DEPARTMENT OF ENERGY, MINES AND RESOURCES
 GEOLOGICAL SURVEY OF CANADA

ISAMAP USER'S MANUAL

An Interpolation and Contouring Package for Continuous Phenomena

J. R. Bélanger
Urban Geology Unit
Terrain Sciences Division Geological Survey of Canada 601 Booth Street
Ottawa K1A 0E8

OPEN FILE 295

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.
Page
Introduction 1
Chapter I
General description 2
Interpolation algorithm 4
Selecting the control points 5
Influence of distance 5
Shadow zones 5
Contour line generation 8
Legend 8
Chapter II
Specification cards for Phase I: input-sort 10
Format card 10
Sequence card 11
Data cards 12
Specification cards for Phase II: interpolation 13
Map borders 13
Area containing the control points 15
Increments for grid points 16
Search area 17
Number of data points 18
Specification cards for Phase III: contour and legend 19
Contour interval 19
Regular interval 19
Contour lines specified 19
Labelled contours 20
Regular interval 20
Labels specified 20
Scale of output map 21
Type of base map 22
Blank base map 22
Printed base map 22
Posting of data points 23
Blank area 24
Instructions for plotter operator 25
Specifications for the legend 26
Title of the map 26
Subtitle 27
Legend 28
Scale 29
Border and co-ordinates identification 30
User's name 31
User's subroutine 31
Chapter III
Card deck layout 32
Central memory and C.P.U. time 33
Grid point file description 34
Appendix A
Example of maps 36

ISAMAP USER'S MANUAL

INTRODUCTION

The software package ISAMAP (Isarithmic Mapping) has been developed to draw contour maps from scattered data points (control points) for use as basic documents in urban geological studies. The main objectives in designing the package were to produce accurate representations of continuous phenomena with reasonable cartographic quality and to provide an efficient yet flexible system.

In contrast to available general purpose contouring programs, ISAMAP uses strictly an interpolation algorithm (vs. extrapolation beyond known values) to generate the contour lines, and offers only a limited number of basic display options. The package is of modular design, however, and thus allows any part of it to be modified or replaced by a user with minimum programing experience. The modular approach permits flexibility in adapting the package to individual needs and also realizes savings in computer time and memory.

This manual includes a general description of the system, a short discussion of the interpolation algorithm, and a user's guide. A listing of the programs can be obtained from the Urban Geology unit of the Geological Survey of Canada.

CHAPTER I

GENERAL DESCRIPTION
The package is divided into three independent phases or modules: input, interpolation, and cartography (Fig. 1).

The input phase reads the $X-Y$ co-ordinates and Z values of the data points and arranges them on the basis of ascending values of the X co-ordinates. The input data can be located on computer punched cards, magnetic tapes, discs, or any other computer devices, and can be in any format. Once the information is read and sorted, the program stores the pertinent values on a temporary on-line file for further processing. The data points are sorted to optimize the search for points surrounding each interpolated point (grid point), and to help the grouping of overlying data points.

The second phase, interpolation program, generates a regular grid of interpolated values from the irregularly spaced data points, according to the user's specifications. Figure 2 shows the function of the interpolation program.

The third phase, cartography, generates the contour lines and draws the legend.

Any phase can be replaced by a user program to perform different types of processing (i.e. different interpolation algorithm), and any subroutine, which represents one of several steps in each phase, can be modified or replaced by a user's subroutine.

The package operates on a Control Data CYBER 74 computer; an EAI 430 Data Plotter is used to draw the maps. All programs are written in Fortran IV extended and the sorting of the input data is done through the Sort-Merge facility.

ISAMAP PACKAGE STRUCTURE

FIGURE I

INTERPOLATION ALGORITHM

The algorithm used to generate the grid values from the scattered data points is strictly an interpolation one. That is, no grid point is assigned a value beyond the surrounding maximum Z values. The reason for using an interpolation algorithm rather than one that generates values based on the slope of the surrounding plane, is to produce documents with a relatively "conservative" aspect. This characteristic is important in Urban Geology in order to minimize the risks of over-emphasizing phenomena of importance in land use planning.

