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ABSTRACT 

The particularities of statistical methods in the field of 
Palaeomagnetism are discussed. A novel approach is used to derive expres­
sions giving estimates of the angular variance and of the angular standard 
deviation of a population on the basis of a sample of size N drawn randomly 
from the population. Tests of significance based on these definitions are des­
cribed. These tests turn out to be identical to those previously described by 
Watson for the particular case where the vectors have a fisherian distribu­
tion. A numerical example is worked out to illustrate the application of the 
tests. 



A RE-EXAMINATION OF CERTAIN STATISTICAL METHODS 
IN PALAEOMAGNETISM 

INTRODUCTION 

Statistics have long proven useful in many branches of modern exper­
imental science and many developments in modern technology owe their origin 
to this branch of mathematics. In the particular domain of Palaeomagnetism, 
statistics began to be used on a wide basis a little more than a decade ago, 
after the publication of the classic papers by Fisher (1953), Vincenz and 
Bruckshaw (1954), Watson (1 956 a, b) and Watson and Williams (1956). 
Unfortunately these papers are written in a language not readily understood 
by the non-statistician and too often their contentshave been misunderstood. 
An attempt to solve this problem was made in a paper by Watson and Irving 
(1957) but in the writer's opinion, much of the material in that paper is mis­
leading and needs to be reassessed. It seems appropriate to do this now that 
the output of palaeomagnetic data from various laboratories throughout the 
world is constantly increasing. The object of the present paper will be to 
derive in words understood by the geologist and the geophysicist, the prin­
ciples and methods which form the basis o f statistical analysis in 
Palaeomagnetism. 

PRESENT AT ION OF DAT A 

It would be beyond the scope of this paper to review in detail the tech­
niques and instrumentation currently used in Palaeomagnetic research. It 
will suffice to say that palaeomagnetic inferences are based essentially on 
measurements of the remanent magnetization of rock specimens oriented in 
situ at the time of their sampling. 

There are several factors which could contribute in the dispersion of 
either the intensities or directions of magnetization in a geological formation. 
Among them are the effects of lightning, the relative displacements of the 
rock in situ, the rock inhomogeneity, the secular variation of the earth's 
field at the time the rock was formed, etc. In a set of Palaeomagnetic direc­
tions obtained from N independently oriented samples of a formation, sam­
pling and measurement errors will generally contribute to an increase in the 
angular dispersion. 

To some extent it is possible to reduce the effects of some of the fac­
tors of dispersion or to allow for them but there will always remain an ele­
ment of uncertainty as to the precision of the data. On the other hand, the 
various factors will generally partly militate against each other and their 
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resultant effect will normally spread out according to the laws of hazard: 
this is the justification for using statistics in Palaeomagnetism. 

It should also be pointed out that remanent magnetizations in rocks 
are essentially vectorial quantities and, because of this, their study requires 
a double statistical analysis . The first deals with the dispersion of the 
moduli of vectors about their arithmetic mean whereas the second considers 
the angular dispersion of the same vectors about their mean direction. The 
first analysis does not call for any special approach other than those already 
available in standard textbooks on statistics. On the other hand, the statis -
ties of directions being somewhat limited to a small number of fields, they 
are naturally less widely discussed and, for this reason, this paper will deal 
mostly with this aspect of statistics in Palaeomagnetism. 

The complex nature of palaeomagnetic data implies naturally that 
measurements be carried out on a sufficient number of samples . The sam­
pling of a formation will be carried out, for example, at different strati­
graphic levels and at many different localities where careful note will be 
made of the present attitude of the formation . At each collecting site, two 
or more samples will be oriented separately in order to eliminate as much 
as possible the errors inherent in the collecting technique or those brought 
in by a number of possible local factors. The magnetization measurements 
will generally be done on two or more specimens cut from each sample in 
order to reduce the chances of gross error during measurements. The mean 
direction of magnetization of a sample will be taken as the mean direction of 
the palaeomagnetic vectors obtained for all its specimens, provided the latter 
are not diverging significantly. 

