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Tracking forest attributes across Canada between 2001 and
2011 using a k nearest neighbors mapping approach applied to
MODIS imagery
A. Beaudoin, P.Y. Bernier, P. Villemaire, L. Guindon, and X. Jing Guo

Abstract: Mapping Canada’s forests is a significant challenge given their extent and the interprovincial differences in forest
inventories. We created new sets of nationally consistent forest attribute maps for the years 2001 and 2011 by building upon
previously published work with the objective to determine if sequential maps of forest attributes could be used to quantify
changes over time. We first refined our previously published methodology of using the k nearest neighbors (kNN) prediction
method and MODIS spectral reflectance data as predictive variables. The maps were generated using an improved reference
dataset and a new analytical kNN workflow. We then evaluated 2001 to 2011 changes in two key attributes, aboveground biomass
and percent tree cover, on pixels identified from published sources as having undergone fire, harvest, or postdisturbance
regrowth during that period. For all three change types, average changes in both aboveground biomass and percent tree cover
between 2001 and 2011 matched expectations relative to the dynamics of Canadian forests. Our results support the use of
sequential national maps of forest attributes for evaluating regionally aggregated disturbance-related changes in forest proper-
ties. The new forest attribute maps are available from Beaudoin et al. (2017; doi:10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990)
at http://ouvert.canada.ca/data/fr/dataset/ec9e2659-1c29-4ddb-87a2-6aced147a990.

Key words: forest inventory, forest monitoring, biomass change, nonparametric estimation, disturbances.

Résumé : La cartographie des forêts canadiennes constitue un défi important compte tenu de leur étendue et des différences
entre les inventaires forestiers des provinces. Nous avons créé de nouveaux jeux de cartes des attributs forestiers, cohérentes à
l’échelle nationale, pour les années 2001 et 2011 en nous appuyant sur des travaux déjà publiés dans le but de déterminer si des
cartes séquentielles des attributs forestiers pourraient être utilisées pour quantifier les changements au fil du temps. Nous avons
d’abord affiné notre méthodologie publiée précédemment qui utilise la méthode de prédiction des k plus proches voisins (kNN)
et les données de réflectance spectrale MODIS comme variables prédictives. Les cartes ont été générées en utilisant un ensemble
de données de référence amélioré et un nouveau processus analytique de kNN. Nous avons ensuite évalué les changements de
2001 à 2011 pour deux attributs clés, la biomasse aérienne et le pourcentage de couvert arborescent, sur des pixels qui selon des
sources publiées avaient subi durant cette période un feu ou une récolte, ou encore s’étaient régénérés après une perturbation.
Pour les trois types de changement, les changements moyens de la biomasse aérienne et du pourcentage de couvert arborescent
entre 2001 et 2011 correspondaient aux attentes par rapport à la dynamique des forêts canadiennes. Nos résultats appuient
l’utilisation de cartes nationales séquentielles des attributs forestiers pour l’évaluation régionale des changements des proprié-
tés de la forêt liés aux perturbations. Les nouvelles cartes d’attributs forestiers sont disponibles auprès de Beaudoin et al. (2017;
doi : 10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990) à l’adresse : http://ouvert.canada.ca/data/fr/dataset/ec9e2659-1c29-4ddb-
87a2-6aced147a990. [Traduit par la Rédaction]

Mots-clés : inventaire forestier, surveillance des forêts, changement de la biomasse, estimation non paramétrique, perturbations.

Introduction
In Canada, provincial and territorial agencies are responsible

for forest management and therefore carry out forest inventories
whose properties depend on their needs for such information.
However, many drivers of forest dynamics operate at very large
scales and can only be assessed using spatially continuous maps of
forest attributes in which units and definitions are harmonized
across jurisdictional boundaries. For this purpose, Beaudoin et al.
(2014) produced the first Canada-wide maps of forest attributes at
250 m resolution. These maps were produced using k nearest
neighbors (kNN) interpolation methodology, attribute values from
the photo plots of Canada’s National Forest Inventory (NFI) (Gillis

et al. 2005; Stinson et al. 2016) as reference data, and 2001 MODIS
imagery as the main source of predictive variables.