Selecting the Control Points

Each grid point is evaluated from the surrounding control points. The search area either can be specified by the user or can be assigned automatically by the program. A minimum and maximum limit can be placed on the number of data points to be considered.

The search for control points is done in the X and Y directions independently (rectangular search), rather than a circular search, to permit the user to orient the search.

When the area is not specified, the program calculates a standard search area, based on the density of the control points, in which an average number (specified or calculated) of data points should be found. If less than the specified number of points is found the area is enlarged; if an excess number of data points falls inside the search area only those closest to the grid point are used. The program allows a maximum of twenty control points and a minimum of one to be used for the interpolation.

Influence of Distance

The second factor taken into consideration in interpolation is distance. It is obvious that the points located farther from the grid point should have less influence on it than data points closer. Although the most unbiased approach is to give a weight factor inversely proportional to the distance, an inverse squared distance is used. This overcomes the problem that occurs when a simple inverse distance is used of having sharp variations near control points.

Shadow Zones

To overcome the problems caused by clustered control points located in the vicinity of the values to be interpolated, a shadow zone is created behind each data point from the grid point (Fig. 3). The influence of a

INTERPOLATION TO OBTAIN A REGULAR GRID

FIGURE 2

SHADOW ZONE CREATED BY CLOSER POINTS

FIGURE 3
data point that falls in the shadow zone of another data point is reduced as shown in Figure 4. The positional factor is defined by the cosine of angle P_{0}, P_{1}, P_{2} (Fig. 4). A screening effect is essential in the present algorithm since no slope factor is taken into consideration to overcome the shortcoming of a straight inverse distance interpolation (Fig. 5).

INCREMENTAL EFFECT OF THE SHADOW ZONE

FIGURE 4

CONTOUR LINE GENERATION

The contouring program reads the interpolated grid points and draws the contour lines and the legend.

The gridded surface first is subdivided into triangles by joining the four corners of the rectangles formed by the grid points (Fig. 6). The centre point formed by the intersection of the diagonals is interpolated as the average of the four corner points.

The second step is to find the beginning of the contour line by linear interpolation between grid points, first along the edges of the map and then throughout the entire area. Once a value equal to the contour line is found, the contour line is "followed" by searching in adjoining triangles. When the line crosses a boundary or reaches its point of origin to form a closed contour line, the process is repeated to find the next contour line. When a sufficient number of points along the line are found, or when the contour ends, the line is drawn and annotated as specified by the user.

LEGEND
The user has a number of options for the drawing of a legend on the map. The standard options are described in the input cards for the contouring phase. A typical use of those options is given in Chapter III. The user also can supply his own subroutine to draw any type of legend not offered as a standard option. The parameters required for the subroutine are given in Chapter III.

FIGURE 6

CHAPTER II

SPECIFICATION CARDS FOR PHASE I: INPUT-SORT
If the user supplies his own grid points, the specification cards for Phase I should be omitted.

The format of the specification cards is divided into two fields: identification and specification. The identification parameter helps the user in placing the cards in the proper sequence, prevents the entry of improper parameters, facilitates the reference to existing decks. The sequence of the cards should conform to the sequence number appearing in column 1 of each card.

Format card

Purpose: To describe the format of the file containing the data points.
Identification: 1-FORMAT column 1-8

Format: The format specification consists of a FORTRAN type description enclosed in parentheses, without the word FORMAT or the statement label. The format description starts in column 11.

Comments:

- The X-Y-Z variables should be specified as real values on the format card but the input data can be integer variables right justified.
- If the data input cards contain information other than the $X-Y-Z$ parameters, the information should be specified as blank fields (i.e. X-format).
- If the information is unformatted, i.e. binary, the word "UNFORMATTED" should be written starting in column 1.