If the sampling is extended over several sites a large number of sam­
ple mean directions will result and these may be listed in the form of a table 
or represented graphically as dots on a stereographic or equal-area projec­
tion net . The few qualitative conclusions that may be drawn from such a 
body of data will generally be limited however and it will be necessary to 
synthesize the data in a form which will permit, for instance, a comparison 
between sets of data or the separation of the various factors of dispersion in 
a specific set . 

Independently of the hierarchical level of the sampling, a group of 
palaeomagnetic vectors may be represented by a small number of character­
istics or statistical parameters. Among the most useful in statistical anal­
ysis are the mean direction, the angular standard deviation and the angular 
variance . I shall first define these terms and derive the equat ions which 
will serve in estimating their value for a population on the basis of the 
information given by a representative sample of the population. 

A ssume a group of N vectors sampled at random from a population of 
which it is proposed to estimate the mean direction, the angular variance, 
and the angular standard deviation. Their mean direction is obtained after 
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having reduced to unity the modulus of all N vectors by calculating their 
resultant R. The direction cosines ( 1, m, n) of this resultant define the 
mean direction of the sample. 

The angular deviation between two vectors is defined simply by the 
angle between them. The mean angular deviation of the N vectors with res -
pect to the mean direction of the population may thus be defined as 

( 1 ) J = L J;, 
N 

where &i is the angular deviation of the ith vector from the population mean 
direction. 

The angular variance and the angular standard deviation, by analogy 
with their counterpart in standard statistics, 0-2 

and 0- , are defined by 

(2) 

(3) 

In practice, the values of the di are unknown as the mean direction 
of the population is itself unknown. However, Fisher (1953) has shown that 
the best estimate of this direction obtainable from a sample is defined by the 
direction cosines of the resultant (1, m, n). If we can.>i, /-(and 'I the direc­
tion cosines of the population mean, we may express the angle ~ between 
the mean direction of the sample and that of the population by 

(4) Cos 6- == R ,\ 'Z.f, +ft. Lmi +vJ:.-ni 
1< 
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where li, mi and ni are the direction cosines of the ith vector. The mini­
mum value of dtt implies that the two vectors be parallel, i. e. that 

(5) 

The estimation of the angular variance of the population is somewhat 
more complex as the angular dispersion of the population consists of (a) the 
within-sampl e dispersion and {b) the dispersion of its mean with respect to 
the population, i. e. dji_ . Assuming that 

J/ << 
4! 

for any vector in the sample, then 

(6) cosq -

and 

(7) Leos~ -

-

I - J/ 
2 

J- J/• 
z 

) r Pi: +-f-t L. -mi+ v271, 

Reos JTi. - R(1-Jf-) 

N - L(-!f-) 
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which, combined with (2) yields 

(8) 

A well-known equation (see e. g. Kemptone, 1951) in the theory of the 
Laplace-Gauss normal distribution establishes the relationship between the 
variance ~2. of the mean X of a sample and the variance <r2 of the popula­
tion represented by the sample. We may assume that the analogue of this 
equation, 

(9) 

N 

is, in vector statistics, 

( 10) 

which, if introduced into (8) yields 

( 11 ) 

"z J 2(N-~) 

(N-1) 

"'%. 
where the symbol d is used to indicate that the right-hand side of (11) is 
estimate of the population variance. In the same way, an estimate of the 
population angular standard deviation is given by 

an 
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( 12 ) 
) 

1/z 

( 
2(N - R) 

( N - 1) 

and an estimate of the angular standard deviation of the mean is given by 

(13) 

J 7?-1/t. 

The justificatio n of (10 ) comes from the fact that if a sample of N unit 
vectors having a resultant R is tightly grouped about its mean, the probabil ­
ity that the latter does not diverge appreciably from the population mean 
would likely be greater than if the sample is highly scattered. Because the 
standard deviation of the sample tends toward zero when the length of the 
resultant tends toward N and this, independently of N, it appears that the 
role played by Nin (9) is played by R in (10) . The same reasoning may be 
used to suggest that the right-hand side of (13 ) represents a more accurate 
estimate of the angular standard deviation of the mean than the expressions 
(2/kN)

1
/2a.nd 81 /'(kN) ¥.&which are currently used in the Palaeomagnetic liter­

ature. It is noted furthermore that a mathematical derivation of these last 
two expressions has never been g ive n. 