The 2001 maps have been released through the NFI web site
(https://nfi.nfis.org/en/) and successfully exploited across a wide
variety of application types such as mapping of treed peatlands
(Thompson et al. 2016) and estimating postglacial afforestation
dynamics (Blarquez and Aleman 2016). Moreover, the maps were
designed to be spatiotemporally consistent with MODIS-based
2000–2011 yearly maps of fire and harvest across Canada (Guindon
et al. 2014). The combination of these two products has enabled
analyses such as the evaluation of timber supply vulnerability to
projected changes in fire regime (Gauthier et al. 2015), the sustain-
able supply of biomass from postfire salvage logging (Mansuy
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et al. 2015, 2017), the projection of forest composition under a
changing climate (Boulanger et al. 2017), and the quantification of
fire selectivity and avoidance as a function of forest composition,
age, and biomass (Bernier et al. 2016).

Although the 2001 maps of forest attributes are already of great
use, the production of a more recent set of forest attribute maps
across Canada can offer further advantages. These include a more
up-to-date portrait of the forest landbase but, more importantly,
a potential capacity to track and evaluate over time temporal
changes of attributes such as biomass and tree cover at the local,
regional, or national scale. Because of the availability of year-
specific MODIS imagery as a main source of time-dependant infor-
mation, the mapping approach used by Beaudoin et al. (2014)
offers the possibility to produce such a temporal update. How-
ever, the authors showed that the lack of agreement between
their 2001 mapped estimates and validation data can be impor-
tant, can vary regionally, and can be substantial as distances from
inventoried areas increase. As a result, substantial and indepen-
dent errors between sequential map products could make change
estimation and trend analysis unsatisfactory.

Given the potential benefits related to the estimation of forest
attribute change using sequential map products, the primary ob-
jective of this study was to evaluate if sequential maps of forest
attributes can be used to estimate the magnitude of changes due
to known stand-replacing disturbances (harvest, fire) and to re-
growth between 2001 and 2011. As an additional objective, we set out

to improve our kNN prediction procedure and address issues with
the original reference dataset to improve the level of agreement
with the reference data as compared with the original product of
Beaudoin et al. (2014). We then used this improved procedure to
generate an updated set of forest attributes maps for year 2001
and a new set for year 2011. The current mapping exercise covers
all 12 treed ecozones of Canada (Ecological Stratification Working
Group 1996), while the evaluation of the level of agreement with
the reference data relate to the seven ecozones that are best cov-
ered by the NFI photo-plot network (Fig. 1; Table 1).

Materials and methods
The application of the kNN method entails identifying the k

nearest reference pixels for each target pixel in the multidimen-
sional space of predictive variables (X), also called the “feature
space”. Values of each response variable (Y), or the individual
forest attributes in this case, for the k nearest reference pixels are
then averaged and assigned to the target pixel (McRoberts 2012) as

(1) ỹi � ��
j�1

k

wj
i��1

�
j�1

k

wj
iyj

i

with

Fig. 1. Map of Canada’s 12 treed ecozones showing the set of reference pixels (dots, n = 35 305) derived from NFI photo plots (Table 1). Areas in
red indicate fires and harvest (Guindon et al. 2014) and areas in green indicate regrowth (Hansen et al. 2013) during the 2001–2011 time period.
Black outlined box is a taiga–boreal transition area used in Fig. 4.
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(2) wj
i �

1

dij
t

where �yj
i; j � 1, ..., k� is the set of observations for the k reference

pixels nearest in the feature space to target pixel i, as calculated
using a given distance metric; wj

i is the weight for each of the k
neighbors based on the distance in feature space dij between tar-
get pixel i and the nearest reference pixel j; and exponent t usually
takes on values of 0 for simple mean or 1 for inverse distance
weighting. In the current work, because preliminary tests using
more complex distance metrics or weighted averaging (t = 1) pro-
vided negligible improvements (results not shown), we opted to
use the Euclidian distance metric and unweighted averaging (t = 0)
as in Beaudoin et al. (2014).

Improvements to the kNN prediction process evaluated below
involved the implementation of procedures to increase the quantity
and quality of reference information, the testing of kNN predictions
stratified by forest and nonforest covers, and the selection of an
optimal value of k. In addition, we used published remote sensing
products to create the ancillary datasets required for improving
the reference set, performing stratified kNN predictions, and eval-
uating the estimated 2001–2011 changes in forest attributes (Sup-
plementary Table S11).

Ancillary datasets
We used yearly maps (2001–2011) of within-pixel fractional

changes (percent area of pixel affected by changes) from fires and
harvest at the 250 m pixel resolution (hereafter fractional distur-
bance) from the Canada-wide MODIS forest change product of
Guindon et al. (2014). We also derived binary values of treed or
nontreed status from the EOSD 2000 Canada-wide Landsat-based
25 m resolution land cover product (Wulder et al. 2008). Finally,
we extracted values of tree cover proportion (percent, year 2000)
and binary identification of forest cover loss (yearly, 2000–2014)
and gain (periodic, 2000–2012) from a global Landsat-based 30 m res-
olution forest cover product (Hansen et al. 2013).