Sequence Card

Purpose: To specify the order of the $X-Y-Z$ values on the data cards.Identification: 2-SEQUENCE column 1-10Format: Column Information Format20 Position of X value I1
21 Position of Y value I1
22
Position of Z value I1

Data Cards

Purpose: To supply the $X-Y-Z$ values of the data points.
Identification: No identification
Format: Specified by the user on the FORMAT card.
Comments: If the data points are not supplied on punched cards, the program automatically will search the file called TAPE 5. An ATTACH card describing the input file should be included when the data points are stored on TAPE 5 (see Ch. III, Card Deck Layout).

SPECIFICATION CARDS FOR PHASE II: INTERPOLATION
Every card must be included, even if the user wishes to make use of default values.

Figure 7 identifies the parameters on the map.

	Map Borders		
Purpose:	To define the limits of the contouring area.		
Identification:	1 -BORDERS column 1-9		
Format:	Column	Information	Format
	$11-20$	X-minimum (east border)	F10.0
	$21-30$	X-maximum (west border)	F10.0
	$31-40$	Y-minimum (south border)	F10.0
	$41-50$	Y-maximum (north border)	F10.0
	Al1 values are given in user's units.		

Area Containing the Control Points

Purpose:	To specify the limits of the area containing the control points for the interpolation.
Identification:	2-AREA column 1-6
Format:	Column Information Format
	11-20 X-minimum (east) F10.0
	21-30 X-maximum (west) F10.0
	31-40 Y-minimum (south) F10.0
	41-50 F-maximum (north) F10.0
Comments:	- The values are in user's units.
	- The area containing the control points can be larger or
	smaller than the contouring area.
	- It is preferable to have the area containing data points
	larger than the contouring area to improve the interpolation
	at the map edges.

Increments for Grid Points
Purpose: To specify the spacing between the interpolated points (grid points).

Identification: 3-GRID column 1-6
Format:

Column	Information	Format
$11-20$	Spacing in X direction	F10.0
$21-30$	Spacing in Y direction	F10.0
$31-40$	Minimum distance	F10.0

- If the user does not specify the spacing between the grid points, the program calculates a default value based on the density of the control points (approximately four times the density of data points).
- When the cumulated increments do not fit the map area exactly, the spacing of the grid points is modified. - The distance specified in column 31-40 is the minimum distance accepted between a data point and a grid point. If the distance is less than the one specified, the two points are considered as overlying and the grid point will be given the value of the control point. When the distance is not specified the program assigns a value of approximately one eighth the grid distance.

Search Area

Purpose: To specify the initial search area around each grid point in order to find sufficient data points for the interpolation. The user also can specify the minimum distance accepted between data points.

Identification: 4-SEARCH column 1-8

Format:

Column
11-20
21-30
31-40

50

Information
Search distance in X direction F10.0
Search distance in Y direction F10.0
Minimum distance accepted between data points

F10.0
If set to " 1 " the grouped data points are listed

I1

- The search distance is the distance on each side of the grid point. The search area therefore is twice the dimensions specified by the user.
- If the minimum distance between data points is not specified, the program uses approximately one eighth of the distance between grid points.
- When two data points are closer than the accepted minimum distance, the X, Y, and Z values are averaged to form only one data point.

Number of Data Points

Purpose:	To specify the minumum and maximum number of data points used to interpolate the grid points.
Identification:	5-NUMBER column 1-8
Format:	Column Information Format
	19-20 Minimum number I2
	29-30 Maximum number 12
Comments:	- The default values generated by the program are a minimum of 4 and a maximum of 9 . - Minimum and maximum values permitted are 2 and 20.

SPECIFICATION CARDS FOR PHASE III: CONTOUR AND LEGEND

Contour Interval

Purpose:	To specify the value of the contour lines. The user can specify each contour value or have the contour lines drawn at regular intervals.
Identification:	1-INTERVAL column 1-10
Regular Interval	

Format:
Column
21-27
31-35
41-50
61-70

- If the user does not specify the minimum or maximum value of the contour line, the program will use the minimum and maximum supplied by the grid points.
- The default value for the contour interval is $1 / 13$ of the total range, i.e. (max-min)t 13.

