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SM 3. Estimating pre-fire forest attributes 

The methods to estimate the pre-fire values of the following six attributes are described below:  Treed 

vsnon-Treed (a binary variable), total live aboveground biomass (t ha-1), crown closure (%), and percent 

of biomass in conifer species, in deciduous species, and in unknown species, where these three 

percentages sum to 100%.  

 

SM 3a.  Extracting reference forest attribute values  

We extracted reference values of forest attributes  from the photoplot (PP) database of Canada’s 

National Forest Inventory (NFI) (Gillis et al. 2005).  Each PP consists of a 2 × 2 km square located at each 

node of a 20 × 20 km grid laid across Canada’s forests. For all the PPs, provincial and territorial inventory 

services provided forest inventory polygons along with a suite of forest attributes derived from a 

combination of photo-interpretation of aerial photography and modelling. We used a rasterized version 

of the NFI PP polygons at a 30 m resolution and the associated sampling grid based on 250-m pixel 

centroids from Beaudoin et al. (2018). This sampling grid provided around 64 reference samples per PP 

for a total of 376 274 candidate samples, along with the suite of the six required forest attributes, the 

date of the PP establishment.  

 

 

 



 

 

SM 3b. Creating time-consistent training set samples  

We processed and selected a proper sample subset of the reference pixels to create the random forest 

(RF) training data set through the application of three operations. The first operation ensured that there 

was no mismatch between the PP establishment date and the Landsat time series. For example, we 

want to avoid recently disturbed areas (less than 5 years) with a high biomass value, simply because the 

PP date was not correct.  The comparison revealed a year mismatch for only 3% of the reference pixels, 

which were removed from our training set.   

The second operation removed pixels with inconsistent year of PP establishment relative to CanLaD year 

for a more long-term perspective. We detected year mismatch using a pixel-level yearly biomass 

increase rate following a severe disturbance as detected in CanLaD. The biomass increase rate was 

calculated as NFI PP biomass (t/ha) divided by the time difference between CanLaD disturbance year 

and NFI PP establishment year. Using this approach, we removed 0.16% of pixels whose annual biomass 

increase rate was estimates to be above 5 t/ha/year.          

The third operation eliminated all samples whose centroids fell within a 30-m buffer around PP polygon 

boundaries. We did so to avoid selecting mixed pixels overlapping neighbouring polygons, due to 

relative coregistration errors between Landsat pixels and NFI polygon boundaries.  This procedure 

removed far more pixels in treed areas, where forest stand polygons are small and irregular, compared 

to pixels in non-treed areas, where polygons are generally large. The resulting sampling imbalance 

between treed and non-treed pixels was eliminated by gradually removing randomly selected non-treed 

pixels until the proportion of treed and of non-treed pixels matched the proportion found in the 

complete NFI PP database.    

The initial reference set with 376 274 pixels was reduced to 375 667 then to 178 104 pixels after 

applying the second and third operations above. This procedure provided the final training set with 

reference attribute values and we associated to pixel centroids the spatially coincident values of 20 

predictive variables.  

 

SM 3c. Spectral predictive variables from Landsat composites  

For building the training set, we first assigned to each reference pixel the values of spectral bands 

(B1,2,3,4,5,7) and spectral indices (NDVI,NDMI,NBR) extracted from one of the yearly Landsat composite 

from 1984 to 2015 of Guindon et al. (2018) that matched the year of the PP establishment.   



 

 

In order to simplify the final mapping of the six estimated pre-fire attributes to CanLaD fires, we chose 

to use spectral predictive variables from Landsat composites created for only two target years, ca. 1985 

and ca. 2000 (the use of “ca.” acknowledges the use of gap filling across years in the Landsat 

composites). We selected spectral predictive variables from one of the two Landsat composites whose 

year was closest prior to fire year. We assumed negligible disturbances or growth within the time lag.  

To create those Landsat composites, we considered all available Landsat scenes from each target year 

plus or minus one year (i.e. 1984-1985-1986 and 1999-2000-2001), which provided a sufficient number 

of scenes required for the pixel- and median-based compositing approach as follows. For each target 

year, we ranked the available pixels according to their Tasselled Cap Brightness (TCB) values and 

calculated the TCB median value.  For a pixel, once that TCB median value was found, the Julian day of 

that pixel was taken. We then simply used all the corresponding Landsat band values of that day (band 

1,2,3,4,5 and 7) from which we then derived the usual Normalized Difference Vegetation index (NDVI), 

the Normalized Difference Moisture Index (NDMI) and the Normalized Burn Ratio (NBR)  spectral indices 

(see table SM2).  The use of median spectral values automatically removed residual cloud and shadow 

pixels generally located respectively at the higher and lower ends of the reflectance frequency 

distribution (Flood et al. 2013, Wulder et al. 2019).  

 

SM 3d. Other predictive variables from various sources  

Various site-related predictive variables related to topography, productivity, and climate were derived 

from various sources and were resampled to a raster with 30-m pixel size using bilinear interpolation to 

match the resolution of Landsat composites (Table S3.1). The simultaneous estimation of forest 

attributes was carried out using the r package RFsrc ( Ishwaran and  Kogalur  2014), a modified 

multivariate Random Forest  procedure (Breiman 2001, Segal et al. 2011)  with a 5-fold strategy (80%-

20%) with 178 104 training points  from Canada’s National Forest Inventory (NFI) photoplot network 

(Gillis et al. 2005) across Canada. After testing for the number of trees, we sued 500 trees (Fig. 3.1) and 

opted to retain the Mtry pre-defined value.  The importance of predictor is shown in Fig. S3.1 and key 

prediction results are presented in Table S3.2.  