The Canada-wide datasets at 30 m resolution from the EOSD
product (Wulder et al. 2008) and from the global forest cover
product of Hansen et al. (2013) were aggregated independently
to the 250 m resolution of the MODIS grid to create two maps of
percent tree cover for year 2000. These two maps were to be used
in the identification of unsuitable reference photo plots, as de-
scribed below in the section on the reference set. We also used the
Landsat-resolution forest cover gain and loss layers from the
global forest cover product to create MODIS-resolution maps of

fractional tree cover losses resulting from stand-replacing distur-
bances that occurred during the 2000 to 2011 period (hereafter
fractional loss), as well as of fractional tree cover gains resulting
from pre-2000 stand-replacing disturbances (hereafter fractional
gain).

The fractional loss and gain maps and the MODIS-based frac-
tional disturbance maps of Guindon et al. (2014) were then used to
identify pixels for which values of fractional disturbance, loss,
and gain were all equal to zero during the 2001 to 2011 study
interval to create a no-change map. The fractional maps were also
used to update the tree cover information from its original base
year of year 2000 to our target years of 2001 and 2011 (Supplemen-
tary Table S11). A forest–nonforest binary mask was then created
for each target year by applying a 25% threshold to the updated
tree cover maps. These two binary masks were to be used in the
new stratified kNN prediction workflow described in the section
on kNN predictions.

Response variables
The values of forest attributes used as response variables in the

original reference set had been initially extracted by Beaudoin
et al. (2014) from the photo-plot product of Canada’s NFI. Photo
plots are 2 km × 2 km areas located on the nodes of a Canada-wide
20 × 20 km grid within which forest stands polygons are delin-
eated by photo interpretation. For each polygon, estimates had
been provided for a standardized suite of forest attributes using a
combination of photo interpretation and modelling as part of the
National Forest Inventory procedure (Gillis et al. 2005; Boudewyn
et al. 2007; Stinson et al. 2016). Beaudoin et al. (2014) rasterized the
photo plots on the MODIS 250 m × 250 m grid and estimated the
value of attributes within each resulting pixel as the spatial aver-
age of values found in the underlying polygons.

Because of issues with coherence of information across jurisdic-
tions and the small sample sizes for less abundant species, the
original set of 102 attributes representing percent compositions of
individual tree species were aggregated into 78 layers of species or
genus. The full set of 93 attributes to be mapped thus included, in
addition to the 78 composition layers, the original four land cov-
ers and 11 structure variables (Supplementary Tables S2 and S31).
For the sake of simplicity, results are reported below only for
three key attributes: proportion of tree cover (TREED, %), propor-
tion of needle-leaved species (NLS, %), and live aboveground bio-
mass (AGB, tonnes (t)·ha–1). Maps of all 93 forest attributes are
available from Beaudoin et al. (2017).

1Supplementary material is available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2017-0184.

Table 1. Reference pixels across the seven treed ecozones well inventoried by NFI photo plots (expressed as % of total count; n = 35 305) by forest
and nonforest classes and 1% sample set of target pixels used for change analysis (expressed as % of total count by ecozone and change type;
n = 437 957).

Treed ecozones Area,* 106 km2

(A) kNN reference pixels
(% of total count)

(B) Target pixels for change analysis
(% of total count by ecozone)

Nonforested (nf) Forested (f) No change (%) Harvest (%) Fire (%) Regrowth (%) Total count

Boreal Shield 1.921 5.2 31.2 81.6 1.7 5.0 11.6 225 225
Boreal Plains 0.741 5.7 13.4 86.8 1.8 2.7 8.7 72 280
Montane Cordillera 0.490 3.7 10.9 74.6 4.5 1.7 19.2 44 884
Boreal Cordillera 0.471 4.0 6.1 92.1 0.0 4.6 3.3 49 205
Pacific Maritime 0.209 2.3 3.6 88.8 1.2 0.1 9.9 19 034
Atlantic Maritime 0.202 0.6 5.4 72.6 4.4 0.0 23.0 20 678
Mixedwood Plains 0.169 2.4 1.0 94.8 0.1 0.0 5.0 6 651

