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SM 2a. Residual cloud and shadow detection in burned area  

When implementing the change detection algorithm in CanLaD for harvesting and fires, there were 

sometimes clouds and shadows that were not detected in the original images and appeared as a change 

when there was none.  We therefore included a detection of shadows and clouds in the 

changealgorithm .  For this project, we usedthe previously developed algorithm and improved the 

detection of shadows and clouds in burned area using new training specifically for that type of area.      

 

SM 2b. Filling the gaps in the Landsat time series for the extended assessment of burn severity 

Landsat data were missing in total for about 10% of CanLaD burned area for the first post-fire year 

required for the calculation of dNBR used for the extended assessment of burn severity. We refer to this 

post-fire year as t3 (as a reminder, t1 and t2 refers to the pre-fire and fire year, respectively, see Fig 2). 

We filled the t3 Landsat gaps using Landsat data from two years after the fire (t4) or occasionally from 

three years after the fire (t5) when t4 data were missing as well.  We derived the missing t3 Landsat 

values for each of the spectral bands from band-specific linear regressions reported in the table S2.1.  

These regressions were adjusted using 1000 Landsat pixels randomly selected from the subset of 

CanLaD burned pixels for which Landsat data was available for all years from t2 to t5 inclusively (Table 

S2.1).  

  



 

 

Table S2.1: Values of the parameters of the linear regression  Bt3 = b + m Btx where B represents the 
spectral reflectance value (x 1000) of a given band, subscript t3 represents the first post-fire year, while 
subscript tx represents either A) second post-fire year t4 or  B) the third post-fire year t5.  Also shown are 
the values of the coefficient of determination (R2) and of the root mean squared error (RMSE). 

A) 

 Band m b R2 RMSE 

 B3 0.66 138.87 55.54 80.69 

 B4 0.65 163.13 62.88 219.84 

 B5 0.66 453.22 47.45 206.22 

  B7 0.70 434.00 49.38 225.59 

B)      

 Band m b R2 RMSE 

 B3 0.60 156.54 49.36 86.11 

 B4 0.57 195.84 47.86 272.00 

 B5 0.60 506.01 42.08 216.50 

 B7 0.71 447.77 49.90 224.42 

 

 

SM 2b. Note on different normalization approaches  

To reduce the noise inherent in the satellite images, there is a method called "offset" (Key and Benson 

2006), which consists of taking areas outside the fire (within a maximum of 1km buffer distance 

approximatively) as a reference area for which  the dNBR is calculated. As this dNBR  should technically 

be 0, the difference between the value and 0 provides a correction  coefficient that can be applied to 

the NBR inside the burned perimeters and normalising unburned pixels to 0.  For each combination of 

scenes (one pre and one post scene), this  factor must be calculated and applied to the portion inside 

the fire.  

Initially, we had implemented the "offset" method but have encountered various problems and even 

mixed results in some places due to the nature of the Landsat mosaics and the surrounding landscape 

across Canada’s forested land.  The Landsat mosaics we are using are assembled built from several 

scenes and only the best pixel is chosen according to the clearest opacity of the atmosphere.  When 

there is a cloud, the pixels in an area can be picked from different scenes. This results in several possible 



 

 

combinations of scenes within and around a single fire sometimes giving a very small number of 

reference pixels outside the fire. Thus the correction could be applied to a large area inside the fire with 

reference to a very small number of pixels outside the fire. In fact, recent work of Parks et al. (2018) 

suggests that the reference areas must be at the edge (within a distance from 180 m of the fire) but in 

Canada’s landscapes and our mosaic type, it would frequently be many kilometers away. 

More importantly, there are large areas of treed and non-treed peatlands, wetlands, and bare areas 

interspersed with forested areas which challenged our ability to locate appropriate reference areas, 

thereby making that solution difficult to apply.  There are many wetlands in Canada, and these areas 

behave unpredictably in terms of reflectance because they are strongly influenced by water content 

from one year to the next.  Bare environments are also common, with their radiometry varying also 

from year to year.  It was therefore necessary to better select reference zones for the offset correction 

in order to target only coniferous stands, which are more stable. As we move northward through the 

study area, this definition of coniferous forest becomes very tenuous.  This makes it difficult to control 

areas for correction and to ensure that there are enough pixels for each fire and good reference area 

around.   In fact, Parks et al. 2019, didn’t use any offset for Canada, because the imprecision of the fire 

perimeters.  In our case, even if we had good fire boundaries, the presence of wetlands, peatlands and 

bare areas makes challenging to apply.  

Another normalisation technique that is suggested in the literature (san Miguel et al. 2019) is to take a 

median values (of NBR for instance) from several images of the same pixels.  We used this approach for 

the creation of the pre-fire mosaics in CanLaD (Guindon et al. 2017, 2018) but had to use three years to 

get enough images.  In fact, as the  study area have a very short growing season restricting us to use only 

July and August images as phenology has a strong impact on reflectance values than that of the different 

sensors (Chen et al. 2020).  Thus, by using only July and August images there are very few scenes 

available. Considering that at least 3 pixels are needed to calculate a median, it would be impossible to 

calculate a median for 44% of all burned pixels in the country from 1985 to 2015. Some regions are also 

more affected than others by the frequency of cloud cover (or lack of available scenes) such as the Taiga 

East, where this number climbs to 65%.  In summary, the final number of available post-fire pixels is only 

2.9 for all period from 1985 to 1995, contrasting with results from southern areas in USA where the 

number of available pixels is ranging from 6 to 20 (Parks et al. 2018) with a mean of 11. In the light of 

our trials, no such normalisation was applied.  

 



 

 

In the light of our trials, the difficulties of applying both the offset values and of calculating medians, 

defining a standardised approach covering the country was deemed impossible. We have opted for 

slightly more noise in the data but less inconsistency introduced by different approaches and for which 

it would be difficult to control due to regional differences and over time (one satellite, two satellite, 

one-half broken satellite).  We felt that making no normalization was better than introducing bias that 

are difficult to control and assess. These corrections would have a minor impact on the final results 

other than reducing the range in values (change in quartile 1 and 3).  
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