Contour lines specified

Format:	Information	Format
$21-30$	SPECIFIED	A10
$35-56$	Number of contours	I2
	Following cards, maximum or 40	I10

Scale of Output Map
Purpose: To specify the scale of the output map and the units of measurement used.

Identification: 3-SCALE column 1-7
Format:
Column
Information
Format

20-30
40...

60-70

Scale of map
F11.0
Units of measurement (input)
INCHES or A6

CENTIMETRE or Al0
UTM (metres) A3

Scaling factor, if units of measurement are other than above, to change the input units into plot inches

F11. 0

Comments:

- All the input units will be divided by the scaling factor specified in column 60-70.
- If, for example, the input units are in feet, the scaling factor would be 12 and the units would be changed to inches.

Type of Base Map

Purpose: To specify the type of base map that will be used to produce the map. The base can be blank or the user can provide his own base on which a legend is already printed (eg. N.T.S. base map). If the user wishes to use a printed base, two reference points (in user's units) are required to centre the map on the plotter table.

Identification: 4-BASE MAP column 1-10
Blank Base Map
Format:
Column

20-24
BLANK A5

Printed Base Map

Format:	Column	Information	Format
$20-26$	PRINTED	A7	
	$31-40$	X co-ordinate of first point	F10.0
$41-50$	Y co-ordinate of first point	F10.0	
	$51-60$	X co-ordinate of second point	F10.0
	$61-70$	Y co-ordinate of second point	F10.0

Posting of Data Points
Purpose: To print data points on the map.
Identification: 5-POST column 1-6
Format: Column Information
15 0 = do not post
$1=$ post $a+$ mark on the location2 = post the value only, the firstdigit will be centred on theexact locationII
3 = post $a+$ on the location andthe value below

Blank Area

Purpose: To delete the contour lines from certain areas of the map.
Identification: 6-BLANK column 1-7
Format:
Column
Information
Format
20-22 Number of vertices in the polygon I2 forming the area

Following cards, minimum 3 and maximum 100
11-20 X co-ordinate F10.0
21-30 Y co-ordinate F10.0
Comments: The co-ordinates of the blank area can be specified in a clockwise or counter-clockwise order.

Instructions for Plotter Operator		
Purpose:	To specify instructions to the plotter operator to	
	produce the map. These instructions will be printed	
	in the lower margin of the map at the beginning of the	
	plot.	
Identification:	7-INSTRUCT column 1-10	
Format:	Column Information	Format
	Number of cards containing the instructions	I1
	Following cards, maximum of 3 cards	
	1-80 Instructions for the operator	8A10

Specifications for the Legend

If the user wishes to have any legend other than the standard ones, a user's subroutine can be included between the information cards for Phase I and Phase II. The specifications for the user's subroutine are given in the section on User's Subroutine.

Purpose: The user can specify any of the following options to annotate the map. Some options can be repeated.

Identification: 8-LEGEND column 1-8
Title of the map
Purpose: \quad To have a title written in the section reserved for the 1 egend.

Format: Column Information Format
1-7 1-TITLE A7
11-80 Text to be scribed 7A10 on the map

Comments: - A maximum of 3 titles can be specified.

- A new title card should be used for each title.
- The text has to be left justified on the card to be centred on the map.

Subtitle

Legend

Purpose: To have a legend printed on the map.
Format:

Column	Information	Format
$1-8$	3-LEGEND	A8
$11-80$	Text for 1egend	7A10

Comments: - A maximum of 6 legend cards can be included.

- A new legend card should be used for each legend.
- The text should be left justified on the card to be centred on the map.

Scale
Purpose: To have the scale of the output map written or drawn as a legend.