Total 4.203 23.8 71.5 83.0 1.9 3.7 11.0 437 957

Five other ecozones 2.785 1.1 3.5

*Source: https://nfi.nfis.org/publications/standard_reports/NFI_T1_LC_AREA_en.html.
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Predictive variables
We first considered 13 static and 18 dynamic predictive vari-

ables from the set used by Beaudoin et al. (2014) (Supplementary
Table S41). The set of static variables was composed of nine climatic
variables derived from spatially interpolated 1970–2000 climate nor-
mals (McKenney et al. 2011) and four topographic variables derived
from a SRTM-based 90 m digital elevation model (Farr et al. 2007). The
set of dynamic predictive variables was composed of MODIS-based
spectral features derived from summer and winter yearly (2001–
2011) surface reflectance composites (Pouliot et al. 2009) that had
been temporally normalized (Fernandes and Leblanc 2005). Tem-
poral normalization of MODIS images allows the stabilization of
the relationships between spectral features and forest attributes
across years and thus makes the reference sets time invariant.

From this initial set of 31 predictive variables, we first selected
the 27 best ones for year 2001 using a kNN-based multivariate
iterative selection procedure (varSelection) implemented within
the yaImpute package in R (Crookston et al. 2015). Correlation
among predictive variables, as well as between predictive and
response variables, was dealt with by using the most similar
neighbor (MSN) distance metric based on canonical correlation
analysis (Packalén and Maltamo 2007) (Supplementary Fig. S11).
Then, using a subset of densely treed reference pixels (n = 13 578)
flagged as unchanged, we rejected seven dynamic spectral vari-
ables that were too temporally unstable in spite of the availability
of temporally normalized MODIS images. The rejection decision
was based on thresholds of 10% and 25% relative change for the
mean and the mean plus one standard deviation, respectively,
across the 2001 to 2011 period (Supplementary Fig. S21). The final
set of 20 predictive variables was composed of nine MODIS spec-
tral features and 11 static features (Supplementary Table S41) that
were then standardized to values between –1 and 1 to avoid scale
effects in kNN predictions (LeMay and Temesgen 2005).

Reference set
In an ideal reference set, the spectral features used as predictive

variables and the forest attribute measurements used as response
variables would have been acquired at the same time to guarantee
the best possible relationship between predictive and response vari-
ables. However, this was generally not the case as 69% of the photo
plots had been established using aerial photos acquired before
2001, the first year of reliable MODIS imagery. We dealt with the
resulting temporal mismatch between the reported forest attri-
butes and the MODIS spectral features as follows. We first rejected
the photo plots established prior to 1987 (1.2% of all photo plots).
For photo plots established between 1987 and 2000 inclusively
(68% of all photo plots), we eliminated those that had changed
substantially, i.e., in which the tree cover estimated at year 2000
from our two Landsat-based ancillary datasets was 50% greater
(12.6% of all photo plots) or smaller (6.6% of all photo plots) than
the reported tree cover at the establishment year. For photo plots
established from 2001 onward (31%), we used values of spectral
features from MODIS images of matching years. However, we
eliminated from that set the photo plots that had been disturbed
on the year of establishment (0.73% of all photo plots) because we
could not know if the airborne images used for photo-plot estab-
lishment had been taken before or after the disturbance.

Beaudoin et al. (2014) used the four corner pixels of each photo
plot for their reference set. For the current analysis, using only
pixels from the photo plots retained in the selection process de-
scribed above, we added the centre pixel as a fifth sample per
photo plot. Prior analysis had revealed that this addition did not
cause any substantial spatial autocorrelation among the samples.
We also filtered out a small number of pixel outliers (1.3% of
pixels) defined as those for which the absolute value of standard-
ized residuals of kNN AGB predictions are greater than 3.0
(McRoberts 2009). We carried out this filtering process using the

NNDiag package in R (from https://cran.r-project.org/src/contrib/
Archive/nnDiag/).

Finally, we replaced the 30% sample set aside for accuracy as-
sessments used by Beaudoin et al. (2014) with a fivefold cross-
validation process, thereby increasing the size of the reference set
by retaining all selected samples. The resulting reference sample
set (n = 35 305) was then split into nonforest (nf, n = 8804) and
forest (f, n = 26 501) subsets based on the photo-plot TREED attri-
bute using a 25% tree cover threshold (Table 1) to be used in the
stratified kNN prediction process described below.

kNN predictions
We produced the maps of predicted forest attributes with the

in-house kNNMapping C++ software for both target years (2001
and 2011) using the improved reference set. Maps were produced
with or without forest–nonforest stratification for values of k
ranging from 1 to 15. The stratification of target pixels into forest (f)
and nonforest (nf) subsets was performed using the binary forest–
nonforest masks derived from the ancillary data. The masks for
2001 and 2011 were 92.7% and 96.0% accurate, respectively, relative
to the NFI photo-plot TREED attribute split in forest–nonforest
subsets. We then performed separate kNN predictions in each
subset for each target year using the corresponding reference
sample subsets (Table 1) and spatially recombined the separate
forest and nonforest output maps to create continuous maps for
each of the 93 response variables.

