodynamic approach may
be questioned on the basis of its inherent limitations.
Two problems are encountered:

1. Lack of equilibration over distances greater than
a few centimeters and other disequilibrium features,
i.e. zoning and reaction rims.

2. Difficulty of determining compatible mineral
assemblages in some rocks.

Because all thermodynamic relationships and deri-
vations presuppose the concept of equilibrium, thermo-
dynamics does not provide criteria of equilibrium; it
describes features of equilibrium, e.g. relationships
among variables. In order to apply thermodynamics,
this assumption must be conceded.

BASIC CONCEPTS OF THERMODYNAMICS

Introduction

Thermodynamics is concerned with the relationship
among properties of macroscopic bodies. Although the
fundamental relationships are set out in numerous texts,
it is advantageous to list the concepts and present them
in a form which is most convenient for the present
purpose. In the development of ideas, as well as in
notation, mainly the book by Denbigh (1966) will be
followed.

Essential to thermodynamic analysis is the concept
of a system. This is a portion of matter or a given
volume which is separated from its surroundings by
boundaries having definite properties. A closed system
refers to a fixed amount of matter. An open system
commonly refers to a solution. Transfer of matter
changes the concentration and, thereby, the properties
of the constituents.

A given amount of a homogeneous substance is
characterized by a set of macroscopic properties; these
define the thermodynamic state. Furthermore, if this
state is altered by changing some of the variables, it
is possible to return the substance to its original state
without leaving any traces of such a process in the state
variables, i.e. the state variables are not affected by
the past history. If a particular thermodynamic state
persists with time, the substance is in a state of
equilibrium. It has been observed that at equilibrium,
two variables are sufficient to specify the thermodynamic
state of a given mass of a homogeneous substance;
there are only two independent variables. Thus at
fixed P and V, all other properties like refractive index,
viscosity etc. are specified.

Accepting P and V as state variables familiar from
mechanics, thermodynamics leads to the recognition of
three new state variables: temperature T, internal
energy U, and entropy S. The principles of chemical
equilibrium are based on the interrelationship of these
five variables. In this chapter, the symbols for the
extensive properties, e.g. V,U, and S, refer to the
whole system. In some cases, this will be emphasized
by a subscript.

Temperature

Since two variables determine the state of a
pure substance at equilibrium, temperature may be
defined as a function of P and V

T=f@®,V)

For example if we want to use the functional relation-
ship of PV of a substance and T, it is necessary to
assign temperatures to two PV values. If the same
procedure is adopted for another substance, a different



PV
(cal)
6 160
TEMPERATURE (°C)
Figure 1. Thermometers based on real substances.

functional relationship exists and at temperatures other
than the two fixed points, the two thermometers give a
different reading (Fig. 1).

However, as P » 0 different gases give very nearly
the same termperature readings, i.e. a linear relation-
ship between PV and T is approached. The PV product
at zero pressure can be obtained by extrapolating
measured PV products to zero pressure. Itis then
possible to plot lim (PV)p 5 ¢ =0 vs. T (Fig. 2).
Assigning 0°K to the value of lim (PV)p ,, g = 0 and
273.16°K to the triple point of water, temperature is
defined as

lim (PV)pq
T = 273.16

lim (PV)p, at triple point

Since lim (PV)p_ at the triple point for one mole of
a gas is 542. 815 cal
lim (PV)p.gq

R

where R = 542.815/273.16 = 1. 98717 cal/deg

On this scale, the normal freezing point of water is
273.15°K and the riormal boiling point is 373. 15°K. A
particularly good discussion of the definition of tempera-
ture is given by Rossini (1950).

T =

The First Law

The first law of thermodynamics develops a relation-
ship between the work performed and the heat received
by a system. This treatment will be concerned only
with work due to expansion or compression, given by

§w =Pdv

Commonly such slow expansions will be considered that
P of the system is equal to the external pressure on the
system. Work is taken as positive if the system expands

(dV = positive), i.e. the system performs work.

In order to develop the concept of heat, it is
advantageous to define two types of walls or boundaries
between a substance (the system) under consideration
and the surrroundings. A boundary which allows the

lim {(PV) cal

600 / 4
542 B2 [rreevereeererssenissineeinrrisn s
500 one mole of a gas at J
zero pressure
400} |
© :
!
Q- H
300F 4
200 4
100 | ]
triple point of water ——\
0 100 200 7316 300
TEMPERATURE (°K)
Figure 2. Zero pressure gas thermometer.

establishment of thermal equilibritun is called diathermal,
whereas a boundary with very high insulating qualities
is known as adiabatic. A perfect adiabatic boundary,
conceivable as a limiting case of a real boundary, would
allow the maintenance of a temperature difference between
the system and the surrounding® indefinitely.

The experiments of Joule showed that the expendi-
ture of a certain amount of work on a given amount of
substance in an adiabatic container resulted in a
definite temperature increase. The temperature was
raised by transferring energy to the body in the form
of work. The same change can be accomplished by
putting the substance into a diathermal container,
keeping the volume constant, and bringing it into contact
with a body of higher temperature. Energy again is
transferred to the substance, this time in response to
a temperature difference. Energy transferred in this
manner is defined as heat. Heat is taken as positive
if absorbed by the system.

The state of a hohlogeneous substance in a closed
system is specified by any two variables. It can be
adequately represented e. g. in a P-V diagram (Fig. 3).
If the state is changed from A to B, the amount of work
performed by the system, given by the area under the
curve, depends on the path in the P-V diagram, i.e.
on the nature of the process. Similarly, the heat
absorbed by the system varies. However, it has been
found that the difference (q-w) is the same for any
path. It depends only on the initial and final state and,
therefore, is a state variable. Thus, although neither
work nor heat are state variables, their difference is
and may be used to define a new state variable known
as the internal energy U

UB~UA =AU =q-w
or in differential form
dU =§q -$w



A surroundings

system
du =84 -8,

v

Figure 3. Illustration of the first law.

The differential dU is exact and its integral is indepen-
dent of path; the differentials §q and {w are inexact and
their integrals are path-dependent.

Thus for a cyclic process

de=0

This is not true of §q and §w.
For some particular paths, work and heat are state
variables. Because §q =0 for an adiabatic system

dU = -dw

If expansion is very slow, so that the external pressure
differs infinitesimally only from the pressure of the
system

dw =Pdv

If a process takes place at constant volume, dV is zero
and

dgy =dU
and if it takes place at constant pressure
dgp =dU +PdVv
dgp =d (U +PV)

The combination (U + PV) is a new function of state
called the enthalpy or heat content.
The heat capacity of a substance is defined as

_%9
C_dT

It is convenient to recognize heat capacities for two
specified paths of heat transfer, at constant volume and
at constant pressure

C =£9.ll=a_g
v dT BTV

C =ﬂ1]?.=_a_H_
P 4T aTP

The Second Law

Changes taking place within a system have direction
and proceed towards equilibrium. The conditions at
equilibrium are govern by the substances in the system
and by the nature of its boundaries. As equilibrium is
approached as a limit, the changes become reversible,

surroundings

system
reversible changes

5
_ 9 rev
ds S 2

v

Figure 4. Illustration of the second law.

i. e. they occur at an infinitesimal rate at conditions
only infinitesimally removed from equilibrium. Thus
a reversible change represents a succession of
equilibrium states. At each stage of the change, all
state variables are defined.

If a system is brought from state A to state B, the
heat absorbed is, in general, dependent on the path.
However, it has been observed that if inside the system
only reversible changes occur, the ratio qpey / T is
the same for any path (Fig. 4). It depends only on the
initial and final state and defines a new state variable
known as entropy S

q
rev
SB SA =AS = T
or in differential form
dq
ds = rev
T

Thus the differential dS is exact, its integral is
independent of path and

de=0

The nature of the First and Second Law has been
expressed by Nash (1962) in a particularly lucid
paragraph:

"For the purposes of classical thermodynamics we

need say no more than that the internal energy U is a
function of state defined by the equation dU = q-w, and
this is a statement of the first principle. And for the
purposes of classical thermodynamics we need say no
more than that the entropy S is a function of state
defined by the equation dS = Qg /T, and this is a
statement of the second principle. Some have argued
that the urgency of our quest for a "something constant”
in all change leads us to invent the concept of energy
and to enforce it as a convention. But the fact that,
however q and w may vary individually, the difference
(gq-w) is a constant for any given change of state — that

is a discovery, providing a firm empirical footing for
the first principle. Conceivably one might equally
argue that the urgency of our quest for a "something
pointing"” the direction of all spontaneous change drives
us to invent the concept of entropy. But the fact that,
however qpq, and T may vary individually, the



quotient qpey /T is a constant for a given change of
state — that is a discovery, providing a firm empirical
footing for the second principle. "

Changes in a Closed System

Changes inside a system must conform to the first
and second law. By combining the two laws, useful
relationships among the five fundamental state variables
are obtained. This derivation will be carried out by
considering the same change brought about in three
different paths (Fig. 5).

A

any reversible
path

qrev.

mech. irr.
q mech.irr.

chem.irr.

6

qchem. irr.

v

Figure 5. Changes in a closed system.

1. All changes are reversible, including PV work.
In this case

dU = $Qrey ~ $Wrey

dU = TdS — PdV

2. There is some irreversibility in the PV work of
expansion or compression, here designated as
mechanical irreversibiltiy
Therefore,

8§ Amech. irr. # TdS
§Wmech. irr. # PAV

and
dU ={qmpech.irr. ~ $Wmech. irr.

However, dU must be the same in both cases
since the change in state from A to B is identical.
Therefore,

dU = TdS — PdV=éqyech. irr. ~éWmech. irr.

$dmech. irr. = TdS — PAV + 8Wpech, irr.

3. There is irreversibility due to changes like elimi-
nation of temperature gradients, diffusion, mixing,
and chemical reactions, here designated collectively
as chemical irreversibility. Hence one can
distinguish two possibilities a) and b)

a) With mechanical irreversibility. For such
changes it is always observed that

chhem. irr. < TdS - Pdv+éwmech irr.

The first law in this case is

dU = édchem.irr. ~ $Wmech. irr.

Equating

8dchem. irr. = AU+&Wmech. irr.
<TdS - PAV+8Wech. irr.

dU < TdS — P4V

b) Without mechanical irreversibility. For such
changes it is always observed that

$dchem. irr. < TdS
The first law in this case is
dU=dqepem. jrr. — PAV
Equating
84d¢hem. iry. =dU +PdV < TdS
dU < TdS - PdV
We thus obtain in both cases (dU +PdV — TdS) < 0

The equation

(dU +PdV — Tds) 20
is the most general thermodynamic description of
changes in a closed system. Since the derivation pre-
supposes the concept of equilibrium, the equation
codifies features of equilibrium rather than constituting
a criterion of equilibrium (Reiss, 1965). The equal
sign refers to reversible changes and those involving
mechanical irreversibility. The inequality refers to
irreversible chemical changes with or without
mechanical irreversibility.

If P and T can be imposed on the system by the
surroundings and maintained constant, the relation-
ship among the five fundamental thermodynamic vari-
ables becomes more restricted

d(U +PV —TS) 20

for a closed system at constant P, T. The combination
of variables (U + PV — TS) is known as the Gibbs free
energy G.