 



 

 

 Table S3.1.  List and description of 20 input predictive variables used in Random Forest  and analysis 

were performed using a k-fold cross-validation  strategy (5 folds, 80%-20%) based on the PP ID key to 

predict forest attributes.  

 Variable 
type 

Variables Comments 
  

Multi-
spectral data 

-Yearly Landsat composite, 
1984-2018  
 
 
 
-Median Landsat composite, 
ca. 1985 and ca. 2000.  

- Yearly Landsat Band 1, 2, 3, 4, 5, 7, NDVI, NDMI and NBR 
from 1984 to 2018.  Used to get the spectral signatures 
matching the measurement year of the NFI photoplot to 
be included in the training set. 
 
- Median Landsat Band 1,2,3,4,5,7, NDVI, NDMI and NBR.  
Median mosaic using all available scenes over a three-
year range, centered on 1985 or 2000, to be used to map 
the final RF model.  
 
Data were in Surface Reflectance using the LEDAPS and 
LaSRC algorithm (Ju et al. 2012,  Masek et al. 2006) and 
were downloaded and processed by the USGS Earth 
Resources Observation and Science (EROS) Center Science 
Processing Architecture (ESPA). Landsat Level-2 Bulk 
Ordering and Downloading available through ESPA Bulk 
Downloader.  
 

Topography 
and 
derivatives 

- Elevation from Digital 
Elevation Model (DEM)  
- Slope from DEM 
- Landform Topographic 
Wetness Index from DEM 

ASTGTM: ASTER Global Digital Elevation Model V002 
https://lpdaac.usgs.gov/node/1079 
Data were downloaded from https://e4ftl01.cr.usgs.gov/ 
 ASTER Global Digital Elevation Model V002: DOI  
10.5067/ASTER/ASTGTM.002 
  
NASA/METI/AIST/Japan Spacesystems, and U.S./Japan 
ASTER Science Team. ASTER Global Digital Elevation 
Model. 2009, distributed by NASA EOSDIS Land Processes 
DAAC, https://doi.org/10.5067/ASTER/ASTGTM.002 
  
Topographic Wetness Index - SAGA TWI (Conrad et al. 
2015) http://www.saga-
gis.org/saga_tool_doc/2.1.3/ta_hydrology_20.html 
  
TWI algorithm : Beven et al. 1979, Moore et al. 1991 and 
Böhner et al. 2006  

Productivity  - Degree Days  
 
- Net Primary Productivity 

-Degree days layer was derived using BioSIM (Régnière et 
al. 2014) as used in Guindon et al. 2014, 2018 
- NPP layer described in Guindon et al. 2018 is based on 



 

 

the highest observed NPP over the 2000-2014 period and 
over a 10km area using the global 1-km pixel resolution 
MOD17A3 net primary productivity (NPP) time series 
(Running et al. 2015). 

Climate - Mean annual radiation  
- Mean annual temperature  
- Lowest temperature of any 
monthly minimum 
temperature 
- Precipitation over warmest 
quarter of the year 
- Total annual precipitation  
- Summer climatic moisture 
index 

Data were kindly provided by Dan McKenney (McKenney 
et al. 2011). 
Customized spatial climate models for North America. 
https://dx.doi.org/10.1175/2011BAMS3132.1 
  

 

A)                                                                            B) 

 

Figure S3.1.  A) Test to optimise the number of trees in the Random Forest (RF) analysis. B) Importance 

of the variables presented in Table S3.1 in the final RF model.    

  



 

 

 

Table S3.2.  Random Forest prediction results for the six pre-fire attributes: min, max and mean 
predictions along with R2 and RMSE values.   

 

 
Min Max Mean R2 RMSE 

Treed_Non_Treed * 
   

0.88 0.8 

Biomass (t/ha) 0 1103 60 0.66 48.7 

Percent coniferous species (% of biomass) 0 100 45 0.60 28.4 

Percent deciduous species (% of biomass) 0 100 16 0.62 18.5 

Percent  unknown species  (% of biomass ) 0 100 21 0.45 29.6 

Crown Closure (%) 0 100 34 0.69 18.5 

* In the case of the binary class Treed Non-treed, only overall accuracy and kappa value are presented 

instead of R2 and RMSE 

 

SM 3e. Limitations  

- For the pre-fire forest attributes mapped at 30-m resolution and across forested areas 

subsequently burnt according to CanLaD database, no distinction was made if the stands were 

mostly dead from the Mountain Pine Beetle infestation in B.C. (2000 and more), the Spruce 

Budworm infestation in Eastern Canada (early 1990-2000 then 2006 to now) or other insect 

disturbances.    

- The training set was created using samples derived from the rasterized forest stand polygons 

within NFI photoplots because of the absence of a standardised ground plot database at the 

national scale.  Although these polygons provided reference attribute values at a sub-optimal 

resolution and accuracy for our Landsat-scale analysis, we judged them adequate to stratify our 

analysis by broad cover types at the national level. 

- Despite the observed good overall R2 values, level of fit is expected to be lower at fine regional 

and local scales. Therefore, our predictions are more suitable for national and regional analysis.  
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