Evaluation of static kNN predictions
Measurements from regular field plots established by provin-

cial forest agencies and by the NFI could not be used for the
validation of static predictions, mostly because of their much
smaller size compared with the MODIS pixels (0.04 ha and 6.25 ha,
respectively). An additional obstacle to the use of field plot mea-
surements for validation was the challenge of creating a uniform,
spatially and temporally representative validation set from dispa-
rate provincial inventories. We therefore used attribute values
from the 250 m × 250 m pixels within the reference set to estimate
the level of agreement of the resulting kNN predictions, as in
Beaudoin et al. (2014). Because the NFI photo-plot attributes on
which the reference set is based are derived either from photo
interpretation or from models with unknown error structures, we
used the error metrics derived below only in a relative manner to
quantify the prediction improvements relative to the predictions
of Beaudoin et al. (2014).

We estimated values of four error metrics for each of the three
test attributes (TREED, NLS, AGB) for unstratified and stratified
kNN predictions across a range of k values (1 to 15): T2 (similar to R2;
McRoberts 2012), RMSD (root mean square deviation), and MD
(mean deviation) as in Beaudoin et al. (2014):

(3a) Tm
2 �

�
i�1

n

(ȳmi � ymi)
2 � �

i�1

n

(ỹmi � ymi)
2

�
i�1

n

(ȳmi � ymi)
2

(3b) RMSDm � � 1
n �

i�1

n

(ỹmi � ymi)
2

(3c) MDm �
1
n �

i�1

n

(ỹmi � ymi)

where m refers to a given cross-validation fold m = 1 to 5 each
containing n pixels indexed i; and ỹi, yi, and ȳi are the predicted,
observed, and mean observed values of a given test attribute,
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respectively. Values of MD in eq. 3c were computed on the lower
and upper 25% values of forest attribute distribution (hereafter
MD– and MD+, adapted from McRoberts 2009) to characterize the
systematic overestimation and underestimation at lower and up-
per distribution tails documented for the original 2001 product.
For each of the three key forest attributes, the estimated values of
the four univariate error metrics are the average of values calcu-
lated within a fivefold cross-validation analysis. These metrics
were used to evaluate the improvements of new 2001 maps rela-
tive to the initial 2001 maps from Beaudoin et al. (2014) for each of
our three test attributes and to assess the prediction stability of
new kNN maps between the 2001 and 2011 target years. Values
of the univariate accuracy metrics for all 93 attributes can be
found in Supplementary Table S31.

For each of the four error metrics, we then combined the uni-
variate values from the three key forest attributes into a single
multivariate error metric. The combination involved the expres-
sion of the univariate RMSD and MD values as percentages of the
mean observed attribute value (RMSD%, MD%). Then, RMSD%,
MD%, and T2 values were averaged across the three key attributes.
We used the relative percent change of the four resulting multi-
variate error metrics between the new and the original kNN pre-
dictions to quantify the impact of the improved reference set and
the stratified predictions by forest and nonforest covers on the
adjustment to the reference data relative to that obtained using
the original kNN process of Beaudoin et al. (2014). We also selected
the optimal k value based on the values of the relative percent
change of the multivariate error metrics across a range of k values.

Evaluation of 2001–2011 change from kNN predictions
An ideal evaluation of change estimates would have been per-

formed using independent field-based information on change in
forest attributes at the appropriate spatial and temporal scales
and with an appropriate Canada-wide distribution. However, as-
sembling such a dataset would have been a daunting task. In
addition, in the absence of photo-plot re-measurement data, we
could not use this source of information to evaluate our change
estimates. Instead, we performed a qualitative evaluation in which
we assessed calculated changes in AGB and TREED predictions be-

tween the two target years against expectations of changes based on
our knowledge of disturbance dynamics and forest properties.

We evaluated whether changes in AGB and TREED due to fire,
harvest, or regrowth met expectations in terms of either the dif-
ferences between the change types or their relationship to the
values of fractional disturbance of fractional gain. Our expecta-
tions with respect to postdisturbance changes in AGB and TREED
were that the mean difference between 2011 and 2001 values

Fig. 2. Percent relative change (%) as a function of k for four multivariate error metrics derived from the new 2001 kNN process relative to the
initial 2001 process from Beaudoin et al. (2014): (A) unstratified predictions and (B) stratified predictions. Values of percent relative change are
positive for an increase in T2 or a decrease in the other three measures.