The Variation of the Gibbs Free Energy

The Gibbs free energy defined by
G=U+PV-TS

is a state variable. For a fixed amount of a homogeneous
substance of specified composition it is a function of
any two state variables. We are particularly interested
in its variation with P and T. This is obtained by
differentiating G.



dG =dU + PdV + V4P — TdS — S4T
and since dU = TdS — Pav

dG =VdP — SdT
or <g—§-> =V and (g%) =-S
T P

These equations apply to either a pure substance
or to a solution of fixed composition. Commonly the
properties of a pure substance are of particular con-
cern. Even in case of a solution it is desirable to
"divide" the state properties of the system among the
components and thus assign definite properties to
particular substances even if they occur in a solution.
Although there is no physical significance to this, it
is a convenient procedure. It is accomplished by
defining the partial molar free energy G (or chemical
potential)

<aG )
system -G
ony P, T, n; i

where G refers to the free energy of the system, n; to
the number of moles of component i, and n; to the
number of moles of all other components. This defini-
tion may be represented as the tangent on plot of G vs.
nj (Fig. 6).

of the
System

7

~
~<___{ 3G system
on;j

P, T,nj

0 n;
Figure 6. Definition of the partial molar free energy.

The partial molar free energy may be thought of as the
free energy of one mole of substance i in a solution of
particular composition. Since G; varies with composi-
tion, it would be of interest to know the relationship

aGj
9Xi/ p, T

Thermodynamics, however, does not provide an
answer in this case.

Xj 0 0 In Xj ~ — oo

Figure 7. The partial molar free energy of a component
in a solution.

In some instances it is possible to measure (_}i at various
concentration. Plotting G4 vs. X; suggests a logarithmic
variation. Plotting Gj vs. 1n X shows that many solu-
tions plot close to a straight line and become tangential
to a straight line with slope RT at X; =1, even if the
mole fractions X; are varying (Fig. 7). This suggests
the model of an ideal solution defined by the equation

_0Gj =RT
0 In Xj P.T
THERMODYNAMICS OF REACTION EQUILIBRIA

Introduction

A state of equilibrium in a closed system is char-
acterized by thermodynamic functions derived from a
combination of the first and second law. A chemical
equilibrium is stated in the form of a mass balance
equation and the mass involved in the reaction is con-
sidered as a closed system. Thermodynamics provides
an energy balance based on the mass balance. In case
of a chemical reaction it enables the comparison of two
energy states of an isochemical aggregate.

The Gibbs free energy of a substance is determined
if three parameters are stated: Pressure P, temperature
T, and composition state X, i. e. pure substance or mole
fraction in a solution of fixed composition. If these
parameters are given for each reactant, the energy of
the left side of the reaction equation is specified
(Gpeactants)- The energy of the right side may be
similarly specified (Gypoduets)- If P»T, and X are
fixed for each reactan? and product, then at equilibrium

C"reaction - Gproducts B Greactamts B

Because it is physically impossible to equilibrate reac-
tants and products at different temperatures, only
cases with a uniform temperature are considered. It

is common, however, to have various reactants and
products in different composition states at equilibrium
and the pressure of the gas species generally is not the
same as that of liquids and solids. If the P-T-X con-
ditions of any reactant or product are changed, the
equilibrium is shifted. Therefore, the variation of G
with P, T, and X will be considered next.



~

G9_G*-RT In X

G-G=RTIn a

G -Gd-RrT Iny

k ____________ | B

0] In X

_> -—_ o

Figure 8. The definition of activity and activity coefficient.

From here on, the symbols for the extensive pro-
perties refer to one mole of a substance, unless spe-
cifically stated otherwise. However, if preceded by
the symbol A, the property change refers to a reaction.

The Variation of G of Liquids and Solids with P

(), -
T

may be integrated between two states

P
G, - Gy, = vap
PP fP,

The equation

In order to evaluate this integral precisely, the iso-
thermal compressibility must be known. For liquids
and solids, the lower limit of the integral is generally
taken at a standard state pressure of one atm. In this
paper, the equation will be applied to pure substances
only. Thus

G* ~ G°= P VdpP

1

where G°® and G* refer to the Gibbs free energy of the
pure substance at one atm and specified pressure P,
respectively.

The Variation of G with X

The defining equation of an ideal solution

(a a1?1 x) =RT
P,T

may be integrated between any two compositions. A
convenient lower limit for many purposes is X =1

— X
- g% =
G-G fX=1RlenX

G- G*=RT In X

where G is the Gibbs free energy of one mole of the
component in solution at any given P and T, G* is the
molar free energy of the pure substance at the same

P and T, and X is the mole fraction. For real solutions,
the RT 1n X term is not equal to G — G*. The deviation
may be expressed by a term RT 1n y. Thus

G- G*=RT 1n X +RT In y =RT 1n yX

The product yX is known as the activity and v as the
activity coefficient. Both are defined by appropriate
energy differences (Fig. 8).

The complex nature of many solid solutions
found in minerals presents some special problems.
The equation valid for an ideal solution

G-G*=RT InX=RT lna

refers to one mole of a component in a solution. For
instance, if Fe and Mg are the mixing units in olivine,



G e, G*
FeSi, 50, Fe,SiO,
RT In X
multiplied by 2
0 —> -0
B Fe )
in X=In Fe+Mg
Figure 9.
G G
FepSi0, Korrrsrreermmmmms g Fe,Si0,
2RT In X
0 —_ - e
InX=in F:f_M§> InY=ln (sieg
Figure 10. The activity of fayalite in olivine.

the equation refers to one mole of FeSiy 509. If the
formula is doubled, the energy difference between
FeypSi0, in solution and pure FeySily is twice the energy
difference between FeSig 509 in solution and pure
FeSig 509. It is often convenient to define an activity
on the basis of the energy difference for the unit
FegSi0, in solution and pure FegSi04 (Fig. 9). Thus

st o (757)
FeSlO. 50 Fe + Mg

a . =(X . )2 =<___Fe > 2

Fe25104 FeSlO_ 502 Fe + Mg
in a binary solution. If the mixing unit is multiplied by
some number, the activity is equal to the mole fraction
raised to a power equal to that number.

In many solid solutions, mixing takes place on
more than one lattice site. For example, if Si and Ge
occupy the tetrahedral position of olivine, this con-
tributes a further energy drop with respect to an end
member. It is now convenient to define an activity on
the basis of the total energy drop (Fig. 10):

a .
FeSlo. 502

but

2RTInX=
RTIn aFezsiO4

Fe
In X=In C__Fe+Mg

The activity in a solution with multiple mixing units.

aF Sio, — G*F Si0, =RT Ina
€710 €go10y = Fe,Si0,
e Si
TERTN poag M P ST Ge
Therefore,
2 .
a_ .. [ _Fe Si
FeyS10, ={Fe + g ) (Si + Ge )

This type of model involving ideal solution in more than
one lattice site was first discussed by Temkin (1945)
and introduced into the geological literature by
Ringwood (1958).

The components (Fe, Mg) and (Si, Ge) were
treated as separate solutions and the equation of an

ideal solution
< 2G ) =RT
0 1ln X P, T

Fe

was integrated for each constituent, from ———— =1
si Fe + Mg
and from Si+Ge = 1. This is appropriate because

these atomic fractions are unity in Fe2Si04. In biotite,
mixing of atoms also takes place in the octahedral and
tetrahedral positions. However, in the end member
annite K Fe3 (SigAl) 010(OH)2, not all atomic fractions
of concern are unity. Therefore, the following lower
integration boundaries are used:

Fe . s
X = Fo + Mg +Al - 1 in the octahedral position
Si . .
Y = ST+Al = 0.75 1in the tetrahedral position
Z= AL = 0.25 in the tetrahedral ition
= Si+Al - nthe pos



G" ..............................................................................
KFegsig Al
O1o(OH), B LA
3RTiInX
N
0 . — - in0.75 — - In0.25 — -
sn(—r8 - Si _ Al
InX an:e+Mg+Al InY=In <Si+AD InZ=In Si+Al
Figure 11. The activity of annite in biotite.
may be integrated as follows
oreolePerle -fLap| G-G°= Vap = RT d In P =RT In—;
G P<0 credl g po po P
RTIn L5

GPerf_GonRTIn B

G :
P=0 / P° z1latm
—oo - 0 — too
n Pressure in atm
Figure 12. The definition of fugacity.

The activity again is defined on the basis of the total
energy difference (Fig. 11):

G

G : -G . -
KFe3(Sl3A1)010(OH)2 KFe3(Sl3A1)010(0H)2

RT In a

) =3RT In X +
KFe3 (SlSAl)Olo(OH) 9

3(RTInY -RTIn0.75) + (RT In Z — RT In 0. 25)

Therefore
a . _
K2Fe3 (SI3A1)01 0 (OH) 9~

3 3
Fe si Al )
(Fe + Mg +A1) (Si + Al /0'75> (A1+Si /0'25

Variation of G of a Gas with P and X

For a perfect gas, the general equation
ae)
—_— =V
(29

10

At a standard state pressure of P° = 1 atm, G° is the
molar Gibbs free energy at one atm.

For a real gas, the energy difference G-G° may be
used to define the fugacity. This concept will be intro-
duced following essentially the treatment of Rossini
(1950). It can be shown (see e.g. Beattie and
Stockmayer, 1951) that a real gas at zero pressure has
the same internal energy and entropy as a perfect gas,
Furthermore, the PV product of a real gas at zero
pressure is equal to RT. Therefore, also the enthalpy
and Gibbs free energy of a gas at zero pressure are
those of a perfect gas. However, the difference in vol-
ume between a real and a perfect gas does not become
zero at zero pressure; it has a finite limiting value
(Van Ness, 1964). Defining Z = PV/RT, the volume of
a real gas is vl = ZRT/P. Thus

o« = Vperf _ Vreal _RT _ B

P P P
As P approaches 0, (1-Z) also approaches 0. In order
to evaluate the limit, the enumerator and denominator
are differentiated with respect to P (L'Hépital's rule).
Therefore, a at zero pressure = ~ RT (aZ/aP)T.
It is customary to express the properties of a real
gas in terms of deviations from perfect behaviour.
It would be desirable, therefore, to use Gp=gp as
the lower boundary of integration in both cases.
Thus

real real F real
G -G = f v dpP
P=0 P=0

and

P
Gperf _ Gge_n(;f _ Vperf ap
; P=0



. real _ perf
Since GP=0 = GP=0
P P
Greal B Gperf =f VI'eal ap _f Vperf 4P
P=0 P=0

These integrals cannot be evaluated because V = « as
P+ 0. However, although both VF€al ang yperf , o
as P > O, it has been shown that the difference Veal —
vPer!l - _ 4 approaches a constant. Therefore, the
following integral may be evaluated

real erf P
G o - P T/ - adpP
P=0

If the molar free energy of the perfect gas at 1 atm, G
is taken as the standard state, the molar free energy
of a real gas may be expressed by two energy terms

Greal o= (Gperf GO + (Greal _ G,[perf)

p P
=RTlnI70—f o dP
P=0

This energy difference may be used to define the
fugacity (in atm) of a real gas at pressure P (Fig. 12),
if the fugacity in the standard state f° is taken as 1 atm.
The standard state for this purpose is the perfect gas at
P° =1 atm and having an energy G°; the real gas has
the same energy G° but its pressure is such that its
fugacity is one atm, i.e. f° =1 atm.
Thus

P

6™ _ ge=RT InL -RT 1ngo-f o dpP
f ) o,

Since both P° and f° are 1 atm
P

RT ln% =—f « dP
P=0

The ratio f/P, designated by ¢ (commonly also y, v,
or v) is known as the fugacity coefficient and may be
evaluated from PV measurements by plotting
real _ Vperf _ Vreal _ %1
against P and measuring the area under the curve.