STATISTICAL INTERPRETATION 

The possibility of defining the distribution of a population of unit vec­
tors by an estimate of its mean direction and of its angular variance will only 
be useful if the population is not randomly oriented or isotropic. In any par­
ticular study, it is thus important to verify this condition as the results of 
the statistical analysis of an isotropic population would in general be mis -
leading. The criterion used to detect the isotropy of a population is based on 
the modulus of the resultant R of the sample supposedly drawn at random from 
the population. If this modulus is greater than a limit value which we will 
call R 0 , it will be concluded that the population has a probability P of being 
isotropic. 

It would be beyond the scope of this paper to review the methods sug­
gested by Rayleigh (1919), Vincenz and Bruckshaw (1960) and others for the 
calculation of R 0 • Watson (1956 b) has derived, on a rigid mathematical 
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basis, a method of calculating R 0 and Stephens (1964) has used this method 
to calculate R 0 for values of N from 4 to Z5 and this, at probability levels of 
• 01, . 02 and • 05. He has also given an equation to calculate approximate 
values of R 0 for any number N and at any probability level. 

Once it has been established that the population dealt with is not iso­
tropic, a comparison of various groups of vectors may be made from the 
point of view of their dispersions. To do this the concept of degrees of free­
dom which is fundamental in dealing with this problem will be introduced. 

Assuming a series of values such that 

( 14) 

~ 
L: 
l=J 

p• 
l 5 

where S has a fixed value, the left-hand member of ( 14) is said to have (k-1) 
degrees of freedom because, if any value is assigned to each of the first (k-1) 
~i's, that of the kth is specified by the equation. Similarly, if R is the 
length of the resultant of a set of N unit vectors, the quantity (N-R) has 
Z(N-1) degrees of freedom because any one set of (N-1) vectors among the N 
vectors (which normally have Z degrees of freedom each) may assume an 
infinite number of configurations and the end of their resultant always falls 
at a given point on the surface of a unit sphere centred at the extremity of R. 
On the other hand, the attitude of the Nth vector is fixed by the conditions of 
the problem and therefore has no degree of freedom. As the variance esti­
mate of a population represented by a set of N vectors is proportional to 
(N-R), it is therefore based on 2(N-l) degrees of freedom. 

A test known as Snedecor's F-ratio test is used in normal distribution 
statistics to compare the variances 5 1 z. and;_'- ( Sll.2.~S,,of two samples the 
variances of which are based on m1 and mz degrees of freedom. If the vari­
ances <:r,a, and ".Z2..of the two populations represented are not significantly 
distinct, then the ratio s,Ys;is given by 

E m, 'm~"o<. 

where F is a standard statistic whose value has been tabulated for various 
pairs (m1, mz) and at different pr~babilj.ty levels, D{ • Transposing this test 
into vector statistics gives, for O, 2 )- JZ.2., 
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( 15) 

"'.t "'z. 
if two samples having respectively variances J, and c{ and sizes N 1 and 
Nz representj>opulations having approximately the same variances, JL. If 
however 'J;/d/is greater than F {"(, /)~~(Na-I) .1 o< , the resujt will be 
interpreted in the sense that J,2 

:t, ls significantly larger than cf2 at the 
probability level ol. 

It will be pointed out here that Watson and Irving (1957) and later 
Irving (1964) proposed that the conditi,!ln for two populations to be co~sidered 
as having the same variance is that '512. be approximately equal to 011.. 

This could easily be interpreted as an oversimplifi~aticw, of the test because, 
as it may be verified in the F-distribution tables, J,Z-/Jt=Fal is only true 
when m1 and mz (or 2(N1 - 1) and 2(Nz - 1) both tend toward infinity. 