Fig. 3. Percent relative change (%) across k values for each of the
four multivariate error metrics in the new 2001 kNN process relative
to their optimal values (relative change = 0%), showing the current
selection of k = 3 (black arrow) compared with the value of k = 6
(grey arrow) used in Beaudoin et al. (2014).
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would be centered on 0 for “no-change” pixels, would be positive
for regrowth pixels, and would be negative for fire and harvest
pixels. We also expected changes in AGB to be larger for harvest
than for fire. This expectation was based on the highly selective
nature of harvest towards fully stocked stands on productive sites
in contrast to the more random nature of fire across age and
productivity classes and its greater occurrence at higher latitudes
where productivity is inherently lower (Van Wagner 1978; Bernier
et al. 2016; Guindon et al. 2014).

Finally, we expected changes in both AGB and TREED to be
proportional to the within-pixel fractional disturbance or frac-

tional gain. This expectation was based on the observation that
the mean reflectance of a whole pixel composed of different sur-
face types (end members) such as harvested versus nonharvested
trees could be explained as a linear mixing of spectral reflectance
from end members (e.g., Kuusinen et al. 2015). Given the lack of
independent change estimates at comparable temporal and spa-
tial scales for rigorous validation, we felt that this analysis would
at least provide a qualitative evaluation of adequacy of the change
estimates extracted from bi-temporal kNN map products.

The evaluation was carried out on a 1% systematic sample of
vegetated pixels drawn from our continuous maps of forest prop-

Table 2. Summary of the four univariate error measures (eqs. 3a to 3c) for aboveground biomass (AGB, t·ha–1), treed
proportion (TREED, %), and needle-leaf species proportion (NLS, %) for V0 (the 2001 map of Beaudoin et al. (2014)) and V1 (the
current maps for 2001 and 2011).

AGB (t·ha–1) TREED (%) NLS (%)

Error
measure 2001, V0 2001, V1 2011, V1 2001, V0 2001, V1 2011, V1 2001, V0 2001, V1 2011, V1

T2 0.62 0.68 0.63 0.60 0.68 0.66 0.58 0.62 0.61
RMSD 44.47 40.30 43.70 25.41 23.22 24.00 25.79 25.19 25.60
MD+ –34.08 –20.01 –26.84 –13.44 –8.17 –8.08 –15.51 –9.88 –9.26
MD– 15.18 8.34 9.25 21.93 12.33 13.18 21.08 13.21 13.90

Fig. 4. Predicted aboveground biomass (AGB) in a boreal–taiga transition zone of eastern Canada (box in Fig. 1): (A) in the initial (V0) 2001 map
from Beaudoin et al. (2014); (B) in the current (V1) 2001 map from this study; (C) AGB change as difference between current 2011 and 2001
predictions; and (D) within-pixel fractional disturbance (Guindon et al. 2014) from fire and harvest (red) and fractional tree cover gain from
regrowth (green), as well as no change (white).
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erties across the seven ecozones best sampled by NFI photo plots
(n = 437 957; Table 1). Using the disturbances maps of Guindon
et al. (2014) described earlier, we then assigned to each pixel the
appropriate change type (fire, harvest, regrowth, or no-change)
and its associated within-pixel fractional disturbance or fractional
gain (fractional disturbance and fractional gain = 0 for no-change
pixels).

Results and discussion

Evaluation of static kNN predictions
The improvements to the reference set and the better selection

of predictive features provided the bulk of the increase in the level
of agreement to the reference data as compared with the original
process of Beaudoin et al. (2014). Overall, gains were larger than
14% in all four multivariate error metrics, while ranging from 36%
to 56% for the two MD% error metrics (MD–% and MD+%, respec-
tively, for the lower and upper ends of distribution of test vari-
ables) (Fig. 2A). Additional improvements of about 10% were
obtained through stratified predictions by forest and nonforest
covers for MD+% and MD–% measures at the cost of slightly lower
gains for T2 and RMSD% (Fig. 2B). Finally, the selection of k = 3
within a priori stratified kNN workflow ensured that all four mul-
tivariate error metrics remained within 5% of their best values, as
compared with within 11% of their best values when using k = 6 as
in Beaudoin et al. (2014) (Fig. 3). The resulting implementation of
the stratified kNN workflow and the lower k value provided gains
in univariate error metrics in the 2001 values of our three test
variables (Table 2). Values of T2 substantially increased by 7% to
13%, whereas RMSD decreased by –2% to –9%. Major gains were
observed for MD– and MD+ measures, with decreases in overesti-
mations of –31% to –41% and in underestimations of –37% to –45%.