The variation of the Gibbs free energy of a constit-
uent in a gaseous solution is given by the same formula
as that of a solid solution

G-G*=RTInX +RT In vy

—a=V

However, in the case of a gaseous component, it is
convenient to measure the energy in solution G from
G° rather than from G*. This is easily obtained by
adding two energy differences, one due to the variation
of G with pressure and one due to the variation of G
with composition (Fig. 13):

G* - G° =
G- G*=

RTInP +RT In ¢
RT In X +RT In y

G-G°=RTInP+RTIng +RT InX +RT In vy

real gas in a nonideal solution
perfect gas in an ideal

This energy difference is used to define the fugacity
of a component in a gaseous solution

G-G =RTInf
For a perfect gas species (¢ =1) in an ideal solution
(y=1

G-G=RTInf=RTInP+RTInX=RTInP .
partial

For a real gas in an ideal solution (y =1)
G-G°=RTInf=RTInP

partial
Thus f = Ppartial . ¢, where @ is the fugacity coefficient
of the species at the total pressure P of the solution.
This is known as the Lewis and Randall rule. Itis a
useful approximation for many gaseous solutions. (The
rule may also be stated as f = f¥X; where {¥is the
fugacity of the pure gas at the same pressure as that
of the solution).

It is generally difficult to obtain activity coefficient
of gaseous solutions. Shaw (1967) imposed a known
fugacity of hydrogen on a solution of Hy and H,0 by
using platinum as a membrane permeable to hydrogen.
Knowing also the total pressure of the solution, the
fugacity coefficient of pure hydrogen at this pressure,
and the composition of the solution, it is possible to
calculate y from the relationship

f=PeXy

+RT In ¢

More commonly activiy coefficients are obtained by
measuring partial molar volumes. It is generally
assumed that at zero pressure gases mix ideally,
Therefore the following relationship may be
integrated at constant composition

- -1d P —_
RTIny=G-G =f (V- V) dp
P=0

RTIng

RTInP

solution~

<~——inX

Figure 13. The fugacity of a component in a gas mixture.
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The Variation of G with Temperature

8G>

= =-8

)

is valid for each reactant and product. It will be more
convenient, however, to apply an equivalent formula to

the energy change of a reaction, particularly with all
substances in their standard states. Thus

The formula

The Equilibrium Constant

At constant temperature, the variation of G with
pressure and composition is given by the relationships
shown in Table 1.

Table 1 The variation of the Gibbs free energy

Solids and liquids Gases

G* — G° ='/JJ vdpP
1

|Composition X|G—-—G*=RT lna

Pressure P G- G =RT In {/f°

1t is important to remember that in this paper G°
always refers to the molar free energy of a pure sub-
stance at standard pressure, i.e. one atmosphere for
solids and liquids and a pressure making the fugacity
equal to one atmosphere for gases. G* refers to the molar
free energy of the pure substance at any particular
stated pressure. In gases the variation of G with
pressure and composition is accounted for by the
expression RT 1n f/f°.

Now it is possible to compare the energy levels of
the two sides of a reaction equation (i. e. consider the
difference A Greaction = Oproducts ~ Greactants) at
different values of P and X for various reactants and
products. This will be done with the example of a
simple reaction

150 qiquia)™ H20 (gas)

The variation of Gg45 With P and X is accounted
for by the fugacity andg may be plotted on a diagram

of G vs. In f. The variation of Gliquid may be shown
by contours of activities of HoO on a diagram of G vs.

P (Fig. 14). In order to relate these two energy levels
it is necessary to know A G of reaction in one case,
with P and X for both substances specified. These
conditions need not be the same for both substances.

In tabulations of thermochemical data it is convenient

H, perfect gas and % O, perfect gas at 25°C and 1atm
2 2

! T T T T 1 T T
| ! |
| | !
\ | }
-54 + o -
AGf of
gaseous H,0
G°
of gas |
A Gy of liquid H,0
5§ -
AGf°
—_ o
3 reaction
X
-56 |-
o equilibrated |at these|conditions
_________________________ B S i e )
0,,\. Vio(P-1)
L I OSSR ST P SRl
of liquia [/ O T
-57 | -
1 1 1 | | | 1
-4 -3 -2 -1 0 1 1000 2000 3000
In fH;O Pressure atm

Figure 14. The equilibrium between liquid and gaseous HZO'
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Table 2

The equilibrium between liquid and gaseous H_O

2

H,0 (liquid) = H,0 (gas)

right side

_— o]
Gproduct = AGf of steam

+RT In fHZO

left side
- o : :
Greactant = AGf of liquid HZO
P
+ / VHz o dp
P=1
iq
+RT In aH o
2
At equilibrium AG = B
product

Greactant -

to state this energy difference with each substance in
its standard state, i.e. for liquids and solids the pure
substance at P = 1 atm and for gases the pure substance
atf =1 atm. This energy difference is known as the
standard free energy change, designated by A G°. In
some books (e.g. Kubaschewski et al., 1967), A G° of
various reactions is given. More often the standard
free energy of formation from the elements is given
(Robie and Waldbaum, 1968; JANAF Tables) and A G°
of reaction is obtained by difference. At 25°C

3 O2 (gas, f =1 atm) +H2 (gas, f =1 atm)

= HZO (gas, f =1 atm)

AG}’. = -54. 635 keal

%02 (gas, f =1 atm) +H2 (gas, f =1 atm)
= HZO (liquid, P =1 atm)

AG‘t’. = -56. 688 kecal

HZO (liquid, P =1 atm) =H20 (gas, f =1 atm)

AG® . = +2. 053 keal
reaction

The molar volume of water is 18. 069 cm3 or

18. 069 cm3

41. 292 cm3 — atm/cal

= 0.43759 cal/atm

(from Robie et al., 1967)

It is convenient to assign zero energy to the elements
in their standard state (at any temperature) and "build
up” the energy content of both sides of a reaction from
this datum. Thus G at given values of P and X, is
obtained as shown in Table 2.

It follows that at equilibrium

AG° = (AG‘t’, of steam — AGS of liquid HZO) =

f
fHZO P
-RT In — - AV.. dP
ahq P=1 lig
HZO h

[Note: AV liquid of the reaction is — Vy,0 of lig. Hy0;
assumed to be constant in Fig. 14]. In metamorphic
processes reactions commonly involve solids and gases.
For such reactions the last relationship may be
generalized

P
AG®° =-RT In K —f AVS dp
pP=1

where K is the equilibrium constant in terms of activities
and fugacities. From the first and second law AG® =
AH® — TAS®; therefore

P

AH° — TAS® = -RT In K —/
P=1
Now two apparoximations will be discussed which

are appropriate in many circumstances. The heat
capacities of reactants and products often are sufficiently
similar so that very nearly AC‘E, =0 over a limited
temperature range ¢400°C). This implies that AH®
and AS° are constant because

(aAs° _ACH (2R _ Acop
P 3T /p

oT T

AV dP
]

AS° and AH° are independent of pressure because the
standard state specifies the pressure.

The isothermal compressibility and the isobaric
expansion of solids usually are sufficiently similar so
that AVgg1iqg is constant over a limited range of P and
T (~10 kb, ~400°C).
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kcal

G

3 Fe;5i0, + 0, = 3 8i0, + 2Feg0,

6 Fe at P=1atm
3Si at P=1atm
7 O, perfect gas

6Fe at P=tatm
3Si at P=1atm
7 0, perfect gas

. at P= 1atm §27°C at P=1atm
T
' o
] | IAG] 0,7 - 536 040
“HIVsi0, Pz 3 252
-600 | .
o
IAGY gy, si0,” - 848 082
o
-700 286y, o -394 946
-800 4
VegsiofP-1) =+ 6649
” '-:_f:_/w-aRT In Gpepsi0,% - 3719
o =
AG'I02 = 0
RT tn fo2 < - 78 328
-900 - DVeeso PNz 4 254
---------------------- 923480 —---=§ §-————=—--
P = 1974 atm =2kb; QFe,Si0,7 0.5; log fo,= - 18,02

Figure 15. The oxidation of fayalite.

With these two approximations one can write
AG® = AH° — TAS° =— RT In K — AVS (P-1)

And plotting AG® = — RT In K — AVg (P-1) vs. T will
yield a straight line with slope — AS°.
Or, rearranging and dividing by RT

AH® AS° AV (P-1)
. _AH° AS® AVg (P-1)
InK == *R® " ®T
Plotting In K + %%S—(-P;l—)——vs. 1/T yields a straight

line with slope —AH°/R.
term involving AVg.

Another illustration of a chemical equilibrium

3 FeZSiO4 +2 02=2 Fe304 +3 SiO2

is shown in Fig. 15. The thermochemical data are
taken from Robie and Waldbaum (1968). It is important
to note that equilibrium may be established at various
combination of total pressure, activities, and fugacities
as long as the relationship

It is significant to retain the

AG® =~ RT InK — AVS (P-1

is satisfied.
constant is

In the chosen example the equilibrium

14

Tabulation of Thermochemical Data

Thermochemical properties are listed for substances
in their standard states. For solids and liquids the
standard state for G, H, and S, is the pure substance
at a pressure of one atm. For gases the standard state
for G, H, and S is the hypothetical perfect gas at a
pressure of one atm. If the perfect gas has a standard
free energy G° at one atm, the real gas has the same
energy at a different pressure where {f° =1 atm. At
this pressure G (real) = G° (perf) but H (real) # H°
(perf) and S (real) # S° (perf).

The enthalpy of a perfect gas is independent of

pressure. This can be seen from the following relation-
ships. Substituting

G=G°+RTInP
and

oG dGe®
-8 = <'aT>P— (dT) +RInP

into the formula

H=G+TS

o _ m (4G
- -1(22)
Therefore, the enthalpy of a real gas can be equal to
that of the perfect gas only at zero pressure.

The entropy of a real gas is equal to that of a per-
fect gas at some pressure which is different from the
pressure where the free energies are equal. These
relations are shown in Fig. 16. Thus, althouth the
standard state of a gas for G is the real gas at f°= 1,
this is not true for H and S.

The experimental determination of the heat capacity
of a substance makes it possible to integrate the

equations
O
(aH°> e g (aS°> %
oT P P aT P T

The lower limits of integration are H3gg and Sqp.q-
According to the third law of thermodynamics the
entropy of a pure crystalline substance is zero at
absolute zero. Thus results are listed as (HT — H3gg)
and S?r. For each substance

one obtains

o — 1O — )
7 = Hp = T8y
Subtracting H"298 from each side
o __ 1o - o _ 1o _ o
(G — Hygg) = By ~ Hagg) ~ TS

This function for a substance or combination of sub-
stances (one side of a reaction equation) is easily
plotted, e.g. Hg + 1 O9, each a perfect gas at 1 atm,
and HyO steam perfect gas at 1 atm). Tables commonly
list the function (G% - H°298)/T called the Gibbs free
energy function, a somewhat misleading name.

In order to relate the two (G?r — H9gg) curves for
two sides of a reaction equation it is necessary to know
either AH® or AG® at some temperature. AH% is obtained



from calorimetric measurements. AG° may be obtained
from determining the equilibrium constant or from
reactions in galvanic cells.
If AH?r is known, AGH may be calculated from the
relationship
o _ o __ o
AGT = AHT TAST
For instance, consider the following example (Fig. 17
and Table 3):

Hy (perfect gas, 1 atm) + 3 O9 (perfect gas, 1 atm)
== Ho0 (perfect gas, 1 atm)

.

reS '
: perfect
H Ho/:

—

-TS°
-TS

¢ P=1atm

g/f:1atm ¥

-co 0

InP

Figure 16. The standard state of a gas.

kcal

H’and G’

At 500°K

o — o _ o
AG500 = AH500 500 (ASSOO)
=-58275 ~ 500 (49.33 — 34.806 — 26. 357)
=-52359 cal

AG® of this reaction is the standard free energy of for-
mation of steam. The reactants are the elements in
their standard state; the product is in its standard
state. Therefore it is designated by AGE 500.

