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Supplementary Material 3

SM 3. Estimating pre-fire forest attributes

The methods to estimate the pre-fire values of the following six attributes are described below: Treed
vsnon-Treed (a binary variable), total live aboveground biomass (t ha-1), crown closure (%), and percent
of biomass in conifer species, in deciduous species, and in unknown species, where these three

percentages sum to 100%.

SM 3a. Extracting reference forest attribute values

We extracted reference values of forest attributes from the photoplot (PP) database of Canada’s
National Forest Inventory (NFI) (Gillis et al. 2005). Each PP consists of a 2 x 2 km square located at each
node of a 20 x 20 km grid laid across Canada’s forests. For all the PPs, provincial and territorial inventory
services provided forest inventory polygons along with a suite of forest attributes derived from a
combination of photo-interpretation of aerial photography and modelling. We used a rasterized version
of the NFI PP polygons at a 30 m resolution and the associated sampling grid based on 250-m pixel
centroids from Beaudoin et al. (2018). This sampling grid provided around 64 reference samples per PP
for a total of 376 274 candidate samples, along with the suite of the six required forest attributes, the

date of the PP establishment.



SM 3b. Creating time-consistent training set samples

We processed and selected a proper sample subset of the reference pixels to create the random forest
(RF) training data set through the application of three operations. The first operation ensured that there
was no mismatch between the PP establishment date and the Landsat time series. For example, we
want to avoid recently disturbed areas (less than 5 years) with a high biomass value, simply because the
PP date was not correct. The comparison revealed a year mismatch for only 3% of the reference pixels,

which were removed from our training set.

The second operation removed pixels with inconsistent year of PP establishment relative to CanLaD year
for a more long-term perspective. We detected year mismatch using a pixel-level yearly biomass
increase rate following a severe disturbance as detected in CanLaD. The biomass increase rate was
calculated as NFI PP biomass (t/ha) divided by the time difference between CanLaD disturbance year
and NFI PP establishment year. Using this approach, we removed 0.16% of pixels whose annual biomass

increase rate was estimates to be above 5 t/ha/year.

The third operation eliminated all samples whose centroids fell within a 30-m buffer around PP polygon
boundaries. We did so to avoid selecting mixed pixels overlapping neighbouring polygons, due to
relative coregistration errors between Landsat pixels and NFI polygon boundaries. This procedure
removed far more pixels in treed areas, where forest stand polygons are small and irregular, compared
to pixels in non-treed areas, where polygons are generally large. The resulting sampling imbalance
between treed and non-treed pixels was eliminated by gradually removing randomly selected non-treed
pixels until the proportion of treed and of non-treed pixels matched the proportion found in the

complete NFI PP database.

The initial reference set with 376 274 pixels was reduced to 375 667 then to 178 104 pixels after
applying the second and third operations above. This procedure provided the final training set with
reference attribute values and we associated to pixel centroids the spatially coincident values of 20

predictive variables.

SM 3c. Spectral predictive variables from Landsat composites

For building the training set, we first assigned to each reference pixel the values of spectral bands
(B1,2,3,4,5,7) and spectral indices (NDVI,NDMI,NBR) extracted from one of the yearly Landsat composite

from 1984 to 2015 of Guindon et al. (2018) that matched the year of the PP establishment.



In order to simplify the final mapping of the six estimated pre-fire attributes to CanLaD fires, we chose
to use spectral predictive variables from Landsat composites created for only two target years, ca. 1985
and ca. 2000 (the use of “ca.” acknowledges the use of gap filling across years in the Landsat
composites). We selected spectral predictive variables from one of the two Landsat composites whose

year was closest prior to fire year. We assumed negligible disturbances or growth within the time lag.

To create those Landsat composites, we considered all available Landsat scenes from each target year
plus or minus one year (i.e. 1984-1985-1986 and 1999-2000-2001), which provided a sufficient number
of scenes required for the pixel- and median-based compositing approach as follows. For each target
year, we ranked the available pixels according to their Tasselled Cap Brightness (TCB) values and
calculated the TCB median value. For a pixel, once that TCB median value was found, the Julian day of
that pixel was taken. We then simply used all the corresponding Landsat band values of that day (band
1,2,3,4,5 and 7) from which we then derived the usual Normalized Difference Vegetation index (NDVI),
the Normalized Difference Moisture Index (NDMI) and the Normalized Burn Ratio (NBR) spectral indices
(see table SM2). The use of median spectral values automatically removed residual cloud and shadow
pixels generally located respectively at the higher and lower ends of the reflectance frequency

distribution (Flood et al. 2013, Wulder et al. 2019).

SM 3d. Other predictive variables from various sources

Various site-related predictive variables related to topography, productivity, and climate were derived
from various sources and were resampled to a raster with 30-m pixel size using bilinear interpolation to
match the resolution of Landsat composites (Table S3.1). The simultaneous estimation of forest
attributes was carried out using the r package RFsrc ( Ishwaran and Kogalur 2014), a modified
multivariate Random Forest procedure (Breiman 2001, Segal et al. 2011) with a 5-fold strategy (80%-
20%) with 178 104 training points from Canada’s National Forest Inventory (NFI) photoplot network
(Gillis et al. 2005) across Canada. After testing for the number of trees, we sued 500 trees (Fig. 3.1) and
opted to retain the Mtry pre-defined value. The importance of predictor is shown in Fig. S3.1 and key

prediction results are presented in Table S3.2.