Overall, the continued use of the Euclidian distance and t = 0
and the selection of k = 3 are in line with reported practices in a
recent meta-analysis of kNN studies (Chirici et al. 2016). Low values
of k have been found to yield good error measures in other
inventory-based applications of the kNN (Halperin et al. 2016).
Compared with the original 2001 maps, the new 2001 maps are
more contrasted, particularly in areas of sparse tree cover such as
the prairie–forest ecotone of central Canada and the boreal–taiga
transition where patterns of attributes such as AGB are better
spatially defined (Figs. 4A and 4B). The substantial reduction in
overestimation and underestimation at lower and upper AGB
range, respectively (Table 2), is reflected in the more frequent
occurrence of low and high biomass values in the maps (Figs. 4A
and 4B).

Estimated values of univariate error metrics show a slight deg-
radation of adjustment to the reference set in the 2011 map as
compared with the 2001 map in unchanged pixels, but differences
in univariate error estimates between the 2001 and 2011 predic-
tions do not exceed 7% for TREED and NLS attributes and 11% for
AGB (Table 2). Although the changes in the error estimates are
small, they likely reflect inability of our various procedures to
totally eliminate time-related effects. Possible error sources in-
clude imperfect spectral normalization of interannual variability
in MODIS composites, as well as imperfect selection of dynamic
spectral variables. Another possible source of error is the larger
uncertainty in the forest–nonforest mask of 2011 relative to the
one from 2001 resulting from the updating process based on avail-
able ancillary datasets (Supplementary Table S11).

Evaluation of 2001–2011 changes from kNN predictions
Estimated changes in AGB between 2011 and 2001 for test pixels

that had been fully disturbed (fractional disturbance > 90%) by
harvest or fire or that within which fractional gain had been
identified over more than 90% of their surface show expected
behavior. Overlaps in frequency distributions of AGB change
among these change classes and with the no-change pixels are

relatively limited (Fig. 5). The near-zero mean (0.18 t·ha–1) change
in AGB between 2001 and 2011 for no-change pixels meets our
expectations, while the standard deviation (±26.3 t·ha–1) reflects
the combined 2001 and 2011 prediction errors and the possible
effects of partial disturbances or limited growth not identified in
any of the ancillary datasets.

Pixels having undergone harvest or fire show expected negative
changes in AGB in 99.2% and 98.2% of the cases in our sample,
respectively. In addition, changes are greater for harvested pixels
(–103.7 ± 59.5 t·ha–1) than for burned pixels (–35.7 ± 26.4 t·ha–1).
Again, this result is in agreement with our expectations as it re-
flects the systematic selection of mature, well-stocked stands for
harvesting in contrast to the more random and northerly occur-
rence of fires. Moreover, the mean harvest-related loss of about
104 t·ha−1 translates roughly to a stem-only volume of 210 m3·ha−1

for softwood species (conversion factors: stem wood = 80% of total
biomass, wood density = 0.4 t·m−3). This value is close to a mean of
205 m3·ha−1 that can be calculated from reported annual values of
total volume harvested and of total area harvested across Canada
(Natural Resources Canada 2015).

Change in AGB from 2001 to 2011 in pixels having undergone
regrowth (29.9 ± 50.9 t·ha–1) is positive as expected in 74% of our 1%
sample set, but with greater overlap with the no-change AGB
difference distribution compared with the fire and harvest classes.
The occurrence of negative values in 26% of the test pixels is
contrary to our expectations but may result, in part, from kNN
prediction errors and from the inherent difficulty in the identifi-
cation of pixels with forest cover gains in the original product of
Hansen et al. (2013). Nevertheless, the larger proportion of pixels
with positive AGB changes is in agreement with our expecta-
tions. In addition, the resulting mean yearly biomass rate of
3.6 t·ha−1·year−1 over the 10-year period is compatible with the
faster rates of juvenile growth across productive forests stands in
Canada, as documented in operational timber yield tables (e.g.,
Pothier and Savard 1998), where forest cover gains would have
been detected by Hansen et al. (2013).