Commonly the standard enthalpies of formation at
298. 15°K are listed as (AH} 99g). The following
relationships exist:

Q - o o _ Q0 . o] o
AHp ¢ = [Hygg + (T — Hygo)] — [Hge + (HY ~ H,yo )]
products reactants
= © o _ 1o
AHp ggg T AWML ~ Hg0)
Thus at 500°K
o J— — = -
AHZ 0= -5T796 + (1654 — 2133) = -58275 cal
o - o o _ yo _ ) o _ Ho
AGE = [Hygg + (G —HO )] — [HY g0 + (G, — HY )]
products reactants
_ ° o _ 130
=AHp ggg +AGL ~ Hygo)
10 T T I
H® of Hz_"tol ————————————————
0 )—-—rr".-———.—-_:-___f ............... f -
i
210 - | -

(6o ~HS, )= -28448
S0 2am of H24—12-02

-230M —

of steam

-90 | l\
300 400 500 600 700
TEMPERATURE °K
Figure 17. Thermochemical properties of steam.
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Thus at 500°K

AG;’. T -57796 + (23011 + 28448) =-52359

SOLID-SOLID REACTIONS

Garnet — Cordierite Equilibria

The assemblage quartz-sillimanite-garnet-
cordierite is common in high-grade pelitic rocks (e. g.
Reinhardt, 1968). These minerals are related by the

equilibria
2 Fe:‘}A12513012 +4 A128105 +5 SlO ==3 Fe2A14S15018 1)
2 Mg3A12813012 +4 A128105 +5 8102‘:;3 Mg2A14815018 )

It is commonly possible to express AG® as a linear
function of T:

AG® =A +BT

where A = AH® and B = -AS°.
one can write

(T in °K)

Thus for the two reactions

A(l) +B(1) =—RT InK

Aoy "B

T (B(l) +R1nK(1)

@ +R1nK(2)

Solving for P
T (B

a AV(D P-1)

T=—RTInkK P-1)

(2)—AV
) =— AV

(2)

P + AV - A
AV

P + AV - A
(2)

1) ey

T (B ) =— AV

2) (2)

oh +R In K(l)

(B(Z) +R In K

- PAV(l) (B

) +R In K(l)

(B(l) +R In K

- PAV(Z) (B

) (B +R In K )

(2) (2)

@’ AV ey

+R 1In K(2))

@ +R In K(Z))

@y AV " Aey

+R In K(l))

2

1]

T (B ) (B

Q)

(B(Z) +R In K(Z)

— PAV (B

) AV -A_.))

&) )
@ By *RINK,)

) TRINK4y) AV 5y = A3y

- PAV(Z) (B +R In K(l))

= (B

1)

(B(l) +R In K(l)

_(B(Z) +Ran(2)

) (AV(Z) - A(Z))

) @AV Ay

AV (B

@ +RInK

1) (1)) —-AV (B

o +RInkK, . .)

) 2)

Solving for T

TAV(Z) (B ) +R In K(l)) =
= AV(I)AV(Z) P +AV(1) AV(Z) - A(l) AV(Z)
TAV () By *RINK () =
- AV(I) AV(Z) P +AV(1) AV(Z) -~ A(Z) Av(l)
rox @0 A Ve
AV(Z)(B(l) +R In K(l)) —AV(l) (B(Z) +RIn K(Z))

Assuming ideal ionic solution in garnet and cordierite

3

2587 ( Fe ) .
Fe3A12813012 Fe+Mg+Mn+Ca

2547 ( M > 3

Mg3A12813012 Fe+Mg+Mn+Ca

and

cor ( Fe ) 2 .
FeZA14815018 Fe+Mg+Mn

cor M 2

a Mg
Mg’2A14S15018 ( Fe+Mg+Mn>

It is now possible to write the equilibrium constants
in the form of atomic fractions:

(cor ) ( )6
Fe2A14815018 Fe+Mg+Mn cor
T
Fe3A12813012
. L) (o).,
Mg2A14S1501 Fe+Mg+Mn
O o) (o),
Mg3A1251301 Fe+Mg+VIn+Ca gar

Thus the two equilibrium constants may be calculated
for each pair of analyzed garnet and cordierite. The
volume changes of the reactions may be obtained from
Robie et al. (1967). And if the standard free energy
changes for both reactions are known, it is possible
to solve for P and T.

6

Fe+Mg+Mn+Ca )
gar
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Hutcheon et al. (1974) have used the following
values of AG° to estimate P and T of some rocks from
the Daly Bay Complex, N.W.T.:

G° =6590 — 18. 0 T; AV
A 0 oy

(] _ - .

AG @ - 9030 — 22.95 T; AV(2)

Froese (1973) calculated the free energy change
of reaction (1) with the pure solids at 2 kb. In the
present notation this corresponds to AG® + AV (2000-1);
therefore AG® = AG at 2kb — AV (2000-1). The standard
free energy change of reaction (2) was estimated by
Hutcheon et al. (1974).

= 3. 6480 cal/bar

= 3.8252 cal/bar

Exchange Reactions

Exchange reactions are important examples of solid~
solid reactions. For instance, the distribution of iron
and magnesium between cordierite and anthophyllite
may be represented by the following equilibrium:

7 Fe2A14$15018 + 2 Mg7818022

2 Fe7818022(OH) +17 Mg2A14515018 (3)

aanth 2 [ cor 7
(OH), (aMngl Si_0 >

Fe _Si O 451594

B 7°'8%22
K - 2 ,COF 7
(OH) 2) Fe_Al Si_ O

(3) (aanth
Mg, Sig0 24°15 18

8722

(OH) 9 =

Assuming ideal ionic solution

anth [ Fe \' ( si >8

a . = ;
Fe Si0,,(OH), \Fe+Mg+Al/ Si+Al
octahedral tetrahedral
position position
1.0 T T T =
@ 08 -
=
5 2.7
2 osf Kp=2 .
[=
o
- o)
o
— 04} ©
o
=
+
Sl
h 0 2 L _
0 1 1 1 ]
0 02 04 0.6 08 1.0
Fe iari
( Fe +Mg ) of cordierite

acor =< Fe >
Fe2A14815018 Fe+Mg

Analogous relations hold for the Mg end members. If
anthophyllite contains no Al

aanth __( Fe ) T
Fe7S18022 (OH) 9 Fe+Mg
and
1 Fe Mg
14 Fe+Mg / anth Fe+Mg /cor
K =
3 [(_Mg __Fe
Fe+Mg / anth Fe+Mg cor

The expression on the right side of the equation is
known as the distribution coefficient K. A common
method of representing Kp, introduced into the geo-
logical literature by Kretz (1961), is plotting Fe/(Fe+Mg)
in anthophyllite vs. Fe/(Fe+Mg) in cordierite.

If anthophyllite contains some aluminum, e.g. 2.5
atoms per formula unit (Fe,Mg)5 75 Aly 95 Sig 75
All' 25 022(0H)2-

Fe 7 8
anth / (Fe+Mg>5' " 6.75

%Fe Si 0 ©OH), \Fe+Mg+A1 Si+Al

7778722

but, because of cancellation, Ky remains the same.

Figure 18 shows the distribution of Fe and Mg
between anthophyllite and cordierite based on two
analyses reported by Lal and Moorhouse (1969). The
distribution curve corresponds to tie lines in a con-
ventional phase diagram, also shown in Figure 18.

The iron-magnesium distribution among silicates
commonly is not very temperature-sensitive and subtle
variations may be obscured by uncertainties in the
analyses.

Al;03

cordierite

L

anthophyllite

FeO MgO

Figure 18. The distribution of iron and magnesium between cordierite and anthopyllite.
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Table 4

The decomposition of muscovite + quartz

KA12S13A1010(0H)2 + SlO2 = KA181308 + A12S105 + HZO

Disregarded in fitting
the straight line

muscovite quartz  sanidine andalusite
=10 -
- 'O, — [+3
Pu.0 ~Protar| TC | Puo | Puo| o |AVsED AG
2 2 2 2
kb atm atm cal cal e _
0.5 520 493 | 0.681 336 - 37 - 9131}
o
0.5 560 493 | 0.739 365 | - 37 -9 731 *_n2f ]
©
1 550 987 | 0.551 544 | - 74 -10 229 4
1 570 987 | 0.585 577 | - 74 -10 578 e _
2 590 | 1 974 | 0.507 | 1 001 | -149 -11 701
2 605 | 1 974 | 0.531 | 1 048 | -149 -11 987 el
K AlzSiz AIO10(OH) + $iO2 =K AlSi;Og +AlL, SiOs +H,O 7
3 620 2 961 0.543 1608 -224 -12 879 muscovite quartz sonidine andalusite
3 640 | 2 961 | 0.575 | 1 702 | -224 -13 276 {Chotteriee and Johannes, 1974)
~15 f— —
4 660 | 3 948 | 0.638 | 2 519 | -298 -14 224
4 670 [ 3 948 [ 0.653 | 2 578 ~298 -14 423 | [ | |
~-16
5 690 | 4 935 | 0.745 [ 3 676 -373 -15 340 500 550 600 650 700
5 705 | 4 935 | 0.770 | 3 800 | -373 -15 649 TEMPERATURE °C
Figure 20. The decomposition of muscovite + quartz.
T T T T 9 T T T
2 4
20 4
DEHYDRATION REACTIONS
19 B
tnK . .
® el s ] The Decomposition of Muscovite + Quartz
&
<
& . .
17k X ) A very important reaction during metamorphism is
the dehydration of muscovite in the presence of quartz:
16+ B
K Al_Si_AlO, (OH)_ +SiO_=KAISi O_ + Al _Si0O_ +H_O (5)
1513 1.2 l‘! 110 0‘9 0 ¢ 0 . ; 2 3 10( )2 2 3 8 2 5 2
. A 8 500 800 700 800
1000/T°K Temperature *C

muscovite quartz sanidine andalusite

Figure 19. Variation of the distribution coefficient with The most recent experimental determination of this

temperature and pressure. reaction is that of Chatterjee and Johannes (1974).
For each experimental bracket (Table 4) it is possible

. . to calculate
For example, by subtracting reaction (1) from

reaction (2), the following exchange reaction is obtained AG° =—RTInf — AV (P-1)
(5) HZO s
2 Mg3A12813012 +3 Fe2A14SI5013 The pressure was converted to atmospheres to be
. . strictly consistent with the standard state used in this
=3 Mg2A14515018 +2 Fe3A12513012 (4 paper. The fugacity coefficients of HyO at each P and
T were taken from Burnham et al. (1969) and the molar

1 ( Fe ) ( Mg ) volume of the solids from Robie et al. (1967). On a
6 Fe+Mg /gar Fe+Mg / cor plot of AG® vs. T (Fig. 20) a straight line may be
K(4) - Mg Fe passed through all brackets. Disregarding the large
<Fe+Mg>gar <Fe+Mg'> cor bracket at 0.5 kb, the deviations in AG® have been

minimized. The equation of the straight line is
AG° =-15620 — 4.95 T ; AVS =0.1772 cal/bar

AG°=- 6 RT In KD - AVS P-1)
In Figure 19, the variation of Ky with temperature and

pressure is shown.