A second test based on variance estimate ratios may be used to deter­
mine whether or not the mean directions of a number of vectors are signifi­
cantly distinct. Assuming that a sample of N unit vectors may be broken 
down into B groups of Ni (i=l, 2, 3, •••• B) vectors each and of resultant Ri, 
the angular variance estimate of the ith group would be given by 

I ) 

2. 

Assuming that all groups have a common variance Jlcl , we may also write 

( 16) 

and 

(17) zL. (Ni-f2t) 

L (Ni- 1) 
Z(N-Z:/2) 

(N-J3) 
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This last statistic is essentially a joint estimate of the within-site angular 
variance. 

If we next assign the moduluJr:R/B)to each of the B group resultants 
we may assume that the modulus of ~he resultant R

1 
of these normalized vec­

tors is in practice almost equal to that of the group mean resultants R. On 
the basis of ( 11 ), the angular var iance of these vectors is thus given by 

and 
2( B 

( 18) 
z(BL(~-R) 

(B-1) 
:::2(L. 1( i - R.) 

(B-1) 

11Using the statistic F, as in the previous t es t, we may compare 
a"' ' remembering that the two var iance estimates are based on 

- 1) and 2(N - B) degrees of freedom respectively. Thus , 'if 

( 19 ) 

it may be concluded that the mean directions of the B groups are n ot sig­
nificantly distinct at the probability level d and vice-versa. In cases where 
equation ( 19) is verified, the N samples may be considered as d-:if-wn from 
the same po:e-ulation if, furthermore, the ratio of the maxium c:\;, over the 
minimum ~z fulfils equation (15), i.e. satisfies the first test. If only equa­
tion (19) is satisfied, the B groups are representing several populations cen­
tred about the same mean direction. 

It is interesting to study two limit cases which will allow us to establish 
the relationship between fa. , ~&. and ce. ln the first case, lt lS assumed 
that the resultants of all B groups are parallel, i. e. that r.R.1.= R. Under 
such conditions, 

"' 
(20) 

J =. 0 
b .> 

... 2. 

Jw- = 2 (N-R) 
( N -..];) 

""%. = J, (N-1) 
(N-E) 
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J."" :t. where / is the angular variance estimate of such a sample. Assuming 
another sample of the same size but for which :I:i?c=N, yields 

(21) ) 
J~= 2 (N-IV 

b (.8-1) 

As the combined dispersions of the two samples is given by 

(22) 

""Z .,z 
J, + d:z. 

then 

(23) 

or, expressed in terms of "precision indexes", 

(24) 
I 

f< 
= I ((B-1) 

(N-t) ib 

.J 

( N-B)' 
-k / w-

Equation (24) differs substantially from that proposed by Watson and Irving 
(1957) who write 

I 
(25) 
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The discrepancy lies primarily in the fact that neither k and kb have the 
same meaning in the two equations. Watson and Irving define kb in (25) by 

the relation 

(26) 
z (B -1) 

I 

z ( 
1 + N ) 

iur /l; 

where N refers to a weighed average of Ni and is given by 

(27 ) N - (~-1) ( 
N 

The compatibility of the last three equations with the above theory is 
not easily established but their validity and the physical meaning of k and kb 
in them has no bearing on the v alid i ty of th e test of signifi c ance described 
ear l ier. 

The derivation of the statistical parameters in this paper is based on 
no particular density distribution such as those proposed by Fisher (1953 ) or 
Roberts and Ur sell (1960). All that is required is that the individual vectors 
are drawn at random and that they satisfy the inequality 

(28 ) / - J~ 
L 

2 
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TABLE I - SAMPLE DATA 

SITE OBSERVATION DECLINATION INCLINATION 
(degrees) (degrees) 

A 12.6 46.8 

" 2 9.5 46.9 
II 3 6.6 39.0 
II 4 7.8 33,7 
II 5 7.7 40. 9 
II 6 1. 5 38.8 
B 2.0 34.0 
II 2 11. 5 60.3 
11 3 5.9 37.5 
II 4 2.6 35.9 
II 5 8.0 35.0 

TABLE II - STATISTICAL PARAMETERS 

,.. ~ 
MEAN MEAN j Ro 

SAMPLE DECLINATION INCLINATION N R (radians)2 (.01) 
(degrees) (degrees) 

