Province of Manitoba

Mineral Resources Division

LEGEND

PRECAMBRIAN

in part gneissic; undivided granitic rocks; may contain areas of older rocks; in part overlain by rocks of

Complex of granitized sedimentary gneiss and schist; injection gneiss, migmatite. Includes granitized parts of the Kisseynew complex, gneisses derived Cross Lake, and Pre-Assean sediments. Includes some

Sedimentary gneiss and schist containing subordinate gneisses and similar gneisses within the Churchill

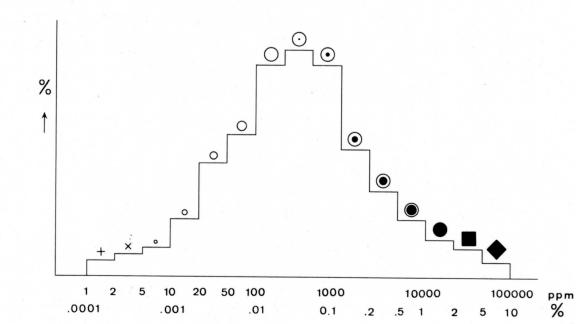
Greywacke, sub-greywacke, argillite, slate, quartzite, tuff, iron-formation; in part altered to schist and of the Rice Lake group, Hayes River series and

Geological contact

Geology derived from the 1:1,267,200 Geological Map of Manitoba

Geological cartography by the Geological Survey of Canada

the user would be welcomed by the Geological Survey of Canada


maps published at the same scale by the Army Survey

Geochemical Symbol and Data Presentation

ically presented by using one of 15 symbols, if a sample was

tive probability plot and a histogram. It should be noted that if the survey covers several map sheets the distribution displays are for the total survey data, not the single sheet being studied. The data intervals used for the histogram are semi-logarithmic, e.g. 1,2,5,10,20,50,100 etc., due to the apparent log-normal characteristic of most trace element distributions. The symbols cover 5 decades, e.g. 1 ppm to 10%, using the above data intervals. As this map is part of a Canada wide series these arbitrary intervals have been chosen to preserve some long-term continuity, however, based on experience at the Geological Survey, we believe them to be an appropriate compromise.

distribution, as defined by the 50% (0.5) point on the interval of the histogram. The symbols (+) and (x) are respectively used to display concentrations below and at the analytical detection limit. To illustrate the use of distribution does not require all 15 symbols some are

Granite, granodiorite, quartz diorite; largely massive,

map-unit 3

from Sickle, Wasekwan, Rice Lake, Hayes River, Oxford, metamorphosed and granitized volcanic rocks

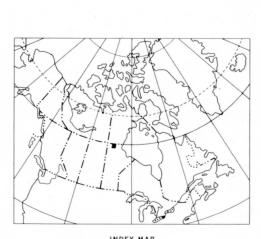
granitic material. Includes non-granitized Kisseynew geologic province

gneiss. Includes Missi series and sedimentary rocks Wasekwan series, subordinate volcanic rocks

Any revisions or additional geological information known to

Base-map assembled by the Geological Cartography Unit from Establishment, R.C.E. in 1963

Copies of the topographical maps covering this map-area may be obtained from the Canada Map Office


Mean magnetic declination 1976, 12⁰48.0' East, decreasing 4.1' annually Readings vary from 11⁰02.4' in the SE corner to 14⁰40.2' in the NW corner of the map-area

Elevations in feet above mean sea-level

The concentration of an element at a sample site is graphcollected but no relevant data is available a dot is plotted. The symbols are divided into 2 groups of 7 respectively, and one additional symbol. The first 7 increase in size from a small cross to a large open circle. The eighth symbol, the additional one, consists of the large open circle with a dot at its centre. In the last 7 symbols the dot becomes progressively larger until a solid black circle is reached, a circumscribed square in solid black is used for the last symbols. Thus the overall impression is of increasing size and blackness as samples display from low to high elemental

The data distributions are depicted using both a cumula-

For any particular element the eighth, central, symbol is ascribed to the histogram mode. The median of the data cumulative probability plot, usually falls within the mode the symbols an example is given below. If the actual data selectively dropped so that maximum overall graphic impact is maintained.

SILVER IN LAKE SEDIMENTS CANADA - MANITOBA SUBSIDIARY AGREEMENT ON MINERAL EXPLORATION AND DEVELOPMENT

NATIONAL GEOCHEMICAL RECONNAISSANCE Scale 1:250,000 Universal Transverse Mercator Projection

© Crown Copyrights reserved

0.F. 322 0.F. 323 0.F. 321 0.F. 320 This map has been reprinted from a Reproduction par numérisation d'une NATIONAL TOPOGRAPHIC SYSTEM REFERENCE

.9990 .9900 .9500 .8000 µ .5000 ∃ .2000 .0500 .0100 .0010 .0001 1.0 AG (PPM) IN LAKE SEDIMENTS N = 367020 1.0 AG (PPM) IN LAKE SEDIMENTS OPEN FILE 323

E.H.W. Hornbrook, R.G. Garrett, J.J. Lynch Geological Survey of Canada

Geochemistry and Federal-Provincial coordination by E.H.W. Hornbrook Analytical chemistry by J.J. Lynch Data monitoring and compilation by R.G. Garrett and Cartography and base compilation by Geological Cartography Section

Manitoba, Mineral Resources Division

Federal-Provincial coordination by J.F. Stephenson Geological Base Map, Geological Map of Manitoba -

Contractors

Sample collection by Trigg, Woollett & Associates Ltd. Chemical analyses by Chemex Labs Ltd.

This map forms one of a series of 14 sheets released under Geological Survey of Canada Open File 323. The open file consists of data for 12 elements, percent loss on ignition and sample site location.

The data is also available in digital form from the Computer Science Centre of the Department of Energy, Mines and Resources. For further information please contact:

The Director, Computer Science Centre, Department of Energy, Mines and Resources, Ottawa, Ontario KIA OE4.

> OPEN FILE 323 SILVER NATIONAL GEOCHEMICAL RECONNAISSANCE MANITOBA 1975