AG(°5) =19920 — 36.5 T (T in °K)

It follows that AS° is 36.5 cal/deg and AH® is 19920 cal.
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It is now possible to calculate the equilibrium sur-
face of the reaction in P — Py 90 ~ T space (Fig. 21).
The surface may be shown by contours in various
projections.

. ¥

Figure 21. The stability of muscovite + quartz.

Biotite-Garnet Equilibria

A very common mineral assemblages in high-grade
pelitic rocks is quartz-K feldspar-biotite-garnet-
sillimanite. This assemblage is easily represented on
a triangular diagram with corners A = AlgO3 — K90, F
= FeO and M = MgO (e.g. Froese, 1963). The
assemblage plots as a subtriangle in such a diagram.
This subtriangle will shift in response to changes of
P, Py,0, and T. In order to express this variation
quantitatively the following procedure may be used.
The minerals are related by the equilibria

K]?‘e3$13A1010(OH)2 + Al SlO5 + 2S1O2

2
= KAIS1,0, +Fe, AL Si, 0,, +H,0 (6)
2287
8Fe Al Si, 0 \
K -t 3 3712

(6) HO bio

2 a . }
KFe3813A1010 (0)5))] 9

KMg3SI AlO (OH) + Al _SiO_ + 258i0

3 2 27775 2
=KAISi308 +Mg3A12813012 H20 )
252
« . Mg3A12S13012 \

(1) " 'HO | bio
KMg'3SI AlO,  (OH)

20

The following relationships hold

{e) — - —
AG 6) —A(G) +B(6) T =—RT lanZO

282

®Fe Al _Si O
3 2773712
RT In bio - AVS(G) P-1)

a .
KFe3813A1010 (OH) 9

o — g,
AG D —A(7) +B(7)T— RT lan o

o 8ar
Mg Al_Si,0
372773712
RT In == AV, gy ®-D

a .
KMg3513A1010(0H) 2

or, abbreviating the activity ratio part of the equilibrium
constant by L

A(6) +B(6)T +RT lnfﬂzo +RT In L(G) +Avs(6) P-1) =0
A(7) +B(7)T +RT In szO +RT In L(7) +AVS D P-1) =0
Subtracting

Ay TAm

+T [(B(G) + R In L(6)) - (B(7) +RT In L(7))]

+ (P-1) (Avs(ﬁ) — AVS(7)) =0
ooy " Ae? TP W ~ AVsy)

(B(6) +R In L(G)) - (B(7) +R 1n L(7))

For any given rock, T may be calculated at an assumed
P. Then ln ngO is given by

(A(G) +B(6) T +RT In L(6) +AVS(6) (P-1)
RT

The volume change AVg for both reactions may be
obtained from Robie et al. (1967).

Froese (1970, 1973b) studied rocks with this
assemblage from the Thor-Odin gneiss dome and
reported analyses of coexisting pairs of garnet and
biotite. The geological setting of the area is given
by Reesor (1970) and Reesor and Moore (1971). Most
samples came from unmigmatized gneisses mantling a
migmatitic core. The activity ratio parts of the equi-
librium constants may be calculated from the chemical
analyses by assuming ideal ionic solution in biotite
and garnet.

The free energy changes of reactions (6) and (7)
are not known. In order to assess differences in meta-
morphic conditions from rock to rock, these were
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Figure 22. Metamorphic conditions for some rocks from the Thor-Odin gneiss dome.

assumed for one sample (No. 279-3): T =550°C,
P =3 kb, PHZO =1 kb. On this basis AG® may be
calculated:

o J— _ _ = -1
AG 6) RT In K(G) AVS 6) (P-1) 0200 cal
o - _ _ - - -
AG o RT In K(7) AVS(7) (P-1) 4245 cal
Assuming a dehydration entropy of 32 cal/deg mole
AG° =16140—32.0T
(6)
AG® =22100—32.0T
(¢D)]

For each particular rock, the activity ratio parts
of the equilibrium constants can be regarded as given.
For biotite and garnet of that particular composition,
the equilibrium surface of reaction (6) and of reaction
(7) plots as a surface in P — PH o~ T space. The
intersection of the two surfaces, corresponding to the
simultaneous solution of the two equations, gives a line
(Table 5). The rock with this particular biotite and
garnet composition is stable only along this line. The
line may be terminated by

1. The intersection with the muscovite equilibrium
surface. At Py, g greater than this point, musco-
vite forms and t%]e mineral assemblage becomes
unstable.

2. The intersection with the surface of the beginning

of melting.

The stability line of the mineral assemblage of reactions
(6) and (7) may be projected onto any convenient sur-
face. Three rocks from the Thor-Odin gneiss dome are
shown projected onto the P-T plane (Fig. 22).

NONIDEAL SOLUTIONS

Introduction

_ The molar free energy of a component in solution
Gj is defined by

oG
i=

Qi

system
on,
1 P, T, nj
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Table 5

P-P
HZO

— T conditions of quartz — sillimanite ~ K feldspar —

garnet-biotite rocks from the Thor-Odin gneiss dome, B.C.

0,
No In L(3) In L(4) Ptotal T°C fH20 bars <PH20 PHZO bars
2 kb { 559 139 . 461 300
M 179-2) 2.137 -1.537 4 kb | 57 337 .500 670
6 kb | 590 782 . 650 1 200
M 10-1a| 1.918 -1.418 2 kb | 643 396 . 600 660
4 kb | 660 882 . 638 1320
6 kb | 677 2 111 .813 2 600
66-2 1.800 -1.313 2 kb | 710 779 . 684 1 140
4 kb | 727 1 629 .770 2 200

It represents the energy change when one mole of sub-
stance i is added to an infinite reservoir of solution,
thus the other moles nj remaining constant. Since it
is a partial derivative, it is commonly called the partial
molar free energy. It is helpful to remember, however,
that it refers to one mole of a substance in a solution of
fixed composition, and not to a fraction of a mole.
Although thermodynamics provides no relationship
for_the variation of G; with composition, the variations
of G of the components of a solution are related by the
Gibbs-Duhem equation. It will be derived for binary
solutions following some definitions. In a binary solu-
tion, there may be a systematic variation of G, and Gg
with composition, which permits adequate representa-
tion by a solution model. Solution models facilitate
various calculations (see e.g. Chatterjee and Froese,
1975) and make it possible to derive activity coefficients
from phase diagrams.

Definitions

An ideal solution may be defined by the relationship

<a lanGX> =RT
P,T

If the molar free energy of a component in a solution is
plotted against ln X, it is found that the solution
becomes ideal as X > 1 and as X > 0 (Fig. 8). For the
present purposes, we will use X =1 as the lower limit
for integrating the ideal solution equation

gld X
f dG = f dln X
g* X=1

G4 _G*=RTInXx

22

where G* is the molar free energy of the pure component.
The behaviour of the real solution will now be compared
with this type of ideal solution. In real solutions, the
RT In X term is not sufficient to account for the energy
difference G — G*. Instead, it consists of an ideal term
and an excess term. However, it is conveninet to define
a new function, the activity a, on the basis of this
energy difference:

G-G*=RTIlna
Thus the following relationships exist (Fig. 8):
G-c%=@G9-6% +G-&DH

RTIna=RTInX+RTIny

The departure from ideal behaviour is expressed
by an energy difference G- Gl the excess free
energy of one mole of component in the solution and the
activity coefficient y is defined by it. It follows that

=a/X. id
The energy difference G - G' will be abbreviated

by G®X. It may be expressed by an enthalpy and
entropy term. Thus
G* = - 18 =RTIny

Similarly one can write for an 1deal solution

@9-gy =@l -mr -1E9 - 5% =RTIn X

Differentiating

@9 - G* =RT In X



with respect to T we obtain

(aéld> - (aG*> _(a RT In x)
0T ) py \OT Jp  \ 0T -

+S* =R In X

or - §19
Substituting this, it follows that
}_iid - g*
Differentiating
@9 - 6% =RT In X

with respect to P

=1
(35) () -eveeve
T,X T, X

The Gibbs-Duhem Equation

At constant pressure and temperature, the Gibbs
free energy of a binary solution is a function of the two
mole numbers:

system =t (nA’ nB)

General differentiation of this function gives

G[system - G'AdnA b GB dnB

However, Ggystem is a homogeneous function of the
first degree (see Klotz, 1950) and, according to Euler's
theorem,

Gsystem A rlA * C'B nB

This equation again may be differentiated to give

=GAdnA+nAdGA+GBdnB+anGB

G
system
Equating the two expressions for d Gsystem we obtain
nAdGA:‘anGB

This is the Gibbs-Duhem equation. Division by
(np + npg) produces a more convenient form:

XAdGA=~XBdGB
Since

G =G* + RT In a, where G* is a constant,

1 = =
XAd naA XBdlnaB

or since a = Xy

1 =— 1 —
XAd nXA+XAd1nyA XBd nXB XBdlnyB

Also for a binary system

=1 -
XA XB

or dXA=-dX

_Xs XB

or

. (dXA>
A XA

XAdlnXA=~XBd1nXB

0]
|
>
o8]
S
e
los] >
os]
R L7

or

Substituting this into the previous form of the Gibbs-
Duhem equation we obtain
1 =— d

XA d In Ty XB In 15
If the variation of In a with XB is known, the equation
may be integrated between appropriate limits (Fig. 23).
As a lower limit of integration both activities at one
composition (XB initial) must be known

Ina, ¢ a.. 8
n aA at XB In at X
/d In aA /—~ d In a
1 oty -
n aA at XB initial B at X initial
Ina, at X_ —1ln a, at X_ initial = area unde1 the curve

A B A B

Since at XB =0, In ap = 0, it would be desirable to use
this as the lower boundary. However, then In 8 R e
and because of a "tail to infinity" the integral becomes
imprecise.

It is better, therefore, to integrate the Gibbs-Duhem
equation in the form involving activity coefficients. At
X, =0, In P 0 and In Ty =8 constant.

B
In T at XB In T at XB
/dlnyA /——dlnyB
In 'YA=O at XB:O In Y at XB

The activity coefficient In v, at any value of Xp is given
by the area under the curve (Fig. 23).

XA XA

1
1
1
1

- Inag Inag 0 - Inyg T T8 0
at Xginitial at Xg at Xg =0 at Xg

In ag In 'EB
Figure 23. Integration of the Gibbs-Duhem equation.
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Determination of Activity Coefficients

1. By measuring the energy difference G — G*. This
determines RT In a. By subtracting RT In X,
RT In v is obtained.

A. In many cases it is possible to measure the
fugacity of a component in the saturated vapour
over a solution.

For the pure ligquid
G* (liquid) =G (vapour) =G° +RT In f*
For the solution
G (solution) = G(vapour) =G° +RT In f

where G° is the molar free energy of the gaseous
component at unit fugacity and f* is the fugacity in
the vapour equilibrated with the pure liquid com-
ponent. Subtracting we obtain

6—G*=RT1n—£—_=RT1na

.
e
B. In many cases, it is impossible to measure the
fugacity, but the energy difference G — G* may be
obtained by performing a reaction involving the
pure component and then repeating the reaction
involving the component in solution. This method
is often useful in oxidation reactions, e.g.
. P .

3 FeSlO3 + 202_.‘Fe304 +3 SlO2
It is essential that Fe;0, and SiOy remain pure
phases, even when FeS8iOg occurs in solution.