Format:
Column
1-7
11-15

11-15

11-14

Information
4-SCALE
DRAWN - the scale will be drawn

RATIO = the scale will be written as a fraction A5

BOTH = the scale will be written and drawn A4

- If the scale of the map is larger than $1: 10,000$ the scale will be written only.
- The scale appearing in the legend is the one specified on the card 3-SCALE, column 20-30.

Border and co-ordinates identification

Purpose: To have an outside border drawn around the entire map, to have the co-ordinates identified in the margins and to have a grid drawn on the map, corresponding to the co-ordinates.

Format:

Column
1-8
11-20

30

Information
5-BORDER
Interval at which the co-ordinates will be identified.

I 10
Should be set to 1 if a grid is to be drawn on the map. A1

User's name
Purpose: To have the user's name printed in the lower right corner of the area used for the legend.

Format: Column Information Format
1-4 6-ID A4
11-30 User's name 2A10

User's subroutine
Purpose: To indicate that the user has supplied his own subroutine to write or draw a legend.

Format: Column Information Format
1-12 7-SUBROUTINE A10, A2
Comments: - The subroutine is inserted between the specifications for Phase II and Phase III.

Name of subroutine: ANOT
The user can communicate with the calling program through labelled common blocks.

COMMON/EGRAPH/ XPAR (20), YPAR (20)
This common block refers to the plotter subroutines. Refer to the EAI 430/100 Data Plotter Manual.

COMMON/SPECF/BORDER (4), DUMMY (4), SCALE
BORDER 1 to 4 refer to the borders of the map, see l-BORDERS card.

DUMMY: dummy arguments, they should not be changed.
SCALE: value by which all user's units must be divided to be changed to the plotter's units.

CHAPTER III

CARD DECK LAYOUT

Comments

ACCOUNT,	
REQUEST, GSCPLOT, S, SV. YOUR NAME	Request for a plotter tape
ATTACH, TAPE5,	Used only if the data points are on a file other than punched cards
ATTACH, TAPE6,	Used only if the user supplies his own grid points
ATTACH, CONTROL, ISMAP, ID=JRB.	
XQT.	
CATALOG, TAPE8,	Used only if the interpolated grid points are to be stored
${ }^{7} 89$	
Specification cards for Phase I	Omitted if the user supplies his own grid points
${ }^{7} 89$	Must be included
Specification cards for Phase II	Every card must be included
${ }^{7} 8_{9}$	
User's subroutine	Optional
${ }^{7} 8_{9}$	Must be included
Specification cards for Phase III	Every card must be included, except for legend
${ }^{6}{ }_{7} 8_{9}$	

CENTRAL MEMORY AND C.P.U. TIME

The figures quoted below show the central memory requirements and C.P.U. times in each phase of the package for several different maps. These amounts obviously vary depending on the number of data points, distribution of data points, size of the grid used, number of contours required, use of the legend, etc. Thus Table 1 is intended to provide a basis from which initial estimates may be made.

Table 1

Phase	Control Points	Interpolated Points	Contour Lines	C.P.*	C.M.
Input-sort and					
Interpolation	4	4		. 098	46 K
	221	1156		6.69	47 K
	221	3364		17.68	47 K
	1260	4761		30.20	55 K
Contouring		4	1	1.09	70 K
		1156	6	2.32	
		1156	11	3.42	76 K
		3364	11	5.32	110 K
		4761	13	13.06	120 K
* Execution	add 9 s	for total t			

GRID POINT FILE DESCRIPTION

The ISAMAP package permits the use of the contour phase only if the user supplies his own interpolated points. When using the contour program only, the following points should be observed:

- The file containing the information should be: TAPE6
- The information is unformatted
- The first record on the file supplies the following information:
- left border (real number)
- right border (real number)
- south border (real number)
- north border (real number)
- number of grid points in X direction (integer number)
- number of grid points in Y direction (integer number)
- increment for grid points in X direction (real number)
- increment for grid points in Y direction (real number)
- Z value minimum (real value)
- Z value maximum (real value)
- number of data points (integer number)
- The second set of records contains the data points, if any, to be put on the map. Each record contains the X, Y, Z values in the user's unit.
- The third set of records contains the grid values. Each value forms one record (unformatted). The first grid point should correspond to the lower left corner of the map and should progress row by row up to the upper right corner.