Values of AGB and TREED in pixels affected by harvest or fire
drop between target years 2001 and 2011 in proportion to the

Fig. 5. Frequency distributions of estimated change in AGB as
difference between 2011 and 2001 predictions (t·ha–1) due to fire,
harvest, and regrowth, as well as for no-change pixels (n = 407 333)
within pixels with values of fractional disturbance or fractional
gain ≥ 90% (n = 34 124) from the 1% sample set used for change
analysis (Table 1).
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fractional disturbance, a result that is in line with our expecta-
tions (Figs. 6A and 6B). The changes in AGB due to regrowth also
behave according to expectations, with pixels showing gains in
both AGB and TREED proportional to the fractional gain (Figs. 6A
and 6B). Finally, when mapped across the landscape, AGB change
values are quite similar for fire and harvest (Fig. 4C). This again
meets our expectations. Although the average value of AGB loss is
larger for harvest than for fire on a per-hectare basis, values of
fractional change are larger for fire than for harvest (Fig. 4D)
(Guindon et al. 2014). As a result, the realized pixel-level losses
(AGB loss per hectare × fractional change) are quite similar for
both disturbances.

The new maps of forest attributes for 2001 and 2011 share a refer-
ence dataset presumed to be time invariant and therefore applicable
to any particular year of the MODIS time series. Time invariance is
a general principle used in all MODIS-based products that rely on
a fixed set of relationships between spectral features and proper-
ties at the surface of the Earth to map these properties across years
(Pouliot et al. 2009). In this study, time invariance was sought by
using MODIS images that were normalized across years and by re-
moving predictive variables that still varied across years over stable
dense forests in spite of the normalization. However, we may expect
a certain degree of estimate uncertainty to be generated by the im-
perfect time invariance of our reference set.

Although the changes made to the kNN prediction process
listed above have improved the overall level of agreement across
all error measures, there are still substantial uncertainties associ-
ated with these predictions. Potential sources include a remaining
impact of time mismatch of 2001 MODIS images and the year of
aerial photo capture for the pre-2001 photo plots retained for this
analysis (McRoberts et al. 2016) and the errors associated with the
use of photo interpretation and modelling for creating the photo-
plot dataset (Magnussen and Russo 2012). Ongoing re-measurement of
the photo plots will alleviate some of these problems as these data
become available, but a more fundamental shift in approach to
the current analysis may be required to achieve substantial gains
in accuracy.

Our estimates of changes between 2001 and 2011 are based on
national-level samples assembled by classes of fractional distur-
bance or fractional gain and thus represent aggregate values from

pixels with no systematic spatial affiliation. Because of a lack of
true validation data for change estimates, what we cannot evalu-
ate at this stage is the appropriate area over which pixel-level
results have to be aggregated to correctly represent quantitative
change in forest attributes following regrowth or losses due to
disturbances. Beaudoin et al. (2014) found that aggregation of
pixel-level biomass estimates to 1 km2 improved values of T2 by
25% and of RMSD by 40%. Because estimates of change involve a
difference between two yearly estimates, we suggest that aggre-
gation would need to be performed to units larger than 1 km2 for
similar improvements of error measures. Also, Beaudoin et al.
(2014) found that the quality of estimates degrades in areas with
more complex topography or that are under-represented within
our reference dataset through lack of forest inventory. The same
limitations will apply to change estimates.

Conclusion
There has been a number of national or regional forest attributes

maps already produced using the nonparametric kNN method (e.g.,
Wilson et al. 2013; McRoberts et al. 2007; Bernier et al. 2010). How-
ever, possibly the only national inventory programs within which
the kNN method is being applied are those of Finland (Tomppo
2006), which has been operational since 1990, and Sweden. In the
Finnish program, re-measured field plots and Landsat 30 m spec-
tral reflectance data are combined with other data sources to yield
new map coverage on a 5-year basis as NFI by-products. Reproduc-
ing such a data-intensive program at the scale of Canada would be
a significant challenge. However, the original 2001 250 m resolu-
tion maps of forest attributes across Canada’s well-inventoried
forests have already enabled unique analyses to be carried out,
and the current update of this original base year will further
improve its use. We also expect that the addition of the 2011 maps
of forest attributes, and thus the ability to perform bi-temporal
analyses, will create significant opportunities for strategic analy-
ses at the regional and national scales across Canada. The new
version of the 2001 maps and the new 2011 maps for all 93 predicted
forest attributes are available for public use (Beaudoin et al. 2017).

Fig. 6. Mean 2001 to 2011 change estimates in (A) treed proportion (TREED, %) and (B) aboveground biomass (AGB, t·ha–1) for no-change pixels
and as binned pixels by classes of 1% fractional disturbance from fire or harvest or fractional gain from regrowth (st.dev., standard deviation).
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