For the reaction involving pure FeSiOg

* . +3(G°+RT Inf* ) =G* +3 G*_ .
FeSlO3 O2 Fe304 SlO2

3G

For the reaction involving the solution

3G +-}(G°+RT1nfo)=G*F

*
FeSiO, *3G

9 e304 SlO2

Subtracting

f

0
=—-1éRT1nt,—2
3 o,

— %
GFeSio3 G*Fesio

C. The energy difference may be obtained from
galvanic cells if the cell reaction consists of a
transfer of a component from the pure phase to a
solution and does not involve the electrolyte.

2. If the activity coefficients of one component in
a binary solution are known, the activity coefficients
of the other component may be determined by
integrating the Gibbs-Duhem equation.

3. Activity coefficients may be obtained from phase
diagrams if solution models are assumed. The
experimental data required are either a solvus
in a two-component system or a set of tie lines
between two binary solutions.

24

The Variation of RT In y in Binary Solutions

The excess molar free energy of a component in

solution

G*-G-G%=RTIny
is a complicated function of temperature, pressure,
and composition. In multi-component solutions, y of
a component varies not only with its own mole fraction
but also with the ratio among other mole fractions. In
binary solutions there is only one composition variable
and the variation of y is less complicated. Nonideal
solution models are based on regularities in the varia-
tion of RT In y with composition and temperature, at
constant pressure.

At constant temperature, the logarithms of the
activity coefficients in many solutions fall along relatively
simple curves. (Fig. 24).

The two curves are subject to two restrictions

1. Raoult's Law. It has been observed that real
solutions become ideal as X+ 1. Thus atX =1

<6 lanGX) = KL
P, T

G-G*=RTInX=RTIna

a=Xand y =1

Raoult's Law cannot be derived from thermo-
dynamics but represents an independent
empirical observation.

2. The Gibbs-Duhem equation for a binary
solution.

XAdlnyA=—XBdlnyB

constant Pand T

In U:—’

A B
Xs

Figure 24. Variation of activity coefficients in a binary
solution.



This relates the slopes of the curves but does
not determine their shape. At each mole frac-
tion, the slopes must be opposite. This is best
seen by dividing both sides by dXB

. 21Invy, __XB<alnyB>
A oXp P, T %%y /p,T

The two curves must also be consistent with Henry's
Law, which can be derived from Raoult's Law and the
Gibbs-Duhem equation. According to Henry's Law, a
solution again becomes ideal as X » 0. A solution
following Henry's Law has the same slope 8G/3 In X
as one following Raoult's Law.  _

Therefore, the difference in G of a component in a
solution following Henry's Law and one following
Raoult's Law must be constant.

Thus

(é - éid) at infinite dilution = E}%ox= RT In y
where y= is a constant. Since a = Xy, at infinite
dilution a = X-constant.
The derivation is as follows:
The Gibbs-Duhem equation may be written as

XAdlna =—XBd1na

A B

For component A following Raoult's Law

lnaA=lnXA
dlna, =dInX =—(—i§—A——
A A XA

Substituting this into the Gibbs-Duhem equation

dXA=‘XBd1naB

Also for a binary solution

dXA =—dXB

Therefore

dlnaB=d1nXB

On general integration
In ag = In XB + an integration constant
ap = XB- constant

Thus each activity curve must start at

Iny=0and X =1

and intersect the 1n y axis (cannot become tangential)
at

Iny=Inyeand X=0

For many solutions the variation of In y with composition
may be empirically expressed by a power series, as
suggested by Margules (1895)

2 3
In yA—AA(l—XA) +aA(1—XA) +[5A(1—XA) N
2 3
In Tp —KB(l—XB) +aB(1 XB) +pB(1 XB) oo,
These expressions are consistent with Raoult's and

Henry's Laws. Furthermore, the two activity coefficients
must conform to the Gibbs-Duhem equation:

. (BlnyA) Ly dInvg S
A oX P, T B 90X

B B P, T

Therefore, the constants in the two power series are

not independent. If the power series are limited to

three terms, the following relationship exists.
Differentiating both series we obtain

dlnyA 9
———————dXB =7»A+2(1AXB+3;5AXB

dlnyB 9
—————dXA =7\B+2aBXA+3pBXA

or since dX =-—dX
a B

dlnyB 2
dXg =T Ag 2o X, ~3Bg Xy

These two expressions are substituted into the Gibbs-
Duhem equation and (l—XB) is substituted for X A
2
(1 XB) ()»A + 2aAXB + 3pAXB )

2y .
- Xp O + 205 {1-Xp} +3pg (1-X}7) =0

2 2 3
My *20,Xp + 3B, X " — A Xy - 20, X" - 36, X
2 2
~AgXp — 20pXp + 20X " — 3B X + 6B X
3
— 3ppXp" =0
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Collecting terms for each power of X
©
X B (A A)

+Xp (20, =&, = Ay = 20, — 3Bp)
2

+XB (3BA— 2aA+6BB +2aB)
3
+XB (—3ﬁA— 3B

B’

This equation can only be equal to 0 if the coefficients
of each power of X are equal to zero. This requires

xBandkA=0
3
s =% *2Pa

Now the following relationships are obtained:

g ey +By

1
In YB —aB +[5B -aA +§ﬁA
In view of these relationships, Carlson and Colburn

(1942) expressed the constants in the two power series
in terms of the activity coefficients at infinite dilution

2
in Y < (2 1In Yy~ in yx) (1—XA)

+ 2(1nyA - lnyﬁ) (1-XA)3

2
In Yg = (21n R~ In yoﬁ) (1—XB)

3
+ 2(1ny°B° - lnyx) (l—XB)

The excess free energy of a component in a solution is
given by
id

G =RT Iny

G =G-G
At infinite dilution
GZ=RT In ye

The equations proposed by Carlson and Colburn may
be multiplied by RT giving

=exX =ex 2
RTlnyA—(ZGB GA)(I—XA)

=ex =ex 3
+2(GA —Gﬁo) 1 XA)

—ex =ex 2
RTlnyB—(ZGA GB)(IXA)
—ex =—ex 3
+2(GB —GA) (1 XB)

These may be rearranged to give a form used by
Thompson (1967)

2 . —ex —eX =ex
RT lnyA —XB [GK +2XA (Gg—GA)]

2 . —ex —ex =ex
RTln’YB--XA [Gﬁa +2XB (G;&° Gﬁo)]
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In Thompson's notation G = Wg-

If the power series are terminated after the second

power term, the variation of RT 1n y is symmetrical
—ex -—e

and G ® = G]°3°

—ex 2
RT In YA =G (1—XA)
RT In vy = G (1-X_)2
Yg = B

Thus solutions may be classified according to the
number of constants required to describe the variation
of RT In y with composition. The one-constant
Margules model is called a simple mixture by
Guggenheim (1967) and often referred to as a "regular"
solution in the literature. The term "sub-regular" has
been proposed by Hardy (1958) for the two-constant
Margules model.

Next, the variation of RT In y with temperature at
constant composition will be considered. It is convenient
to specify In y o, the activity coefficient at infinite
dilution. The relationship

G¥ = RT In Yoo
may be expressed by corresponding enthalpy and
entropy terms

HS — TS® =RT In ye

Over a limited temperature ranggeg%bout 300-400°C) it
has been observed that H® and Ss are approximately
constant. This ilnex%(lies that Ce is very small. The
assumption that H% and S% are constant (i.e. that
C= =0) is so commonly made that no special name

has been given to a solution conforming to this. It
follows that in this case In y= will vary linearly with
1/T. _

It has been found that for some solutions S&. is
very small and one can recognize as a limiting behaviour
that S& is zero. These are known as regular solutions.
Again In y o will vary linearly with 1/T.

As another limit_irég type of solution one could
think of the case of H% being zero. Such solutions
have been called athermal. There are only very few
examples of this behaviour among real solutions.

The variation of RT In y with composition and with
temperature may be combined to give various solution
models (Table 6).

The excess molar free energy of a component at
infinite dilution also varies with pressure. This is
seen from the relationship

(_}%3(= f]‘?}_,_ P\—I%g( - T§%Z{

The excess molar volume of a component at infinite
dilution commonly is approximately constant over a
limited P-T range.



Table 6

Nonideal binary solution models

One-constant aggg Two-constant
—ex —e Margules model Margules model
variation of G- X=RT lny G NS g g
RT lnYB e
with composition RT 1ny "Regular"” GA‘)’g/ "Sub-regular"
B .
l .
at constant T R lnYA solution RT 1ny, solution
"Simple mixture"
0 0
A B A B
_ meX _ 2 _ =ex _ ge¥ _ 2
RT lny, = G'® (1-X,) RT 1lny, (2Gg G,%) (1 X,)
. . =e =ex 3
Variation of +2(GS¥ - GE%y (1-x.)
e - RT lny, = [ (l—XB)2 A B A
G-&=RT 1lny B —ex =ex 2
o RT 1nYB = (ZGA -~ GB ) (l—XB)
wi —ex _ =ex _ =%
G ® = G = G
A +2(3% - T (1-x) >
8 =ex _ — _ meXx —€X 2 Substitute
Cs =0 F=% s®% | RT lny, = (H& - TS ®) (1-X - = =
10‘[2 P and S Ya ) (1-X,) ng _ (Hze\é _ Tsié)
are co - (§°% _ meeX¥ _ 2
. nstant | RT lm(B (H-% TS-&) (1 XB) éiégg = (%% - T5%%)
B
%8
o
v | 5%8 = 0; % - pe¥ RT lny, = (8°%) (1_XA)2 Substitute
%8
—ex
fo Regular solution RT Iny, = (£%%) (l_XB)Z Ezéé = ﬁié& and agzé = H3®
n
8 .
E 5% = 0; g% - -78%% RT lny, = (-TSS&) (1_XA)2 Substitute
2 X _ =€ —e =e
& | Athermal solution RT lny, = (-15%%) (1-x) Gy = -753% ana T ¥ - -157%

Activity Coefficients from Exchange Reactions

The term comprising the mole fractions is the distribu-

In some experiments it is possible to measure the tion coefficient Kp; therefore,

compositions of two coexisting binary solutions.

opx opx
Similar data may be obtained from rocks. Davidson InK=InK, +Inyg o —1In "MgSio
(1968) reported the analyses of coexisting orthopyroxene 3 3
and clinopyroxene from granulites, which he considered +1n voPX — 1n y°P%

- i " YcaMgsi 0, " YcaFeSi 0
to have crystallized at the same temperature. Treating aMgsi U, ares1, 0.

these minerals as binary solutions, it is possible to
derive activity coefficients (Froese and Gordon, 1974).
It is possible to write the following exchange

Using a one-constant solution model for both pyroxenes,
the activity coefficients are given by

reaction
opx %, 0pX opx 2
In Ypesio, <Y XRlGG )
. . == . . 3 3
MgSlO3 + CaFeSxZO6 FeSlO3 + CaMg’51206 (8)
The equilibrium constant in terms of mole fractions n YOPX = lnyw’ Oopx ( opx )2
(X's) and activity coefficients (y's) is given by Mg3103 95103
xOPX xCPX yopx chx
FeSiO CaMgSi O FeSiO, fcaMgSi O cpx = 1 CPX L CDPX 2
K = 3 276 3 26 InYcamgsi_o, =Y Xcarpesi 0
(8) X;px chx Yopx chx 276 276
gSio CaFeSi O MgSiO CaFeSi O
3 276 3 276 n chx ) =1nYeo, cpx (l_chx . )2
CaFe81206 CaFeS1206
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Substituting these expressions for the activity
coefficients, the following relationship, previously
derived by Mueller (1964), is obtained