Site A 7.47 41.06 6 5.97447 .02087 4.480 
Site B 5.52 40. 51 5 4. 92062 • 03969 4.023 
Sites A+ B 6.49 40.79 2 1.99981 • 00038 
11 vectors 6.59 40.82 11 10.89407 • 02118 6.252 
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which is true when J;. ~ radian and is very common with palaeomagnetic 
vectors. The valid application of the tests presupposes however that the 
individual vectors represent independent observations made at random on a 
formation supposedly polarized magnetically according to the same laws of 
hazard which govern the Gaussian distribution in scalar statistics. Since the 
individual directions of magnetization of the several specimens from a sample 
were not oriented independently, it is clear that it would be a misuse of the 
tests to consider these directions as independent observations in applying 
those tests. 

It will be mentioned that these tests were all derived by Watson 
(1956-a) on a rigid mathematical basis for the particular case where the 
vectors are distributed according to Fisher's (1953) density function. 

NUMERICAL EXAMPLE 

The manipulation of the above tests is very simple, as will be illus­
trated by their application to a sample of palaeomagnetic directions already 
published elsewhere (Larochelle and Wanless, 1966). Elev en independently 
oriented samples were collected at two widely separated sites and their direc­
tions of magnetization were measured after alternating field cleaning treat­
ment at 350 oersteds. From the directions of the individual vectors which 
are listed in Table I, we may calculate the mean direction at either site, the 
mean of the site mean directions and that of the 11 vectors. These directions 
are listed in Table II in terms of their declinations and inclinations with res­
pect to the astronomic North and tl);,ez.horizontal respectively. In the same 
table the corresponding values of J were calculated on the basis of equation 
(11) and the values of R 0 for N equal to 5, 6 and 11 at the probability level of 
• 01 were read off a table published by Stephens (1964). 

A comparison of R 0 and R on each line of Table II indicates clearly 
that the probability of the formation studied being magnetized isotropically is 
significantly less then. 01. 

"'L "'Z 

It may also be verified that the ratio J.8/ JA (3. 886) is slightly 
greaterthanF8 , lO, • 05 (3.0717)butsmallerthanF8 , lO, • 01 (5.0567). This 
indicates that there is approximately a 3 per cent chance that the palaeo­
magnetic vectors obtained from site A and site B respectively were drawn 
from populations having identical dispersions. The difference could possibly 
be explained by petrographic conditions at each site and probably not by sam­
pling errors. 

"'t ""z 
The two statistics J'11 and J"'" were computed with the aid of equations 

(17) and (18). Their ratio, 
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0./ 

is considerably smaller than F2, 18, • 05(3. 5546 ). This result confirms that 
there is practically no between-site dispersion in the sample considered i. e. 
that the two site mean directions are not significantly distinct. It ma,.Y, also 
be verified that equation (23) is satisfied by the calculated values of o ~ £z. 

11 0 
and o . ,.,.. 

Because the two mean site directions are not significantly distinct, it 
appears that the formation studied (a diabase dyke) acquired its magnetization 
at the two sites within a relatively short period. The question of which of the 
mean of the two site mean directions or the mean of the 11 palaeomagnetic 
vectors should be used in estimating a pole position does not arise in the 
present case. The pole position estimated from either one of these mean 
directions and on the basis of an axially centred dipole earth 1 s field is cer­
tainly a virtual geomagnetic pole and the information available from the sam­
ple cannot be used to study the secular variation at the time the rock cooled 
below its Curie point. 

The standard angular error of the mean of the eleven observations 
which is g iven by equation ( 13) may be calculated from the data listed in 
Table II. Expressed in terms of degrees, its calculated value is 2. 5 °. 
Twice this angle represents the half-angle of the cone axed on the sample 
mean and within which the formation mean direction of magnetization lies 
with a probability of • 98. This corresponds very closely as expected, with 
the radius o(9sof the circle of confidence (4. 7°), as defined by Fisher (1953) 
when his density distribution is assumed. 
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