APPENDIX

EXAMPLE OF MAPS

```
D3324,CM110000,P2,T100.MT1.
ACCOUNT,12345,2. ISAMAP RUN-1
REQUEST,GSCPLOT,S. J.R. BELANGER
ATTACH,CONTROL,ISAMAP,ID=JRB.
XQT.
EOF *
1-FORMAT (11X,F2.0,2X,F2.0.8X,F5.0)
2-SEQUENCE 123
\begin{tabular}{rrrrrrrrr}
26 & 070872 & 1 & 1 & 689 & 790 & 300 & 9899 & 9599 \\
26 & 070872 & 1 & 3 & 689 & 927 & 370 & 9762 & 9392 \\
26 & 070872 & 1 & 5 & 689 & 807 & 450 & 9882 & 9432 \\
26 & 070872 & 1 & 7 & 689 & 930 & 500 & 9759 & 9259 \\
26 & 070872 & 1 & 9 & 689 & 963 & 430 & 9726 & 9296 \\
26 & 070872 & 1 & 11 & 689 & 996 & 480 & 9693 & 9213
\end{tabular}
EOF *
1-BORDERS 1. 21. 1. 21.
2-AREA 1. 21.
3-GRID .3
    .3 .3
4-SEARCH
5-NUMBER
EOF
EOF *
I=INTERVAL REGULAR 100 100
2-LABEL
        REGULAR
3-SCALE 1. INCHES
4-BASE MAP BLANK
5-POST
3
6-BLANK
7-INSTRUCTIONS 2
PEN SIZE, PEN-1 = 2, PEN-2 = 1, PEN-3 = 00.
INK = BLACK. RIBBON = BLACK.
8-LEGEND
1-TITLE URBAN GEOLOGY - GEOLOGIE URBAINE
2-SUBTITLEISAMAP TEST RUN
4-SCALE RATIO
5-BORDER 1
6-ID J.R. BELANGER
EOF *
EOF .
```



```
D3324,CM110000,P2,T100,MT1.
ACCOUNT,12345:2. ISAMAP TEST RUN
HEQUEST,GSCPLOT:S. J.R. BELANGER
ATTACH,TAPE5,OTDAT, ID=JRB.
ATTACH,CONTROL,ISAMAP,ID=JRB.
XQT.
EOF .
I-FORMAT UNFORMATTED
2-SEQUENCE 123
EOF
1-BORDERS 441000. 451000. 5018000. 5028000.
2-AREA 440500. 451500. 5017500. 5028500.
3-GRID
4-SEARCH 20. 1
5-NUMBER 5 9
EOF *
EOF *
I-INTERVAL REGULAR 10 10
2-LABEL
REGULAR
25000. UTM
3-SCALE
4mBASE MAP BLANK
5mPOST
6-BLANK
7-INSTRUCTIONS
2
RIBBON BLACK, INK BLACK
PEN SIZE= POS. 1= 2, POS.2= 0, POS.3* 00
8-LEGEND
I-TITLE URBAN GEOLOGY - OTTAWA-HULL - GEOLOGIE URBAINE
2-SURTITLEBEDROCK TOPOGRAPHY - TOPOGRAPHIE DE LE ROCHE EN PLACE
3-LEGEND CONTOUR INTERVAL ... 10 FT/PI ... INTERVAL DES CONTOURS
3-LEGEND ISAMAP TEST RUN
4-SCALE BOTH
5-BORDER 1000
6-ID J.R. BELANGER
EOF *
EOF *
```

NOTE. EOF MEANS END OF FILE.