50 T — . . — —
/ %, OpX opx
O Analyzed pyroxenes (Davidson,1968) / InK=InK_ +1n Y ! (1 - 2X . )
45+
y i D FeSiO,
/,
hor // | %, cpX cpx
-1 ’ — .
ny (= 2ZXcoresi 0 )
35t - 276
It is seen that the distribution coefficient is dependent
a0b 4 on composition if either one or both pyroxenes are
S 74 nonideal solutions. Davidson (1968) demonstrated
’ag’ 25  Derived distribution //‘\Distribution for ideal solution; 4 such de'pend.ence for pyroxenes from Quairading,
% curve K=Kp=151 Australia (Figs. 25 and 26).
Z T/ F h oair of isti XOPX
S g0l // | or each pair of coexisting pyroxenes, FeSiO3’
x U
g / x%PX | and in K _ are known; thus there is an
< a5t / ] CaFeS120 6 D
/ oo
/ equation in three unknowns In K, Iny ’ OPX, and
10F / 4 In y*» P, The compositions of at least three pairs of
/ coexisting pyroxenes must be known to solve for the
oS+ // {1 unknowns. Davidson (1968) reports analyses of 11
pairs, neglecting one sample which shows signs of
0 A A A L P A A textural disequilibrium. The three unknowns obtained
o o8 w0 "; eox 20 2‘; ox 0 3% 40 45 80 from a least-squares fit to the available data are:
p . '
aFeSi0s/ " CaMgSiz0s INK =0.412 (K =1.51); 1n v~ °PX = 0. 247;

X OP%

Figure 25. Iron-magnesium distribution between In Y°°, CPX _ () 695
pyroxenes.
It is possible to substitute a more complicated solu-
tion model and solve for more unknowns but commonly
e ‘ ‘ ‘ " ' L A ' the data are not sufficiently accurate to warrent this.
) For instance, in applying this method to the distribution
© Analyzed pyroxenes (Davidson, 1968) S N .
oor P 1 of Fe and Mg between olivine and aqueous solution,
P Saxena (1972) found that only the one-constant model
o8l ] gave consistent results.
It is more common to use at least a two-constant
orl 7 | model if the activity coefficients of one solution are
Derwed distribution curve, 7’ known. As an example, the exchange of K and Na
o gid between aqueous solution and sanidine will be considered
oer / 4 1 (Orville, 1963; Thompson and Waldbaum, 1968):
. 3 //‘\T’""’“""’ o ekt NaAlSi,0_ +KC1 =KAISi O +NaCl 9
% osh 6_;,0/// ideol sotutions; N B 3 8 - 3 8
< od / Aqueous solutions and KC1 and NaCl at 2 kb and high
oal eo// | temperatures are practically ideal and one can write
|22se/// at constant P, T and C1 concentration
°s
o3 vdy R
P sol
1P // K = —‘——“'—X0r XNa Z_Q_I‘
ozr 7 1 €)] X xsol
// Ab “k / \"ab
ol 74 4
d where the term comprising the mole fractions is the
o s . . . . . ) . . distribution coefficient K_. Therefore:
o ot 02 03 04 05 [oX-] o7 08 09 -0 D
Xé:’?.s.io, InK =1n KD +1n YOr — In YAb
Figure 26. Iron-magnesium distribution between
pyroxenes.
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Into this equation one can substitute

2
In Yor = (2 1n "%p In 781_) (l—XOr)

3
+2(n S, In YAb) Q XOr)

2
In Yap = (21n Y& In YXb) (1—XAb)

3

+2(ln YXb —~ In yar) (1-X..)

Ab
There now is an equation in three unknowns In K,

In Y& and In %b for each pair of analyzed sanidine

and solution. If more than three pairs are available,
the unknowns may be determined by a least-squares
method.

This method was used by Saxena and Ribbe (1972)
to derive activity coefficients in plagioclase, based on
Orville's (1972) experiments. The exchange reaction
in this case is
2 NaAlSiSO8 + CaCl2 tCaAlZSiZO8 + 2 NaCl + 4 SiO2 (10)
At constant P, T and Cl concentration

2
K _ XAn XNa YAn
1oy "\ .2 2

Xap Xca/ \Yab

where Xpp and Xay, are the mole fractions An/(Ab + An)
and Ab/(Ab + An) and Xy, and X, are the atomic
fractions Na/(Na + Ca) and Ca/(Na + Ca) in solution.
Designating the term comprising the X's as Ky

InK =1nKD +1In Yan ~ ZlnyAb
Again, a two-constant solution model for plagioclase
may be substituted into this equation resulting in the
unknowns 1n K, lnyxn, and ln'yngb.

Activity Coefficients from the Solvus

Exchange reactions involve two binary solutions
in a three-component system. Therefore, there is a
bundle of tie lines at one temperature. In contrast, if
a two-component system exhibits a solvus, there is
only one tie line at each temperature.

But, at each temperature there are two equilibria

A (in solid I) = A (in solid II) (11a)

B (in solid I) £ B (in solid II) (11b)

I o I I o 1
(11a) aI XI 1 (11b) 'aI 'XI 1

A A A B “B "B

However, the standard state of A in both phases is the
same, i.e. the solid phase of pure A. For this reason

AG® =0 and since AG° =— RT In K, K =1and

aII
A

aI =
A
For the same reason
! =8
% ~ %

Or, in logarithmic form

I I It I
lnXA+lnyA = InXA + ln'yA

I I I I1
In XB +1In Yg = In XB + In B

Substituting a two-constant solution model for the log-
arithms of the activity coefficients it is possible to
solve two equations for two unknowns, In YR and
In y%, at each temperature.

%ctivity coefficients have been derived for sanidine-
albite (Thompson and Waldbaum, 1969 a; Luth and
Fenn, 1973) halite-sylvite (Thompson and Waldbaum,
1969 b; Green, 1970), muscovite-paragonite (Eugster
et al., 1972); and magnetite-hercynite (Froese, 1973a).

OXIDATION AND SULPHIDATION REACTIONS

Stability of Iron Sulphides and Magnetite

Toulmin and Barton (1964) measured fg, at various
temperatures over pyrrhotites of known composition.
They expressed the composition of pyrrhotite by the
mole fraction Npog in the system FeS — S5 and calculated
the activity of FeS in pyrrhotite by applying the Gibbs-
Duhem equation to this system.

This choice of components for the purpose of
integrating the Gibbs-Duhem equation is not strictly
correct because FeS is an intermediate compound in the
system Fe — §. The Gibbs-Duhem equation for the
Gibbs free energy is valid only if G > — =« as X > 0.
Therefore, the fugacity in the vapour equilibrated
with the solution must approach zero. However, in
analogy with other intermediate compounds, it is
probable that fg, over stoichiometric FeS remains finite.
But as the stoichiometric composition is approached
there is a very rapid decrease in fg, and the approxi-
mation that fs2 -+ 0as Ns2 - 0, inherent in applying
the Gibbs-Duhem equation to the system FeS — So,
probably is reasonable. In order to be consistent, it
is appropriate to use a hypothetical component FeS
having the property that log fs2 -+ — o as Npes > 1.
However, for practical purposes, the properties of
hypothetical FeS and stoichiometric FeS may be regarded
as being the same.

The activities of S9 and hypothetical FeS in
pyrrhotite are related by the Gibbs-Duhem equation:

NFeS dlog a (N s~ 1) d log ag

FeS 9

Fe
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T=600°C
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-002 -

integration limit of
Toulmin and Barton
(1964)

-001

T I
-14.0 -12.0 -10.0 -8.0 -6.0 -40
log sz

Figure 27. Integration of the Gibbs-Duhem equation for
pyrrhotite in terms of activities.
The activity of S, in pyrrhotite is given by
t

I 2 over pyrrhotite
S2 _f‘S over S2 with pyrrhotite structure
2

or
loga, =logf, - logf®
SZ SZ SZ

Since f‘sz over So "pyrrhotite" is constant at fixed P
and T

dloga, =dlogf
S2 SZ

and the Gibbs-Duhem equation may be written as

NFeS d log qpes = (NFes — 1) d log fs2
This equation may be integrated, in principle, from the
boundary condition apes = 1 at NFeS =1 and fS =0 at
N =1. Thus 2
FeS
log 8pes log fS
2
N =i |
FeS
d log a = /(————) d log f
f FeS NFeS S2
log apeg = 0 log fs2 =— o0
This integration poses a problem because log fS =— o
2
at N 1. Toulmin and Barton (1964), therefore,

FeS ~
used fg_ corresponding to the coexistence of pyrrhotite
and iron as the lower integration limit (Fig. 27). This
is known from the reaction

Fe +3 8, = FeS 12)

G =-35910 +12.56 T

o(12)
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Figure 28. Integration of the Gibbs-Duhem equation for
pyrrhotite in terms of activity coefficients.

The value for the standard free energy change is taken
from Richardson and Jeffes (1952). At 600°C, log fg, =
-12.49. Neglecting the area at very low f52 turns ou
to be a satisfactory approximation.

Because of the "tail to infinity" problem, the Gibbs-
Duhem equation is more commonly integrated in the
the form

Npes 4108 Tpeg = Npeg ~ 1) d 108 Ysz

The activity coefficient of 52 is given by

This activity cannot be obtained, because f°g_ the
fugacity over pure S9 "pyrrhotite" cannot be measured.
However

log vy, =logf, —logN_, - logf®
SZ SZ SZ SZ

And since f‘S2 is a constant

d log g =d(log fS — log NS )
2 2 2
Now it is possible to integrate from the boundary

condition YFeS =1 at NFeS =1 and (fS /NS ) = constant

. 2 2
at NFeS =1 (Fig. 28).
log YFeos (log fS — log NS )
2 2
d log =fl=—==]d (logf, =log N, )
/ FeS NFeS S2 S2
log YFes = 0 (log fS2 — log NSZ) = constant



Table 7

The pyrrhotite-vapour equilibrium at 600°C and 1 atm

Npes | Xres | Ppes |18 fs2
1.0000 | 1.0000 | 1.000 | — o
%0.9988 | 0.9977 | 0.998 | — 12.49
0.9900 | 0.9802 | 0.969 | — 9.68
0.9800 | 0.9608 | 0.917 | — 8.10
0.9700 | 0.9417 | 0.850 | — 6.81
0.9600 | 0.9231 | 0.774 | — 5.68
0.9500 | 0.9048 | 0.692 | — 4.65
0.9400 | 0.8868 | 0.609 | — 3.69
0.9300 | 0.8692 | 0.528 | — 2.80
*%0,9202 | 0.8522 | 0.453 | — 1.98

* Coexisting with iron
** Coexisting with pyrite

Table 8

The pyrrhotite-vapour equilibrium at 600°C and 2 kb

Nres Xpes pes | 108 fs2 log fo2
1. 0000 1.0000 | 1.000 | — e
*0. 9989 0.9979 | 0.998 | —12.22 | —24.38
0. 9900 0.9802 | 0.969 | —9.33 | —22.19
0. 9800 0.9608 | 0.917 | —7.75 | —20.97
0. 9700 0.9417 | 0.850 | — 6.46 | —19.96
0. 9600 0.9231 | 0.774 | —5.33 | —19.05
0. 9500 0.9048 | 0.692 | —4.30 | —18.20
0. 9400 0.8868 | 0.609 | —3.34 | —17.40
0. 9300 0.8692 | 0.528 | —2.45 | -16.64
%0, 9233 0.8576 | 0.476 | —1.89 | —16.15

*Coexisting with iron
**Coexisting with pyrite

Instead of graphical integration, a more convenient
analytical procedure may be used. From now on, the
composition of pyrrhotite will be expressed by the mole
fraction X in the system FeS — 0S. This cor-
responds t% ﬁm solution mechanism, i.e. the omission
of iron atoms. The composition of pyrrhotite is often
stated in terms of atomic fractions. The following
relationships hold:

. _(_Fes \=2< Fe)

FeS ~ \FeS +S,/ Fe +8S
X B FeS _[Fe
FeS \FeS+0S/ \'S
The excess partial molar free energy of the two

components in pyrrhotite may be expressed by a two-
constant Margules model:

RT In Yos ~ (2 GF s~ ) XFeS
+2 (GCTé ) XFeS
—ex —ex 2
RTIn ypog = (2 G55~ Ofeg) (1~ Xpeg)
=ex —ex 3
+ 2(G§es - G5°S) 1 - XFeS)

The coexistence of pyrrhotite and sulphur vapour
implies the following equilibrium

S (in pyrrhotite) = ;SZ (in vapour) 13)
=1 — — —_—
InK =31n fSz In (1 XFeS) 1n Yos
or
- [ =1
RT In K = — AG asy = ? RT In fS2
—RT1In (1 - XFeS) = RT In YDS (13a)

By substituting the solution model for RT 1n y,g at any
given T, log sz, and Xfeg, an equatlon in three
uréknowns in obtained, i.e. AG° (13), , and
G,. By assuming a linear temperaturé e(’isependence
for the three unknowns, each may be expressed by a
slope and intercept. Thus the relationship (13a) at
any given T, log fg,, and Xpeg becomes a linear equa-
tion in six unknowns. The author and A. Gunter picked
30 combinations of pyrrhotite composition and tempera-
ture within the experimental range of Toulmin and
Barton (1964). For each composition, log fg_ was
calculated according to their equation (8). ’f)reatlng'
T, log fg,. and Xpeg as given in each case, a linear
equation 1gxs1x unknown, i. e. slope and intercept of
AG®(13) Gse S and Go , was calculated. Solving for
the unknowns by the method of least-squares, the
following results were obtained:
o = -

G as - 57 966 + 34.824 T
—ex
G FeS
—ex

G8s

— 141 563 + 126.825 T

- 93 911 + 59.250 T
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It is now possible to calculate ap,g and at a'ny
FeS and, therefore, plot reactions (12) and (13) on a
diagram of log ng vs. Xpeg (Fig. 29, Table 7).

Now consider the reaction

FeS + 3 SZ= FeS (14)

2
1

fan TV
S2 FeS

The composition of pyrrhotite coexisting with pyrite is
known (Toulmin and Barton, 1964). The activity
coefficients of FeS and oS may be calculated at the
appropriate temperature and composition. According
to reaction (13) this determines f, Knowing both
apeg and fg,, it is possible to calculate AG°(14). In
the temperagure range 599 — 743°C, AG (14) may be
expressed by the following equation
AG(14) =-36 774 + 36.006 T

Reaction (14) is also plotted in Figure 29. The inter-
section of reaction (13) with reaction (12) and (14)
gives the composition of pyrrhotite coexisting with
iron and pyrite, respectively.

All reactions so far have been considered at 1 atm.
If the molar volumes of pyrrhotite (Fleet, 1968) are
plotted against Xpeg: an approximately linear relation-
ship is obtained (Fig. 30). This means that there is
no excess volume of mixing. Since

3 (—}ex
oP
it follows that the activity coefficients are independent
of pressure.
In order to solve for log fg, at any composition at

a pressure other than 1 atm, the following formula is
used

AG° =—RT InK — AVS (P-1)

The molar volume of the solids is given by Robie et al.
(1967) except that of OS in the pyrrhotite structure.
This is obtained by extrapolating the molar volumes
(Fleet, 1968) to X g =1(Xpeg = 0). The three reactions
discussed so far have been plotted at 2 kb (Fig. 29,
Table 8).

Following Holland (1959), it is convenient to plot
the stability of the iron oxides and sulphides on a

diagram of log fOZ vs. log fg, (Fig. 31). First, the
following reaction is requireg
Fe +20_=Fe O (15)

2 3 4
The standard free energy change of this reaction may
be obtained from Eugster and Wones (1962). The
pyrrhotite-magnetite boundary is given by the reaction

Fe

3 (16)

3 s,
O4+ZSZ—-3FeS +202
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This is obtained by combining reactions (12) and
(15). For reaction (16) there is the relationship

<f°2) 2<1Fff>_3

3/2
)
3

At any pyrrhotite composition, yYp.g and Yos are known.
From reaction (13) log fg_is obtained. Now the above
equation may be solved for log f02 (Table 8). In this
way, the pyrrhotite-magnetite boundary is plotted at
any given pressure and temperature. Thermochemical
data for reactions (12) to (16), used in the construction
of Fig. 31, are listed in Table 9.

AGO =

(16) =—RT1

- AVS (P-1)

0 T T T T T T T T
.20 -l
-40 ]
-6.0 .
f -8.0 .
g
-10.0 _
-120 .
-14.0 1 1 1 1 1 1 1 1
100 098 096 094 092 090 088 086 084 082
Composition of pyrrhotite XFes
Figure 29. Reactions in the system iron-sulphur.
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Table 9

Equilibria in the system Fe-S-0

Reaction AG® at 600°C |AV S22 (1999 AV
sbar s
(12) Fe + 3 S2 = FeS — 24 943 . 2655 531
(13) oS inpo =1} S2 in vapour — 27 559 —. 3455 —691
(14) FeS + 3 52 = FeS2 - 533 . 1372 274
(15) 3 Fe + 2 O2 = Fe304 -195 932 . 5556 1111
3 =
(16) Fe304 3 S2 = 3FeS + 202 121 103 . 2408 481
-10 T T T T T T T
T=600°C; P=2kb Beyond the triple point pyrrhotite-magnetite-
cor rite, there is the reaction
i Contours of Xgg Al;SizsOp | Py e
S = 17
e Fe,0, +38,=3 FeS, +20, an
a6k | The slope of this reaction is obtained from the reaction
- 02— — equation
2
f
-6} 1 < OZ)
- __OL_‘_A_A_'——'—. K(17) Tt 3
o~ — 06 J— 7, A Sz
© ash _'—0‘8_ o é// J
- - S /; / 1ogK=210gf0 —3log'fS
i 2 2
-20} magnetite i pyrite .
/4 3 log K
s log f == logf_, +
o} 2 S 2
2 2
22+ .
pyrrhotite The slope on the log fo vs. log fs diagram is 3/2.
2 2
“a b J
- The Oxidation and Sulphidation of Cordierite
iron
Froese (1973) derived the free energy change of
-26 1 1 1 1 1 1 1 .
-14 2 10 8 -6 4 2 0 2 the reaction
lOg fsz
Fe Al Si_ _.O_+ -1-0
Figure 31. Stability of iron sulphides and magnetite. 27259 6 2
w1 . 3 o
=3 Fe304 +A125105 +3 SlO2 (18)

constant BT
constant Gy

system
sum of all

j components )an

is fixed

Nk

Figure 32.

G

system

Nk

Equilibrium in an open system.

The designation AG® in that paper is, according to the
present notation, AG® +AVS (2000 — 1).

At 600°C
AGP +1999 (AV ) = — 12 530 = — RT In —c oo
s ( )/6( cor >
f a
(0] Fe cor

Writing the formula of cordierite with one iron atom and
assuming ideal solution

cor

a .
FeAlZS12‘ 5O9

_ Xcor
FeA12812. 509
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AlLO3-(Na,0 + Ca0)

PHy0 = Ptotal =2 kb
T=600°C

staurolite

almandine

{

<

andalusite

+ quartz

+ plagioclase of
composition Ansg

+magnetite

+ilmenite

cordierite

antho-
phyllite

FeO(Fe7CUmmn97// MgO

AT

tie lines to epidote |

pyrrhotite ——et—— pyrite ————=

Figure 33. Mineral assemblages from the Coronation mine.

Oxidation reactions may be plotted as a series of

contours in the magnetite stability field of a log fg, vs.

log fg, diagram (Froese, 1971). For cordierite this is
shown in Fig 31.

Some contours intersect the pyrite-magnetite
boundary and traverse the pyrite field with a slope
given by the reaction

FeAlzs12' 509 + S2

. 3 ..
= FeS2 +A125105 + 3 SlO2 + % 02 (19)
log K =} log fo2 - log fS2

or log f02 = 2 log fSZ +2 log K

34

These contours intersect the pyrite — pyrrhotite boundary
and pass into the pyrrhotite field. Other contours enter
into the pyrrhotite field by intersecting the magnetite-
pyrrhotite boundary. Within the pyrrhotite field, the
contours represent the reaction

FeA12812. 509 + 3 S2

o 3
> FeS +ALSIO +>8i0, +} 0, (20)

Because apqg is less than one, the slope will be some-
what steeper than one.

At 600°C and 2 kb, the triple point magnetite-
pyrite-pyrrhotite occurs at log fo2 =— 16.15. For this
oxygen fugacity, the corresponding composition of
cordierite (XFe AlSi O = 0. 36) may be obtained from

reaction (18). 22579



Graphical Representation of Sulphidation Reactions

In the graphical representation of mineral
assemblages it is convenient to regard systems with
fixed amounts of some components (j) and open with
respect to other components (k). The partial molar
free energy Gy of the k components is imposed on the
system by the boundary conditions (Thompson, 1970).
Consider a system with one k component

=Zajn.+a n

G'system J k 'k

where n refers to the number of moles.

If Gk is constant, Gsystem is a linear function of ny
(Fig. 32). For any given ng, Gsystem is a minimum
at equilibrium; therefore, T G; n; is a minimum. This
relationship can be generalized to a system containing
several k components.

Therefore, a system with fixed amounts of j
components is completely determined by the imposed
conditions of P, T and Gy of the k components. At
constant pressure and temperature, the molar free
energy of a gas species in an ideal gaseous solution is
determined by specifying its partial pressure. The
molar free energy of a solid constituent is determined
by its presence as a pure phase or as a component in
a phase of specified composition. Thus the presence
of quartz, plagioclase of fixed composition, magnetite,
and ilmenite determines the molar free energies of
510y, Nay0Al 03, Ca0-Aly04, FegO4-FeO and TiOg-
FeO. These may be regarded as k components and
the oxides not combined in the k components constitute
j components defined as follows

A =A1203 ~ (NaZO + Ca0)

F =FeO — (Fe203 + T102)
M = MgO

Mineral assemblages from the Coronation mine in
Saskatchewan (Froese, 1969a and b; Whitmore, 1969)
may be conveniently shown on a triangular diagram
using these components (Fig. 33). The tie lines
shown are based on the following distribution of iron
and magnesium:

cordierite-anthophyllite (Lal and Moorhouse, 1969)
cummingtonite-anthophyllite (Stout, 1971)
cummingtonite-hornblende (Stout, 1971)

On this diagram, the tie line andalusite-cordierite
coexisting with pyrite and pyrrhotite (in the presence
of quartz and magnetite) may be plotted. The composi-
tion of cordierite was calculated in the previous section
(XFeAl si o0 = 0. 36). Bachinski (1974) measured
2772.579
the composition of two cordierites from the Coronation
mine coexisting with magnetite, pyrite, pyrrhotite and
anthophyllite (X =0.19 and 0.22). The

FeAlZSIZ. 5O9

tie line with XFeAl si o = 0. 22 is shown in Fig. 33.
272.5°9

It is part of a boundary dividing the diagram into a Mg-

rich portion coexisting with pyrite and an Fe-rich

portion coexisting with pyrrhotite. This boundary

has been extended diagrammatically from anthophyllite

to hornblende.
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