Table $3.1. List and description of 20 input predictive variables used in Random Forest and analysis

were performed using a k-fold cross-validation strategy (5 folds, 80%-20%) based on the PP ID key to

predict forest attributes.

Variable Variables
type
Multi- -Yearly Landsat composite,

spectral data | 1984-2018

-Median Landsat composite,
ca. 1985 and ca. 2000.

Topography | - Elevation from Digital
and Elevation Model (DEM)
derivatives | - Slope from DEM
- Landform Topographic
Wetness Index from DEM

Productivity |- Degree Days

- Net Primary Productivity

Comments

- Yearly Landsat Band 1, 2, 3, 4, 5, 7, NDVI, NDMI and NBR
from 1984 to 2018. Used to get the spectral signatures
matching the measurement year of the NFI photoplot to
be included in the training set.

- Median Landsat Band 1,2,3,4,5,7, NDVI, NDMI and NBR.
Median mosaic using all available scenes over a three-
year range, centered on 1985 or 2000, to be used to map
the final RF model.

Data were in Surface Reflectance using the LEDAPS and
LaSRC algorithm (Ju et al. 2012, Masek et al. 2006) and
were downloaded and processed by the USGS Earth
Resources Observation and Science (EROS) Center Science
Processing Architecture (ESPA). Landsat Level-2 Bulk
Ordering and Downloading available through ESPA Bulk
Downloader.

ASTGTM: ASTER Global Digital Elevation Model V002
https://Ipdaac.usgs.gov/node/1079

Data were downloaded from https://e4ftl01.cr.usgs.gov/
ASTER Global Digital Elevation Model V002: DOI
10.5067/ASTER/ASTGTM.002

NASA/METI/AIST/Japan Spacesystems, and U.S./Japan
ASTER Science Team. ASTER Global Digital Elevation
Model. 2009, distributed by NASA EOSDIS Land Processes
DAAC, https://doi.org/10.5067/ASTER/ASTGTM.002

Topographic Wetness Index - SAGA TWI (Conrad et al.
2015) http://www.saga-
gis.org/saga tool doc/2.1.3/ta_hydrology 20.html

TWI algorithm : Beven et al. 1979, Moore et al. 1991 and
Bohner et al. 2006

-Degree days layer was derived using BioSIM (Régniére et
al. 2014) as used in Guindon et al. 2014, 2018
- NPP layer described in Guindon et al. 2018 is based on



the highest observed NPP over the 2000-2014 period and
over a 10km area using the global 1-km pixel resolution
MOD17A3 net primary productivity (NPP) time series
(Running et al. 2015).

Climate - Mean annual radiation Data were kindly provided by Dan McKenney (McKenney
- Mean annual temperature et al. 2011).
- Lowest temperature of any | Customized spatial climate models for North America.
monthly minimum https://dx.doi.org/10.1175/2011BAMS3132.1
temperature

- Precipitation over warmest
quarter of the year

- Total annual precipitation
- Summer climatic moisture
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Figure S3.1. A) Test to optimise the number of trees in the Random Forest (RF) analysis. B) Importance

of the variables presented in Table S3.1 in the final RF model.



Table S3.2. Random Forest prediction results for the six pre-fire attributes: min, max and mean
predictions along with R2 and RMSE values.

Min Max Mean R>  RMSE
Treed_Non_Treed * 0.88 0.8
Biomass (t/ha) 0 1103 60 0.66 48.7
Percent coniferous species (% of biomass) 0 100 45 0.60 28.4
Percent deciduous species (% of biomass) 0 100 16 0.62 18.5
Percent unknown species (% of biomass ) 0 100 21 0.45 29.6
Crown Closure (%) 0 100 34 0.69 18.5

* In the case of the binary class Treed Non-treed, only overall accuracy and kappa value are presented

instead of R? and RMSE

SM 3e. Limitations

- For the pre-fire forest attributes mapped at 30-m resolution and across forested areas
subsequently burnt according to CanLaD database, no distinction was made if the stands were
mostly dead from the Mountain Pine Beetle infestation in B.C. (2000 and more), the Spruce
Budworm infestation in Eastern Canada (early 1990-2000 then 2006 to now) or other insect
disturbances.

- The training set was created using samples derived from the rasterized forest stand polygons
within NFI photoplots because of the absence of a standardised ground plot database at the
national scale. Although these polygons provided reference attribute values at a sub-optimal
resolution and accuracy for our Landsat-scale analysis, we judged them adequate to stratify our
analysis by broad cover types at the national level.

- Despite the observed good overall R? values, level of fit is expected to be lower at fine regional

and local scales. Therefore, our predictions are more suitable for national and regional analysis.
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